
Physical limit to concentration sensing in a changing environment

Thierry Mora1, ∗ and Ilya Nemenman2
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Cells adapt to changing environments by sensing ligand concentrations using specific receptors.
The accuracy of sensing is ultimately limited by the finite number of ligand molecules bound by
receptors. Previously derived physical limits to sensing accuracy have assumed that the concentra-
tion was constant and ignored its temporal fluctuations. We formulate the problem of concentration
sensing in a strongly fluctuating environment as a non-linear field-theoretic problem, for which we
find an excellent approximate Gaussian solution. We derive a new physical bound on the relative
error in concentration c which scales as δc/c ∼ (Dacτ)−1/4 with ligand diffusivity D, receptor cross-
section a, and characteristic fluctuation time scale τ , in stark contrast with the usual Berg and
Purcell bound δc/c ∼ (DacT )−1/2 for a perfect receptor sensing concentration during time T . We
show how the bound can be achieved by a simple biochemical network downstream the receptor
that adapts the kinetics of signaling as a function of the square root of the sensed concentration.

Cells must respond to extracellular signals to guide
their actions in the world. The signals typically come in
the form of changing concentrations of various molecu-
lar ligands, which are conveyed to the cell through lig-
and binding to cell surface receptors. A lot of ink has
been expended on deriving the fundamental limits to the
precision with which a cell can measure the concentra-
tions from the activity of its receptors, constrained by
the stochasticity of ligand binding and unbinding [1–4].
In particular, it has become clear that the temporal se-
quence of binding-unbinding events carries more infor-
mation about the underlying ligand concentration than
just the mean receptor occupancy, typically used in de-
terministic chemical kinetics models of this problem [5].
In particular, such precise temporal information allows
cells to estimate the concentration of a cognate ligand
even in a sea of weak spurious ligands [6–8], as well as to
estimate concentrations of multiple ligands from fewer re-
ceptor types [9, 10], and molecular network motifs able to
perform such complex estimation exist in the real world,
even potentially taking advantage of cross-talk between
receptor-ligand pairs [11].

Importantly, concentrations of ligands are worth mea-
suring only when they are a priori unknown; or, in other
words, if they change with time, allowing for instance
cells to adapt their behaviour accordingly and maximize
their long-term growth [12]. However, all of the preced-
ing analyses have focused on the regime with a clear time
scale separation, where the concentration is constant or
constantly changing [13] during the period over which
it is estimated. In this article, we will fill in this gap by
calculating the accuracy with which a temporally varying
ligand concentration may be estimated from a sequence
of binding and unbinding events. This requires making
assumptions about the time scale over which significant
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changes of the concentration are possible. In our formu-
lation, the optimal sensor performs a Bayesian computa-
tion, formalized mathematically as a stochastic field the-
ory. Crucially, we show how simple biochemical circuits
allow one to perform the relevant complex computations.

Field theory of concentration sensing. We associate
to the ligand concentration c(t) a field ϕ(t) through
c(t) = c0e

−ϕ(t), where c0 is an irrelevant reference con-
centration. Ligand concentration controls the ligand-
receptor binding rate r(t) = 4Dac(t) = 4Dac0e

−ϕ(t) ≡
r0e
−ϕ(t), where 4Da is the diffusion-limited binding rate

per molecule of the ligand to its target receptor, modeled
as a circle of diameter a on the cell’s surface, and D is the
ligand diffusivity. This binding rate can be readily gener-
alized to N receptors by using instead r(t) = 4NDac(t).
All our results will then hold with this additional N fac-
tor. We assume that the concentration follows a geo-
metric random walk, with characteristic time scale τ :
dϕ = τ−1/2dW , with W a Wiener process. This choice
is justified by the fact that in many biological contexts,
such as bacterial chemotaxis, concentrations may vary
over many orders of magnitude.

The probability of the concentration temporal evolu-
tion over the time interval (0, T ) is given by

Pprior({ϕ(t)}) =
1

Zprior
exp

[
−τ

2

∫ T

0

dt

(
dϕ

dt

)2
]
. (1)

The receptor sees binding events at times t1, t2, . . . , tn,
each occuring with rate 4Dac(ti) = r0e

−ϕ(ti). To sim-
plify, let us assume that unbinding is instantaneous (gen-
eralization to finite binding times is discussed later). The
posterior distribution of the concentration profile then
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follows Bayes’ rule:

P ({ϕ(t)}) = P (t1, . . . , tn|{ϕ(t)})Pprior({ϕ(t)})
P (t1, . . . , tn)

=
1

Z
exp

{
−
∫ T

0

dt

[
τ

2

(
dϕ

dt

)2

+ r0e
−ϕ(t)

]
−

n∑
i=1

ϕ(ti)

}
,

(2)

where Z is a normalization constant independent of ϕ.
The term r0e

−ϕdt in the integral corresponds the proba-
bility of not binding a ligand between t and t+dt (except
at times ti). The binding events at t = ti are gener-
ated by the true temporal trace of ligand concentration,
c∗(t) = c0e

−ϕ∗(t). In the following the true trace ϕ∗(t)
will be distinguished from the field ϕ, which refers to our
observation-based belief.
The one-dimensional field-theoretic problem (2) is a

particular case of Bayesian filtering [14]. When collect-
ing information from binding events, cells do not have
access to the future and cannot use the full span [0, T ] of
observations to infer the concentration at time t. Instead,
they must infer it solely based on past observation in the
interval [0, t], which distinguishes our problem from the
mathematically similar inference of a continuous proba-
bility density [15–19]. This inference can be performed
recursively by the rules of Bayesian sequential forecast-
ing, similar to the transfer matrix technique, and also
known as the forward algorithm [14]. To do this recur-
sion, we first define:

Z(ϕ, t) =

∫
Dϕ(t) δ(ϕ(t)−ϕ) exp

[
−τ

2

∫ t

0

dt′
(
dϕ

dt

)2

−
∫ t

0

dt′
(
r0e
−ϕ(t′) + ϕ(t′)

n∑
i=1

δ(t′ − ti)

)]
. (3)

Considering past observations during the interval [0, t],
the posterior distribution of ϕ at time t reads:

P (ϕ, t) =
Z(ϕ, t)

Z(t)
, with Z(t) =

∫ ∞
−∞

dϕ′Z(ϕ′, t).

(4)
When considering periods during which no binding

event was observed, we can write a recursion for Z(ϕ, t)
between t and t+ dt. Taking the δt → 0 limit yields, for
t 6= ti (App. A [20]):

∂P (ϕ, t)

∂t
= −r0(e

−ϕ − 〈e−ϕ〉)P (ϕ, t) +
1

2τ

∂2P

∂ϕ2
, (5)

where 〈·〉 denotes an average over P (ϕ). When a binding
even does occur at time ti, the posterior distribution is
updated using Bayes’ rule:

P (ϕ, t+i ) =
e−ϕP (ϕ, t−i )

〈e−ϕ〉 , (6)

where t±i refer to the values right before and after the
observation. The partition function Z(t) can be sim-
ilarly calculated (App. A [20]) and could in principle
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FIG. 1: Numerical validations of analytical results.
A. The Gaussian Ansatz (7)-(8) is validated by simulating
the general equations for Bayesian filtering (5)-(6). The nu-
merical solution approaches the Gaussian solution rapidly,
as indicated by the decay of the Kullback-Leibler divergence
DKL(P (ϕ)‖PGaussian(ϕ)) =

∫
dϕP (ϕ) ln(P (ϕ)/PGaussian(ϕ)).

We used rτ = Dacτ = 50. B. Concentration sensing er-
ror as a function of concentration. The error estimated from
simulations follows closely the prediction from (13), which is
expected to be valid for 4Dacτ � 1.

be used to infer the correct timescale τ by maximizing
P (τ |{t1, . . . , tN}) ∝ Z (App. C [20]).
Gaussian solution. Because of the P (ϕ) dependence

in 〈e−ϕ〉, the equations for the evolution of the poste-
rior probability (5)-(6) are nonlinear. However, assuming
a Gaussian Ansatz P (ϕ, t) = (2πσ(t)2)−1/2 exp[−(ϕ −
ϕ̂(t))2/2σ(t)2], which is accurate in the limit of long mea-
surement times (see below), gives a closed-form solution
(App. B [20]), with:

dϕ̂

dt
= σ2

[
r0e
−ϕ̂+σ2/2 −

n∑
i=1

δ(t− ti)

]
, (7)

dσ2

dt
=

1

τ
− σ4r0e

−ϕ̂+σ2/2. (8)

The maximum a posterior estimator for the concentra-
tion is then simply given by ĉ(t) = c0e

−ϕ̂(t), while σ(t)2

defines the Bayesian uncertainty on the estimator.
To check the validity of the Gaussian solution, we sim-

ulated (5)-(6) numerically, starting from a uniform distri-
bution (P (ϕ, 0) = 1/2 for ϕ ∈ [−1, 1] and 0 otherwise),
with r0τ = 50 and a true ϕ∗(t) starting at ϕ∗(0) = 0.
The numerical solution quickly approaches the Gaussian
solution given by (7)-(8) starting with ϕ̂(0) = 〈ϕ〉t=0 and
σ(0)2 = Var(ϕ)t=0. The Kullback-Leibler divergence be-
tween the numerical and analytical solutions falls rapidly
(Fig. 1A) and the numerical solution approaches the pre-
dicted Gaussian very closely (Fig. 1A, inset). Thus, the
Gaussian solution provides an excellent approximation.
Error estimate. To study the typical behaviour of (7)-

(8), we now assume that the rate of binding events is
large compared to the rate of change of the concentra-
tion, 4Dacτ = rτ � 1. This regime is the biologically
relevant one: to sense concentration, cells need to record
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many binding events over the time scale on which the
concentration fluctuates. In that limit the estimator ϕ̂
is close to the true value ϕ∗, and the Bayesian uncer-
tainty σ2 is small, allowing for two simplifications. First,
(8) relaxes over time scale r(t)−1 to a quasi-steady state

value σ2 ≈ 1/
√
r0e−ϕ̂τ � 1. Second, we can make a

small noise approximation for binding events: over some
time interval ∆t, with r∗(t)−1 � ∆t � τ , the number
of binding events has both mean and variance equal to
r∗(t)∆t, allowing us to replace discrete jumps in (7) by:

d

(
n∑

i=1

δ(t− ti)

)
≈ r0e

−ϕ∗
dt+ (r0e

−ϕ∗
)1/2dW ′, (9)

where W ′ is a Wiener process. As a result, the estimator
ϕ̂ tracks the true value ϕ∗ according to:

dϕ̂ ≈ (r0e
−ϕ̂/τ)1/2(ϕ∗ − ϕ̂) + τ−1/2dW ′, (10)

where we have expanded at first order in ϕ̂− ϕ∗. In the
general case, the true field may evolve according to a dif-
ferent characteristic time scale, τ∗, than the one assumed
by the Bayesian filter, τ , so that dϕ∗ = (τ∗)−1/2dW . The
estimation error ε = ϕ̂− ϕ∗ then evolves according to:

dε = −(r/τ)1/2ε dt+ τ−1/2dW ′ − (τ∗)−1/2dW. (11)

Intrigingy, the noises dW ′ and dW have very different
interpretations, one being due to the random arrival of
binding events, and the other to the geometric diffusion
of the concentration. Yet they come in the same form
in this equation. Relying again on the assumption that
rτ � 1, we get an estimate of the error:

〈ε2〉 = 1

2
√
r

(
1√
τ
+

√
τ

τ∗

)
, (12)

which has a minimum as a function of τ , reached for the
true value of the characteristic fluctuation time τ = τ∗:

〈(ĉ− c∗)2〉
c2

≈ 〈ε2〉 = 1√
rτ

=
1√

4Dacτ
. (13)

This error is equal to the Bayesian uncertainty σ2 =

1/
√
r0τe−ϕ̂ ≈ 1/

√
4Dacτ and is consistent with the er-

ror found using the saddle-point approximation in the
related problem of probability density estimate [15].

We checked the validity of our small-noise approxima-
tion by comparing the prediction from (12) with the re-
sults of a numerical simulation of (7)-(8), in which we
averaged the error 〈(ĉ− c∗)2〉 as a function of c for many
realization of the process. The agreement is found to be
excellent, and gets better as rτ = 4Dacτ becomes larger
(Fig. 1B).

The error in (13) sets a fundamental physical limit on
any concentration sensing device, biological or artificial,
in a concentration profile that follows a geometric ran-
dom walk. This bound is radically different from that
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(ĉA−c∗)2

c2
1√

4Dacτ

B.

FIG. 2: Performance of adaptive biochemical network
in fluctuating ligand concentration. A. Schematic of the
biochemical network implementing optimal Bayesian filtering.
The receptor-induced activation of the readout molecule A∗,
as well as its deactivation are regulated by a second molecule
B∗, which is made to scale like

√
A∗ using a mechanism of

deactivation by dimerisation (shaded box). B. Simulation of
the network readout cA(t) ∝ A∗(t) in response to stochastic
binding events in a fluctuating concentration field c∗(t). The
relative estimation error 〈(ĉA − c∗)2〉/c2 behaves according to

the theoretical bound 1/
√
4Dacτ (inset).

obtained by Berg and Purcell for the concentration sens-
ing error by a single receptor integrating binding events
over time T [1, 5]:

δc2

c2
=

1

4DacT
(14)

(in the limit where binding events are short so that the
receptor is always free).
The major difference is that Berg and Purcell, as well

as most of the literature on concentration sensing, assume
that the sensed concentration does not change with time.
Our result can be reconciled with Berg and Purcell by
defining an effective measurement time T ∼

√
τ/4Dac

— the geometric mean between the mean time between
binding events and the time scale of variation. This T
realizes the optimal tradeoff between the requirement to
integrate over many binding events, T � 1/(4Dac), but
over a relatively constant concentration, T � τ [21].
Plausible biological implementation. Can cells imple-

ment the optimal Bayesian filtering scheme and reach
the bound set by (13)? To gain intuition, it is useful to
rewrite (7)-(8) in term of the concentration estimator ĉ,
in the limit 4Dacτ � 1 where σ2 can be eliminated:

dĉ

dt
=
√
4Daĉ/τ

(
1

4Da

n∑
i=1

δ(t− ti)− ĉ

)
. (15)

Each binding event should lead to an increment of ĉ,
followed by a continuous, exponential decay, with a rate
given by T−1 =

√
4Daĉ/τ .

This scheme can be implemented by a simple biochem-
ical network schematized in Fig. 2A. The concentration
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readout ĉA may be represented by the “active” (for in-
stance phosphorylated) form A∗ of a chemical species.
Binding events cause the receptor to activate A into A∗,
which gets subsequently deactivated. Both the activation
and deactivation of A are catylized by a second chemi-
cal species in its active form, B∗. Thus, upon a binding
event, the concentration of active A∗ is increased by:

∆[A∗] = k+A [A][B∗], (16)

and it decays between binding events according to:

d[A∗]
dt

= −k−A [B
∗][A∗], (17)

where k±A are biochemical parameters.
To implement (15), the concentration of B∗ must be

controled by the square root of A∗. This dependence
can be achieved by assuming that B is activated into B∗

through the catalityc activity of A∗, and that B∗ gets
deactivated cooperatively as a dimer:

d[B∗]
dt

= k+B [B][A∗]− k−B [B
∗]2, (18)

where k±B are biochemical reaction rates.
Assuming that the kinetics of B are fast compared to

A, we obtain B∗ = (Bk+B/k
−
B)

1/2
√
A∗ and

d[A∗]
dt

= α
√
[A∗]

(
β
∑
i=1

δ(t− ti)− [A∗]

)
. (19)

with α = k−A([B]k+B/k
−
B)

1/2 and β = (k+A [A]/k−A). If A
and B are in excess, and thus approximately constant,
then this biochemical network exactly implements (15),
with 4DaĉA ≡ k−A [A

∗]/k+A [A], and τ = τnet ≡ 1/(α2β) =

k−B/(k
+
Bk

+
Ak
−
A [A][B]).

Interestingly, the amount of inactive (≈ total) B con-
trols the time scale of concentration fluctuations, and
could be tuned through gene regulation to adapt to
different speeds of environmental fluctuations. A bio-
chemical network might be able to find the optimal τ
and then adjust [B] accordingly by empirically mea-
suring the fold-change of r(t) (which can be done by
biochemical networks, see e.g. [22]) but with a delay,
〈r(t + ∆t)/r(t)〉 = e∆t/2τ , and then inverting the rela-
tionship to extract τ .

We tested the performance of the biochemical network
for sensing concentration by simulating (16)-(18) with a
fluctuating ligand concentration c(t) with characteristic
time scale τ . For concreteness, we set c∗(0) = 10nM,
τ∗ = 10s, k+A [A] = 0.01, k−A = k+B = k+B = 1µM−1s−1

and [B] = 10µM, so that τnet = τ∗. Fig. 2B shows the
network estimate ĉA(t) along with the true value c∗(t).
The empirical error 〈(ĉA − c∗)2〉 as a function of c∗ aver-
aged over 104s (Fig. 2B, inset), again shows an excellent

agreement with the theoretical bound 1/
√
4Dacτ .

Discussion. For the sake of clarity our analysis made
simplifying assumptions which can be easily relaxed. Our

proposed biochemical implementation assumed a con-
stant burst of activity following each binding event, con-
sistent with the optimal estimation strategy. However, in
real receptors, stochasticity in the bound time is known
to double the variance in the estimate [5] (App. D [20]).

Treating this effect simply adds a factor
√
2 in the noise

term of (9) as well as in (13), 〈δc2〉/c2 ≈ 1/
√
2Dacτ .

We also ignored periods during which the receptor was
bound. During that time the receptor is blind to the ex-
ternal world, and the posterior evolves according to the
prior: ∂tP = (1/2τ)∂2

ϕP , ∂tϕ̂ = 0 and ∂tσ
2 = 1/τ . In

our results, these “down times” renormalize the effective
observation time by the fraction of time the receptor is
free, pfree = (1+4Dacu)−1, where u is the average bound
time, 〈δc2〉/c2 ≈ 1/

√
4Dacpfreeτ (App. D [20]). Combin-

ing the two effects (stochasticity in bound time and recep-
tor availability) would yield 〈δc2〉/c2 ≈ 1/

√
2Dacpfreeτ .

The field theory of (2) is mathematically similar to the
problem of estimating a density function from a small
sample set with a smoothing prior [15–17, 19]. The main
difference lies in the domain of observations. In density
estimation the whole function {ϕ(t)}t∈[0,T ] is infered to-
gether on the whole domain of t, while sensors can only
learn from past observations, i.e. the t′ < t half-plane.
However, our solution can easily be generalized to deal
with the entire time domain using the forward-backward
algorithm (App. E [20]). Eqs. (5)-(6) and (7)-(8) can be
solved both forward (from 0 to t) and backward (from T
to t, with time reversal) in time, giving P→(ϕ), ϕ̂→, σ2

→
for the forward solution (the one treated in this article),
and P←(ϕ), ϕ̂←, σ2

← for the backward solution. The
Bayesian posterior at any given time is then given by
∝ P→(ϕ)P←(ϕ), of mean (σ2

←ϕ̂→ + σ2
→ϕ̂←)/(σ2

← + σ2
→)

and variance σ2
←σ2
→/(σ2

←+σ2
→) in the Gaussian approx-

imation. While this situation is not relevant for concen-
tration sensing, our general solution should be applicable
to problems of density estimation. The saddle-point ap-
proximation usually made in that context [15–17] is ex-
pected to work in the same limit as our Gaussian Ansatz;
however, recent work has emphasized the importance of
non-Gaussian fluctuations for small datasets [19].

The biological implementation we propose is specula-
tive. An interesting direction would be to identify square-
root or similar control of receptor signaling in real bio-
logical systems, and interpret them in terms of optimal
Bayesian filtering. Signaling pathways dealing with con-
centration changes over several orders of magnitude, such
as bacterial chemotaxis, typically use adaptation mech-
anisms to increase the dynamic range of sensing [23]—a
feature that is absent from our approach as we neglect
noise in the signaling output. Combining adaptation de-
sign with ideas from Bayesian estimation could help us
gain insight into the fundamental bounds and resource
allocation tradeoffs that limit biological information pro-
cessing.
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Appendix A: Field theory for concentration sensing

We first recall the problem outlined in the main text for self-consistency. Receptor binding happens with rate
r(t) = 4Dac(t) = r0e

−ϕ(t). The field ϕ(t) follows a random walk with characteristic time τ∗:

dϕ(t) = τ−1/2dW. (A1)

In the following ϕ∗ will refer to the actual realization of the random walk, with characteristic time τ∗, and ϕ will refer
to the guess made based on the observation of binding events, while τ denotes the assumes characteristic time scale.

The probability of the time trace of ϕ in the absence of any observation is given by

Pprior({ϕ(t)}) =
1

Zprior
exp

[
−τ

2

∫ T

0

dt

(
dϕ

dt

)2
]
, (A2)

with Zprior = (2πdt/τ)T/2dt, where dt is an infinitesimal discretization scale.

During each interval [t, t+ dt] without a binding event, the likelihood reads e−dtr(t) = e−dtr0e
−ϕ(t)

. A binding event
in interval [t, t+ dt] has likelihood dtr0e

−ϕ(t). Thus the posterior probability thus reads:

P ({ϕ(t)}) = P (t1, . . . , tn|{ϕ(t)})Pprior({ϕ(t)})
P (t1, . . . , tn)

=
1

Z
exp

{
−
∫ T

0

dt

[
τ

2

(
dϕ

dt

)2

+ r0e
−ϕ(t)

]
−

n∑
i=1

ϕ(ti)

}
, (A3)

We define:

Z(ϕ, t) =

∫
Dϕ δ(ϕ(t)− ϕ) exp

{∫ t

0

dt′
[
−τ

2

(
dϕ

dt

)2

− r0e
−ϕ(t′) − ϕ(t′)

n∑
i=1

δ(t′ − ti)

]}
. (A4)

The marginal of ϕ at time t, P (ϕ, t|{t1, . . . , tn′}), where n′ is the last binding event before t, is then:

P (ϕ, t) =
Z(ϕ, t)

Z(t)
, Z(t) =

∫
dϕ′Z(ϕ′, t), (A5)
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and Z = Z(T ).
The partial partition function Z(ϕ, t) can be computed recursively. Let us start with the case where no binding

occurs between t and t+ dt. Then:

Z(ϕ, t+ dt) =

∫
dϕ′ Z(ϕ′, t) exp

[
−τ(ϕ− ϕ′)2

2dt
− dtr0e

−ϕ
]
. (A6)

Equivalently,

P (ϕ, t+ dt) =
1

z(t)

∫
dϕ′ P (ϕ′, t) exp

[
−τ(ϕ− ϕ′)2

2dt
− dtr0e

−ϕ
]
, (A7)

where

z(t) =

∫
dϕ dϕ′ P (ϕ′, t) exp

[
−τ(ϕ− ϕ′)2

2dt
− dt r0e

−ϕ
]

(A8)

is a normalization constant, which can be used to calculate Z(t) recursively: Z(t + dt) = Z(t)z(t). Let us now take
the limit dt → 0. The Gaussian integral becomes infinitely peaked. Expanding P (ϕ′, t) = P (ϕ, t) + ∂P (ϕ, t)/∂ϕ(ϕ′ −
ϕ) + ∂2P (ϕ, t)/∂ϕ2(ϕ′ − ϕ)2/2, we obtain:

∂P (ϕ, t)

∂t
= −r0(e

−ϕ − 〈e−ϕ〉)P (ϕ, t) +
1

2τ

∂2P

∂ϕ2
, (A9)

where 〈f(ϕ)〉 =
∫
dϕP (ϕ, t)f(ϕ), and

z(t) = (1− dt 〈e−ϕ〉)
√
2πdt/τ . (A10)

Defining Z(t) = (2πdt/τ)t/2dtZ̃(t), we get:

Z̃(t+ dt)

Z̃(t)
= (1− dt 〈e−ϕ〉), or

d ln Z̃(t)

dt
= −〈e−ϕ〉. (A11)

Now assume that there is a binding event between t = ti and ti + dt. Then P (ϕ, t) is discontinuous at ti and terms
of order dt can be ignored:

P (ϕ, ti + dt) =
e−ϕP (ϕ, ti)

〈e−ϕ〉 , (A12)

and Z̃(ti + dt)/Z̃(ti) = 〈e−ϕ〉.
In summary, the evolution equation for P reads:

∂P (ϕ, t)

∂t
=

1

2τ

∂2P

∂ϕ2
− r0(e

−ϕ − 〈e−ϕ〉)P (ϕ, t) +

(
e−ϕ

〈e−ϕ〉 − 1

)
P (ϕ, t)

n∑
i=1

δ(t− ti), (A13)

and the partition function is given by

Z(t) = (2πdt/τ)t/2dtZ̃(t), with
∂ ln Z̃

∂t
= −r0〈e−ϕ〉+ ln〈e−ϕ〉

n∑
i=1

δ(t− ti). (A14)

Appendix B: Gaussian approximation

Because of the term 〈e−ϕ〉, (A13) is non-linear and cannot be solved analytically. However, if we assume that
P (ϕ, t) is Gaussian,

P (ϕ, t) =
1√

2πσ2(t)
exp

[
− (ϕ− ϕ̂(t))2

2σ(t)2

]
, (B1)
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then closed equations can be obtained for the mean ϕ̂(t) and variance σ2(t):

dϕ̂

dt
=

d〈ϕ〉
dt

=
1

2τ

∫
dϕϕ

∂2P

∂ϕ2
− r0(〈ϕe−ϕ〉 − 〈ϕ〉〈e−ϕ〉) +

( 〈ϕe−ϕ〉
〈e−ϕ〉 − 〈ϕ〉

) n∑
i=1

δ(t− ti)

= σ2

[
r0e
−ϕ̂+σ2/2 −

n∑
i=1

δ(t− ti)

]
, (B2)

dσ2

dt
=

d(〈ϕ2〉 − 〈ϕ〉2)
dt

=
1

2τ

∫
dϕϕ2 ∂

2P

∂ϕ2
− r0(〈ϕ2e−ϕ〉 − 〈ϕ2〉〈e−ϕ〉) +

( 〈ϕ2e−ϕ〉
〈e−ϕ〉 − 〈ϕ2〉

) n∑
i=1

δ(t− ti)−
d〈ϕ〉2
dt

=
1

τ
− σ4r0e

−ϕ̂+σ2/2, (B3)

d ln Z̃

dt
= −r0e

−ϕ̂+σ2/2 − (ϕ̂− σ2/2)

n∑
i=1

δ(t− ti), (B4)

where we have used the Gaussian integral rules: 〈e−ϕ〉 = e−ϕ̂+σ2/2, 〈ϕe−ϕ〉 = (ϕ̂ − σ2)e−ϕ̂+σ2/2, 〈ϕ2e−ϕ〉 = (σ2 +

(ϕ̂− σ2)2)e−ϕ̂+σ2/2, and 〈ϕ2〉 = ϕ̂2 + σ2, and we have used integration by parts to calculate the integrals.

Appendix C: Partition function and time scale inference

The most likely timescale τ can be inferred from the observations as well by using Bayes’s rule again:

P (τ) ∝
∫

Dϕ(t)P (t1, . . . , tn|{ϕ(t)})Pprior({ϕ(t)}|τ)Pprior(τ) =
Z(τ)Pprior(τ)

Zprior(τ)
= Z̃(τ)Pprior(τ), (C1)

where we have used Zprior(τ) = (2πdt/τ)T/2dt.

We can calculate Z̃ from the Gaussian approximation (B4):

log Z̃ ≈ −
∫ T

0

dt r̂(t)eσ
2(t)/2 +

n∑
i=1

(ln r̂(ti) + σ2(ti)/2). (C2)

This expression looks like the log-likelihood of a sequence of binding events, up to the σ2 corretions. Bear in mind
that r̂(t) is the estimated rate, not the true one r∗(t). We have r̂(t) = r∗(t)e−ε(t), where we ε = ϕ̂− ϕ∗. Expanding
in ε and σ2, we obtain:

log Z̃ = −
∫ T

0

dt r∗(t) +
n∑

i=1

ln r∗(ti) +
∫ T

0

dt

[
r∗(t)−

n∑
i=1

δ(t− ti)

]
(ε(t)− σ(t)2/2)−

∫ T

0

dt r∗(t)
ε2(t)

2
. (C3)

Both ε(t) and
∑

i δ(t − ti) − r∗ are stochastic processes of mean 0. They are also uncorrelated with each other, so
that the third term is sub-linear in T . The last term, which scales with T , thus dominates the τ -dependent part of
the likelihood. It is maximized for minimum mean squared error, that is for τ = τ∗, as shown in the main text. At
large T , the Z̃(τ) term exponentially dominates the prior Pprior(τ), so that P (τ) is peaked around the maximum of

Z̃(τ).

Eq. (C2) is an example of the usual bias-variance tradeoff (where “bias” refers to errors made from overfitting
the data, and “variance” to errors due to limited data). At small τ , r̂ changes rapidly, jumping when a new binding
happens, and then rapidly decreases. Thus the term

∑
ln r̂(ti) increases, indicating increase in the goodness of fit.

At the same time σ2(t) increases, so that at small τ the integral term in (C2) becomes large and negative, exploding
exponentially for τ → 0. In contrast, for τ → ∞, r̂(ti) = n/T , and σ2 → 0, so that now the goodness of fit is small.

Overall, theres an optimal τ that maximizes Z̃. The three terms in (C2) parallel the three terms (fluctuation
determinant, goodness of fit, and the kinetic term) in the field-theoretic formulation of continuous probability density

estimation from samples [15, 16], and thus we expect that maximizing Z̃ will result in an optimal τ not only when
the true concentration undergoes a geometric random walk, but also when it undergoes various anomalous walks [16].
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Appendix D: Bound time

We have so far neglected the time the receptor remained bound the ligand Let us denote by ti,off the unbinding
time following the binding time at ti. When the receptor is bound, ti < t ≤ ti,off , no information can be obtained
from the environment, and the evolution equation for the posterior simply follows the diffusion law:

∂P

∂t
=

1

2τ

∂2P

∂ϕ2
. (D1)

The rest of the time, ti,off < t ≤ ti, (A13) holds. Similarly, in the Gaussian approximation, we get

dϕ̂

dt
= 0,

dσ2

dt
=

1

τ
(D2)

for bound receptors, ti < t ≤ ti,off , and (B2)-(B3) for unbound receptors. In the limit where binding and unbinding
events are frequent compared to τ , rτ � 1, we have:

dσ2

dt
=

1

τ
− pfreeσ

4r0e
−ϕ̂+σ2/2, (D3)

where

pfree(t) =
〈ti − ti−1,off〉
〈ti − ti−1〉

=
r(t)−1

r(t)−1 + u
=

1

1 + r(t)u
=

1

1 + 4Dac(t)u
, (D4)

where u = 〈ti,off−ti〉 is the average bound time, and r(t)−1 = 〈ti−ti−1,off〉 the average unbound time. The uncertainty
then reads:

〈δc2〉
c2

=
1√

rpfreeτ
=

1√
4Dapfreec

. (D5)

The time the receptor remains bound has another impact on the ability to sense concentration. In the biochemical
scheme proposed in the main text, each binding event causes a fixed burst of activity δ(t − ti), regardless of the
bound time. In the simplest receptors however, signaling occurs during the time the receptor is bound, which is
itself stochastic. We can model this by replacing the Dirac delta by a random burst of activity, biδ(t − ti), with bi
proportional to the bound time, bi = (ti,off−ti)/u, so that 〈bi〉 = 1 and Var(bi) = 1, since the bound time is distributed

exponentially according to (1/u)e−(ti,off−ti)/u. More generally we can consider 〈bi〉 = 1 and Var(bi) = CV , where
0 ≤ CV ≤ denotes the coefficient of variation. The general base 〈bi〉 can be renormalized away into the biochemical
parameters. The special case CV = 0 gives back the results of the main text. When CV > 0, the variance of∫ t0+∆t

t0

∑
i biδ(t− ti) over an interval of duraction ∆t instead reads:

Var

[∫ t0+∆t

t0

∑
i

biδ(t− ti)

]
= 〈bi〉Var(m) + Var(bi)〈m〉 = r∗∆t(1 + CV ). (D6)

where n′ is the number of binding events in the interval. As the result, the noise dW ′ in the main text gains a factor√
1 + CV , and the error becomes:

〈ε2〉 = 1

2
√
r

(
1 + CV√

τ
+

√
τ

τ∗

)
, (D7)

and minimal error reached for τ = (1 + CV )τ∗:

〈δc2〉
c2

= 〈ε2〉 =
√
1 + CV√

rτ
=

√
1 + CV√
4Dacτ

. (D8)

Taking into account both receptor occupancy and stochasticity in bound times finally yields:

〈δc2〉
c2

=

√
1 + CV√

4Dapfreecτ
, (D9)

or, in the case of complete stochastic unbinding, CV = 1:

〈δc2〉
c2

=
1√

2Dapfreecτ
. (D10)
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Appendix E: Beyond concentration sensing – using the future

Information about future binding events can be exploited by using the backward equation for P← =
P (ϕ, t|{tn′+1, . . . , tn}):

∂P←(ϕ, t)

∂t
= − 1

2τ

∂2P←
∂ϕ2

+ r0(e
−ϕ − 〈e−ϕ〉)P←(ϕ, t)−

(
e−ϕ

〈e−ϕ〉 − 1

)
P←(ϕ, t)

n∑
i=1

δ(t− ti), (E1)

where m is the last binding event before t. We denote by P→ = P (ϕ, t|{t1, . . . , tn′}) the solution of the forward
equation (A13) discussed before. The distribution of ϕ at time t is then given by:

P (ϕ, t|{t1, . . . , tn}) ∝ P ({t1, . . . , tn}|ϕ, t)Pprior(ϕ, t) = P ({t1, . . . , tn′}|ϕ, t)P ({tn′+1, . . . , tn}|ϕ, t)Pprior(ϕ, t)

∝ P (ϕ, t|{t1, . . . , tn′})P (ϕ, t|{tn′+1, . . . , tn})
Pprior(ϕ, t)

∝ P→(ϕ, t)P←(ϕ, t)
(E2)

where we have used the fact that the past and future where conditionally independent given ϕ at time t, since the
process is Markovian, and a uniform prior. We thus have:

P (ϕ, t) =
P→(ϕ, t)P←(ϕ, t)∫

dϕ′ P→(ϕ′, t)P←(ϕ′, t)
. (E3)

Using the Gaussian solution, and denoting ϕ̂→, σ2
→ the parameters of the forward solution, and ϕ̂←, σ2

← those of the
backward solution, we obtain:

P (ϕ, t) =
1√
2πσ2

exp

[
− (ϕ− ϕ̂)

2σ2

]
(E4)

with

ϕ̂ =
ϕ̂→σ2

← + ϕ̂←σ2
→

σ2← + σ2→
, σ2 =

σ2
←σ2
→

σ2← + σ2→
. (E5)

These formulas could be used in estimates of density r(t) from sparse observations ti, where r(t) is interpreted as
a density of events, and t is the variable whose density we want to infer.
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