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Abstract
Many interesting spaces—including all positroid strata and wild character varieties—
are moduli of constructible sheaves on a surface with microsupport in a Legendrian
link. We show that the existence of cluster structures on these spaces may be deduced
in a uniform, systematic fashion by constructing and taking the sheaf quantizations
of a set of exact Lagrangian fillings in correspondence with isotopy representatives
whose front projections have crossings with alternating orientations. It follows in
turn that results in cluster algebra may be used to construct and distinguish exact
Lagrangian fillings of Legendrian links in the standard contact three space.
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1. Introduction
The moduli space of decorated local systems on a punctured surface admits a cluster
structure—which is to say, a space of nonabelian representations of the fundamental
group can be built out of algebraic tori, which are objects of an abelian nature. The
original proof of this fact in [16] is constructive and combinatorial: for each ideal
triangulation of the surface one defines a toric coordinate system using invariants
of configurations of flags. An orthogonal geometric perspective was provided in [25]:
given a complex structure on the surface and a spectral curve of the associated Hitchin
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system [34], one defines a map from abelian local systems on the curve to nonabelian
local systems on the base by studying trajectories of holomorphic differentials.

One could ask for an account which is complementary to these in the following
sense: rather than start by prescribing a collection of toric coordinate systems by hand,
one should be able to start from general geometric principles and deduce abstractly
that the moduli space will be populated by toric charts—the explicit form of these
charts then becoming the result of a calculation rather than a definition. To provide a
fully satisfactory foundation for the theory it should be clear in advance that the tran-
sition functions between charts will have a universal form. One would further want
the standard package of cluster combinatorics, such as triangulations and bipartite
graphs, to emerge as a natural byproduct. Finally, since the moduli of local systems
only depends on the topology of the surface, the cluster structure should in principle
be visible without referring to any intermediate choice of complex structure.

Clues to such an approach are provided by the following known connections
between cluster theory and symplectic geometry. It was observed in [71] that cluster
algebras may be formally associated to connectivity classes of alternating triple point
diagrams, or equivalently isotopy classes of certain Legendrian knots. These diagrams
appeared later as encodings of bipartite graphs in the theory of positroids (see [59])
and a number of other cluster-algebraic contexts (see [27], [28]). In another direction,
the spectral curves in [25] are in particular (holomorphic) Lagrangians in the cotan-
gent bundle of the base. Finally, in symplectic geometry cluster transformations are
known to appear in the context of wall crossing: in particular, given a family of exact
Lagrangian surfaces, smooth away from the appearance at one instant of a single dou-
ble point, the families of objects defined by rank-one local systems before and after
the critical moment are algebraic tori related by a cluster transformation (see [2] or
[63, Lecture 11], for example).

Here we will give an account of the existence of cluster structures on mod-
uli spaces of local systems which begins with the above geometric structures—
Legendrian knots and Lagrangian surfaces which fill them—and arrives at explicit
coordinate systems only as the result of calculations rather than prescriptions. The
knots and fillings will live in the cosphere and cotangent bundles of the base surface.
Decorated local systems, that is, local systems with extra data at punctures, arise via
sheaf quantization.

Recall that a basic form of quantization takes functions on exact Lagrangians in a
cotangent bundle T �M to distributions on M , and symplectomorphisms to operators
given by integral kernels (see [6]). By analogy, sheaf quantization takes local systems
on exact Lagrangians in T �M to constructible sheaves on M , and conic symplecto-
morphisms to autoequivalences of the sheaf category given by integral kernels.
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Figure 1. (Color online) On the left, a Legendrian braid closure whose rank-one moduli space is
the open positroid stratum in Gr.2; 5/. The Legendrian lives in the cocircle bundle of the page;
the hairs drawn along the immersed curve indicate the conormal directions in which it is lifted

from its projection. We can isotope it to become alternating as on the right, obtaining an
associated bipartite graph. If we restrict our attention to a disk whose boundary passes through

the five white vertices we obtain a reduced plabic graph in the terminology of [59].

The essential theorems of sheaf quantization may be obtained by passing through
the Fukaya category following [54] and [51] or independently of Floer theory as in
[33], [69], and [32]. The key results we need are the following. In [36], the microsup-
port of a sheaf on a manifold is defined; it is a conical co-isotropic locus in the cotan-
gent bundle measuring the failure of local propagation of sections. For the sheaves of
interest here, this locus is a stratifiable (generally singular) conical Lagrangian whose
boundary is a Legendrian link in the cosphere bundle. One can study the subcate-
gory of sheaves with fixed microsupport. In [33], it is shown that “contact isotopies
quantize”—that is, that given a contact isotopy there is a unique family of sheaf inte-
gral kernels such that the corresponding autoequivalences of the sheaf category act on
microsupports by the specified isotopy.

In [32] and [35] (or in [54] and [51]), it is shown that “Lagrangians quantize”—
that is, that given an eventually conical exact Lagrangian L � T �M there is a fully
faithful functor from locally constant (Maslov-twisted) sheaves onL to sheaves onM
whose microsupport at infinity is @L. The Lagrangians we study here will be simple
enough that we can construct the quantization functor by hand, independently of any
general results.

We can now describe our construction. Spaces of local systems with invariant
flags at punctures can be understood as moduli spaces of sheaves microsupported at
infinity on Legendrians projecting to concentric circles around the punctures. A sim-
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ilar description applies to moduli of “wild” local systems (Section 3.3) and open
positroid varieties (Theorem 3.9) by considering Legendrian braid closures (see Fig-
ure 1).

Rank-one local systems on an exact Lagrangian fillingL of such a Legendrian are
parameterized by the complex torus Hom.�1.L/;C�/Š .C�/b1.L/. By sheaf quanti-
zation, this determines a chart on moduli, specifically of sheaves whose microstalks
on the Legendrian boundary have rank one. We may move the Legendrian around
until we are best able to see such a filling, then carry it back to a filling of the orig-
inal link. By the quantization of contact isotopies we can capture this process sheaf-
theoretically.

We show that when the Legendrian has been isotoped so that its front projection
has crossings of alternating orientations one obtains a natural exact Lagrangian filling
(Proposition 4.9). Such an isotopy transforms the front projection into the alternating
strand diagram of a bipartite graph embedded in the base surface. The filling retracts
onto this graph and is an exact Lagrangian embedding of the conjugate surface of
[28]. Holonomies around the faces of the graph form a natural coordinate system on
the associated chart.

In the case of positroid varieties, we show that the isotopy from the defining
braid of the positroid to any given alternating representative is unique up to homotopy
(Proposition 5.3). By the general principles discussed above, quantizing the associated
Lagrangian and isotopy results in a toric chart on the positroid variety. We calculate
this chart explicitly and show that it is exactly the boundary measurement map defined
in [59] (Theorem 5.17).

Following [59] and [71], a square move of bipartite graphs induces a Legendrian
isotopy from one alternating Legendrian to another (see Figure 2). The corresponding
Lagrangian fillings differ by a Lagrangian surgery (Proposition 5.15). We calculate
that the resulting charts differ by a cluster X-transformation (Theorem 5.8). This
is a sheaf-theoretic incarnation of the known relation between surgeries and cluster
transformations in Floer theory. We emphasize that even before the calculation, it is
immediate from the local nature of sheaves and the square move that the transition
function will have a universal form independent of the global structure of the graph.

Though we have focused on positroid varieties and (wild) character varieties, the
scope of our discussion is really that of moduli spaces of sheaves microsupported on
any Legendrian link that admits an alternating representative. We show, for example,
that collections of arbitrary Legendrian braids around punctures, of which the Stokes
diagrams of wild character varieties form a subset, are of this type (Theorem 5.4).

We also emphasize the following novel aspect of our framework. Each bicolored
graph (equivalently, each alternating Legendrian) determines at once both the alge-
braic torus of local systems on the filling, and the larger moduli space of sheaves with
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Figure 2. (Color online) The left and right frames show the front projections of alternating
Legendrians related by a square move of bipartite graphs. The canonical Legendrian isotopy
between them passes through alternating Legendrians except at one moment pictured in the
middle. This Legendrian has a singular exact filling which meets the cotangent space of the

origin in the union of the conormal lines to the x- and y-axes. Altogether we have a family of
exact fillings that undergoes a Lagrangian surgery.

microsupport in the Legendrian. This latter moduli space has a direct global definition
which is a priori invariant under Legendrian isotopy, in particular, under the square
move. Thus we do not need to define it independently of the graph nor show by hand
that it admits charts corresponding to arbitrary sequences of square moves. Instead,
the fact that it possesses an atlas of toric charts related by cluster transformations is
deduced in a universal fashion from our construction of Lagrangian fillings.

The fact that the fillings of a knot give rise to a cluster structure can be used
to deduce consequences in symplectic geometry. We conclude the paper with one
example.

Sheaf quantization (or Floer theory) implies that Lagrangian fillings of Le-
gendrians determine objects in a certain category; one can in principle distinguish
them by computing Homs. In practice this can be somewhat unwieldy. Here we
observe that the cluster structures we have constructed allow a different argument.
Each Lagrangian filling determines a chart on a moduli space, and we know that the
relation of charts is governed by cluster algebra. That is, we can use results in cluster
algebra to show that certain Lagrangians give different charts. But, we know that
Hamiltonian isotopic fillings must give the same chart.

In Section 6 we show how to apply this, for example, to construct and distinguish
fillings of arbitrary Legendrian positive braid closures in R

3. In simple examples
this recovers and distinguishes known fillings via purely sheaf-theoretic techniques.
In [12] a Catalan number Cn D 1

nC1

�
2n
n

�
of fillings was constructed of the .2; n/

torus link. Our framework reconstructs these fillings and distinguishes them from one
another—their distinctness corresponds to the combinatorial fact that the An�1 clus-
ter structure has Cn clusters (see [23]). Our approach also highlights the surgery rela-
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tions among these—for example, explicitly producing a surgery relating fillings of the
.2; n/ link for each edge of the associahedron. Finally, we believe our constructions
make clear that the combinatorics of cluster algebras should play a governing role in
the theory of exact Lagrangian fillings. For example, the classification of which clus-
ter algebras of Grassmannians are of finite type [61] should be closely related to the
classification of which Legendrian torus links have finitely many inequivalent fillings
(some progress toward this question is made in [65]).

2. Constructible sheaves, microlocalization, and moduli
In this section we review the relevant background on constructible sheaves, including
their singular support, microlocalization, moduli spaces, and invariance under contact
transformations. We refer the reader to [36] for detailed foundations. We note for
the expert that here we adopt certain conventions adapted to the fact that we work
throughout with Legendrians whose front projection is an immersion, and we can
therefore canonically trivialize all Maslov obstructions [26].

Throughout we fix a commutative ring k. For a real analytic manifold X write
Sh.X/ WD Sh.X Ik/ for the differential graded derived category of constructible
sheaves on X—the dg category of constructible sheaves of perfect k-modules on X ,
localized at the acyclic complexes. We refer to [38] and [73] for background on dg
categories. We write, for example, isomorphism instead of quasi-isomorphism when
no confusion should arise.

2.1. Singular support
Given a sheaf F 2 Sh.X/, the singular support (or microsupport) SS.F / is a closed,
conic, Lagrangian subset of T �X . The singular support at infinity of F is the Leg-
endrian image of SS.F / in the cocircle bundle T1X WD .T �X n 0X /=RC, where
0X � T

�X denotes the zero section. These notions are meant to capture the locus in
T �M of obstructions to the propagation of sections of F (see Examples 2.4 and 2.5).
For instance, if f WM ! R is a function such that the graph of df avoids SS.F /
over the locus f �1..a; b�/, then the restriction of sections is an isomorphism [36,
Proposition 5.2.1]:

H�
�
f �1.�1; b�;F

� �
�!H�

�
f �1.�1; a�;F

�
:

The formal definition is a local version of the above criterion.

Definition 2.1 ([36, Chapter 5])
A point p D .x; �/ 2 T �X is in the microsupport of a sheaf F if there are points
.x0; � 0/ arbitrarily close to .x; �/ and functions f WM !R with f .x0/D 0, df .x0/D
� 0, such that the following property holds: if cf W ¹x j f .x/ � 0º !M is the inclu-
sion, then .cŠ

f
F /x0 ¤ 0.
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Shriek pullback to a closed subset gives the local sections supported on that sub-
set. Thus the statement .cŠ

f
F /x0 ¤ 0 is informally read as: “there is a section of F

beginning at x0 and propagating in the direction along which f increases.” Note that,
taking the zero function, the support of F is contained in its microsupport.

Definition 2.2
Given a Legendrian ƒ� T1X , we write Shƒ.X/ WD Shƒ.X Ik/ for the full subcat-
egory of Sh.X/ consisting of sheaves whose singular support at infinity is contained
in ƒ. Note that every locally constant sheaf belongs to Shƒ.X/. If � is a set of points
in X not meeting the front projection of ƒ, then we write Shƒ.X;�/ for the full
subcategory of Shƒ.X/ consisting of sheaves that vanish on � .

The subcategories Shƒ.X/, Shƒ.X;�/ are triangulated, since given a triangle

A! B! C
Œ1�
�! we have SS.C /� SS.A/[ SS.B/. Any sheaf in Shƒ.X;�/ van-

ishes not only on � , but on each component of † � �.ƒ/ containing a point in � .
We note that Sh∅.X/ is canonically equivalent to Loc.X/, the dg category of local
systems on X .

A key principle of [36] is that a sheaf F localizes not just over X , but “microlo-
calizes” over the cotangent bundle T �X and its own singular support SS.F / in par-
ticular. There is a dg category �loc.ƒ/, the category of microlocal sheaves onƒ, and
a functor

� W Shƒ.X/! �loc.ƒ/:

The category �loc.ƒ/ is defined as follows. Following [36], for � � T �X
one takes the category �shpre.�/ WD Sh.X/=ShT �Xn�.X/, where ShT �Xn�.X/�
Sh.X/ denotes the full subcategory of sheaves microsupported in the complement
of �. This is a presheaf of dg categories on T �X , and we write �sh for its sheafifi-
cation. One shows that the (micro) support of an object in �sh.�/ is a well-defined
conical Lagrangian in �, and that this construction is respected by restriction. It fol-
lows that there is a subsheaf �shƒ formed by the full subcategories whose objects
have microsupport contained in ƒ (more precisely, in the cone RCƒ � T

�X n 0X
over ƒ in the complement of the zero section). We write �loc.ƒ/ for the category
of sections of �shƒ over any sufficiently small neighborhood of RCƒ in T �X n 0X ;
this category naturally localizes over ƒ itself, as all parts of the construction are RC-
invariant.

The local sections of �shƒ can be understood explicitly in certain cases. When
ƒ!X is finite, and U �X is sufficiently small, then �shƒ.T �U n 0U / is the quo-
tient of Shƒ.U / by local systems on U . This quotient is in turn equivalent to the
subcategory of Shƒ.U / of objects with stalk zero at any specified point. That is, in
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this case the presheaf-of-categories description remains true after sheafifying. A suf-
ficient condition that a chart is small enough is that the stratification is C 1-conical.
One generally computes �loc.ƒ/ by finding enough such charts and gluing. (In case
ƒ!X is not finite, one can use the local invariance of sheaves under contact trans-
formations to make it so.)

In particular, when ƒ is smooth, �loc.ƒ/ is itself locally equivalent to Loc.ƒ/.
This is seen at a point by applying a contact transformation to make ƒ locally the
conormal to a smooth hypersurface. In general, there is only a “Maslov” obstruction
to globalizing this equivalence. A trivialization �loc.ƒ/ŠLoc.ƒ/ is determined by
a Maslov potential on ƒ; see [66] for a detailed discussion in the case where ƒ is
one-dimensional, or [32] for a general account.

In this paper we generally do not consider front projections with cusps. As such
we can always take the zero Maslov potential, and identify �loc.ƒ/ Š Loc.ƒ/.
Given a sheaf F 2 Shƒ.X/, we write F jƒ for its image in Loc.ƒ/.

Definition 2.3
A sheaf F 2 Shƒ.X/ has microlocal rank n if the microlocalization of F along ƒ
is a local system of locally free k-modules of rank n supported in degree zero. We
denote by Cn.X;ƒ/ the full subcategory of Shƒ.X/ consisting of microlocal rank-n
sheaves, and similarly for Cn.ƒ;�/. When X is fixed or clear from context, we omit
it from the notation.

If .x; �/ 2 ƒ is a point, then the microlocal stalk F j.x;�/ of F 2 Shƒ.X/ is by
definition the stalk of F jƒ at .x; �/. For a point at which ƒ!X is an immersion it
can be computed directly as follows. Pick a function f defined in a neighborhood of
x so that � D df .x/, as well as a small ball U around x and � > 0. Then F j.x;�/ is
the cone over the restriction map from 	.U \ ¹f < �ºIF / to 	.U \ ¹f <��ºIF /.
This does not depend on the precise choice of a sufficiently small U and �.

Our Legendrians will generally be smooth one-dimensional submanifolds of the
cosphere bundle of a surface, which we denote by † rather than X . Except in Sec-
tion 6, it will also be true that the projection ƒ!† is an immersion and, moreover,
generic (i.e., without triple points). Thus the sheaves we need to work with are locally
of one of the following forms.

Example 2.4
Let D2 be the open unit disk in R

2, and let ƒD dxj¹xD0º be the Legendrian whose
front projection is the y-axis, cooriented to the right. Then Shƒ.D2/ is equivalent
to kA2-mod, the (dg-derived) category of (perfect) representations of the A2 quiver,
as follows. We write W and E for any stalks in the open left half-disk ¹x < 0º and



CLUSTER VARIETIES FROM LEGENDRIAN KNOTS 2809

closed right half-disk ¹x � 0º, respectively (all stalks in either region are canonically
isomorphic up to homotopy). There is a map E!W , referred to as a generization
map, given by restricting from a neighborhood of a point on the y-axis to a smaller
open set lying entirely to the left of the y-axis (note the non-isomorphic restriction
maps go “against the grain” of the covector in general). The microlocal stalk at a
point of ƒ is the cone over this map. An example of a sheaf of microlocal rank one is
iŠk¹x<0º, the extension by zero of the constant sheaf on the open left half-disk, which
corresponds to W D k, E D 0.

Example 2.5
Let D2 be the open unit disk in R

2, and let ƒ D .dx � dy/j¹xDyº [ .�dx �

dy/j¹xD�yº be the Legendrian whose front projection is the union of the lines x D y
and x D�y, co-oriented downward (see Figure 3). Then Shƒ.D2/ can be described
in terms of the dg category of quadruples N , W , E , S of perfect complexes of
k-modules, with a commuting square of maps as pictured. Such data gives rise to
an object of Shƒ.D2/ under the following crossing condition: the total complex
S!W ˚E!N must be acyclic [66, Theorem 3.12].

The restrictions Shƒ.D2/! Shƒ.D2 \ ¹y > �º/, Shƒ.D2/! Shƒ.D2 \ ¹y <

��º/ to the regions above and below the x-axis are equivalences, the codomains of
which can be identified with Rep.� ! � �/ and Rep.�  �! �/ by forgetting
S , N , respectively. The induced equivalence Shƒ.D2 \ ¹y > �º/Š Shƒ.D2 \ ¹y <

��º/ is a reflection functor.
An example of a sheaf of microlocal rank one is the direct sum iŠk¹xCy>0º ˚

iŠk¹y�x>0º, which has S D 0,W DE D k, andN D k2. The crossing condition here
says thatN is the direct sum of the images ofW andE . If � is any point in the bottom

Figure 3. (Color online) The local models of the sheaf categories we consider. On the left is an
open disk, where ƒ!D2 is a single embedded strand, and Shƒ.D

2/Š kA2-mod as
described in Example 2.4. In the middle ƒ!D2 is two embedded strands crossing, and

Shƒ.D
2/Š kA3-mod as described in Example 2.5. The rightmost picture illustrates

a microlocal rank-one sheaf in this case.
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quadrant, then this sheaf is in Shƒ.D2; �/. This is the only object of C1.ƒ;� Ik/ if k
has no nontrivial invertible modules.

2.2. Invariance under contact transformations
Invariance of the category C1.ƒ;� Ik/ under Legendrian isotopy follows from Propo-
sition 3.2 of [33].

THEOREM 2.6 ([33, Proposition 3.2])
Let M be a manifold, and let 
t W T1M ! T1M be a contact isotopy. Then there
is a unique sheaf ˆ on M �M � Œ0; 1� which restricts to the constant sheaf on the
diagonal at M �M � ¹0º and whose microsupport at infinity is the graph of the
contact isotopy.

We will mostly use the following consequence.

PROPOSITION 2.7
A Legendrian isotopy ƒ! ƒ0 supported in the complement of the conormal to �
induces an equivalence of categories Shƒ.M;�/ Š Shƒ0.M;�/. The equivalence
induced by a composition of isotopies is the composition of the equivalences induced
by the isotopies.

Proof
Recall that, given an isotopy of smooth Legendrians, there is an ambient contact iso-
topy which induces it (see [26]). One can choose such a contact isotopy to be sup-
ported in a neighborhood of the Legendrian isotopy, and with this requirement the
said contact isotopy is unique up to homotopy. Let ˆt be the sheaf quantization of
one such isotopy.

The theory of sheaf integral transforms developed in [36] implies that using ˆ1
as an integral kernel gives an equivalence of categories Shƒ.M/Š Sh�1.ƒ/.M/. If
U is a neighborhood of � , then the support assumption on the Legendrian isotopy
implies that ˆ restricts to the constant sheaf on U � U � Œ0; 1�; hence, in particular,
the transform given by ˆ1 preserves the stalk at � .

To see that this functor does not depend on the choice of contact isotopy inducing
the Legendrian isotopy, consider two and connect them by a homotopy of contact
isotopies. The sheaf quantization provides a kernel ˆt;s on M �M � I � I . This is
not constant in the final I direction; however, when applied to elements in Shƒ.M/,
it produces sheaves onM � I � I whose microsupport is in the movie of 
t .ƒ/ times
a trivial factor in the final direction. It follows that these sheaves are constant in the
final direction, and hence that the functors induced by ˆt;0 and ˆt;1 are the same.
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Having shown this, the uniqueness of ˆt for a given contact isotopy implies the
functoriality of this correspondence asserted above.

Reidemeister moves
Since the Guillermou–Kashiwara–Schapira (GKS) equivalence is compatible with
composition of isotopies, in order to compute the equivalence C1.ƒ;� Ik/ Š
C1.ƒ

0; � Ik/ associated to a generic isotopy of Legendrian links, it is enough to
determine the equivalences associated to Legendrian Reidemeister moves. The ones
relevant to our immediate purposes are pictured in Figures 4 and 5. Like all isotopy
equivalences, these are determined by the kernels constructed in [33]. However, in
these simple cases the equivalences are determined by the property that they restrict
to the identity on the boundary of the picture, and can be described explicitly in terms
of quiver representations.

PROPOSITION 2.8 (see [66])
Let ƒ, ƒ0 be a pair of Legendrians in T1D2 differing by a Legendrian Reidemeis-
ter move, as in Figures 4 and 5 or [66, Section 4.4]. There is a unique equivalence
Shƒ.D2/Š Shƒ0.D2/ that restricts to the identity of the boundary of the disk.

Proof
In all cases, the restrictions to the boundary of Shƒ.D2/ and Shƒ0.D2/ are fully
faithful with the same essential image. This follows from the fact that restriction from
sheaves on a neighborhood of the crossing pictured in Figure 3 to the top and bottom
regions is an equivalence; see Example 2.5.

Figure 4. (Color online) The Legendrian Reidemeister-III considered in Lemma 2.9. Sheaves
microsupported on the respective Legendrians are equivalent to representations of oppositely
oriented D4-quivers. Writing sA and so on for reflection functors, the equivalence between

the two sides is given by the composition sDsAsBsC sD .
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Figure 5. (Color online) Sheaves microsupported on the Legendrians on either side of
Reidemeister-II are equivalent to representations of oppositely oriented A3-quivers. The
equivalence between the two sides is given by the reflection functor sC ; in other words,

C 0 D Cone.A˚B! C/Œ�1�.

We will be interested in having explicit descriptions of the monodromy of the
microlocal stalks along our Legendrians, in order to show that certain Legendrian
isotopies give rise to cluster transformations in Theorem 5.13. To follow these through
a Reidemeister-III move, we note the following.

LEMMA 2.9
In the Legendrian Reidemeister-III, on a given component of the knot, all microstalks
on the component before the move are canonically identified, all microstalks after
the move are canonically identified, and there is a canonical identification of these
canonical identifications.

Proof
Before and after, each component of the microsupport is contractible, and therefore
carries only trivial local systems; hence all microstalks are identified. To identify the
before and after stalks, consider the quantization of the isotopy. It produces a sheaf on
a cylinder D2 � I . Each component of the microsupport of this sheaf is contractible.

2.3. Quantization of Lagrangians
Let L � T �M be an eventually conical embedded exact Lagrangian with vanishing
Maslov obstruction and with Legendrian boundary @L� T1M . After a Hamiltonian
perturbation we can makeL lower exact (i.e., have a proper, bounded above primitive;
see [35]), lift it to a Legendrian eL� J 1M , and then embed J 1M ,! T1.M �R/.
Microlocalization gives a map SheL.M �R/! �loc.eL/, and by assumption we can
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trivialize �loc.eL/Š Loc.L/. Restriction to M DM � ¹rº for r � 0 gives a map
SheL.M �R/! Sh@L.M/.

Unlike those we usually work with, a general Legendrian in J 1M need not have
locally trivial Maslov obstruction. However, except in this section, we will not explic-
itly discuss this Legendrian lift, so no confusion should arise.

THEOREM 2.10 (see [32], [35])
The left functor in Loc.L/ SheL.M � R;M � ¹1º/! Sh@L.M/ is an equiva-
lence, and the right is fully faithful. The composite thus gives a fully faithful embed-
ding of the category of local systems on L into the category Sh@L.M/.

We say the objects in the image of this functor are obtained fromL by sheaf quan-
tization. Sheaf quantization transforms naturally under compactly supported Hamil-
tonian isotopy of L, since it becomes a Legendrian isotopy of eL. In particular, we
have the following.

LEMMA 2.11
The image of Loc.L/ in Sh@L.M/ is invariant under compactly supported Hamilto-
nian isotopy.

It is useful to observe the following additional property.

LEMMA 2.12
Let F be the sheaf onM resulting from sheaf quantization of a rank-one local system
on L as in Theorem 2.10. Ifm 2M is a point over which the projection � WL!M is
locally an n-sheeted cover, then Fm can be computed by a complex with n generators.

Proof
Let eF be the corresponding sheaf on M � R. Consider the line m � R. This line
meets the front projection of eL transversely. These intersections are in bijection with
the intersection of the cotangent fiber of M . At an intersection point m� l , one has a
triangle

eFm�.l˙�/! eFm�.l��/! kŒd �
Œ1�
�!

for some d 2 Z. We have eFm��1 D 0, so the result follows by induction.

In fact, for us, only the following consequence will directly appear, which does
not require the induction step.
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COROLLARY 2.13
Let F be the sheaf on M corresponding to a rank-one local system on L. Let � W
L!M be the projection. If ��1.m/ D ;, then Fm D 0, and if ��1.m/ D 1, then
Fm Š kŒd � for some d 2 Z.

2.4. Moduli spaces
In studying microlocal rank-one objects of Shƒ.†/, we necessarily consider objects
which are honestly complexes of sheaves, rather than simply sheaves. The resulting
subcategory is not abelian in general—in particular, objects may have negative self-
extensions, even for Legendrian knots in the standard contact R3; examples can be
found in [66]. The correct setting for studying moduli spaces of objects in such dg
categories is derived from algebraic geometry (see [75]). For background we refer to
the survey [74] and the foundational works [46], [72], [76], [77], and [78].

DEFINITION/PROPOSITION 2.14
Let X be the interior of a compact manifold with boundary, let ƒ � T1X be a
Legendrian contained in the spherically projectivized conormals of a Whitney strat-
ification that extends to the boundary, and let � be a collection of points in X . We
write RM.X;ƒ;�/ for the moduli of objects in Shƒ.X;�/. It is a locally geometric
derived stack. We write RMn.†;ƒ;�/ for the substack parameterizing sheaves of
microlocal rank n.

Proof
The existence of these spaces is guaranteed by [75], which constructs derived moduli
stacks of pseudoperfect modules of finite-type dg categories (i.e., of functors from
finite-type dg categories to categories of perfect modules). The finite-type category in
question is that of wrapped constructible sheaves on X microsupported on ƒ; this is
the full subcategory of compact objects in the cocomplete dg category of all sheaves
microsupported on ƒ (i.e., with not-necessarily perfect stalks; see [53]). Taking Hom
spaces identifies the category Shƒ.X;�/ of sheaves with perfect stalks as pseudo-
perfect modules of the wrapped category (see [53]). The assumptions on X and ƒ,
together with the results of [52] adapted to the setting of exact Lagrangians, imply that
the wrapped sheaf category in question is a finite colimit of finite-type dg categories
(specifically, of categories of perfect representations of acyclic quivers). The claim
now follows since a finite colimit of finite-type dg categories is again finite-type.

The higher and derived structures on the spaces RMn.X;ƒ;�/ are essential from
various points of view: for instance, to get meaningful point counts (see [56]) and to
construct symplectic structures on these spaces (see [64]), as was done for moduli



CLUSTER VARIETIES FROM LEGENDRIAN KNOTS 2815

of local systems in [58]. An important point is that the infinitesimal study of derived
moduli spaces is generally more accessible than that of ordinary moduli spaces. For
example, letting RLoc.L/ denote the derived moduli space of local systems on L,
we have the following consequence of Theorem 2.10.

PROPOSITION 2.15
Let L� T �X be an embedded eventually conical exact Lagrangian with Legendrian
boundary @LD ƒ and whose projection is disjoint from � � X . Given a trivializa-
tion �loc.eL/ŠLoc.L/, sheaf quantization induces an open inclusion RLocn.L/!

RMn.X;ƒ;�/.

Proof
This follows formally from the fact that the map on moduli spaces is induced by a fully
faithful inclusion of dg categories. Indeed, it follows from this that the morphism is
injective on points, and since the tangent complexes to the moduli spaces are given by
self-extension algebras (see [75, Theorem 0.2]), it follows that the map is étale.

When L is a Lagrangian surface and ƒ is nonempty, L is homotopy equivalent
to a wedge of circles. In this case the derived stack RLocn.L/ is truncated: it is
isomorphic to its truncation t0RLocn.L/—which is simply the classical Artin stack
Locn.L/ of local systems—regarded as a derived stack. Thus, if we are only interested
in branes supported on Lagrangians of this kind, and the relations among them, then
we lose no information by working at the level of Artin stacks in the classical sense.
Following [75, Section 3.4], we have the following classical moduli spaces.

DEFINITION/PROPOSITION 2.16
Let† be a surface, letƒ� T1† be a nonempty Legendrian, and let � be a collection
of points in †. We write M.†;ƒ;�/ for the 1-rigid locus of t0RLoc.†;ƒ;�/; that
is, the locus parameterizing objects without negative self-extensions. It is an Artin
stack in the classical sense. We write Mn.†;ƒ;�/ for the substack parameterizing
sheaves of microlocal rank n.

In many cases of interest the objects parameterized by RMn.†;ƒ;�/ are ordi-
nary sheaves (i.e., not complexes). For example, this holds for the ˇ-filtered local
systems studied in Section 3 (see Proposition 3.4). Hence these objects live in an
abelian category, and in particular have no negative self-extensions to begin with—
so Mn.†;ƒ;�/ is equal to t0RMn.†;ƒ;�/. Since the truncation of an étale map
is étale (see [78, Section 2.2.4]), we also have the underived analogue of Proposi-
tion 2.15.
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PROPOSITION 2.17
Let L� T �† be an exact Lagrangian surface with @LDƒ and whose projection is
disjoint from � �†. Given a choice of brane structure on L, the functor N induces
an open inclusion Locn.L/!Mn.†;ƒ;�/.

Remark 2.18
Explicitly, Mn.†;ƒ;x/ represents the functor from commutative rings to groupoids
taking k to Cn.ƒ;� Ik/gpd , the groupoid whose objects are sheaves in Cn.ƒ;� Ik/
without negative self-extensions and whose morphisms are quasi-isomorphisms up to
homotopy, with pullback defined by base change.

We also need to consider moduli spaces of framed sheaves, constructed as fol-
lows. Let U be an open subset of †, and let FZ be an object of ShƒjU .U;� \U IZ/.
The sheaf FZ defines a map SpecZ!M1.U;ƒjU /.

Definition 2.19
The moduli space M

f r
1 .†;ƒ;�/ of FZ-framed sheaves of microlocal rank one is the

fiber product

M
f r
1 .†;ƒ;�/ M1.†;ƒ;�/

SpecZ M1.U;ƒjU ),

where the right-hand map is restriction to U and the bottom is the inclusion of FZ.

The k-points of M
f r
1 .†;ƒ;�/ are thus objects of C1.ƒ;� Ik/ together with an

isomorphism of their restriction to U with Fk, the object of ShƒjU .U;� \ U Ik/
obtained from FZ by base change. In practice, FZ and U will always be clear in a
given context, and hence we omit them from the notation for M

f r
1 .†;ƒ;�/ (although

M
f r
1 .†;ƒ;�/ certainly depends on the choice of FZ and U ). Similarly, we will usu-

ally just speak of framed sheaves rather than FZ-framed sheaves. Proposition 2.7
extends in the obvious way to the framed moduli spaces.

3. Microlocally Abelian moduli problems
Here we focus our attention on a class of moduli problems M1.†;ƒ; ¹�iº/ in which
the linkƒ is a disjoint union of positive n-strand braids, one placed in a neighborhood
of a cocircle over each �i . As we detail in this section, these spaces include various
ones of current interest, in particular:
� Positroid strata in the Grassmannian (see [59]) occur when a single braid is

placed on a sphere, for particular choices of braid. See Section 3.2.
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� More generally, placing a single braid on a sphere gives rise to a certain mod-
uli of flag configurations, whose point count gives a term of the HOMFLY
polynomial of the braid (see [66, Section 6]).

� Moduli spaces of local systems with monodromy-invariant filtrations in the
case when all the braids are trivial (see Example 3.3), and more generally
any moduli space of monodromy and Stokes data, that is, any wild character
variety (see Section 3.3).

Moreover, if we are ultimately interested in cluster structures related to the mod-
uli space of rank-n local systems on a punctured surface, then we are forced to con-
sider spaces of the above kind. Most naturally, rank-n local systems correspond to
sheaves with microlocal rank n along a collection of circles, one around each punc-
ture, and which vanish at the punctures. However, our expected sources of cluster
charts are abelian Lagrangian branes, which determine sheaves of microlocal rank
one along their Legendrian boundary. Thus, as a preliminary to the abelianization of
the rank-n local systems, we must perform a microlocal abelianization of the bound-
ary condition—that is, replacing the circle labeled by n with an n-strand braid.

3.1. Microlocal abelianization
Consider a surface † with a set � D ¹�iº of marked points. Let ƒi be a small circle
around �i , co-oriented inward, and let Di be the disk around �i whose boundary is
the front projection of ƒi . Consider the inclusions

†� �
r
 - †�

[
Di

j
,!†:

These induce an equivalence

jŠr
� WLoc.†� � Ik/! ShSƒi .†;� Ik/

between the categories of local systems on the punctured curve and of sheaves on the
complete curve with microsupport in the circles and vanishing stalks at the points.
The equivalence carries the rank of the local system to the rank of the microstalk on
any ƒi .

It is the condition that the sheaves should have rank-one microstalks that gives
rise to cluster structures. The moduli space corresponding to local systems of rank n
does not have this property. We get ones which do by replacing the circle labeled by
n with a suitable n-strand satellite.

By definition, the satellite construction takes as input data a triple .V;ƒ;ˇ/,
where V is a contact manifold, ƒ is a Legendrian, and ˇ is a Legendrian in the 1-jet
bundle J 1.ƒ/. The output is a new Legendrian ˇ�ƒ in the same contact manifold
V , formed by replacing a standard neighborhood of ƒ by the J 1.ƒ/ containing ˇ.
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The Legendrian ˇ is the pattern of the satellite construction. For some discussion and
examples, see [55].

LEMMA 3.1
Let M be a manifold, let ƒ � T1M be a Legendrian, and let ˇ � J 1.ƒ/ be a
Legendrian. Assume that ˇ!ƒ is a covering map. Then there is a natural morphism

� W Shˇ�ƒ.M/! Shƒ.M/

such that

rankƒ
�
�.F /

�
D deg.ˇ!ƒ/ � rankˇ�ƒ.F /:

We omit the (easy) proof, as we only use this proposition in the case when M is
a surface and the Legendrianƒ is a union of circles around the punctures. In this case
the result is evident; we just include the above formulation for the sake of clarity.

We can associate a Legendrian in J 1.ƒ/ to any positive (annular) braid. Thus a
choice of a positive n-strand braid ˇi at the i th puncture determines a morphism

M1

�[
i

.ˇi �ƒi /; �
�
!Mn

�[
i

ƒi ; �
�
ŠLocn.†� �/: (3.1.1)

That is, we draw n-stranded braids around the points and consider sheaves microsup-
ported along these braids.

Definition 3.2
Let † be a surface, and let � D ¹�iº be a collection of points. Let �i 7! ˇi 2 Br

C
n

be an assignment of a positive braid to each point of � ; by abuse of notation we also
write ˇi for ˇi � ƒi , where ƒi is an inward-co-oriented circle around �i . Writing
ˇD

`
ˇi , we refer to the points of M1.†;ˇ;�/ as ˇ-filtered local systems.

For the trivial braid, this recovers exactly the notion of the filtered local system.

Example 3.3
Let D2 be a disk, and let	n � T1.D2

� 0/ be the link whose front projection is
n concentric circles. Then Sh�n.D2; 0/ is the category of pairs .0D K0! K1!

� � � ! Kn D KIm W K ! K/, where K is a filtered complex and 
 is an endomor-
phism preserving the filtration. The correspondence is thatKi is the stalk between the
i th and .i C 1/st strands away from 0, and m is the monodromy.

Fixing the microlocal rank to equal one forces K to be (quasi-isomorphic to) a
locally free k-module of rank n, and the filtration to be the same as a full flag. Thus,
M1.	

n; 0/ is the total space of the Grothendieck–Springer resolution: M1.	
n; 0/Š
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gGLn=GLn. The resolution morphism gGLn=GLn ! GLn=GLn itself is the map
M1.	

n; 0/!Locn.D
2
� 0/ of (3.1.1).

Example 3.3 illustrates a general feature of ˇ-filtered local systems: up to quasi-
isomorphism they are sheaves in the usual sense rather than merely complexes of
sheaves.

PROPOSITION 3.4
Let †, ˇ, and � be as in Definition 3.2. Every microlocal rank-one object of
Shˇ .†;� Ik/ is isomorphic to an object supported in cohomological degree zero.
In particular, no such objects have negative self-extensions, so Mn.†;ˇ;�/ is
exactly the truncation t0RMn.†;ˇ;�/.

We omit the proof, which is a straightforward generalization of [66, Proposi-
tion 5.19].

3.2. Positroid strata and the Grassmannian
The positroid stratification of the Grassmannian is the common refinement of the
Schubert stratification and its cyclic shifts, and arises naturally from the perspective
of total positivity (see [59]). The positroid strata of Gr.k; n/ are indexed by a number
of equivalent combinatorial objects, the most relevant of which for us will be cyclic
rank matrices [40, Corollary 3.12]: in this section we use these to give microlocal
descriptions of positroid strata.

Definition 3.5
A cyclic rank matrix of type .k; n/ is a Z�Z integer matrix r such that
(C1) rij D 0 for j < i ;
(C2) rij D k for j � i C n� 1;
(C3) rij � r.iC1/j 2 ¹0; 1º and rij � ri.j�1/ 2 ¹0; 1º for all i , j ;
(C4) if r.iC1/.j�1/ D r.iC1/j D ri.j�1/, then rij D r.iC1/.j�1/;
(C5) r.iCn/.jCn/ D rij .

For each V 2 Gr.k; n/ there is an associated cyclic rank matrix r.V / of type
.k; n/, and the positroid strata will be the level sets of this assignment. Let c1; : : : ; cn 2
C
k be the columns of any matrix representative of V , and for arbitrary i 2 Z define

ci so that ci D ciCn for all i . Then we set r.V /ij to be the dimension of the span of
the columns ci � � � cj . Note that, for j < i , we have the empty collection of columns
(hence r.V /ij D 0) and that for j > i C n � 1 we have all the columns (hence



2820 SHENDE, TREUMANN, WILLIAMS, and ZASLOW

r.V /ij D k). The conditions (C1)–(C5) exactly characterize the matrices that arise
from Gr.k; n/ in this fashion (see [40]).

Definition 3.6
Given a cyclic rank matrix r of type .k; n/, the associated positroid stratum is

…r D
®
V 2Gr.k; n/

ˇ̌
r.V /D r

¯
:

In our context the most natural cyclic rank matrices are those such that ri i ¤ 0
for all i , and we assume this from now on. That is, we assume the columns of any
matrix representative of V 2…r are all nonzero. No generality is lost in the sense that
any positroid stratum …r not satisfying this condition be embedded into a smaller
Grassmannian as a positroid stratum that does.

We record loci where the entries of r jump as a Legendrian ƒr in T1D2 as
follows. The basic idea is to regard r as an actual geometric object in R

2, and build
ƒr in such a way that the faces of its front projection correspond to patches of r
where its entries are constant.
� We first define a Legendrian ƒ0r in T1R

2 lying over a neighborhood of the
square grid R�Z[Z�R. Consider the union of the segments ¹iº� .j; j C1/
with ri.j�1/ < rij and the segments .i; i C 1/�¹j º with rij > r.iC1/j . We co-
orient the former leftward and the latter downward. Its closure is a collection
of pairwise-transverse immersed co-oriented curves with corners at the points
.i; j / 2 Z2 such that

rij D r.iC1/j D ri.j�1/ D r.iC1/.j�1/C 1:

We smooth all such corners and let ƒ0r be the Legendrian lift of the resulting
collection of smooth immersed curves.

� Consider the restriction of ƒ0r to the infinite strip

S D
°
.x; y/

ˇ̌̌ 1
2
< y C x < kC

1

2

±
:

By (C5), the restriction is invariant under the translation Tn W .x; y/ 7! .x C

n;y � n/ of S and hence gives rise to a Legendrian ƒr in T1A, where A is
the annulus S=hTni. Since ƒr does not meet the boundary component whose
preimage is the line y C x D k C 1

2
, we can embed A in a disk to regard ƒr

as a Legendrian in T1D2.

Example 3.7
Let us compute the moduli space of microlocal rank-one sheaves associated to the
Legendrian whose front projection is pictured on the left in Figure 1. This Legendrian
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is the satellite formed by taking the braid on two strands, twisted five times, and
inserting it in a neighborhood of the cocircle over the North pole of S2; the front
projection of this lands in the complement of the North pole, which we identify with
the page.

A sheaf with microsupport in this Legendrian restricts to a local system on each
component of the complement of the front projection. We are considering sheaves
vanishing at the north pole, so these local systems are only nonzero on the six compo-
nents which are bounded in the picture. Since these are contractible, the local systems
are just the data of six vector spaces (for now we work over a ground field k). The
sheaf is then determined by the data of these vector spaces together with linear maps
associated to paths going against the hairs. If the sheaf has microlocal rank one, then
the dimensions increase by one as we move against the direction of the hairs, and
hence are as indicated in the picture. Choosing bases for the vector spaces involved,
we can can encode the linear maps as the columns of a matrix:�

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

�
(3.2.1)

The condition that the pictured sheaf has singular support on ƒ—as opposed to
the union of ƒ with the cocircle fibers over the crossings in the front projection—
translates to the condition that any two cyclically adjacent columns of (3.2.1) are
linearly independent (see [66, Section 5]).

Two such matrices correspond to isomorphic sheaves if they are related by a
combination of left multiplication by GL2 and right multiplication by the diagonal
subgroup of GL5. Thus the moduli space M1.ƒ/ is the quotient of the space of
2�5matrices satisfying the crossing conditions by these symmetries. In other words,
M1.ƒ/ is the configuration space of 5 cyclically ordered points in P

1, with the con-
dition that cyclic neighbors are distinct.

We can also frame this story by considering sheaves with fixed trivializations of
their one-dimensional stalks. These are still represented by matrices as in (3.2.1), but
now two matrices are equivalent if and only if they are related by the left GL2 action.
The moduli space of so-framed microlocal rank-one sheaves is an open subset of the
Grassmannian of two-planes in five-space. The crossing conditions above define the
big positroid stratum of Gr.2; 5/ (see [59]).

Example 3.8
Let V be the point of Gr.3; 5/ represented by the matrix0@0 1 1 1 1

0 0 1 1 1

1 0 0 0 0

1A :
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The cyclic rank matrix r.V / is shown below left, with the front projection of ƒ0
r.V /

overlaid without smoothed corners. The identification of top and bottom sides by
the action of T5 is indicated by the dashed line. At right is the front of the associated
(smooth) Legendrian knot on the cylinder, the horizontal dashed line indicating where
@D2 cuts ƒ0

r.V /
.

Returning to the general case, we fix a set of points � �D2, one in each of the n
boundary regions of D2

� �.ƒr/ for which ƒr is co-oriented into the given region.
In the construction of ƒr , these regions come from the “corners” of the subdiagonal
entries of r , which are equal to zero. The pair ƒr , � effectively satisfies the hypothe-
ses of Proposition 3.4, so the objects of C1.ƒ;�/ are ordinary sheaves rather than
complexes.

Let U be an open collar of @D2 containing no crossings of ƒr , and let V be
the union of the components of D2

� �.ƒr/ that do not contain points in � . We let
Fk D i�kU\V 2 Shƒr jU .U /; this is a sheaf of microlocal rank one whose stalks are

alternately 0 and k around the boundary of D2. We let M
f r
1 .ƒr/ denote the space of

sheaves framed by FZ, as in Definition 2.19 (since � is fixed throughout the section,
we omit it from the notation). The k-points of M

f r
1 .ƒr/ are objects in C1.ƒ;� Ik/

equipped with an isomorphism between their restriction to U and Fk.

THEOREM 3.9
For any cyclic rank matrix r of type .k; n/, there is a canonical isomorphism between
the positroid stratum …r and the framed moduli space M

f r
1 .ƒr/.

Proof
We first describe an embedding of M

f r
1 .ƒr/ ,! Gr.k; n/ and then show its image is

exactly …r .
The definition of ƒr (and choice of � ) is set up to ensure that the connected

components of D2
� �.ƒr/ correspond to entries of r , in such a way that the rank
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of the stalk of any object of C1.ƒr ; � Ik/ in a given connected component is the
corresponding entry of r .

Each of the n rows of r determines a boundary component ofD2
��.ƒr/ which

does not meet � ; fix points p1; : : : ; pn in these components. Also fix a point x in the
middle region, where stalks have rank k.

A k-point of M
f r
1 .ƒr/ is a framed sheaf F , which has stalks F1; : : : ;Fn at

p1; : : : ; pn, each equipped with a trivialization Fi Š k, and a stalk Fx at x. Choose
characteristic paths from each pi to x (i.e., paths that only cross strands of �.ƒr/
going against their co-orientations; the construction will be independent of the
choice). Each defines an inclusion Fi ,! Fx , the composition of the generization
maps along the path (see Figure 6). The crossing conditions (see Example 2.5) guar-
antee that the images of the Fi together generate Fx . Thus from F we obtain a locally
free k-module Fx of rank k with a quotient map from ˚Fi Š kn, which is the data
of a k-point of Gr.k; n/. This is clearly compatible with base change, so we obtain a
map M

f r
1 .ƒr/! Gr.k; n/. The claim that this is faithful is equivalent to the claim

that restriction from M
f r
1 .ƒr/ to the framed moduli space of a neighborhood of the

union of the paths from the pi to x is faithful. This follows by inductively applying
the fact that in a neighborhood of a crossing, restriction to the upper or lower regions
as pictured in Figure 3 is an equivalence. That is, we can expand the neighborhood
of the paths to include a new crossing and meet a new region of D2

� �.ƒr/ one at

Figure 6. (Color online) A depiction of a microlocal rank-one sheaf F 2 C.ƒr ; � Ik/, where ƒr
is as in Example 3.8. As in the proof of Theorem 3.9, F has five rank-one stalks at the boundary
of the picture, each of which includes into the rank-three stalk Fx in the middle. If F is framed,

so we have isomorphisms Fi Š k, then the quotient map k5 � Fx defines a k-point of
the positroid stratum …r .
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a time, each time yielding an equivalence of sheaf categories, until the whole disk is
covered.

On the other hand, we have defined ƒr exactly so that its crossing conditions
imply that the span in Fx of any cyclically adjacent subset of F1; : : : ;Fn has the rank
specified by the corresponding entry of r . Thus the image of M

f r
1 .ƒr/ is contained in

…r . Conversely, given a k-point of…r , we can directly define a sheaf whose sections
over a given region are just the column span associated to the relevant entry or entries
of r (note that while a k-point of Gr.k; n/ is a quotient map kn � E onto a locally
free k-module, k-points of …r are described by quotients where E is in fact free).
Finally, it follows from the fact that the images of the Fi generate Fx that all points
of M

f r
1 .ƒr/ have trivial stabilizers; hence M

f r
1 .ƒr/Š…r .

Remark 3.10
Many other objects in algebraic geometry and representation theory can be identified
with positroid strata or their closures; see, for example, the discussion in [40, Sec-
tion 6]. The double Bruhat cells GLu;vn of GLn form one class of examples. Here
u and v are elements of the Weyl group of GLn, and GLu;vn is the intersection of
the double cosets B�uB�, BCvBC of u, v with respect to opposite Borel subgroups.
These can be embedded as positroid strata in Gr.n; 2n/; on the level of matrix repre-
sentatives this is just concatenation with an identity matrix. Another class of examples
comes from subvarieties of the full or partial flag varieties of GLn that map isomor-
phically onto their images in Gr.k; n/ under the natural projection. These include the
moduli spaces of triples of flags in generic position considered in [16], which form
building blocks in associating cluster charts on moduli spaces of local systems to
triangulations of surfaces (see Construction 5.7).

Remark 3.11
The construction of ƒr � T1D2 naturally produces a Legendrian ˇr � T

1R2

whose intersection with T1D2 is ƒr . The front projection of ˇr is obtained from
that of ƒr by adding caps around the outside of D2 as pictured in Figure 1 or
Example 3.8. Moreover, ˇr is a Legendrian braid satellite of a circle around 1, as
considered in Section 3.1. The unframed moduli spaces M1.ƒr/ and M1.ˇr/ are
isomorphic, and this space of ˇr -filtered local systems is a configuration space of
points in Pk satisfying open conditions. The projection M

f r
1 .ƒr/!M1.ƒr/ is a

torus quotient, and this relationship is a version of Gel’fand–Macpherson duality
subject to the conditions imposed by r (see [29]).



CLUSTER VARIETIES FROM LEGENDRIAN KNOTS 2825

3.3. Wild character varieties
In its simplest form, the Riemann–Hilbert correspondence asserts an equivalence of
categories between integrable meromorphic connections on a complex analytic space,
with regular singularities along a normal crossings boundary divisor, and locally con-
stant sheaves in the complement of the divisor (see [10]). In particular, the parameter
space of such regular connections, considered up to gauge equivalence, can be iden-
tified with the space parameterizing representations of the fundamental group of the
complement, up to isomorphism.

The moduli space of connections is called the de Rham moduli space, and
the moduli space of locally constant sheaves is called the Betti moduli space. The
Riemann–Hilbert correspondence asserts that these have the same points; in fact,
they are complex-analytically isomorphic, but have naturally different algebraic
structures—passing from connections to their monodromy involves an exponential.
We restrict attention to the case where the space on which we study connections is a
smooth Riemann surface.

The notion of regular singularities is essential in the above equivalence. One for-
mulation is that the connection matrix can, analytically locally, be expressed with
poles of order at most one. Equivalently, the local solutions exhibit polynomial growth
as one approaches the singular point. A consequence of this is that the classification
of such connections up to analytic local gauge equivalence is the same as the classi-
fication up to formal local gauge equivalence; the local form of the Riemann–Hilbert
correspondence is then just the statement that both of these are characterized by the
conjugacy class of the exponential of the singular term of the connection.

To classify connections with possibly irregular singularities, one records Stokes
data, that is, information about the growth rates of solutions (see [3]–[5], [11], [47]).
This is often formulated in the following way: given a meromorphic connection on a
diskD2, analytic away from zero, the space of solutions forms a locally constant sheaf
Sol on D2 � 0, and hence equivalently on the real-oriented blowup � W fD2!D2

at 0. Let I be the totally ordered set of all possible growth rates of the absolute value
of the solution to a linear meromorphic ODE, modulo polynomial growth rates—we
discuss what I is more explicitly later. Then the sheaf Sol j��1.0/ carries a stalkwise
filtration by I, varying continuously in an appropriate sense. This filtration is termed
the Stokes filtration.

In [5] the local moduli space of framed Stokes structures was constructed and
shown to be an affine space. This can be used to construct the global moduli space,
the wild character variety, although in practice it is often convenient to use a differ-
ent approach involving canonical Stokes multipliers, an approach closer to the famil-
iar fundamental group representation in the tame case (see [7]–[9], [45], [49]). This
approach amounts to classifying all the possible flags/filtrations in sectors that occur.
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The Riemann–Hilbert theorem in this possibly irregular case implies in partic-
ular the following three assertions: first, that connections up to analytic local gauge
equivalence are classified by their solution sheaves equipped with Stokes filtrations;
second, that connections up to formal local gauge equivalence are classified by their
solution sheaves plus the associated graded of the Stokes filtration; and, finally, that if
a given associated graded arises from some connection, then there exist connections
giving rise to any filtration with this associated graded (see [47]).

The relation to our setting is obtained by projecting the I filtration to an R fil-
tration, and then “turning it sideways” via the observation that a sheaf of R-filtered
objects onX is the same as a sheaf onX �R with microsupport confined to covectors
negative in the R direction. Recording the jumping locus of the filtration by passing
to the associated graded is just the same as recording the microsupport of the sheaf.

Let us be more precise about how to produce the sheaf on S1�R. To this end we
recall the formal classification of singularities of meromorphic ODEs: any vector bun-
dle on a disk equipped with a meromorphic connectionr , analytic away from zero, is,
over the universal cover of the disk, formally gauge-equivalent to some

L
.˛˝r˛/,

where each ˛ is an irregular connection of rank one and r˛ is a regular connec-
tion. Note that the asymptotics of the holomorphic local solutions are controlled by
the asymptotics of the formal local solutions. (The “main asymptotic existence the-
orem” asserts a converse; that one can lift formal solutions to holomorphic solutions
with similar asymptotics. It is a key step in the proof of the Riemann–Hilbert cor-
respondence, but in the black-box presentation we are giving it can be viewed as a
consequence.)

Consider the rank-one equation

df

dz
D ˛ � f .z/; ˛ 2C

�
.z1=1/

�
:

Evidently the solution is f D e
R
˛dz . The regular part of the connection does not

affect the growth rate of solutions modulo polynomial growth rates; that is, the growth
rate is determined by the class of ˛ in C..z1=1//=z�1CŒŒz1=1��. We will thus take ˛
to have no terms of degree greater than �1.

We return to our description of the sideways Stokes sheaf. Fix again some con-
nection r , and after some gauge transformation defined over C..z1=1//, expand it
as r D

L
.˛˝r˛/. Fix some �� 1, and plot, as a function of � , the (multivalued)

functions n˛;r.�/ WD log jf .�ei� /j DRe..
R
˛ dz/zDrei� /, for every ˛ which appears

in the above decomposition.
Consider the sheaf Sol j��1.0/, and pull it back to R�S1 under the projection of

the R factor. Fix now some �� 1. Note that a stalk of this sheaf is in fact a function
on the circle; form the subsheaf S� whose stalk at .N; �/ consists of solutions which
grow at most polynomially faster than any formal solution, the logarithm of whose



CLUSTER VARIETIES FROM LEGENDRIAN KNOTS 2827

evaluation at �ei� is at most N . That is,

S
�
N;� WD

®
f 2 SolN;�

ˇ̌
N 
 n˛;�.�/ H) log

ˇ̌
f .rei� /

ˇ̌

 n˛;r.�/COr!0.1/

¯
:

By construction, the sheaf S� has microsupport at infinity equal to the Legen-
drian link whose front projection is the union of the graphs of the n˛;� , co-oriented
toward �1 in R�S1. We call this link the Stokes Legendrian of the connection, and
term its front projection the Stokes diagram. Note that the Stokes diagram and Stokes
Legendrian depend only on the formal type.

Remark 3.12
The fact that this filtration should be viewed as describing a Legendrian is mentioned
in [37], its front projection having been drawn by Stokes himself (see [67]; we thank
Philip Boalch for bringing this last reference to our attention).

We can now state more precisely the irregular Riemann–Hilbert correspondence.
Let † be a surface, and let p1; : : : ; pk be points on †. Fix a formal type of irregular
singularity �i at each pi ; that is, choose some connection on a disk near each �i ,
meromorphic on the disk and holomorphic away from pi , defined up to formal gauge
equivalence, and up to changing the regular part of the connection. That is, for the
moment we take our notion of formal type to mean that only the ˛’s are specified, and
the r˛’s are left to vary. Let CdR.†; ¹piº; ¹�iº/ be the category of connections with
the prescribed formal types.

Let ƒi be the Stokes Legendrian of the singularity �i . Draw the knot ƒi on † by
first passing to the real blowup Blpi†, and then gluing the R�S1 above to the inside
of the boundary circle, with1 in the R factor facing “into” the surface. One now has
a punctured surface; the puncture can be filled in and relabeled pi .

The procedure we described locally before can now be performed globally over
the surface. That is, if we write CB.†;

S
ƒi ;

S
pi / for the subcategory of ShSƒi .†/

in which the stalk of the sheaf vanishes at all pi , then forming the global sideways
Stokes sheaf of solutions defines a map

CdR
�
†; ¹piº; ¹�iº

�
! CB

�
†;
[
ƒi ;

[
pi

�
:

The irregular Riemann–Hilbert correspondence implies this map is an equivalence.
The r˛’s on the de Rham side integrate to the microlocal monodromies on the

Betti side. In particular, when all the r˛’s have dimension one, the moduli space of
objects in the above category is exactly of the sort we have been considering in this
section.
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Example 3.13
The ODEs f 00 D znf generalize the Airy equation (nD 1) and by the usual substi-
tution g D f 0 can be written in matrix form as d � A, with AD . 0 1

zn 0 /. This gives
an SL2-flat connection, and we will determine the formal type of the singularity by
investigating the solutions

�
f
f 0

�
at z D1. First put x D z�1 to move the irregular

singularity to the origin, and then define the differential operator ‚D z d
dz
D�x d

dx
,

after which the equation becomes Lf D 0, with LD‚2 C‚ � x�.nC2/. Newton’s
method instructs us how to look at the most singular terms and use gauge transforma-
tions to reduce the order of the singularity so as to develop the power-series parts of

asymptotic solutions. In this case, we find f˙ D exp.� 2
nC2

x�
nC2

2 /x
n
4

P
m amx

m
2 .

Wasow’s “main asymptotic existence theorem” (see [80, Section 14]) states that these
represent the singularity types of actual solutions. Which of the two f˙.r�i� / is most
singular as r! 0 changes at nC 2 values of � , so we can read off the Stokes data as
the .2; nC 2/ braid. Compare with Figure 1.

4. Alternating Legendrians
In this section we construct exact Lagrangian fillings of Legendrians whose front
projections have crossings of alternating orientations. The data of such a Legendrian
can be encoded by a bicolored graph on the surface; in the terminology of [59], the
front projection is an alternating strand diagram. The smooth surface which underlies
the exact Lagrangian filling has the same homotopy type as the graph and can be
topologically identified with what has elsewhere been called the conjugate surface
(see [28]). After defining its Lagrangian embedding we consider Lagrangian branes
supported on the filling and the sheaf quantizations thereof, which we refer to as
alternating sheaves.

4.1. Alternating colorings

Definition 4.1
Let † be a surface, and let ƒ� T1† be a Legendrian in its cocircle bundle whose
front projection �.ƒ/ has only transverse intersections as singularities. An alternat-
ing coloring for ƒ is the data of, for each region in the complement of the front
projection, a label black, white, or null, subject to the following conditions.
� The boundary of a black region is co-oriented inward.
� The boundary of a white region is co-oriented outward.
� The boundary of a null region has co-orientations that alternate between

inward and outward at each crossing.
� No black region shares a one-dimensional border with a white region, and no

null region shares a one-dimensional border with another null region.
An alternating Legendrian ƒ is a Legendrian equipped with an alternating coloring.
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We term such colorings alternating because of the following characterization.

PROPOSITION 4.2
A link with an alternating coloring has the property that, following along any strand,
successive crossing strands in the front projection have alternating co-orientations.
For a one-component link, this is sufficient to guarantee the existence of an alternating
coloring.

We warn the reader that the condition on alternating co-orientations is not naively
the same as the condition on over- and undercrossings which defines the notion of an
alternating (topological) link in R

3. Indeed, as our links live in a nontrivial circle
bundle, their crossings lack a canonical notion of over- and undercrossing. Moreover,
an alternating coloring is, in principle, an extra structure rather than merely a property.

Example 4.3
Consider the link composed of two concentric circles in the plane, with the inner one
co-oriented outward and the outer one co-oriented inward. There are three connected
components of the complement of the front projection. This admits two alternating
colorings: proceeding from inside to outside, the three components can be labeled
(white, null, white) or (null, black, null).

However, this nonuniqueness can be excluded by requiring sufficient crossings.

PROPOSITION 4.4
If every region of the complement of the front projection abuts a crossing, then there
is at most one alternating coloring, and the fourth condition above follows from the
first three.

Proof
In the neighborhood of any crossing, there is at most one alternating coloring, which
moreover verifies the fourth condition.

Remark 4.5
Even if one is only ultimately interested in diagrams satisfying the condition of the
proposition, the extra flexibility in our definition of alternating coloring is still needed
for it to be a local notion on †.

We assume from now on that † is orientable; as such we can identify co-
orientations with orientations, and do so by orienting the Legendrian such that the
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Figure 7. (Color online) The front projection �.ƒ/ of an alternating Legendrian and the
associated bipartite graph 	 . Given �.ƒ/, we recover 	 by placing a black/white vertex in
each region whose boundary is co-oriented inward/outward and then connecting these by

edges passing through crossings. Given 	 , we recover �.ƒ/ by drawing paths going between
midpoints of edges of 	 , co-orienting them away from white vertices and toward black vertices.

“hairs” indicating its co-orientation always point to the left when traveling in the
direction of the orientation. In terms of orientations rather than co-orientations, the
Legendrian travels counterclockwise around a black region, and clockwise around a
white one (see Figure 7).

The front projections of alternating Legendrians have been considered elsewhere
in the context of bipartite graphs, where they are referred to as alternating strand
diagrams and their components as zig-zag paths (see [28], [59]). A bicolored graph
simply means one whose vertices are labeled white and black; if the graph’s edges
connect only vertices of distinct colors, then it is bipartite.

PROPOSITION 4.6
Let 	 be a bicolored graph. Then there is a unique Legendrian lift ƒ of the alter-
nating strand diagram of 	 such that the vertex coloring of 	 gives the labels for an
alternating coloring of ƒ. Every alternating Legendrian admits such a presentation.

Proof
The alternating strand diagram of an embedded bicolored graph 	 �† is determined
up to planar isotopy by the following conditions: it lies in an open set that retracts
onto 	 , its crossings are in bijection with edges of the graph meeting a vertex of each
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color, with one crossing lying on each edge, and these crossings are the only points
where it meets 	 .

Conversely, from an alternating Legendrian we can produce a bicolored graph
that gives rise to it in the above fashion. This is simplest when each white and black
region is contractible; in this case we simply place appropriately colored vertices in
the white and black regions and connect them with edges across crossings. More
generally, we further attach to each vertex a configuration of embedded self-loops
onto which its black/white region retracts.

4.2. The conjugate Lagrangian
From an alternating coloring of ƒ � T1†, we now construct an exact Lagrangian
filling. We begin by describing the filling-to-be as an abstract topological surface,
absent the embedding into the cotangent bundle. The desired surface coincides with
that associated to a bipartite graph in [15] and [28], where in the latter it is called the
conjugate surface.

Let b† denote the real blowup of † at the finite set of crossings of the front
projection of ƒ. The blowdown map b†! † is a diffeomorphism away from the
crossings, and the fiber above a crossing is the RP1 of lines tangent to the the crossing.
We denote by W � † (resp., B � †) the union of the interiors of the white (resp.,
black) regions of the complement of the front projection.

Definition 4.7
Let L denote the closure of the preimage of W [B in b†. It is a smooth surface with
boundary, and we refer to its interior L as the conjugate surface of ƒ.

The boundary of L is canonically homeomorphic toƒ. The blowdown map iden-
tifies the white and black regions of † with open subsets of L, which we also refer to
as white and black regions. Each exceptional RP1-curve on b† meets L in an line seg-
ment that separates a white region from a black region. We term such line segments
exceptional arcs and sometimes indicate them in red as in Figure 8.

Let T �†D T �†[T1† be the fiberwise compactification of the cotangent bun-
dle by its real-oriented projectivization at infinity.

Definition 4.8
A conjugate Lagrangian is the image of an exact Lagrangian embedding L! T �†

such that
(1) the composition of L! T �† with the projection T �†! † coincides with

the blowdown map;
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Figure 8. (Color online) The picture on the right shows an alternating Legendrian in T1D2 and
the associated bicolored graph. The left shows its conjugate Lagrangian L together with the

strict transform of the bicolored graph under L!D2. The shaded regions on the right
indicate the image of L!D2. The exceptional arcs on the left are the preimages

of the crossings on the right.

(2) the intersection of the closure of L in T �† with the boundary T1† coincides
with ƒ (and hence L extends to an embedding L! T �†);

(3) for any neighborhood U of ƒ in T �† there is a Hamiltonian isotopy
¹'tºt2Œ0;1� of T �†, stationary outside U \ T �† and with '0 the identity,
such that 't .L/ satisfies (2) for all t and such that '1.L/ is eventually conical.

We note that for some purposes it would be more convenient to simply consider
an eventually conical Lagrangian of which L is a perturbation, but we have found
it more natural overall to arrange for the projection to be one-to-one away from the
crossings.

PROPOSITION 4.9
For any alternating Legendrian ƒ the conjugate surface L can be embedded into
T �† as a conjugate Lagrangian.

Proof
It suffices to produce a functon f W L! R with the following properties: (1) f is
positive on L\��1.B/, negative on ��1.W /, and zero over the crossings; and (2) f
is locally equal to˙

p
n in some local normal coordinate n near a noncrossing bound-

ary of a colored region. Such a function is easy to arrange away from the crossings.
Outside of the crossings, L embeds in T �† as the graph of df . Near a crossing,
the following local model in Example 4.10 completes the proof of existence. Con-
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dition (3) is clear in the given local models, but more generally it suffices to show
that the tangent spaces become C 1 close to spaces invariant under Liouville flow:
then L is a graph in a Weinstein neighborhood T �.ƒ� .R;1// of a collar neighbor-
hood of ƒ near infinity and hence can be Hamiltonian isotoped to the zero section
ƒ� .R;1/.

Example 4.10
We coordinatize a neighborhood of a crossing on † by .x; y/ 2 R2, with B the first
quadrant, W the third quadrant, and ƒ having as front projection the union of the
coordinate axes. Coordinatize L locally by .s; t/ 2R� .0; 1/, and define a map L!
T �† by �

x D s.1� t /; y D st I � D

r
t

1� t
; 
D

r
t

1� t

�
:

This has closure L � T �† wtih boundary at infinity equal to ƒ. One easily checks
that this is a conjugate Lagrangian embedding with primitive

f D 2s
p
t .1� t /:

This is pulled back from the function f D 2 sgn.x/
p
xy on B [W , which satisfies

the conditions described in the proof of Proposition 4.9. Also note that � D
p
y=x,


D
p
x=y.

Remark 4.11
We could have chosen other local models. This one is designed to be readily compat-
ible with our description of the square move—see Proposition 5.15.

Remark 4.12
If we isotope ƒ so that at each crossing both strands are tangent to the graph 	 to all
orders, and hence nontransverse to each other, we can arrange a conjugate Lagrangian
embedding of L such that its intersection with the zero section is exactly 	 . To do
this we choose f 2 C1.B [W / so that on the white regions it is equal to 0 along
	 and increases monotonically to 1 toward the boundary of L (so the preimage of
.R;1/ retracts onto 	 for all R). In particular, the critical locus of f on the white
regions is exactly 	 . Likewise, we ask that on the black regions f is zero along 	 and
decreases monotonically to �1 toward the boundary. Then the tangency condition at
the crossing implies that the graph of df above B [W has as its closure a conjugate
Lagrangian filling of ƒ—the exceptional arcs are embedded as the conormal lines to
	 at the crossings. It is clear that L is exact since it retracts onto its intersection with
the zero section, where the Liouville form is zero.
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4.3. Alternating sheaves
Given an alternating Legendrian ƒ � T1† and a conjugate Lagrangian L, we are
interested in Lagrangian branes supported on L and their sheaf quantizations.

Note first that since each cotangent fiber intersects L in a unique point above the
white and black regions, and in no points above the null regions, any such quantization
will be supported on the closure of the union of the black and white regions. Moreover,
the stalks of the sheaf on these regions will be locally constant and isomorphic to the
stalk of the local system on L, with a degree shift between white and black regions.
Since @LDƒ, the resulting sheaf will have microsupport at infinity contained in ƒ.
Thus we are led to consider sheaves of the following form:

Definition 4.13
Let ƒ� T1† be equipped with an alternating coloring. An alternating sheaf is an
object of Shƒ.†Ik/ whose support is contained in the closure of the union of the
white and black regions.

By a locally costandard sheaf on † we mean a sheaf of the form jŠL for a
locally constant sheaf L of invertible k-modules on an open subset U with inclusion
j W U ,! †. Likewise, by a locally standard sheaf we mean any sheaf of the form
j�L for such an L.

PROPOSITION 4.14
Let F be an alternating sheaf whose microstalks have cohomology vanishing outside
of degree zero. Then F fits into an exact triangle

FW Œ1�! F !FB
Œ1�
�!;

where FW is a locally costandard sheaf supported onW and FB is a locally standard
sheaf supported on B .

Proof
Let w WW !† and b W B!† be the inclusions of the interior of the (open) white
and black regions, respectively. Then it suffices to show that H0.F /Š wŠw

ŠF is a
locally costandard sheaf on the union of the white regions, H1.F / Š b�b

�F Œ1� is
a locally standard sheaf on the union of the black regions, and all other cohomology
sheaves vanish. Note that the closure of a given white region is disjoint from all other
white regions; similarly, the closure of a given black region is disjoint from all other
black regions.

In a neighborhood U of a smooth point p of the front projection, one has either
a null region separated from a white region, or a black region separated from a null
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region. In the first case, consider the morphism Fn! Fw of stalks at either end of
a characteristic path between points n and w in the null and white regions of U ; in
the second consider similarly the morphism Fb! Fn between points b and n in the
black and null regions. In both cases, the cone has, by assumption, cohomology only
in degree zero, and also by assumption Fn D 0. It follows that Fb has cohomology
only in degree one, and Fw has cohomology only in degree zero.

The microsupport prescribes that the generization maps from stalks at the bound-
ary of the black regions into the black regions give isomorphisms, and that the gener-
ization maps from the stalks on the smooth boundaries of the white regions to the
nearby null regions are isomorphisms (to zero). In particular, the stalks of H0.F /

vanish outside the open white regions, and H1.F / is a locally constant sheaf on the
closure of the black regions. The result follows.

The triangles appearing in Proposition 4.14 are classified by Hom.FB Œ�1�;

FW Œ1�/; we now recall from [66] that such extensions give objects in Shƒ.†/.

PROPOSITION 4.15
Let LW and LB be local systems on the interiors of the white and black regions of an
alternating coloring. Then Hom.b�LB Œ�1�;wŠLW Œ1�/ is a direct sum of skyscraper
sheaves in degree zero at the crossings of �.ƒ/. The stalk at a crossing is isomorphic
to Hom.`W ; `B/, where `W , `B are generic stalks in the white and black regions of a
neighborhood of the crossing.

The extension determined by a given class in Ext1.b�LB ;wŠLW Œ1�/ has micro-
support in ƒ if and only if the corresponding local elements of Hom.`W ; `B/ are all
isomorphisms.

Proof
Recall that Hom.X;Y /DD.DY ˝X/, where D denotes Verdier duality. So

Hom
�
b�LB Œ�1�;wŠLW Œ1�

�
DD

�
D
�
wŠLW Œ1�

�
˝ b�LB Œ�1�

�
DD

�
w�L

_
W Œ1�˝ b�LB Œ�1�

�
DD.w�L

_
W ˝ b�LB/:

If p is any point, then .w�L_W ˝ b�LB/p D .w�L
_
W /p ˝ .b�LB/p , which can only

be nonzero for p in the intersection of the closures of the white and black regions,
that is, at a crossing. The above formula shows that the stalk here is evidently the hom
space between nearby stalks of the local systems in the white and black regions. This
proves the first statement.

The second statement follows from a direct computation as in [66, Theo-
rem 3.12]. This calculation can be packaged as the statement that the above hom
space is also the stalk of the Kashiwara–Schapira �hom sheaf (see [36, Section 6])
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along the interior of ss.wŠLW Œ1�/\ ss.b�LB Œ�1�/—the covectors pointing into the
black region—and the cone over the stalk of the �hom becomes the microstalk of
the cone.

Another way to see this is to perform a contact transformation, moving the Leg-
endrian graph ss.wŠLW Œ1�/\ ss.b�LB Œ�1�/ to one whose front projection is locally
an embedding near the desired microstalk, whereupon the desired �hom calculation
reduces to the above Hom calculation.

THEOREM 4.16
The full subcategory of Shƒ.†Ik/ consisting of alternating sheaves is equivalent to
the category of locally constant sheaves on L.

Proof
The preceding propositions provide a complete description of the full subcategory
of alternating sheaves as glued out of locally constant sheaves on white and black
regions. To see the claim, we observe that an identical description applies to locally
constant sheaves on L.

Indeed, it is clear that a local system L on L fits into a triangle

wŠLW !L! b�LB

Œ1�
�!;

where LW , LB are local systems on the white and black regions and w, b now
denote the inclusion of these regions into L (rather than †). We now have that
Hom.b�LB ;wŠLW Œ1�/ is a direct sum of constant sheaves supported on the excep-
tional arcs. Their stalks are locally isomorphic to Hom.`W ; `B/, and the extensions
which are locally constant are classified by sections nonvanishing on all arcs.

From this description it is clear not only that we have a correspondence at the
level of objects but that morphisms in the indicated categories are the same: they can
be reduced to identical calculations involving the outer terms in the triangle above
and that of Proposition 4.14.

Recall from the proof of Proposition 2.15 that full faithfulness implies that we
have an open inclusion of moduli spaces.

COROLLARY 4.17
The locus of M1.ƒ/ parameterizing alternating sheaves of microlocal rank one is
open and isomorphic to the algebraic torus Loc1.L/.

As indicated earlier, it is straightforward to see that alternating sheaves are
exactly the objects obtained from sheaf quantization of the conjugate Lagrangian.



CLUSTER VARIETIES FROM LEGENDRIAN KNOTS 2837

Note that to discuss its quantization we perturb L to be eventually conical, as guar-
anteed by condition (3) in Definition 4.8.

PROPOSITION 4.18
An object of Shƒ.†/ is obtained by sheaf quantization of a rank-one local system on
L if and only if it is an alternating sheaf of microlocal rank one.

Proof
By Corollary 2.13, the sheaf quantization of a rank-one local system onL is supported
on the union of the closures of the white and black regions and has rank-one stalks
(in some degree) on their interiors. It follows that it has microlocal rank one. Since
it is microsupported at infinity along ƒ, it follows from Proposition 4.15 that it is
alternating. The “only if” part of the statement follows since a fully faithful functor
from Loc1.L/ to itself which is defined over Z must be an equivalence.

Since Loc1.L/ is also isomorphic to the space of local systems on 	 , it has natu-
ral coordinates described by holonomies around the faces of 	 (i.e., around the con-
tractible regions of †� 	). However, we will see later that it is also natural to twist
our identification between alternating sheaves and local systems on L by signs.

Following [66, Proposition 5.12], such sign choices may be organized as follows.
Suppose that F is an alternating sheaf and that `W , `B are stalks of FW , FB in
the neighborhood of a fixed crossing of �.ƒ/. Picking one of the two components
of ƒ above the crossing picks out an isomorphism between `W and `B Œ1�: each is
isomorphic to the microstalk of F at a point of that component on either side of the
crossing, and parallel transport in the microlocalization Fƒ defines an isomorphism
between these microstalks. Choosing the other component changes the isomorphism
`W Š `B Œ1� by a sign.

In particular, if we choose a component of ƒ above every crossing, then these
isomorphisms between stalks of FW and FB Œ1� assemble into a local system on L:
the sheaves FW and FB Œ1� define a canonical local system on the complement of the
exceptional arcs, and the construction above defines a parallel transport across the
exceptional arcs. On the other hand, since † is oriented, there is a consistent notion
of which component of ƒ is clockwise from the white/black regions and which is
counterclockwise.

The construction described in Theorem 4.16 corresponds to making the same
choice at all crossings. We refer to the resulting isomorphism with Loc1.L/ as the
standard trivialization of the space of alternating sheaves.
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Definition 4.19
The standard face coordinates on the space of alternating sheaves are the counter-
clockwise holonomies around the faces of 	 under the standard trivialization. The
positive face coordinates are the negatives of the standard face coordinates.

The positive coordinates are so-called because, as we will see in Section 5.2,
their transformations are described by subtraction-free expressions. We use the term
coordinate somewhat loosely: depending on the number of contractible regions of
†� 	 , their boundaries may not form a basis of H1.	IZ/.

5. Cluster combinatorics from Legendrian isotopy
Thus far, we have considered structures which arise from the geometry of a Legen-
drian link in a fixed position. We turn now to comparisons between these structures
arising from Legendrian isotopies.

At the level of categories or of moduli spaces, isotopies give rise to equivalences:
given an isotopy ƒ! ƒ0, one gets by [33] an equivalence Shƒ.†/! Shƒ0.†/,
and a corresponding isomorphism of the moduli spaces. However, different isotopy
representatives ofƒ present different structures on the moduli space. In particular, we
saw in Section 3 that an isotopy representative in which ƒ is presented as a union of
positive braids has, in some cases, a canonical identification with a positroid stratum
or a wild character variety. On the other hand, we saw in Section 4 that an isotopy
representative which is alternating comes with a natural filling L; hence its moduli
space has an abelian chart Loc1.L/ ,!M1.†;ƒ/.

This raises a series of questions:
(1) Which Legendrians have alternating representatives? How many are there and

what are the isotopies between them?
(2) Given an isotopy between alternating Legendrians, what is the change of coor-

dinates between the corresponding abelian charts?
(3) Given an isotopy from an alternating Legendrian to a localized positive braid,

can the coordinates of the abelian chart from the filling be written in terms
of some coordinates natural from the nonabelian point of view of the positive
braid?

The first question is one of topological combinatorics, and the foundational
results in this direction are due to D. Thurston [71]. We survey and extend his results
in Section 5.1, showing in particular that the alternating Legendrian of a reduced
plabic graph admits a homotopically unique isotopy to a Legendrian of positroid
type. Following ideas of [28] we show that this leads to alternating representatives of
the Legendrian braid satellites of Section 3.
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Though the second and third questions are implicitly Floer-theoretic in nature,
they can be reduced to combinatorics given the results collected so far. In the previous
section, we established a sheaf-theoretic description of the abelian charts, and the
constructible sheaves under consideration can be described locally in terms of quiver
representation theory. Any isotopy can be factored into a sequence of Reidemeister
moves, and the isomorphism induced by [33] factors accordingly; each term in this
factorization can be described explicitly as reviewed in Section 2.2.

Toward the second question, we show that the square move on bicolored graphs is
interpolated by a Legendrian isotopy of their corresponding Legendrians. This move
is fundamental; for example, any isotopy between reduced alternating Legendrians in
T1D2 can be factored into a sequence of square moves. We show that the abelian
charts on either side of a square move are related by the cluster X-transformation
classically associated to the square move. The conjugate Lagrangians themselves are
related by Lagrangian surgery, a perspective which we develop more systematically
in [65].

In the direction of the third question, we consider the unique isotopy from the
alternating Legendrian associated to a reduced plabic graph to the corresponding
positroid braid. Since this isotopy gives abelian coordinates on the Grassmannian,
the natural question is how to express these in terms of Plücker coordinates. We iden-
tify the resulting expression with the boundary measurement map of Postnikov [59],
which describes the answer in terms of the combinatorics of flows or perfect match-
ings on the graph.

5.1. Alternating Legendrians from braids
We consider here the existence of alternating isotopy representatives of the Legendri-
ans studied in Section 3. These were braid satellites of cocircle fibers of T1†, and
their rank-one moduli spaces were spaces of filtered local systems on †. The main
result is that essentially all such Legendrians have alternating representatives. From
our point of view this accounts for the appearance of bicolored graphs in the study of
such spaces. After proving the general statement we explain in various examples how
alternating representatives can be constructed explicitly, bringing us into contact with
the combinatorics of triangulations and double wiring diagrams familiar in cluster
theory.

We begin our discussion with a class of particularly simple Legendrians.

Definition 5.1
A Legendrian ƒ� T1D2 is reduced if it satisfies the following conditions:
(1) Along @D2 the strands of �.ƒ/ have alternating orientations.
(2) The front projection ƒ!D2 is an immersion (i.e., �.ƒ/ has no cusps).
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(3) There are no parallel crossings: if p1, p2 are intersection points of two strands,
then one is oriented from p1 to p2 and the other from p2 to p1.

(4) No strands have self-intersections.
(5) All strands meet the boundary of the disk.

Our terminology is modeled on that of [59] for bicolored graphs: an embedded
bicolored graph 	 � D2 is a reduced plabic graph if its associated Legendrian is
reduced. Note that our conventions implicitly allow us to assume that a reduced plabic
graph has white vertices where it meets the boundary of D2.

If ƒ� T1D2 is reduced, then the set �.ƒ/\ @D2 of intersections between its
front projection and the boundary of the disk are divided into sets of incoming and
outgoing points (we freely pass between orientations and co-orientations following
Section 4.1). Each strand of �.ƒ/ has one incoming endpoint and one outgoing end-
point; hence ƒ defines a matching between these two sets. Conversely, we can fix
a set of points on @D2, label them alternatively incoming and outgoing, choose a
matching between those of opposite labels, and ask for reduced Legendrians realizing
this matching. In this direction, we have the following reformulation of a fundamental
result of D. Thurston.

PROPOSITION 5.2 (see [71])
Fix a set of points on @D2 alternatively labeled as incoming and outgoing. Every
matching between incoming and outgoing points is realized by a reduced alternating
Legendrian in T1D2. Moreover, any two reduced alternating Legendrians with the
same matching are Legendrian isotopic through a series of square moves.

We note in passing that, while in applications this fact is often used as a purely
combinatorial statement (e.g., [59]), its relevance to Legendrian knot theory was
specifically anticipated in [71]. We can complement the part of Proposition 5.2 deal-
ing with isotopies as follows.

PROPOSITION 5.3
Suppose that ƒ;ƒ0 � T1D2 are reduced Legendrians such that �.ƒ/ \ @D2 D

�.ƒ0/\ @D2 compatibly with incoming/outgoing labels. If ƒ and ƒ0 define the same
matching of boundary points, then they are Legendrian isotopic. This isotopy can
be chosen so that it is stationary above @D2, and only passes through Legendrians
whose front projections are immersions. Moreover, the space of such isotopies is con-
tractible.
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Proof
We construct an isotopyƒ!ƒ0 of the stated kind as follows. We notate it as a family
of Legendrian embeddings ft W ƒ! T1D2 depending smoothly on t 2 Œ0; 1� such
that f0 is the identity map on ƒ and f1 is a diffeomorphism from ƒ to ƒ0. Number
the components of ƒ0 (and hence also ƒ) 1 through m, denoting the kth components
by ƒ0

k
, ƒk . As t varies from .` � 1/=m to `=m, we take ft to be independent of t

except along ƒ`.
For .` � 1/=m 
 t 
 � C .` � 1/=m DW t0, we let ft be a small perturbation

such that the part of the front projection of ƒ0
`

that does not meet the front projec-
tion of ft0.ƒ`/ (i.e., �.ƒ0

`
/� �.ft0.ƒ`// \ �.ƒ

0
`
/) has finitely many components.

We define ft for t0 
 t 
 `=m inductively as follows. Suppose that ti is such that
�.ƒ0

`
/��.fti .ƒ`//\�.ƒ

0
`
/ has finitely many components. If there is only one such

component, then let tiC1 D `=m; otherwise, let tiC1 be between ti and `=m. Let C 0

be the component of �.ƒ0
`
/� �.fti .ƒ`//\ �.ƒ

0
`
/ closest to one end of �.ƒ0

`
/. Let

C be the segment of �.fti .ƒ`// which has the same endpoints as the closure of C 0.
Together C 0 and C form the boundary of an embedded disk, since by assumption
there are no self-loops in either. For ti 
 t 
 tiC1 we let ft act on the front projec-
tions by retracting this disk onto the part of its boundary lying along C 0. That this can
be done so that it lifts to a Legendrian isotopy follows from the assumption that there
are no parallel crossings or cusps (the part of �.ƒ`/ just past the end of C should
also be perturbed in order to not create a corner in the front projection).

To show that the space of such isotopies is contractible, it suffices to show con-
tractiblity of the group Aut.ƒ/ of Legendrian isotopies from ƒ to itself that are sta-
tionary at the boundary and pass through Legendrians whose front projections are
immersions. To do this it suffices to describe, for any element gs of Aut.ƒ/ and any
s 2 Œ0; 1�, an isotopy ft from gs.ƒ/ to ƒ which is smooth in s, is the stationary iso-
topy at s D 0, 1, and which itself only passes through Legendrians with immersed
front projections. But this can be done using the same prescription we used to con-
struct an isotopy from ƒ to ƒ0. It is clearly continuous in s, and ft limits to the
stationary isotopy at s D 0, 1, since the process of retracting the embedded disks does
not increase their size.

This guarantees the existence of alternating isotopy representatives of reduced
Legendrians in T1D2. We have the following more general existence theorem, which
is proved by reduction to Proposition 5.2 following a strategy employed in [28] for a
different class of alternating strand diagrams on T 2. We follow the notation of Sec-
tion 3.1, including the use of ˇi for both a choice of abstract braid at �i and for the
associated Legendrian satellite in T1.†� �/.
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THEOREM 5.4
Let † be a closed surface, let � D ¹�1; : : : ; �kº be a nonempty collection of k marked
points, and let �i 7! ˇi 2 Br

C
n be a choice of positive braid at each marked point.

If † has genus zero and k D 1, then assume that ˇ1 can be written as ˇ0�2, where
� denotes a half-twist. Then in T1.†� �/ the associated Legendrian ˇ D

`
ˇi is

Legendrian isotopic to an alternating Legendrian.

Proof
If † has genus zero and k < 3, then this follows from Constructions 5.5 and 5.6
(described after the proof); so from now on we assume that k � 3 in the genus-zero
case. The key point in general is to cut † apart into a polygon in such a way that
Proposition 5.2 may be applied. While spelling this out in detail is regrettably tedious,
it is ultimately an elementary construction. If g is the genus of †, then fix a .2gC 2/-
gon P with a gluing map p W P �†; that is, † is obtained from P by gluing pairs of
edges together. The image in † of the boundary @P is an embedded graph C , either
an interval if gD 0 or a bouquet of circles. We choose C so that
(1) � � C and the �i lie in order along on a single component of the smooth locus

of C ;
(2) the front projection of each ˇi intersects C in 2n points, so that C separates it

into a pair of n-strand braids;
(3) on one side of C all such braids are trivial.

The preimage p�1.�.ˇ// of the front projection of ˇ then consists of k disjoint
braids attached to @P along each of two edges. We call these edges A and A0, letting
A0 denote the edge where all the braids are trivial by item (3).

We now subdivide P further into a union P D P 0 [ Bi [ � � � [ Bk of smaller
polygons with pairwise disjoint interiors. The role of each Bi will be to isolate the
nontrivial part of each braid ˇi . That is, we choose them to satisfy the following:
(1) Each Bi is a quadrilateral such that Bi meets @P only along A, and Bi \ @P

is an edge of Bi .
(2) The image in † of Bi \ @P does not meet �.ˇ/, and contains �i but no other

points of � .
(3) The interior of Bi contains all crossings in p�1.�.ˇi //, and Bi \ p�1.�.ˇ//

is an n-strand braid diagram with all strands going from one edge of Bi to its
opposite (and hence each of these edges shares an endpoint with Bi \ @P ).

We next isotope ˇ so that neighboring front projections �.ˇi / and �.ˇiC1/ over-
lap in an alternating fashion, stretching each one out along C . That is, we require the
following:
(1) The isotopy is only nontrivial on the complement of p.

F
Bi /.



CLUSTER VARIETIES FROM LEGENDRIAN KNOTS 2843

(2) On the interval of C lying between p.Bi \ @P / and p.BiC1 \ @P /, the inter-
sections of �.ˇi / and �.ˇiC1/ with C alternate co-orientations after the iso-
topy.

(3) The number of intersections of �.ˇ/ with C remains constant through the
isotopy.

(4) After the isotopy there are n.n�1/.k�1/ new crossings of �.ˇ/ (the minimal
possible number created in order to satisfy (1)–(3)).

In particular, �.ˇi / is still disjoint from �.ˇj / unless ji � j j 
 1. From now on
ˇ refers to the result of this isotopy.

We now define some auxiliary Legendrians ƒB ;ƒC � T1†. Their role will be
to make sure the co-orientations of p�1.�.ˇ [ƒB [ƒC // at its intersections with
@P 0 are alternating, setting up the application of Proposition 5.2. The front projection
of each component of ƒB , ƒC will be an embedded loop, those of ƒC encircling
the vertex or vertices of C and those of ƒB passing through each of the Bi but not
meeting p.@P /.

We choose ƒB so that the following properties hold:
(1) �.ƒB/ consists of n � 1 pairwise disjoint embedded loops, and is disjoint

from C .
(2) The intersection of each component of p�1.�.ƒB// with @P 0 consists of 2k

points, one on each edge of the Bi that also intersects p�1.�.ˇ//.
(3) The co-orientations of p�1.�.ƒ[ƒB// at its intersections with @Bi alternate

along @Bi .
(4) Inside a givenBi the number of intersections of p�1.�.ƒB//with p�1.�.ˇ//

is twice the number of crossings of p�1.�.ˇ// in Bi (the minimum possible
number), and the intersection of p�1.�.ƒ [ƒB// with Bi is an alternating
strand diagram.

We choose ƒC so that the following properties hold:
(1) If g > 0, then �.ƒC / consists of n�1 pairwise disjoint embedded loops lying

in a contractible set containing the vertex of C , each isotopic to a small loop
around the vertex of C and intersecting each component of the smooth part of
C exactly twice. If gD 0 and C is an embedded interval, then �.ƒC / consists
of two sets of n � 1 pairwise disjoint embedded loops, each set surrounding
either end of the interval, and each loop intersecting the interval once.

(2) �.ƒC / is disjoint from p.tBi /.
(3) The co-orientations of p�1.�.ƒ [ƒB [ƒC // at its intersections with @P 0

alternate along @P 0.
(4) �.ƒC / is disjoint from �.ƒB/, and the strands of �.ƒC / intersect each other

and the strands of �.ˇ/ the minimal number of times such that the above
properties hold.
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Figure 9. (Color online) The proof of Theorem 5.4 when †D T 2 and � consists of two points.
The polygon P is pictured with two squares B1 and B2 cut out to yield the crenellated polygon
P 0. The front projection of ˇD ˇ1 t ˇ2 is in black, the nontrivial part of each braid lying in B1,
B2, respectively. The front projections of the auxiliary Legendrians ƒB and ƒC are in red and

blue, respectively. Taking their connect sums with ˇ, we obtain a new Legendrian which is
isotopic to ˇ and whose co-orientations alternate along the boundary of P 0.

In particular, though �.ƒB/ and �.ƒC / intersect �.ˇ/, ƒB and ƒC can be Le-
gendrian isotoped through T1.†� �/� ˇ so that their front projections are disjoint
from �.ˇ/.

The setup so far is illustrated in Figure 9. We have arranged so that p�1.�.ˇ [
ƒB [ƒC //\P

0 has alternating co-orientations along @P 0 and no self-loops or paral-
lel bigons; hence we may apply Proposition 5.2 to obtain an alternating Legendrian in
T1P 0. What we really want, however, is an alternating representative of p�1.�.ˇ//.
Thus the final step is to take connected sums between certain components of ˇ and
ƒB , ƒC . This will yield a new Legendrian ˇ0 � T1† which is Legendrian isotopic
to ˇ but retains the desirable combinatorial properties of ˇ [ƒB [ƒC .

First we consider the case where † has positive genus. The preimage
p�1.�.ƒC //\ P

0 is a union of embedded intervals, n� 1 surrounding each corner
of P . Each p�1.�.ˇi // \ P 0 consists of three sets of n parallel embedded inter-
vals, of which one set has both endpoints on A0. We form connected sums between
the outer n � 1 strands of p�1.�.ˇ1// \ P 0 having both endpoints on A0 and the
strands of p�1.�.ƒC // \ P 0 surrounding the corner of A neareast to �k . That is,
we choose a path � in P 0 between the outermost strands of each set that only meets
p�1.�.ˇ [ ƒB [ ƒC // at the endpoints of � . We now cut both outermost strands
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at the endpoints of � , reattaching them to each other by following � across P 0. We
repeat this for the remaining n � 2 strands, never increasing the total number of
crossings. The result is to replace p�1.�.ˇ[ƒB [ƒC //\P 0 with a new collection
of immersed co-oriented curves with the same set of crossings but n�1 fewer smooth
embedded components.

Next we perform a similar procedure with ƒB . The components of
p�1.�.ƒB//\P

0 that we use in the connected sum are those closest to the middle of
P , that is, those connecting the edge of B1 closest to one end of A to the edge of Bk
closest to the other end of A. We connect these to the strands of p�1.�.ƒC // \ P 0

surrounding the corner of A nearest to �1.
Call ˇ0 � T1† the Legendrian lift of image of the resulting surgered front pro-

jection. It follows from the construction that ˇ0 is Legendrian isotopic to ˇ: before-
hand we could isotope each component of ƒB , ƒC so that its front projection is an
embedded loop disjoint from the front projection of ˇ. We could equivalently describe
ˇ0 by doing this isotopy, then taking a connected sum, and then isotoping back; a
connected sum of a Legendrian with one whose front projection is a circle does not
change its Legendrian isotopy class.

On the other hand, the connected sum we performed in P 0 did not create self-
loops or parallel bigons (the step involving ƒB harmlessly creates n � 1 antipar-
allel bigons, as does the step involving ƒC if k D 1). By construction the strands
of p�1.�.ˇ0// \ P 0 have alternating co-orientations along the boundary of P 0, and
hence we can apply Proposition 5.2 to find an alternating Legendrian in T1P 0 which
is isotopic to the lift of p�1.�.ˇ0// \ P 0. But ˇ0 was already alternating above the
image of eachBi , so we obtain an alternating Legendrian isotopy representative of ˇ0;
hence ˇ, in T1†. Note that since we apply Proposition 5.2 in P 0, and � is disjoint
from the image of the interior of P 0, the resulting isotopy from ˇ to an alternating
representative takes place in T1.†� �/.

In the genus-zero case, the strategy is the same, although we have to specify
where to take connected sums differently. We have assumed k > 2, so for any choice
of 1 < i < k the n components of p�1�.ˇi / \ P 0 whose endpoints lie on A0 do
not intersect p�1.�.ƒC //. As before, we take a connected sum with the n � 1 out-
ermost of these components with those of p�1�.ƒC / surrounding one corner of
P 0. We have to now separately take a connected sum of the same components of
p�1.�.ˇi // \ P

0 with those of p�1.�.ƒC // surrounding the other corner of P 0

(since in the genus-zero case ƒC has 2.n� 1/ components). Finally, we take a con-
nected sum of the same outermost n � 1 components of p�1�.ˇi / \ P 0 with the
components of p�1.�.ƒB// \ P 0 closest to the middle of P 0. Again the resulting
collection of immersed co-oriented curves has no self-loops or parallel bigons, so
we may apply Proposition 5.2 as above (if we took i D 1 or i D k, then the above
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prescription would result in self-loops, so we have indeed used the assumption that
k > 2).

We now describe several constructions of alternating representatives for special
cases of the Legendrian satellites appearing in Theorem 5.4. The discussion largely
amounts to reinterpreting well-known constructions in combinatorics into the lan-
guage of Legendrian knot theory. We write words for the annular braids ˇi in letters
s1; : : : ; sn�1, with the convention that s1 is a crossing of the strands furthest from �i .
We use� to denote the positive half-twist. The first two constructions are Legendrian
reinterpretations of the notion of the double wiring diagram introduced in [21] and
considered for general braids in [17].

Construction 5.5
Let †D S2, let � D ¹1º, and let ˇ be a positive annular braid on n strands of the
form ˇ0�2. A word ˇ0 D si1 � � � sik determines an alternating isotopy representative
of ˇ as follows. Begin with a bicolored graph in the plane consisting of n horizontal
line segments running from .0; i/ to .k C 1; i/ for 1 
 i 
 n, with white vertices at
both ends. For 1 
 j 
 k adjoin a vertical segment along the line y D j connecting
the line x D ij to the line x D 1C ij , with a black vertex at its top and a white vertex
at its bottom. From the resulting alternating strand diagram, one obtains the front
projection of ˇ by sliding all upward co-oriented strands to the top of the picture and
all downward co-oriented strands to the bottom; see Figure 10.

The above assumption that ˇ be of the form ˇ0�2 is present for good reason. For
example, if ˇ has no crossings at all, then M1.S

2; ˇ;1/ is a single point whose stabi-

Figure 10. (Color online) Construction 5.5 associates the bicolored graph on the left to the word
s2s1s2 for ˇ0 D�. This produces an alternating representative of ˇD�3 on the right.
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lizer is a Borel subgroup ofGLn. But if ˇ had any smooth exact fillings at all, let alone
one arising from an alternating representative, then the moduli space would necessar-
ily have a point with an abelian stabilizer. We do not know whether the requirement
ˇD ˇ0�2 is a necessary condition for ˇ to have alternating representatives.

We note that when si1 � � � sik is a reduced word for an element w of the symmetric

group, a suitably framed moduli space M
f r
1 .S

2; ˇ;1/ recovers the double Bruhat
cell BC \B�wB� (see [21]) as well as a certain positroid stratum of Gr.n; 2n/.

Construction 5.6
Let†D S2, let � D ¹0;1º, and let ˇ0, ˇ1 be any positive annular braids at 0 and1.
A double word for .ˇ0; ˇ1/ is a shuffle of words for ˇ0 and ˇ1 (see [22]). We encode
a double word as a sequence .si1 ; : : : ; sik / and a function � W ¹1; : : : ; kº ! ¹0;1º
such that the ordered product

Q
	.j /D` sj is a word for ˇ`. A double word determines

an alternating isotopy representative as follows. Begin with a bicolored graph in the
punctured plane consisting of n concentric circles centered at the origin, with white
vertices, where each intersects the positive x-axis. We adjoin a radial line segment of
phase j 2�i=.kC1/ for each 1
 j 
 k. This segment connects the ij th and .ijC1/st
circles closest to �.j /, and has white/black vertices at its farthest/closest endpoint to
�.j /, respectively. From the resulting alternating strand diagram, one obtains the front
projection of ˇ by sliding the strands co-oriented toward 0,1 past each other toward
0,1, respectively.

These two constructions cover the remaining cases of Theorem 5.4.
The combinatorics essential to the next construction is due to [16]. The cluster

algebras associated to these examples when nD 2 are often just called cluster alge-
bras from surfaces (see [20]). In the literature one often starts with the surface †0

with marked boundary appearing in the construction, but from our point of view this
is simply a convenient way of encoding the number of half-twists.

Construction 5.7
Let†, � be arbitrary, and let each ˇi be of the form�ki for some ki 2N. Alternating
representatives of ˇ � T1† can be constructed using triangulations. First cut out
a disk Di around each �i with ki > 0, and let †0 � † denote the resulting surface
with boundary. For each such �i we also mark ki points on the component of @†0

that surrounds it. We say an ideal triangulation of †0 is a triangulation such that all
triangles have vertices either on marked points of boundary components or on points
�i for which ki D 0.

There is a standard bicolored graph 	n we can embed in any triangle (see [16]).
This is dual to a triangulation of the given triangle into n2 smaller triangles as in
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Figure 11. The graph 	3 of Construction 5.7. If we regard it as a freestanding graph in R
2,

rather than attaching it to other copies of itself following some ideal triangulation, then it defines
an alternating Legendrian isotopic to the Legendrian of Figure 10.

Figure 11. If we are given an equilateral triangle in R
2, then we cut it by n � 1

equally spaced lines parallel to each of its three sides. We label the triangles of the
resulting triangulation as white or black so that every triangle on the boundary of the
original one is white, and no triangles of the same color share an edge. The graph 	n
has a black/white vertex in the center of each black/white triangle. It also has n white
vertices along each edge of the original triangle, one in the middle of each outward-
facing edge of a white triangle. There is an edge between any black vertex and each
of its three white neighbors, as well as between each white vertex on the boundary
and the white vertex in the center of the white triangle whose boundary it lies on.

We associate a bicolored graph 	 �† to an ideal triangulation of †0 by embed-
ding 	n into each triangle. This is done so that the white vertices on the boundaries
of adjacent triangles coincide. We can choose the alterating Legendrian of 	 so that
the �i lie in null regions of its front projections. After isotoping this Legendrian to
its standard (i.e., positroid) form in each triangle separately, one easily sees that it is
Legendrian isotopic to ˇ inside T1.†� �/.

5.2. The square move
There is a local operation on quadrilateral faces of bicolored graphs—the so-called
square move—that induces isotopies between alternating Legendrians. The corre-
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sponding conjugate Lagrangians each determine an abelian chart on the moduli space;
we will show here that these charts are related by a cluster X-transformation.

Geometrically, the associated conjugate Lagrangians differ by a certain
Lagrangian surgery (see Figure 13 below); one could imagine using this fact directly
to compare, Floer-theoretically, the spaces of local systems supported on each.
Instead, we use the results of Section 4.3, which capture the relationship between
these two Lagrangians in the categories of alternating sheaves associated to the two
alternating Legendrians. The comparison between these categories is computed using
local calculations of the GKS equivalence.

The local model for the square move is the Legendrian isotopy ƒ!ƒ0 pictured
in Figure 12. Let F 2 Shƒ.D2/ be an alternating sheaf, and let N , W , S , E be its
nonzero stalks near the boundary of the picture. We will compute the image of F

under Shƒ
�
�! Shƒ0 in terms of the positive face coordinates of Definition 4.19. Here

we must consider these not just for closed faces of the graph, but also for the four
regions on the boundary. The associated coordinates are more properly isomorphisms

XNE WN
�
�!E; XES WE

�
�! S; XSW W S

�
�!W; XWN WW

�
�!N;

which together with the positive coordinate of the middle region satisfy

XM D�.XNEXESXSWXWN /
�1:

For example, XNE is explicitly the composition of
(1) the isomorphism of N with a microstalk of F on the component of ƒ passing

immediately below the Northern region;
(2) parallel transport in Fƒ to a microstalk of F at the far right of the picture;

Figure 12. (Color online) The alternating Legendrian ƒ0 on the right is obtained from ƒ on the
left by a square move. The isotopy between them can be chosen to pass through ƒ# pictured in
the middle. If F 2 Shƒ.D

2/ is alternating, then its image F# in Shƒ# .D
2/ is described by the

stalks and generization maps pictured. The dual quivers of the bicolored graphs of ƒ, ƒ0

have vertices labeling the positive face coordinates on their spaces of alternating sheaves.
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(3) the isomorphism between this microstalk and E .
The remaining isomorphisms XES , XSW , XWN can be described symmetrically.
Note that the existence of the isomorphisms in (1) and (3) depends on the vanishing
of F in the middle and northeast null regions. Given an alternating sheaf microsup-
ported on ƒ0, we similarly denote its positive coordinates by YNE , YES , YSW , YWN ,
and YM .

PROPOSITION 5.8
Let ƒ;ƒ0 � T1D2 be the alternating Legendrians related by the square move of
Figure 12. Let F 2 Shƒ.D2/ be an alternating sheaf, and let F 0 2 Shƒ0.D2/ be its
image under the isotopy equivalence Shƒ

�
�! Shƒ0 . Then F is an alternating sheaf if

and only if XM ¤�1, and its positive face coordinates are related to those of F by

XNE D YNE .1C YM /; XES D YES .1C Y
�1
M /�1;

XSW D YSW .1C YM /; XWN D YWN .1C Y
�1
M /�1; XM D Y

�1
M :

Proof
Denote by F# the image of F under Shƒ

�
�! Shƒ# , where ƒ# is as in the middle of

Figure 12. F# is determined by the data of a generic stalk V in the middle region,
along with the four generization maps from S , W , N , and E .

We claim that, in terms of F#, XNE is the composition of
(1) the generization map from N to V ;
(2) the map from V to the microstalk of F# on the component of ƒ# passing

immediately below the middle region;
(3) parallel transport in .F#/ƒ# to a microstalk of F# at the far right of the picture;
(4) the isomorphism between this microstalk and E .
Note that under the isotopy ƒ!ƒ# the component of ƒ# passing below the middle
region corresponds to the component of ƒ passing below the northern region. We
obtain ƒ# from ƒ by performing Reidemesiter-III moves at the black vertices of its
bipartite graph followed by a Reidemeister-II. The above description of XNE follows
from Lemma 2.9, which asserts the invariance of microlocal parallel transport under
Reidemeister-III, and the following observation about Reidemeister-II. In both sides
of Figure 5 there is a map from A to Cone.B ! C/: on the left, the composition
A! C ! Cone.B ! C/, and, on the right, A! Cone.C 0! A/! Cone.B !

C/. Here Cone.C 0! A/! Cone.B ! C/ is the canonical isomorphism coming
from C 0 Š Cone.A˚ B ! C/Œ�1�. These two maps agree by elementary homo-
logical algebra and are exactly the maps being compared at the beginning of the two
descriptions of XNE .

More explicitly, the above description identifies XNE with the natural composi-
tion N

�
�! V=S

�
�! E . Note that N ! V=S being invertible is exactly the condition
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that F# arose from an alternating sheaf on ƒ. It also follows that N , E , S , W are
all isomorphic to a single invertible k-module I (if F were not alternating, then F#

could have N Š S Š I1 and W ŠE Š I2 for nonisomorphic invertible modules I1,
I2). Fixing identifications of each with I and of V with I 2, we encode the gener-
ization maps as a 2 � 4 matrix with columns labeled S , W , N , E and entries in
kD Endk I . We write �NE , and so on, for the minors of this matrix, keeping track
of orders of indices; so, for example, �NE D��EN . The crossing conditions imply
that minors of cyclically consecutive columns are invertible, and in terms of minors
we can rewrite the above calculation as XNE D�NS=�ES . By symmetry, we also
have the following:

XNE D
�SN

�SE
; XES D

�NE

�NS
; XSW D

�NS

�NW
; XWN D

�SW

�SN
;

YNE D
�WN

�WE
; YES D

�WE

�WS
; YSW D

�ES

�EW
; YWN D

�EW

�EN
:

The remaining holonomy XM is determined by the relation X�1M D �XWNXNE �
XESXSW , and likewise for YM .

Recall the two-term Plücker relation

�SN�EW D�SE�NW C�SW�EN :

Dividing by �ES�WE and reordering indices, we obtain the desired relation

XNE D
�SN

�SE
D
�WN

�WE

�
1�

�WS�EN

�ES�WN

�
D YNE .1C YM /:

The remaining relations follow from a symmetric calculation.

By locality, the preceding result also determines how alternating sheaves micro-
supported on more complex alternating Legendrians transform under square moves.
The more general transformation rules are naturally expressed in the language of clus-
ter algebra (see [19], [39], [44]), which we briefly review following the notation of
[18] and [30]. Below we write Œa�C for max.a; 0/.

Definition 5.9
A seed s D .N; ¹eiº/ is the data of a latticeN with skew-symmetric integral form ¹ ; º
and a finite collection ¹eiºi2I �N of distinct primitive elements indexed by a set I .
The mutation of s at k 2 I is the seed �ks D .N; ¹�keiº/, where

�kei D

´
ei C Œ¹ei ; ekº�Cek i ¤ k;

�ek i D k:
(5.2.1)
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To a seed we associate a quiver without oriented two-cycles and with vertex set
¹viºi2I . The number of arrows from vi to vj is Œ¹ei ; ej º�C, and if the ei are a basis,
then the seed is determined up to isomorphism by the quiver. Conversely, given such
a quiver Q we have a seed given by ZQ0 with its natural basis and skew-symmetric
form; in the literature one often only considers seeds of this form. One can also con-
sider seeds related to skew-symmetrizable matrices, but these do not arise in our set-
ting. We also suppress a discussion of frozen indices, obviated in our case by allowing
the ei to fail to generate N .

Given a seed s D .N; ¹eiº/, we write M D Hom.N;Z/ and consider the dual
algebraic tori

Xs D SpecZN; As D SpecZM:

We let zn 2 ZN denote the monomial associated to n 2 N ; likewise, zm 2 ZM for
m 2M .

Definition 5.10
For k 2 I , the cluster X- and A-transformations �k W Xs ��� X
ks , �k W As ���
A
ks are the rational maps defined by

��kz
n D zn.1C zek /¹ek ;nº; ��kz

m D zm.1C z¹ek ;�º/�hek ;mi; (5.2.2)

where hek ;mi denotes the evaluation pairing. We use the term signed cluster trans-
formations to refer to the counterparts of these maps where the plus signs are replaced
by minus signs.

Let T be an infinite jI j-ary tree with edges labeled by I so that the edges incident
to a given vertex have distinct labels. Fix a root t0 2 T0 and label it by the seed s. Label
the remaining t 2 T0 by seeds st such that if t and t 0 are connected by an edge labeled
k, and t 0 is farther from t0 than t , then st 0 D �kst .

Definition 5.11
A cluster X-structure on Y is a collection ¹Xst ,! Y ºt2T0 of open maps such that
the images of Xst and X
kst are related by a cluster X-transformation for all t , k.
A partial cluster X-structure is the same but with maps only for a subset of T0, a
cluster A-structure is the same but with A-tori and A-transformations, and a signed
cluster structure is the same but with signed cluster transformations.

When the ei are linearly independent, the notions of signed and ordinary cluster
X-structures coincide: given a homomorphism � WN ! ¹˙1º such that �.ei /D�1
for all i , the automorphism zn 7! �.n/zn intertwines the signed and ordinary cluster
transformations.
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There is a canonical seed associated to an embedded bicolored graph 	 �† and
a collection of marked points � �†. Let ¹@Fiº �H1.	IZ/ be the set of boundaries
of faces Fi not meeting � , where by faces we mean the contractible regions of†�	 .
If L is the conjugate Lagrangian of 	 , then we have H1.	IZ/ŠH1.LIZ/, and so
the intersection pairing makes .H1.LIZ/; ¹@Fiº/ a seed.

The quiver of .H1.LIZ/; ¹@Fiº/ has vertices labeled by ¹@Fiº and hei ; ej iC
arrows from ei to ej . It can be drawn on † as follows: the vertex labeled by @Fi
is drawn in Fi , and an edge of 	 with distinctly colored endpoints and separating
two faces is crossed by an arrow with the white endpoint on its right. This is pictured
in Figure 12. More precisely, the drawn quiver may have oriented two-cycles, but,
by removing these, one obtains the quiver of .H1.LIZ/; ¹@Fiº/. Comparing the left
picture of Figure 8 and its rotation gives the following.

PROPOSITION 5.12 ([28, Section 4.1])
Let 	 �† be an embedded bicolored graph, and let 	 0 be the result of performing a
square move at a face Fk . There is a homeomorphism of their conjugate Lagrangians
L, L0 which identifies the seed .H1.L

0IZ/; ¹@F 0i º/ with the one obtained from
.H1.LIZ/; ¹@Fiº/ by mutation at @Fk .

With this in hand we can state the following.

THEOREM 5.13
Let L be the conjugate Lagrangian of an alternating Legendrian ƒ� T1†, and let
L0,ƒ0 be their counterparts upon performing a square move at a face Fk not meeting
� . We identify the underlying topological spaces of L and L0 as in Proposition 5.12,
and we identify the spaces of alternating sheaves with Loc1.L/ as in Definition 4.19.
Under the isomorphism of moduli spaces induced by the Legendrian isotopyƒ!ƒ0,
the inclusions

Loc1.L/ ,!M1.ƒ;�/'M1.ƒ
0; �/ - Loc1.L/

are related by the signed cluster X-transformation associated to the mutation of
.H1.LIZ/; ¹@Fiº/ at @Fk .

Proof
Since the isotopy ƒ! ƒ0 is stationary outside a neighborhood of the face F , the
equivalence Shƒ.†/Š Shƒ0.†/ restricts to the identity outside such a neighborhood.
On the other hand, in a neighborhood of Fk it restricts to the equivalence explicitly
computed in Proposition 5.8. Since positive and standard face coordinates differ by
a sign, the formulas computed there are exactly those expressing the signed cluster
X-transformation associated to mutation of .H1.LIZ/; ¹@Fiº/ at @Fk .
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The result extends to framed moduli spaces in an obvious way. Strictly speaking,
in the unframed case the points of Loc1.L/ have Gm stabilizers, but we use the usual
cluster terminology regardless.

COROLLARY 5.14
Suppose that ƒ 2 T1† is an alternating Legendrian. Then M1.ƒ;�/ has a partial,
signed cluster X-structure with charts labeled by alternating Legendrians obtained
by some series of square moves from ƒ. If � is nonempty, then it has an ordinary
partial cluster X-structure.

Proof
The first part of the corollary is immediate, and the second follows from the remark
after Definition 5.11 since the @Fk are independent in homology when � is nonempty.

Given an exact Lagrangian surface L with a nodal singularity, one can produce
two exact Lagrangians LC, L� which coincide with L outside a neighborhood of
the singularity. These are said to differ by Lagrangian surgery (see [43], [60]). Both
LC and L� have degenerations to L through smooth exact Lagrangians but are not
themselves related by a Hamiltonian isotopy. The degenerations to L are accompa-
nied by the collapse of a sphere, the vanishing cycle of the surgery. Surgery of exact
Lagrangians is directly related to wall-crossing phenomena in Floer cohomology (see
[24, Chapter 10]) and thus to the appearance of cluster transformations in symplectic
geometry in the guise of wall-crossing transformations (see [41], [42]).

In the present setting, Lagrangian surgery on conjugate Lagrangians provides the
symplectic interpretation of the square move on bipartite graphs.

PROPOSITION 5.15
Let L, L0 be conjugate Lagrangians related by performing a square move at @Fk 2
H1.LIZ/. Then L and L0 are related by a Lagrangian surgery whose vanishing cycle
is @Fk .

Proof
Consider T �R2x Š R

2
x � R

2
y with base coordinates x D .x1; x2/ and fiber coordi-

nates y D .y1; y2/. Let ¹Lt � T �R2xºt2R denote the following family of Lagrangians,
smooth except when t D 0. For t > 0, Lt � T �R2x is parameterized by .0; 1/�S1 via

.r; �/ 7! .x1; x2Iy1; y2/

D
�
t r�1=2 cos�; t.1� r/�1=2 sin� I t .1� r/�1=2 cos�;�t r�1=2 sin�

�
:
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Figure 13. (Color online) The square move as Lagrangian surgery. The left and right frames
show the front projections of alternating Legendrians ƒ, ƒ0 related by a square move of their
associated bipartite graphs. The shaded regions indicate the projections of a family of exact

Lagrangian fillings, which become singular in the middle frame.

In the projection to R
2
x , r parameterizes all ellipses passing through the four points

.˙t;˙t /. One easily checks that Lt is exact. It is the conjugate Lagrangian of the
alternating Legendrian whose front projection is the union of the lines x1 D˙t , co-
oriented toward the x1-axis, and the lines x2 D ˙t , co-oriented away from the x2-
axis.

We defineLt for t < 0 similarly, but with the x1- and x2-axes reversed, and letL0
denote the union of the conormal planes to the coordinate axes. Together this family
interpolates between L, L0, as pictured in Figure 13, up to restricting to a sufficiently
small disk and perturbing the middle frame of the figure so that near the origin its
front projection coincides with the coordinate axes.

We recall the local model for surgery on the immersed Lagrangian T �0 R
2
x [ R

2
x

following [62]. Let C � T �Rx1 be the image of a smooth embedding of R such that
C coincides with .RC � ¹0º/[ .¹0º �RC/ outside of a compact set and such that C
and �C are disjoint. Then the surgery T �0 R

2
x#R2x � T

�
R
2
x is the orbit of C under the

Hamiltonian S1 action lifting rotation in R
2
x .

We now transform the family Lt by rotation in T �Rx2 so that for t > 0 it is
parameterized via

.r; �/ 7!
�
t r�1=2 cos�; t r�1=2 sin� I t .1� r/�1=2 cos�; t.1� r/�1=2 sin�

�
:

This takes L0 to T �0 R
2
x [ R

2
x . For t > 0, Lt is now S1-invariant and meets T �Rx1

along the closed curve

Ct D
®
.x1; y1/

ˇ̌
x�21 C y

�2
1 D t

�2; x1; y1 > 1
¯
;

which is asymptotic to the lines x1 D t , y1 D t .
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Now let Ht 2 C1.T �R2x/ be an S1-invariant function whose restriction to
T �Rx1 coincides with x1Cy1

jx1Cy1j
.x1 � y1/ on the region U , where jx1 C y1j >

.
p
2 � 1/t � �. The Hamiltonian flow of Ht preserves T �Rx1 and its restriction

to U is the contracting flow �.x1Cy1/
jx1Cy1j

.@x1 C @y1/ toward the line x1C y1 D 0. After
flowing for time t , the curve Ct remains in the first quadrant but is now asymptotic
to the coordinate axes. Since Ht is S1-invariant, its Hamiltonian flow preserves the
S1-invariance of Lt . By a further S1-invariant Hamiltonian perturbation supported
near infinity we can make Lt coincide with T �0 R

2
x [ R

2
x outside a sufficiently large

ball centered at the origin. Thus for t > 0, Lt is Hamiltonian isotopic to the surgery
T �0 R

2
x#R2x .
On the other hand, by switching the roles of x1 and x2 we see by symmetry that

for t < 0 Lt is Hamiltonian isotopic to the opposite surgery R2x#T �0 R
2
x . In either case

it is evident that the vanishing cycle is as stated.

5.3. The boundary measurement map
In Section 5.1 we saw that essentially all Legendrian braid satellites of cocircles have
alternating Legendrian isotopy representatives. This leads to the question of describ-
ing the associated cluster charts in terms of natural coordinates on spaces of ˇ-filtered
local systems. We treat here the fundamental case of positroid strata, showing that our
study of Legendrian isotopy recovers the boundary measurement map of Postnikov.
This says in particular that, in terms of Plücker coordinates, the cluster charts pro-
duced by Hamiltonian isotopy of conjugate Lagrangians can be described as sums
over perfect matchings on bipartite graphs.

Recall from Section 5.1 that a reduced plabic graph in D2 is one whose alternat-
ing Legendrian satisfies Definition 5.1. These are exactly the Legendrians which, up
to isotopy, arise from positroids.

PROPOSITION 5.16
Given a reduced plabic graph 	 , there exists a unique cyclic rank matrix r such that
ƒ� and ƒr are Legendrian isotopic.

Proof
First note that the components of ƒr determine a bijection between incoming and
outgoing intersections of its front projection with the boundary of D2, and this bijec-
tion determines r . Thus given 	 we define the associated cyclic rank matrix as the
one corresponding to the boundary matching of ƒ� (in the terminology of [59], the
restriction that all boundary-adjacent vertices of 	 are white means that we need only
consider matchings or permutations rather than decorated permutations). On the other
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hand, ƒr is clearly reduced and by Proposition 5.3 any reduced Legendrians with the
same boundary matching are Legendrian isotopic.

Moreover, Proposition 5.3 tells us that the Legendrian ƒ� admits a contractible
space of isotopies, fixed at the boundary of the disk, to the positroid Legendrian ƒr .
Thus, by Proposition 2.7, there is a canonical isomorphism of framed moduli spaces
M
f r
1 .ƒ�/ŠM

f r
1 .ƒr/. On the other hand, in Theorem 3.9 we gave a canonical iden-

tification M
f r
1 .ƒr/Š…r of the positroid stratum with the framed moduli space of

the positroid Legendrian. If L is the conjugate Lagrangian of ƒ� , then we can com-
pose this identification with the sheaf quantization map Locf r1 .L/ ,!M

f r
1 .ƒ�/ to

obtain a toric chart on the positroid stratum. Finally, recalling that L retracts to the
graph 	 , we have the composition

F� WLoc
f r
1 .	/ŠLoc

f r
1 .L/ ,!M

f r
1 .ƒ�/ŠM

f r
1 .ƒr/Š…r :

Here, the framing on L or on 	 is again a trivialization of each connected component
of the boundary. That is, Locf r1 .	/ is the algebraic torus H 1.	; @	IGm/, where
@	 D 	 \ @D . We also implicitly use the standard trivialization of Definition 4.19 to
define F� .

On the other hand, the motivation for considering reduced plabic graphs in [59]
is that each gives rise to a boundary measurement map

B� WLoc
f r
1 .	/ ,!…r :

We recall the definition of B� as reformulated by the main result of [68]. Fix a
cyclically ordered labeling of the boundary vertices of 	 by ¹1; : : : ; nº. Orient 	 so
that every white vertex has exactly one incoming edge and every black vertex has
exactly one outgoing edge; following [59] this is called a perfect orientation of 	 .
Let I � Œ1; n� be the subset of incoming boundary vertices of 	 , which necessarily
has k elements. If J � Œ1; n� is any other k-element subset, then we say a flow from I

to J is a collection of disjoint self-avoiding oriented cycles in 	 , relative to @	 , such
that each nonclosed cycle connects a boundary vertex in I to a boundary vertex in J .

Each flow F gives rise to a function on Locf r1 .	/, which by a slight abuse we
also denote by F . Then B� is defined by the condition that the pullback of the J th
Plücker coordinate to Locf r1 .	/ is

B
�
� �J D

X
F WI!J

F; (5.3.1)

where the sum is over all flows from I to J . This definition turns out to be indepen-
dent of the choice of perfect orientation (of course, it is only the ratios of Plücker
coordinates that are meaningful, and changing the orientation may rescale all of them
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by a common factor). Note also that the labels of the boundary vertices are used to
determine the sign of B�� �J .

We want to compare F� and B� , but we can see already that we can only expect
them to agree up to certain signs. For example, the definition of B� implicitly depends
on how the boundary vertices are labeled by 1; : : : ; n, since this ordering is needed to
fix the signs of Plücker coordinates in (5.3.1). The definition of F� , on the other hand,
is manifestly independent of the boundary labels. This is related to the fact that F�
transforms by a signed cluster transformation under square moves (it is defined using
standard face coordinates, so Theorem 5.13 applies). The maps F� do not naturally
define a positive locus in Gr.k; n/, and we cannot expect them to, given that they are
cyclically invariant: when k is even, the usual positive part of Gr.k; n/ is itself not
cyclically invariant.

THEOREM 5.17
Let 	 be a reduced plabic graph, and let …r be the associated positroid stratum. The
maps B� and F� coincide up to signs of Plücker coordinates.

Proof
The main idea is that as 	 ranges over the set of all reduced plabic graphs of all
positroid strata, B� is determined by certain “recursion relations” with respect to
direct sum and projections (see [1, Section 4.4]). Thus it suffices to show that F�
satisfies the same relations (up to signs), and to verify the theorem by hand in the
trivial cases when …r is the open stratum of Gr.1; 3/ or Gr.2; 3/.

For any pair of Grassmannians there is a direct sum map Gr.k1; n1/ � Gr.k2;
n2/! Gr.k1 C k2; n1 C n2/ which on k-points acts by taking .kk1 � E1;kk2 �
E2/ to kk1Ck2 � E1 ˚ E2 (here E1, E2 are locally free modules of ranks n1,
n2). Let 	1 and 	2 be two reduced plabic graphs with associated positroid strata
…r1 � Gr.k1; n1/, …r2 � Gr.k2; n2/. Let 	3 denote the reduced plabic graph which
is the disjoint union of 	1 and 	2, with boundary vertices labeled so that those from
	1 retain their original labels, while those from 	2 have n1 added to their labels. Let
…r3 � Gr.k1 C k2; n1 C n2/ be the positroid stratum associated with 	3; it is the
image of …r1 �…r2 under the direct sum map. There is an obvious isomorphism
Loc

f r
1 .	1/ � Loc

f r
1 .	2/ Š Loc

f r
1 .	3/. The boundary measurement map B�3 is

determined by B�1 , B�2 in the sense that the following diagram commutes (note that
the indexing prescription on 	3 fixes the signs of Plücker coordinates in the bottom
map):
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Loc
f r
1 .	1/�Loc

f r
1 .	2/ …r1 �…r2

Loc
f r
1 .	3/ …r3

B�1 �B�2

B�3

On the other hand, if we replace the boundary measurement maps above by their
counterparts F�1 , F�2 , F�3 , then the above diagram still commutes. It suffices to
show that the direct sum map corresponds to the isotopy isomorphism M

f r
1 .ƒr1/ �

M
f r
1 .ƒr2/

�
�!M

f r
1 .ƒr3/ under the identification of Theorem 3.9 (by Proposition 5.3

there is a unique such isomorphism, and this uniqueness forces the diagram to com-
mute). This follows from the appearance of direct sums in the Reidemeister-II move
(see Figure 5): the isotopy relates the maximal-rank stalk of a sheaf in M

f r
1 .ƒr3/

to the maximal-rank stalks of sheaves in M
f r
1 .ƒr1/, M

f r
1 .ƒr2/ by a sequence of

Reidemeister-IIs. This determines the map of positroid strata, since, by the construc-
tion of Theorem 3.9, these stalks and the maps they receive from the boundary stalks
determine the maps F�1 , F�2 , F�3 . See Figure 14 for an example.

Figure 14. (Color online) The isotopy corresponding to the direct sum map when 	1 and 	2
has a single trivalent white vertex, so …r1 D…r2 is the big positroid stratum in Gr.1; 3/.

The framed moduli space of the left picture is manifestly isomorphic …r1 �…r2 , applying the
construction of Theorem 3.9 separately to its left and right halves. The framed moduli space of
the right picture is manifestly isomorphic to a positroid stratum …r3 in Gr.2; 6/, where the first

three (and last three) columns of any matrix representative are pairwise linearly dependent.
The crossing conditions on the right assert that the stalk of a sheaf in the middle region is

canonically identified with the direct sum of a stalk from the left region and the right region.
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Now let r be a cyclic rank matrix of type .k; n/ such that r12 D 2, and let 	 be
a reduced plabic graph for r . Assume that the bicolored graph 	 0 obtained by gluing
boundary vertices 1 and 2 together is again a reduced plabic graph, and let r 0 be its
associated cyclic rank matrix. We have a projection map…r !…r 0 �Gr.k�1;n�2/
which on k-points takes kn �E to kn�2 �E=hv1�v2i, where v1, v2 are the images
of 1 in the first two factors of kn. There is a natural map Locf r1 .	/� Loc

f r
1 .	

0/,
since the framings let us identify the stalks at boundary vertices 1 and 2 of a framed
local system on 	 . The boundary measurement map B�0 is determined by B� in the
sense that the following diagram commutes:

Loc
f r
1 .	/ …r

Loc
f r
1 .	

0/ …r 0

B�

B�0

As above, we claim that the diagram still commutes up to signs of Plücker coor-
dinates after replacing the boundary measurement maps by F� , F�0 . In terms of alter-
nating Legendrians, gluing vertices 1 and 2 of 	 together corresponds to “capping off”
the front projection ofƒ� with two strands going outside the disk, and then pulling the
cap back inside the disk. Let bƒr be the Legendrian obtained from ƒr by capping off
its front projection in the same way. There is a natural map M

f r
1 .ƒr/!M

f r
1 .
bƒr/

constructed the same way as the gluing map Locf r1 .	/� Loc
f r
1 .	

0/. It suffices to
show that the projection map corresponds to the composition of this with the isotopy
isomorphism M

f r
1 .
bƒr/!M

f r
1 .ƒr 0/ under the identification of Theorem 3.9 (as in

the direct sum case, by Proposition 5.3 there is a unique such isomorphism, and this
uniqueness forces the diagram to commute).

Adding the cap to ƒr , however, exactly imposes the relation that the boundary
stalks of a sheaf at vertices 1 and 2 are identified under generization maps into the
disk. Since 	 0 is reduced and boundary stalks F1, F2 have distinct images in Fx , the
innermost strands of ƒr that are glued together in bƒr are distinct and cross twice.
The isotopy between bƒr and ƒr 0 pulls the inner part of the cap through the picture,
a series of Reidemeister-III moves, and then pulls it apart by a Reidemeister-II. The
resulting isotopy isomorphism acts on maximal-rank stalks exactly by the projection
map; see Figure 15 for a simple example.

Finally, we consider the base cases of Gr.1; 3/ and Gr.2; 3/. For the former
there is essentially nothing to show, so we only explicitly discuss the latter. There
is only one reduced plabic graph, a trivalent black vertex connected to three white
vertices numbered 1, 2, and 3 along the boundary. Let X12, X23, X31 denote the face
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Figure 15. (Color online) The isotopy corresponding to the projection map when …r is the
positroid stratum from the right picture of Figure 14. The starting point is to cap off ƒr to

obtain the Legendrian bƒr whose front projection is on the left; there is a canonical map from
M
f r
1 .ƒr / to M

f r
1 .

bƒr /. When we isotope to the right-hand side the rank-two region in the
middle is replaced by a rank-one region where the boundary stalks from the left and right

sides of the picture are identified up to a scalar. Under the correspondence of
Theorem 3.9 this is exactly the projection map from …r to …r 0 .

holonomies on Locf r1 .	/; that is, X12 is the parallel transport from the trivialized
stalk at vertex 1 to the one at vertex 2. With the perfect orientation such that 1 is a
sink and 2 and 3 sources, we have

B
�
� �12 DX31; B

�
� �13 DX

�1
12 ; B

�
� �23 D 1:

On the other hand, F� is determined by the invariance of microlocalization under
Legendrian isotopy (i.e., Lemma 2.9). In standard face coordinates we compute that

F
�
� �12 DX31; F

�
� �13 D�X

�1
12 ; F

�
� �23 D 1:

This agrees with B� up to signs, completing the proof.

6. Distinguishing fillings
A fundamental problem in symplectic geometry is classifying Lagrangians up to
Hamiltonian isotopy. Because the sheaf category is invariant under Hamiltonian iso-
topy it can be used to approach this problem (see [32], [33], [51], [69]). In this section
we observe that our results thus far allow us to package information about the clas-
sification of exact Lagrangian fillings of Legendrian knots into structures of cluster
algebra. We also explain how results about alternating Legendrians in T1R

2 (which
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necessarily have nontrivial winding number around the fibers) lead to results about
Legendrians in R

3. This provides, for example, new combinatorial constructions of
inequivalent exact fillings of many Legendrian links in R3, as well as information
about how these fillings are related by surgery.

Fix some Legendrian ƒ, and let ƒ˛ be a collection of alternating Legendrians
equipped with Legendrian isotopies toƒ. Let L˛ be the exact filling ofƒ obtained by
Hamiltonian isotopy from the conjugate Lagrangian filling ofƒ˛ . Assume in addition
that the various ƒ˛ can be isotoped to each other via square moves. Then it follows
from our results that the charts among the Loc1.L˛/ are governed by cluster transfor-
mation rules computable from the dual quiver to the bicolored graph determining any
one of the ƒ˛ . These rules, and in particular the question of whether two such charts
are the same, have received extensive study in the combinatorial literature. We have
the following consequence of the quantization results of [33] and [35, Section 3.19].

PROPOSITION 6.1
In the above setting, if L˛ is Hamiltonian isotopic (fixing the boundary) to Lˇ , then
the induced rational morphism Loc1.L˛/ ���Loc1.Lˇ / is a regular isomorphism.

We can apply the above notion to any class of links which have alternating rep-
resentatives. For example, let 	� T1R

2 be a cocircle, ˇ a positive braid, and �
the half-twist. Construction 5.5 asserts that every word for ˇ gives rise to an alter-
nating representative of the Legendrian satellite ˇ�2 �	, but there are generally
more. If ˇ D Tk;n is the .k; n/ torus braid, then Tk;n�2 D Tk;nCk and Tk;nCk �	
is the braid corresponding to the big positroid stratum of Gr.k;nC k/. The enumer-
ation of inequivalent reduced plabic graphs for a fixed positroid was studied in [57].
In the case of the big stratum of Gr.k;nC k/, they are in bijection with maximal
collections of pairwise weakly separated k-element subsets of Œ1; n�. One says two
k-element subsets I;J � Œ1; n� are weakly separated if they can be cycically shifted
so that every element of I � .I \ J / is less than every element of J � .I \ J /.

PROPOSITION 6.2
The link Tk;nCk �	 admits a collection of exact Lagrangian fillings into T �R2

labeled by maximal pairwise weakly separated k-element subsets of Œ1; k C n�. No
two are Hamiltonian isotopic. In particular, if k D 2, then the number of distinct
exact Lagrangian fillings is at least the Catalan number Cn.

Proof
That distinct maximal weakly separated collections correspond to reduced plabic
graphs whose boundary measurement maps have distinct images follows from the
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results of [50], where it is shown that image of the boundary measurement map is
defined (up to a fixed global automorphism, the so-called twist; see [48]) by the non-
vanishing of a collection of Plücker coordinates associated to the graph as in [61].
Distinct weakly separated collections correspond to distinct collections of Plücker
coordinates, and hence their nonvanishing loci are distinct. The main statement then
follows from Proposition 6.1, and the Catalan numbers of the k D 2 case appear since
in this case reduced plabic graphs are in correspondence with triangulations of an
n-gon (see [22]).

There is an analogous notion of a weakly separated collection in a more general
positroid, and, using this, Proposition 6.2 generalizes to any positive annular braid
arising from a positroid stratum. We refer to [57] for the relevant definitions and
results. Except for the open positroid stratum of Gr.2; n/, we do not know of a closed
formula for the number of maximal weakly separated collections.

A Legendrian of the form ˇ�	 lives in T1R
2; the above statement concerns

its fillings in T �R2. However, it is more common to consider Legendrians in the
standard contact R3 and their fillings in its symplectization R

4. Of course, we can
view R3 D J 1.R/ as T1;�R2, half the cocircle bundle of R2, and correspondingly
view R4 as T �R2 � T �R2. However, now the front projections of the knots will have
cusps, a phenomenon we have avoided throughout this paper.

Nonetheless, our techniques have implications for this setting. Given a ƒ �
J 1.S1/, we write ƒ�	� T1R

2 and ƒ� ./ � T1;�R2 for the resulting Leg-
endrian satellites of the cocircle and standard unknot, respectively. From the above
contactomorphism one has the following correspondence (see [13], [55]).

PROPOSITION 6.3
The exact Lagrangian fillings of the satelliteƒ�	 inside T �R2 are in bijective cor-
respondence with those of ƒ� ./ inside T �R2, and this bijection respects Hamilto-
nian isotopy.

Proposition 6.3 allows us to translate our results to statements about Legendrians
in the usual contact R3. To make this explicit, let us describe more explicitly the links
of the form ƒ� ./ .

For a positive braid ˇ, we write ˇ	 for the Legendrian with the following front
diagram:
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Here the braid is ˇ D s2s23s1. In general, we can place any positive braid in the
the interior of the dashed region. We called this the “rainbow closure” in [66, Sec-
tion 6.2.]. This Legendrian is a maximal Thurston–Benniquin representative of the
braid closure of ˇ (see [70]), related to the above satellite construction as follows.

PROPOSITION 6.4
Let ˇ be a positive braid. Then �ˇ�� ./ and ˇ	 are Legendrian isotopic.

Proof
According to [55], the isotopy of Figure 16 relates ˇ	 to �ˇ�� ./ .

By [14], T 	
k;n

is the unique Legendrian .k; n/ torus knot of maximal Thurston–
Bennequin number.

COROLLARY 6.5
The Legendrian .k; n/ torus link of maximal Thurston–Bennequin number admits a
collection of exact Lagrangian fillings labeled by maximal pairwise weakly separated

Figure 16. (Color online) Equivalence of rainbow closure (left)
and satellite with half-twist at cusps (right).
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k-element subsets of Œ1; k C n�. No two are Hamiltonian isotopic. In particular, if
k D 2, then the number of distinct exact Lagrangian fillings is at least the Catalan
number Cn.

We leave it to the reader to formulate the analogous statement related to more
general positive Legendrian braid closures using the notion of weakly separated col-
lections in a positroid (see [57]). We note that, in the case of the .2; n/ torus link, the
fillings constructed above are identified in [79, Section 2.3] with those constructed in
[12]. Along with the results of this section, this proves in particular that these fillings
are pairwise not Hamiltonian isotopic, which was left as an open question in [12].
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