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Abstract  

Growing energy consumption in urban areas has increased the importance of planning 

for future energy systems. Thus, improving the modeling abilities for predicting energy 

consumption at the city scale is critical. In this study, a Genetic Algorithm-Based 

Numerical Moment Matching (GA-NMM) method is adopted as a primary uncertainty 

estimation technique to predict the electricity consumption of a large dataset of single 

family homes by utilizing key features in energy audit and assessors data. This data is 

used as an input to the GA-NMM to develop a set of index buildings and associated 

weighting factors that represent statistical characteristics of the dataset. Energy models 

are then developed for the index buildings using physics-based energy modeling in 

EnergyPlus. These, in combination, are used to estimate the energy behavior of single 

family homes of the studied dataset. 
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 The proposed method is applied to a large dataset of 8,370 single family homes in Cedar 

Falls, Iowa, where the expected annual and monthly electricity consumption from the 

model is calculated and compared with measured data. The expected site electricity 

consumption for single family buildings in Cedar Falls is estimated as 10,219 kWh/yr, 

which is within 6% of the measured average annual electricity consumption. At a monthly 

level, the Coefficient of Variation of Root Mean Square Error and Mean Bias Error are 

7.8% and 4.5%, respectively. This method can be used to generate small set of 

representative homes for demonstrating the energy behavior of a larger set of homes.   

Keywords:  

City-scale energy modeling, Genetic Algorithm-Based Numerical Moment Matching, 

Index buildings, single family homes, residential buildings 

1 Introduction 

The large majority of energy modeling efforts of buildings has generally focused on 

models of energy consumption of single buildings, where both physics-based [1–3] and 

data-driven [4–6] models have been extensively developed for this purpose, each with its 

own advantages and disadvantages depending on the intended application. Given the 

diversity of building types and uses, highly varied occupant behaviors particularly in 

residential buildings [7], and significant ranges in age and efficiency of the building stock 

in the U.S., it is understandable that this single building focus is among the more common 

modeling goals. However, in recent years there has also been a focus on the development 

of methods to predict energy consumption for clusters of buildings, both at the 
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neighborhood [8] and at the city scale [9–11], as well as the regional and national scale 

[12,13]. These methods are highly useful for city- and utility-level planning purposes. 

Multi-building modeling methods generally fall into two categories, including bottom-up 

and top-down modeling, as discussed and reviewed in several recent review papers  

[12,14–16]. Top-down approaches utilize the aggregated energy consumption data of the 

building stock, and relate the total energy consumption of the region with variables such 

as gross domestic product (GDP), employment rates, and price indices, climatic 

conditions, and housing construction and/or demolition rates [12,14]. Bottom-up 

approaches  [15,16] account for the energy consumption of individual buildings or groups 

of buildings, then extrapolate the modeled sample to represented region. This approach 

can generally be accomplished in two different ways, using statistical methods (SMs) or 

engineering methods (EMs). SMs rely on data-driven approaches such as regression 

analysis of historical data to relate building energy consumption to influential parameters 

that impact energy consumption. There are several techniques that can be categorized 

under this umbrella. Different studies have reviewed the advantages and disadvantages 

of these techniques. For example in a study by Do and Cetin [5], six data driven 

techniques such as Change-Point Models [17,18], Artificial Neural Network [19,20], 

Genetic Programing [21], Bayesian Network [22], Gaussian Mixture Models [23], and 

Support Vector Machines [24] are compared, focusing on pros and cons of each 

technique specifically for residential building energy modeling. In this study it is concluded 

that the complexity of prediction models and the amount of input data needed significantly 

varies between methods, and the tradeoffs between more complex as compared to less 

computationally complex methods vary [5]. In another study done by Swan and Ugursal 
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[14], three techniques classified as SMs, including Neural Network (NN) [25,26], 

Conditional Demand Analysis (CDA) [27,28] and regression methods [29,30], are 

evaluated. The positive aspects of SMs techniques discussed include previous research 

demonstrating the use of such techniques for modeling of occupant behavior, end-use 

energy consumption, and macroeconomic and socioeconomic effects, whereas the 

negative attributes include reliance on historical consumption data and the necessity of a 

large sample to model a variety of the characteristics [14,31]. 

For Ems, the energy consumption of homes is determined based on physical phenomena, 

including heat transfer and thermodynamic relationships. Common input data to physical 

models include building properties such as geometry, envelope fabric, equipment and 

appliances, climate properties, as well as indoor environmental conditions, occupancy 

schedules and equipment use. There are several techniques that can be used to model 

building energy consumption at different scales. These can be categorized into the 

following methods: (a) distribution method, (b) archetype technique, and (c) sample 

techniques [14]. The distribution method uses the distribution of the number of energy-

consuming devices in each building, the common rates for energy consumption on a 

device-level basis, typical profiles of consumption of these end-uses, and their efficiency 

to calculate total energy consumption [32,33]. In this method the interrelationship between 

the use patterns of the energy-consuming devices typically have not been taken into 

account [14]. For the archetype technique, also sometimes called the prototype 

technique, the housing stock is broadly classified into a set of buildings according to size, 

building type, or other characteristics. The energy consumption of each modeled 

archetype buildings is used to represent the population of buildings classified under that 



5 
 

archetype, then scaled up to represent the share of that archetype building in the region 

of study [14,34,35].  

Finally, for the sample technique, an actual sample of building data is used as the input 

into the model. The captured sample data can represent the wide variety of buildings in 

different regions. If the sample is representative of the regional or national building stock, 

using weighting factors, the energy consumption of the studied population can be 

estimated [14,36]. The number of samples depends the sampling method. For example, 

Monte Carlo (MC) simulation [37,38] generates a large number of samples. This can be 

computationally demanding and time consuming. Moreover, the probability density 

functions (PDF) of some building characteristics may not follow a convenient parametric 

distribution [39].  Another sampling method, Mean and Sigma (MS) [40] requires a smaller 

sample size compared to MC. In MS, the number of samples exponentially increase 

based on the number of predictor variables.  

Using the methods mentioned above, most multi-building energy modeling efforts to date 

have focused on representing the characteristics and/or energy consumption of the 

residential and/or commercial building sectors. Given that residential and commercial 

buildings represent nearly 75% of the U.S. electricity consumption [41], and 

approximately 40% of energy consumption [42], it is understandable why these two 

building types are the main focus of most research efforts. Due to the fundamental 

differences in the use and energy demand profiles of residential and commercial 

buildings, however, often the models for energy consumption of these two main building 

types are separated.  
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Larger scale data collection and modeling efforts to characterize the U.S. building stock 

include the RECS [43] and CBECS [44] datasets for residential and commercial buildings, 

respectively. These statistical datasets are collected every few years by the U.S. 

government from a statistically representative sample of buildings across the country. 

They include data on annual energy consumption and a variety of energy-related building 

characteristics. These two datasets are highly referenced, and are often considered as 

datasets by which others compare their results. Other recent national government-funded 

efforts include the development of ResStock [45] for residential and ComStock [46] for 

commercial buildings for analysis of the building stock characteristics and energy 

consumption at the state and national level, and UrbanOpt at the district or neighborhood 

level [47]. ResStock, similar to the others, utilizes over ten different public and private 

datasets as outlined in [45], latin-hypercube sampling to represent the 80+ million single 

family homes in the U.S. with a representative sample of homes using 6,000 conditional 

probability distributions, and physics-based energy models using EnergyPlus run using 

supercomputing resources. It is meant to be used to identify the energy efficiency 

measures that will save the most energy and money across the building stock. These 

methods, however, are not developed for city-level energy analysis, as the level of 

granularity of the data is not sufficient to be city-specific.  

Closer to the city-scale, UrbanOpt [47], as well as other similar GUI-based modeling tool 

development efforts such as UMI (urban modeling interface) [48], enables the modeling 

of all buildings in a city district individually, as opposed to a statically representative set 

of buildings. These methods require detailed GIS-based information on the building floor 

areas and locations as well as the categorization of each building into a prototype building 
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(e.g. small office, restaurant, retail, etc.), which each have a set of standard energy 

consumption-related assumptions. These models benefit from the use of highly detailed 

information, however, given the significant effort needed for energy modeling at the 

building-level, constructing an energy model building-by-building of a large city with 

potentially hundreds of thousands of buildings, is not highly practical in most applications, 

with current technologies. In addition, for many cites, the level of detail of meaningful 

building characteristic information can be limited to assessor’s data, unless there is a city 

or local mandate requiring more energy-related information to be reported. This mandate 

exists in some U.S. cities (e.g. Energy Conservation Audit and Disclosure in Austin, TX 

[49]), but is more commonly required for public buildings. Lack of detailed data for 

individual buildings is one of the main challenges. There are some efforts to expand 

building-level energy characteristics of city building stock, such as those discussed in [5], 

however this is not the reality for many cities currently.  

Numerical Moment Matching (NMM) is a method of representing a large population with 

a substantially smaller sample size while preserving statistical moments (e.g., mean, 

variance, skewness, kurtosis, etc.). NMM’s sample size is order of magnitude smaller 

than that of other random sampling methods such as MC and MS. However, to date this 

method has not been used for representing the building stock and its energy-related 

characteristics. For accuracy comparison, a study by Cho and Porter [39] on large-scale 

earthquake risk assessment, examined the difference between the moments of the 

sample and surveyed population (i.e. error) using the NMM and MS methods. Results 

showed that in the MS method this error is 1.62% in calculating the first moment of the 

sample 𝐸[𝑥], and for the higher moments up to 𝐸[𝑥5], the error increased to up to 28%. 
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However, for the NMM method, the maximum error for 𝐸[𝑥5] was found to be 0.005% for 

the same variable. This indicates that error of the MS method is reliable only in calculating 

mean value for a symmetric and regular form of data and performs poorly in estimation 

of higher-order moments for each predictor/variable. Therefore, when the original data 

distribution is considerably irregular or when the higher-order moments matter, NMM 

performs better compared to MS method.  

The initial version of NMM was based on the multivariate Newton-Raphson (mNR) 

scheme, which sometimes causes numerical divergence and initial-value dependency 

[50]. To overcome these limitations, a Generic Algorithm (GA) has been coupled with 

mNR scheme in the context of NMM (denoted as GA-NMM) to exhibit no restrictions to 

irregular distributions, large sizes, or many variables of engineering data [50].  

The objective of this study is to utilize GA-NMM to develop a set of statistically 

representative index buildings for a larger building population to evaluate electricity 

consumption. The ability to generate a small set of characteristic buildings for use in 

analysis of the larger dataset’s energy behavior reduces subsequent analyses, statistical 

implications, and computational intensity. Given the fundamental differences in energy 

behaviors of residential and commercial buildings, this research specifically focuses on a 

dataset of residential, single family homes. Building energy audit data for Cedar Falls, 

Iowa, is used as a case study to evaluate the performance of the proposed technique in 

predicting the energy behavior of a large population of houses using data from those 

homes sampled. The results of this study are compared with measured monthly electricity 

consumption data to validate the applied methodology. As compared to using building 

characteristics and energy-related assumptions from some of the larger residential 
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building datasets currently available (e.g. ResStock [45] and RECS [43]), developing 

localized parameters to use for model development helps to decrease the computational 

costs while maintaining accuracy of the results.  

2 Datasets 

Four main datasets are used in this study, all of which are utilized to characterize the 

homes in the Cedar Falls region, and for the development and validation of the GA-NMM 

model. These are described as follows. In this section, we also benchmark these homes’ 

characteristics as compared to homes in the Iowa region, and the U.S. to enhance the 

understanding of the applicability of the methods proposed herein.  

The first dataset is publicly-available assessor’s data, used for tax purposes, for the 

residential buildings in Black Hawk County, Iowa, where Cedar Falls is located. This is 

used for characterizing the overall housing stock in Cedar Falls. Throughout the U.S., 

basic information about the residential building stock is maintained as public records, 

including building area, age, and type (single family, duplex, townhouse, etc.), number of 

bedrooms, and heating, ventilation, and air conditioning (HVAC) system, among others. 

Based on this dataset, the median age and size (total living area) of homes in Cedar Falls 

are 61 years old, and 109 m2, respectively. The U.S. building stock (2017) is a median of 

42 years in age and 139 m2 in area [51]. In the West North Central Region of the U.S., 

which includes Iowa, homes are a median of 44 years of age, and 148 m2. Thus, the 

homes in Cedar Falls studied herein are slightly older and smaller in comparison to the 

broader region in which they are located.  
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The second dataset includes energy audit data for a subset of the residential buildings in 

the Cedar Falls region. This contains field-measured energy audit data for 531 single 

family homes, four variables of which were targeted in this study for use as inputs into the 

GA-NMM method. These include building area, attic insulation R-value, window type and 

cooling system efficiency (SEER – seasonal energy efficiency ratio), as reported in  

Figure 1. These variables were chosen for two reasons. First is based on the results of a 

one-at-a-time (OAT) sensitivity analysis of the impacts of these characteristics on 

electricity consumption of residential buildings under typical climate conditions in Iowa, 

as discussed in [52]. In comparison to other variables included in the energy audits, these 

factors have a higher impact on electricity consumption. This is further discussed in the 

method section. These were also chosen as they can be considered independent 

variables, which is necessary for the proposed GA-NMM method. A correlation analysis 

indicates that these variables have correlation coefficients of less than 0.23.  

For this data, given that the homes included in the energy audit data are a subset of the 

homes in Cedar Falls, first their characteristics are compared to the overall building stock 

in Cedar Falls from the assessor’s data. The energy audit homes overall have a similar 

age distribution to those in Cedar Falls (Figure 1). In addition, the average age of the 

homes in both datasets is also similar (within 2%). The energy audit homes, however, are 

slightly larger than the Cedar Falls residential building stock, with 71% being less than 

139 m2 as compared to 59% in the audit data. Given these characteristics, while the audit 

characteristics of all the homes in Cedar Falls are not measured, the size and age 

generally follow similar trends.   
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Compared to the building characteristics in the U.S. and in the state of Iowa from [45], as 

shown in Figure 1, the homes in Cedar Falls generally have a similar distribution of attic 

insulation values (Figure 1b). The distribution of homes with different window types and 

cooling efficiency values is generally fairly uniform across the surveyed homes in Cedar 

Falls. Thus in this dataset, there is a slightly higher portion of homes that have low-e 

windows and SEER 15 or higher efficiency systems as compared to the U.S. and Iowa.   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1: Characteristics of the Cedar Falls residential building stock; a) building area, 
b) Attic insulation R value, c) window type, d) Cooling systems efficiency, as compared 
to the U.S. and Iowa [45]. 

The third dataset is monthly measured electricity consumption of single family homes 

obtained in collaboration with Cedar Falls Utilities. This dataset is used to validate the 
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applied methodology with measured data. This dataset includes 101,220 electric bills for 

8,370 single family homes from January to December 2010. On average the annual 

electricity consumption of the homes in this dataset is 10,872 kWh. In comparison to the 

averages reported in RECS (2015) in the U.S. and Midwest, of 10,726 kWh and 10,051 

kWh, respectively, these values are highly similar. We also compare the average 

electricity consumption of homes in Cedar Falls, to the electricity consumption of the 

homes included in the energy audit data. The energy audit data homes annually consume 

10,968 kWh on average, which is 1% higher than the average annual use of overall Cedar 

Falls building stock, indicating that the audit dataset generally follows the same energy 

use trends as that of the larger Cedar Falls buildings stock. It also should be noted that 

the electricity consumption data of the homes used for model development (energy audit 

data of 531 homes), is not used for model verification. Thus, only data not used to develop 

the model (i.e. out-of-sample data) is used to assess the model’s performance.  

The fourth dataset is measured weather data for Cedar Falls in the year 2010. This 

dataset is obtained from a database that includes over 10,000 stations, collected since 

2001, with sufficient detail to create hourly weather files for use in energy modeling 

methods [53]. Cedar Falls in Iowa is located in a cool-humid climate according to 

ASHRAE Climate Zone definitions. In this climate zone the Heating Degree Day (HDD) 

per year are in the range of 3000 to 4000 [54]. 

3 Methodology 

The methodology described herein includes two main steps. First is the development of 

a model to predict the annual and monthly site electricity consumption for single family 

homes in Cedar Falls. This is accomplished through the utilization of the GA-NMM 
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method to obtain a set of index buildings and associated weighting criteria which 

statistically represent the energy related features of the larger dataset of buildings, which 

are used to develop building energy models of the index buildings, then used to predict 

the annual and monthly site electricity consumption of the building population. The second 

step is the verification of model results with measured monthly electric use. 

 

3.1 Predicting electricity consumption for single family buildings 

3.1.1 Genetic Algorithm-Based Numerical Moment Matching (GA-NMM) 

The NMM technique is a point estimation method that is applicable for large scale data 

by generating a small set of representative samples of a population. Different techniques 

have been presented in the literature [39,50,55] that aim to enable fast and stable moment 

matching. The more traditional NMM method based on the mNR has disadvantages such 

as severe numerical divergence and initial-value dependency. However, these limitations 

have been addressed by Karr et al. [56] and Cho et al. [50], by stabilizing NMM with a 

genetic algorithm (GA), hereafter designated as GA-NMM. GA-NMM has no restrictions 

for irregular distributions, large sizes, or number of variables. In this method, it is assumed 

that an independent variable X describes the attribute(s) or feature(s) of the studied 

population. It is also assumed that a function 𝑌 = 𝑔(𝑋) can relate the response variable 

Y to the independent variable X. The goal is to estimate expectation (𝐸[𝑌]), and variance 

(𝑉𝑎𝑟[𝑌]) of Y. In this study building electricity consumption is considered as the resultant 

parameter which is a function of building characteristics, including cooling system 

efficiency, building area, window type and attic insulation R-value. It should be noted that 
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independency of the variables is the only requirement for this method, which is met for all 

the proposed variables.  

After checking interdependency of the variables, the next step is to generate a discrete 

probability function that can statistically represent a continuous probability distribution 

function (PDF) of the studied variable. This discrete probability can be considered as 

probability mass function (PMF) which consists of positions and their associated weights 

for each variable. In this study, as recommended in [39], to avoid computational 

complications, the PMF for each variable consists of three positions and their associated 

weights. The weights and positions of the PMF are chosen such that first five moments 

(mean, variance, skewness, etc.) of both the discrete PMF and the original PDF are 

identical. More detailed information on how to obtain the three positions and their weights 

for each variables in a way that the resulted PMF exactly match the first five moments of 

variable’s distribution is given in [39]. The next step combines all PMFs and develops a 

junction distribution of all the variables’ PMF. The final result is 2n+1 index buildings 

where n is the number of variables that are selected as impactful variables on building 

electricity consumption. For example, if there are four key variables from the population, 

this would result in twelve positions and associated weights. Considering each variable 

as an axis with three positions and their associated weights, combining all 4 axes would 

result in a 4-dimensional junction distribution. All of these axes share one of their three 

positions to make the centroid of the 4-dimensional junction distribution. Therefore, the 

final number of positions in the 4-dimensional junction distribution would be 4 multiplied 

by 2 plus 1, which results in 9 index building. The weight for the center of these axis is 

obtained using, 𝑤1 = 1 − ∑ 𝑤𝑖
2𝑛+1
2 , where n is the number of variables and 𝑤i is the 
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associated weight of each index building. Further explanation on n-dimensional Moment 

Matching using PMFs with three positions is given in [39]. 

3.1.2 Utilization of the GA-NMM method for building energy prediction 

To generate index buildings using the GA-NMM method, the independent key features 

that have significant impact on electricity consumption of the single family buildings must 

be identified. Moreover, these features should vary among the studied building 

population, and utilized data. For example, 93% of the surveyed buildings in Cedar Falls 

use gas as a heating fuel. Given the high percentage of homes with gas as a heating fuel, 

this variable, while it does impact the electricity consumption of a building, in this dataset 

is considered a single variate feature and is not included in the GA-NMM analysis. Among 

the main categories that are measured in the energy audit data, two of them (water 

heating and heating components) are nearly uniformly gas-based equipment in the 

dataset, and thus have almost no impact on electricity consumption for the studied 

homes. It is noted that for homes in other climate zones or regions of the U.S. this may 

not be the case, however, considering the referenced data, this level of uniformity does 

occur, and thus is treated as appropriate. This is also consistent with the RECS data on 

annual household site end‐use consumption in very cold/cold regions in which the 

electricity consumption for space heating and water heating contributes to less than 8% 

of the total site energy consumption [57]. Considering these criteria, the key features that 

have higher impacts on electricity consumption of single family homes are chosen, 

including building area, cooling system efficiency, attic insulation R-value, and window 

type (single pane (clear), double pane (clear, metal frame, air filled), and double pane 

(low E, non-metal frame, air filled).  



16 
 

As explained in Section 3.1.2, after identifying impactful variables, the PMFs of each 

variable with three positions are generated using GA-NMM. Then by combining the 

resultant twelve PMFs and their associated weights, and generating a joint distribution, 

nine index buildings and their associated weights are developed. It should be noted that 

the obtained index buildings with their associated weights can statistically represent the 

expected electricity consumption of the population when the weighted average is 

calculated from all the index buildings. Therefore, an individual index building does not 

represent the characteristics of the population. 

3.1.3 Modeling energy consumption for the index buildings 

To model energy consumption for each resulting index building, a building energy model 

is developed in EnergyPlus [58], using the software BEopt (Building Energy Optimization) 

v.2.8.0.0 to establish the base models. This interface is specifically designed for 

implementing residential building energy models. Since weather data highly impacts the 

energy behavior of buildings, for modeling the energy behavior of the index buildings, 

measured weather data in 2010 for Cedar Falls, Iowa is used, paralleling the measured 

energy use data used during this same time period. The majority of the input  parameters 

utilized in the building energy models originate from the assumptions and data discussed 

in the Building America House Simulation Protocol [60].  

To better represent the homes included in the measured data, several factors are 

adjusted. The cooling and heating setpoints are modeled to be 22.7ᵒC, and 20ᵒC 

respectively. This is consistent with the housing characteristics and baseline consumption 

for U.S. single family homes in this region, as discussed in [45], where 89% of the Iowa 

single family homes have a cooling setpoint of 22.7ᵒC and 61% have a heating setpoint 



17 
 

of 20ᵒC  [45].  In addition, the miscellaneous plug loads (MELs) are considered be double 

that of the value calculated by the empirical formula discussed in the Building America 

Housing Simulation Protocols [61]. This was adjusted since the energy use for non-HVAC 

loads for very cold/cold regions has been found to have the highest level of site energy 

consumption comparing to other climate regions [57]. All modifications are applied to all 

nine index building models.  

The annual site electricity consumption is then calculated for each index building. To 

determine the expected value of annual site electricity consumption for the whole sample, 

obtain from the population, Equation (1) is utilized, 

𝐸[𝑌] = ∫ PDF(𝐗)𝑌(𝐗)𝑑𝐗 ≅⏟
NMM

∑ 𝑤𝑖𝑌𝑖

2𝑛+1

𝑖=1

 
(1) 

  

where 𝑌𝑖 is annual site electricity consumption for each index building and 𝑤𝑖 is the 

associated weight used for each index building i, 𝐗 is underlying variable vector that 

determines the outcome 𝑌. As easily seen, the main role of NMM here is to replace the 

intractable integration of Equation (1) with the simple weighted summation of outcomes.  

Therefore, the expected monthly and yearly energy consumption of single family homes 

for the studied population is predicted using the weighted average of all index buildings.  

To measure the confidence of the statistical conclusion of the expected value, the 

expected standard deviation (denoted as STD) is calculated using Equation (2). The 

𝐸[𝑥] ± 𝑆𝑇𝐷 is used to represent the statistical acceptable interval for the obtained result. 

The same procedures are applied for calculating expected electricity consumption for 

each month.  
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𝑆𝑇𝐷 = √𝐸[𝑌2] − 𝐸[𝑌]2 

𝐸[𝑌] = ∑ 𝑤𝑖𝑌𝑖

2𝑛+1

𝑖=1

;  𝐸[𝑌2] = ∑ 𝑤𝑖𝑌𝑖
2

2𝑛+1

𝑖=1

 
(2) 

3.2 GA-NMM Model Validation 

To validate results obtained from GA-NMM technique, monthly measured electricity 

consumption of all single family homes in Cedar Falls is calculated from the recorded 

electric utility bills in 2010. The measured average monthly and yearly electricity 

consumption are compared with the expected yearly and monthly electricity consumption 

obtained from the GA-NMM model. Guidelines on the validation of building energy 

simulation models is currently based on a model’s compliance with standard criteria for 

Coefficient of Variation of Root Mean Square Error (CVRMSE) (%) and Mean Bias Error 

(MBE) (%), which are obtained from Equations (3) and (4). The acceptable values for 

MBE and CVRMSE given in ASHRAE Guideline 14 for monthly time interval are 5% and 

15% respectively [62,63]. 

𝑀𝐵𝐸(%) =
∑ (𝑚𝑖 − 𝑠𝑖)

𝑁𝑝

𝑖=1

∑ (𝑚𝑖)
𝑁𝑝

𝑖=1

 
 

(3) 

𝐶𝑉 𝑅𝑀𝑆𝐸(%) =
√(∑ (𝑚𝑖 − 𝑠𝑖)2/𝑁𝑝)

𝑁𝑝

𝑖=1

𝑚̅
 

 

(4) 

 

3.2.1 Obtaining monthly electricity consumption from electricity bills 

The original dataset of billing data used in this study includes metered residential 

dwellings, condominiums/townhouses, two-family dwellings (duplexes), multiple-family 

dwellings, and apartment units. In this study, since the focus of this study is on single 
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family homes, the multi-family buildings in this dataset, including some of which do not 

individually meter their electricity use at each unit, are excluded.  

The time period that is used for this study is from January to December 2010. Therefore, 

the bills which have measurements during and after January 1st, 2010 are considered in 

this analysis. It is also noted that in working with utility billing data, the billing data 

durations vary from 5 to 90 days. However, since more than 90% of the bill’s duration are 

between 25 to 35 days, the bills outside this range of 25 to 35 days are excluded from the 

dataset. After applying these adjustments and excluding the outliers, from the original bill 

records, a dataset of 101,220 electric bill records for 8,370 single family buildings in 2010 

are ultimately utilized.  

Using the refined dataset, it is also noted that the start and end dates of each billing cycle 

are not uniform, as is typical for residential building billing in the U.S. To support 

comparison of electricity consumption across uniform time periods, the electricity 

consumption recorded for each bill is divided by the billing duration and then multiplied 

by the number of days in each month. For example, if a bill starts on January 26 and ends 

on March 2, hence, it covers 5 days of January, 28 days of February and 2 days of March, 

then the number of days in each month will be multiplied with average daily electricity 

consumption obtained from bill amount divided by bill duration. 

4 Results and Discussion 

The GA-NMM technique is used to generate the three PMF positions with their weights 

for each of the four selected variables. Using the joint distribution function that combines 

all the PMFs, 9 index buildings were developed with their associated weights. The energy 
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models were developed for each of the defined index buildings and the annual and 

monthly site electricity consumption of the index buildings and their associated weights 

were calculated based on the energy model results. Using a weighted summation, the 

expected annual and monthly site electricity consumption of the single family buildings in 

Cedar Falls are then estimated and reported in this section, and compared to the 

measured data.  

4.1 GA-NMM model results 

Applying the GA-NMM technique for the four main building variables (area, cooling 

efficiency, attic insulation R-value, window type), results in 3 PMF positions with their 

associated weights for each variable, as shown in Table 1.  

 Table 1. PMF positions for each of the four building variables utilized in GA-NMM 

Variables L1 L2 L3 w1 w2 w3 

Area (m2) 95.1 161 264 0.46 0.47 0.08 

Cooling Efficiency (SEER) 7 11 15 0.15 0.62 0.23 

Attic insulation R-value 13 27 47 0.27 0.52 0.21 

Window type 1 2 3 0.30 0.31 0.39 

Note: For window type, 1, 2, and 3 represent single pane (clear), double pane (clear, metal frame, air filled), and double 
pane (low E, nonmetal frame, air filled) 

 
These discrete distribution functions for each variable need to be combined to generate 

a junction distribution, which consists of nine indices that statistically reflect the building 

population characteristics. Table 2 shows the characteristics of the final nine index 

buildings that statistically represent the population. Since the summation of the weights 

should be equal to one, the weigh for index 1 is calculated using the normality condition, 
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𝑤1 = 1 − ∑ 𝑤𝑖
9
2 . This condition may result in a “negative” weight value for index 1 that is 

mathematically derived to match the desired moments of original data, however, it does 

not have a physical correspondence.  

The energy model for each of these index buildings was then developed separately using 

EnergyPlus. The annual site electricity consumption for each index building and their 

associated weights are given in Table 3.  

Table 2. Index building characteristics 

Index Area (m2) 
Cooling 

Efficiency 
(SEER) 

Attic 
insulation  

R-value 

Window 
type 

1 161.1 11 27 2 

2 95.1 11 27 2 

3 263.6 11 27 2 

4 161.1 7 27 2 

5 161.1 15 27 2 

6 161.1 11 13 2 

7 161.1 11 47 2 

8 161.1 11 27 1 

9 161.1 11 27 3 
Note: For window type, 1, 2, and 3 represent single pane (clear), double pane (clear, metal frame, air filled), and double 
pane (low E, nonmetal frame, air filled) 

 

Table 3. Annual site electricity consumption of the index buildings with their associated 
weights 

Index Weights 
Site Electricity 
consumption 

 kWh/yr 

1 -1.079 11,040 

2 0.456 9,601 

3 0.076 12,110 

4 0.150 11,527 

5 0.227 10,281 

6 0.266 11,169 

7 0.211 10,832 

8 0.300 11,158 
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9 0.393 10,598 

 

Using Equations (1) and (2), the expectation of yearly site electricity consumption of single 

family buildings in Cedar Falls is calculated to be 10,219 kWh, with standard deviation of 

786 kWh per year. The same procedure are applied to calculate the expected monthly 

electricity consumption and their associated standard deviation which are reported in 

Table 4. 

Table 4. Expected monthly site electricity consumption for a single family buildings in 
Cedar Falls and their standard deviation 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Expected 
monthly 
electricity 
consumption 
(kWh) 

979 859 776 687 791 849 1137 1180 769 702 737 920 

Standard 
Deviation 
(kWh)  

119 102 85 66 68 85 153 175 60 66 80 108 

 

4.2 GA-NMM Model Validation 

The average monthly measured electricity consumption for a single family building in 

Cedar Falls is compared with the expected electricity consumption from the model results; 

the percentage difference for each month is reported in Table 5. MBE and CV-RMSE are 

calculated as 4.5% and 7.8%, respectively, which is below the recommended maximum 

monthly acceptance criteria in ASHRAE Guideline 14 [63]. This indicates that there is 

reasonable agreement between measured data and GA-NMM model results. The 

proposed methodology is applied for the year 2010 and validated with the electricity 
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consumption of the single family homes in Cedar Falls for this year. The performance of 

the model in other years has not been investigated in this research due to lack of a 

complete dataset of electricity consumption measured data in other years. Further 

investigation of the performance of this model in other years is the subject of future work.  

Reviewing other building modeling studies also indicate that the performance of GA-NMM 

model is acceptable, and performs similar or better. For example, in a study by Harberl 

et al [64], a four zone, single story electrically heated and cooled building was simulated 

and compared with hourly measured electricity. MBE of -0.7% and CV-RMSE of 23.1% 

are reported for their model results. In another study by Wan and Yik [65], a model 

representing typical residential buildings in Hong Kong is developed to predict the annual 

and monthly electricity consumption and compared with data found from surveys of 

building characteristics and relevant public statistics. Based on the reported results, the 

estimated overall annual electricity consumption is higher than measured data by 44%.  

Table 5. Monthly electricty use comparision between GA-NMM model results and 
measured data 

Monthly electricity 
consumption 

 (kWh) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Measured data 967 813 770 665 798 1001 1263 1230 847 735 810 973 

GA-NMM model 
results 

979 859 776 687 791 849 1138 1180 769 702 738 920 

Difference % -1% -6% -1% -3% 1% 15% 10% 4% 9% 5% 9% 6% 

 

With the expected standard deviation from the expected electricity consumption for each 

month, the uncertainty range for the model results is calculated by adding and subtracting 

the calculated STD, then compared with the measured data. As shown in Figure 2, in 
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most cases the measured data is within the expected band for electricity consumption 

obtained from the model. It is noted that the model under-predicts the electricity use in 

June and September in comparison to other months. This may be due to a slight under 

prediction in the non-weather dependent loads during these periods. 

 
Figure 2. Measured monthly electricity consumption data compared to the expected site 
electricity consumption and the confidence interval band obtained from model. The 
upper band is 𝐸[𝑥] + 𝑆𝑇𝐷 and the lower band is 𝐸[𝑥] − 𝑆𝑇𝐷. 

5 Conclusions 

In this study, a new technique is proposed to predict the annual and monthly site electricity 

consumption for single family homes by utilizing the GA-NMM method, a sampling 

method that develops a small group of index buildings and associated weighting criteria. 

These index buildings statistically represent the energy-related features of the larger 

dataset of buildings. Building energy models of the index buildings were developed to 

predict the annual and monthly site electricity consumption of the building population. This 

methodology was applied to predict the annual and monthly electricity consumption use 

of 8,370 single family homes in Cedar Falls, IA.  The following main conclusions can be 

drawn from this study: 
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- Based on data available from energy audit information and assessor’s data, four 

influential variables, including area, cooling system efficiency, attic insulation R-

value and window type were found to be available and influential variables for use 

as inputs into the model development.  

- With out-of-sample data, which includes electricity use data for all homes except 

those used to develop the model index buildings, the annual electricity 

consumption predicted is 10,219 kWh, which is within 6% of the measured 

electricity consumption for single family buildings in Cedar Falls. The predicted 

monthly electricity consumption MBE and CV-RMSE are 4.5% and 7.8% 

respectively, which are within the acceptable range based on ASHRAE 

Guideline14. Thus for these frequencies of data, this method has acceptable 

performance, with relatively low computational effort.  

Moving forward, with additional data, including smart meter data, this method can be 

further tested to evaluate performance at a broader range of data frequencies. In addition, 

particularly for applications where limited data is available about housing energy-related 

characteristics across a broad set of homes, evaluating the level of accuracy of 

performance which can be achieved with the use of various input variables may also be 

beneficial. The proposed method is capable of predicting a reasonably accurate 

estimation of the energy behavior of the studied population by utilizing the characteristics 

of local buildings. The main advantage of the proposed method is preserving the accuracy 

of the results while the computational time and cost is decreased. Furthermore, other 

outcomes from the energy model such as site energy consumption and source energy 

consumption, including those with monthly and yearly time resolution, can be estimated 
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for the studied population using the proposed method. As proposed, this effort 

demonstrates the use of a low-computational intensity method for evaluating energy 

performance of a set of residential buildings, which can be extrapolated to the city-level 

and be used by decision makers, utilities and other stakeholders interested in assessing 

the energy performance of an urban area.   
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Appendix  

In this section the distribution of each variable utilized in this work is provided. Four 

variables which are (area, cooling efficiency, attic insulation R-value, window type) 

investigated in this study are distributed as shown in Figure A1.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure A1. Characteristics of variables : a) building area (m2), b) cooling system 
efficiency, c) attic insulation R-value, d) window type 

 

The input values to the GA-NMM model, which include the maximum and minimum of 

each variable (Table A1) and the calculated first five moments, including area, cooling 

efficiency, attic insulation R-value (Table A2), are also presented.  It should be noted that 

for window type since the original data is categorical (single pane (clear), double pane 

(clear, metal frame, air-filled), and double pane (low-E, non-metal frame, air-filled) its 

original distribution is used as the probability mass function (PMF) positions.    
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Table A1 Maximum and minimum values of the variables 
Variables Min Max 
Area (m2) 49 312 

Cooling Efficiency (SEER) 2 19 
Attic insulation R-value 0 58 

 

Table A2 First five moments of the variables 
Variables E(x) E(x2) E(x3) E(x4) E(x5) 
Area (m2) 1.49E+03 2.50E+06 4.67E+09 9.67E+12 2.19E+16 

Cooling Efficiency (SEER) 1.11E+01 1.30E+02 1.59E+03 2.01E+04 2.64E+05 
Attic insulation R-value 2.76E+01 8.99E+02 3.30E+04 1.32E+06 5.60E+07 

 

 

 

 

 


