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Abstract

Growing energy consumption in urban areas has increased the importance of planning
for future energy systems. Thus, improving the modeling abilities for predicting energy
consumption at the city scale is critical. In this study, a Genetic Algorithm-Based
Numerical Moment Matching (GA-NMM) method is adopted as a primary uncertainty
estimation technique to predict the electricity consumption of a large dataset of single
family homes by utilizing key features in energy audit and assessors data. This data is
used as an input to the GA-NMM to develop a set of index buildings and associated
weighting factors that represent statistical characteristics of the dataset. Energy models
are then developed for the index buildings using physics-based energy modeling in
EnergyPlus. These, in combination, are used to estimate the energy behavior of single

family homes of the studied dataset.



The proposed method is applied to a large dataset of 8,370 single family homes in Cedar
Falls, lowa, where the expected annual and monthly electricity consumption from the
model is calculated and compared with measured data. The expected site electricity
consumption for single family buildings in Cedar Falls is estimated as 10,219 kWh/yr,
which is within 6% of the measured average annual electricity consumption. At a monthly
level, the Coefficient of Variation of Root Mean Square Error and Mean Bias Error are
7.8% and 4.5%, respectively. This method can be used to generate small set of

representative homes for demonstrating the energy behavior of a larger set of homes.

Keywords:

City-scale energy modeling, Genetic Algorithm-Based Numerical Moment Matching,

Index buildings, single family homes, residential buildings

1 Introduction

The large majority of energy modeling efforts of buildings has generally focused on
models of energy consumption of single buildings, where both physics-based [1-3] and
data-driven [4—-6] models have been extensively developed for this purpose, each with its
own advantages and disadvantages depending on the intended application. Given the
diversity of building types and uses, highly varied occupant behaviors particularly in
residential buildings [7], and significant ranges in age and efficiency of the building stock
in the U.S., itis understandable that this single building focus is among the more common
modeling goals. However, in recent years there has also been a focus on the development

of methods to predict energy consumption for clusters of buildings, both at the



neighborhood [8] and at the city scale [9-11], as well as the regional and national scale

[12,13]. These methods are highly useful for city- and utility-level planning purposes.

Multi-building modeling methods generally fall into two categories, including bottom-up
and top-down modeling, as discussed and reviewed in several recent review papers
[12,14-16]. Top-down approaches utilize the aggregated energy consumption data of the
building stock, and relate the total energy consumption of the region with variables such
as gross domestic product (GDP), employment rates, and price indices, climatic
conditions, and housing construction and/or demolition rates [12,14]. Bottom-up
approaches [15,16] account for the energy consumption of individual buildings or groups
of buildings, then extrapolate the modeled sample to represented region. This approach
can generally be accomplished in two different ways, using statistical methods (SMs) or
engineering methods (EMs). SMs rely on data-driven approaches such as regression
analysis of historical data to relate building energy consumption to influential parameters
that impact energy consumption. There are several techniques that can be categorized
under this umbrella. Different studies have reviewed the advantages and disadvantages
of these techniques. For example in a study by Do and Cetin [5], six data driven
techniques such as Change-Point Models [17,18], Artificial Neural Network [19,20],
Genetic Programing [21], Bayesian Network [22], Gaussian Mixture Models [23], and
Support Vector Machines [24] are compared, focusing on pros and cons of each
technique specifically for residential building energy modeling. In this study it is concluded
that the complexity of prediction models and the amount of input data needed significantly
varies between methods, and the tradeoffs between more complex as compared to less

computationally complex methods vary [5]. In another study done by Swan and Ugursal



[14], three techniques classified as SMs, including Neural Network (NN) [25,26],
Conditional Demand Analysis (CDA) [27,28] and regression methods [29,30], are
evaluated. The positive aspects of SMs techniques discussed include previous research
demonstrating the use of such techniques for modeling of occupant behavior, end-use
energy consumption, and macroeconomic and socioeconomic effects, whereas the
negative attributes include reliance on historical consumption data and the necessity of a

large sample to model a variety of the characteristics [14,31].

For Ems, the energy consumption of homes is determined based on physical phenomena,
including heat transfer and thermodynamic relationships. Common input data to physical
models include building properties such as geometry, envelope fabric, equipment and
appliances, climate properties, as well as indoor environmental conditions, occupancy
schedules and equipment use. There are several techniques that can be used to model
building energy consumption at different scales. These can be categorized into the
following methods: (a) distribution method, (b) archetype technique, and (c) sample
techniques [14]. The distribution method uses the distribution of the number of energy-
consuming devices in each building, the common rates for energy consumption on a
device-level basis, typical profiles of consumption of these end-uses, and their efficiency
to calculate total energy consumption [32,33]. In this method the interrelationship between
the use patterns of the energy-consuming devices typically have not been taken into
account [14]. For the archetype technique, also sometimes called the prototype
technique, the housing stock is broadly classified into a set of buildings according to size,
building type, or other characteristics. The energy consumption of each modeled

archetype buildings is used to represent the population of buildings classified under that



archetype, then scaled up to represent the share of that archetype building in the region

of study [14,34,35].

Finally, for the sample technique, an actual sample of building data is used as the input
into the model. The captured sample data can represent the wide variety of buildings in
different regions. If the sample is representative of the regional or national building stock,
using weighting factors, the energy consumption of the studied population can be
estimated [14,36]. The number of samples depends the sampling method. For example,
Monte Carlo (MC) simulation [37,38] generates a large number of samples. This can be
computationally demanding and time consuming. Moreover, the probability density
functions (PDF) of some building characteristics may not follow a convenient parametric
distribution [39]. Another sampling method, Mean and Sigma (MS) [40] requires a smaller
sample size compared to MC. In MS, the number of samples exponentially increase

based on the number of predictor variables.

Using the methods mentioned above, most multi-building energy modeling efforts to date
have focused on representing the characteristics and/or energy consumption of the
residential and/or commercial building sectors. Given that residential and commercial
buildings represent nearly 75% of the U.S. electricity consumption [41], and
approximately 40% of energy consumption [42], it is understandable why these two
building types are the main focus of most research efforts. Due to the fundamental
differences in the use and energy demand profiles of residential and commercial
buildings, however, often the models for energy consumption of these two main building

types are separated.



Larger scale data collection and modeling efforts to characterize the U.S. building stock
include the RECS [43] and CBECS [44] datasets for residential and commercial buildings,
respectively. These statistical datasets are collected every few years by the U.S.
government from a statistically representative sample of buildings across the country.
They include data on annual energy consumption and a variety of energy-related building
characteristics. These two datasets are highly referenced, and are often considered as
datasets by which others compare their results. Other recent national government-funded
efforts include the development of ResStock [45] for residential and ComStock [46] for
commercial buildings for analysis of the building stock characteristics and energy
consumption at the state and national level, and UrbanOpt at the district or neighborhood
level [47]. ResStock, similar to the others, utilizes over ten different public and private
datasets as outlined in [45], latin-hypercube sampling to represent the 80+ million single
family homes in the U.S. with a representative sample of homes using 6,000 conditional
probability distributions, and physics-based energy models using EnergyPlus run using
supercomputing resources. It is meant to be used to identify the energy efficiency
measures that will save the most energy and money across the building stock. These
methods, however, are not developed for city-level energy analysis, as the level of

granularity of the data is not sufficient to be city-specific.

Closer to the city-scale, UrbanOpt [47], as well as other similar GUI-based modeling tool
development efforts such as UMI (urban modeling interface) [48], enables the modeling
of all buildings in a city district individually, as opposed to a statically representative set
of buildings. These methods require detailed GIS-based information on the building floor

areas and locations as well as the categorization of each building into a prototype building



(e.g. small office, restaurant, retail, etc.), which each have a set of standard energy
consumption-related assumptions. These models benefit from the use of highly detailed
information, however, given the significant effort needed for energy modeling at the
building-level, constructing an energy model building-by-building of a large city with
potentially hundreds of thousands of buildings, is not highly practical in most applications,
with current technologies. In addition, for many cites, the level of detail of meaningful
building characteristic information can be limited to assessor’s data, unless there is a city
or local mandate requiring more energy-related information to be reported. This mandate
exists in some U.S. cities (e.g. Energy Conservation Audit and Disclosure in Austin, TX
[49]), but is more commonly required for public buildings. Lack of detailed data for
individual buildings is one of the main challenges. There are some efforts to expand
building-level energy characteristics of city building stock, such as those discussed in [5],

however this is not the reality for many cities currently.

Numerical Moment Matching (NMM) is a method of representing a large population with
a substantially smaller sample size while preserving statistical moments (e.g., mean,
variance, skewness, kurtosis, etc.). NMM’s sample size is order of magnitude smaller
than that of other random sampling methods such as MC and MS. However, to date this
method has not been used for representing the building stock and its energy-related
characteristics. For accuracy comparison, a study by Cho and Porter [39] on large-scale
earthquake risk assessment, examined the difference between the moments of the
sample and surveyed population (i.e. error) using the NMM and MS methods. Results
showed that in the MS method this error is 1.62% in calculating the first moment of the

sample E[x], and for the higher moments up to E[x°], the error increased to up to 28%.



However, for the NMM method, the maximum error for E[x°] was found to be 0.005% for
the same variable. This indicates that error of the MS method is reliable only in calculating
mean value for a symmetric and regular form of data and performs poorly in estimation
of higher-order moments for each predictor/variable. Therefore, when the original data
distribution is considerably irregular or when the higher-order moments matter, NMM

performs better compared to MS method.

The initial version of NMM was based on the multivariate Newton-Raphson (mNR)
scheme, which sometimes causes numerical divergence and initial-value dependency
[50]. To overcome these limitations, a Generic Algorithm (GA) has been coupled with
mNR scheme in the context of NMM (denoted as GA-NMM) to exhibit no restrictions to

irregular distributions, large sizes, or many variables of engineering data [50].

The objective of this study is to utilize GA-NMM to develop a set of statistically
representative index buildings for a larger building population to evaluate electricity
consumption. The ability to generate a small set of characteristic buildings for use in
analysis of the larger dataset’s energy behavior reduces subsequent analyses, statistical
implications, and computational intensity. Given the fundamental differences in energy
behaviors of residential and commercial buildings, this research specifically focuses on a
dataset of residential, single family homes. Building energy audit data for Cedar Falls,
lowa, is used as a case study to evaluate the performance of the proposed technique in
predicting the energy behavior of a large population of houses using data from those
homes sampled. The results of this study are compared with measured monthly electricity
consumption data to validate the applied methodology. As compared to using building

characteristics and energy-related assumptions from some of the larger residential
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building datasets currently available (e.g. ResStock [45] and RECS [43]), developing
localized parameters to use for model development helps to decrease the computational

costs while maintaining accuracy of the results.

2 Datasets

Four main datasets are used in this study, all of which are utilized to characterize the
homes in the Cedar Falls region, and for the development and validation of the GA-NMM
model. These are described as follows. In this section, we also benchmark these homes’
characteristics as compared to homes in the lowa region, and the U.S. to enhance the

understanding of the applicability of the methods proposed herein.

The first dataset is publicly-available assessor’s data, used for tax purposes, for the
residential buildings in Black Hawk County, lowa, where Cedar Falls is located. This is
used for characterizing the overall housing stock in Cedar Falls. Throughout the U.S.,
basic information about the residential building stock is maintained as public records,
including building area, age, and type (single family, duplex, townhouse, etc.), number of
bedrooms, and heating, ventilation, and air conditioning (HVAC) system, among others.
Based on this dataset, the median age and size (total living area) of homes in Cedar Falls
are 61 years old, and 109 m?, respectively. The U.S. building stock (2017) is a median of
42 years in age and 139 m? in area [51]. In the West North Central Region of the U.S.,
which includes lowa, homes are a median of 44 years of age, and 148 m2. Thus, the
homes in Cedar Falls studied herein are slightly older and smaller in comparison to the

broader region in which they are located.



The second dataset includes energy audit data for a subset of the residential buildings in
the Cedar Falls region. This contains field-measured energy audit data for 531 single
family homes, four variables of which were targeted in this study for use as inputs into the
GA-NMM method. These include building area, attic insulation R-value, window type and
cooling system efficiency (SEER — seasonal energy efficiency ratio), as reported in
Figure 1. These variables were chosen for two reasons. First is based on the results of a
one-at-a-time (OAT) sensitivity analysis of the impacts of these characteristics on
electricity consumption of residential buildings under typical climate conditions in lowa,
as discussed in [52]. In comparison to other variables included in the energy audits, these
factors have a higher impact on electricity consumption. This is further discussed in the
method section. These were also chosen as they can be considered independent
variables, which is necessary for the proposed GA-NMM method. A correlation analysis

indicates that these variables have correlation coefficients of less than 0.23.

For this data, given that the homes included in the energy audit data are a subset of the
homes in Cedar Falls, first their characteristics are compared to the overall building stock
in Cedar Falls from the assessor’s data. The energy audit homes overall have a similar
age distribution to those in Cedar Falls (Figure 1). In addition, the average age of the
homes in both datasets is also similar (within 2%). The energy audit homes, however, are
slightly larger than the Cedar Falls residential building stock, with 71% being less than
139 m? as compared to 59% in the audit data. Given these characteristics, while the audit
characteristics of all the homes in Cedar Falls are not measured, the size and age

generally follow similar trends.
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Compared to the building characteristics in the U.S. and in the state of lowa from [45], as
shown in Figure 1, the homes in Cedar Falls generally have a similar distribution of attic
insulation values (Figure 1b). The distribution of homes with different window types and
cooling efficiency values is generally fairly uniform across the surveyed homes in Cedar
Falls. Thus in this dataset, there is a slightly higher portion of homes that have low-e

windows and SEER 15 or higher efficiency systems as compared to the U.S. and lowa.
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Figure 1: Characteristics of the Cedar Falls residential building stock; a) building area,
b) Attic insulation R value, c) window type, d) Cooling systems efficiency, as compared
to the U.S. and lowa [45].

The third dataset is monthly measured electricity consumption of single family homes

obtained in collaboration with Cedar Falls Ultilities. This dataset is used to validate the
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applied methodology with measured data. This dataset includes 101,220 electric bills for
8,370 single family homes from January to December 2010. On average the annual
electricity consumption of the homes in this dataset is 10,872 kWh. In comparison to the
averages reported in RECS (2015) in the U.S. and Midwest, of 10,726 kWh and 10,051
kWh, respectively, these values are highly similar. We also compare the average
electricity consumption of homes in Cedar Falls, to the electricity consumption of the
homes included in the energy audit data. The energy audit data homes annually consume
10,968 kWh on average, which is 1% higher than the average annual use of overall Cedar
Falls building stock, indicating that the audit dataset generally follows the same energy
use trends as that of the larger Cedar Falls buildings stock. It also should be noted that
the electricity consumption data of the homes used for model development (energy audit
data of 531 homes), is not used for model verification. Thus, only data not used to develop

the model (i.e. out-of-sample data) is used to assess the model’s performance.

The fourth dataset is measured weather data for Cedar Falls in the year 2010. This
dataset is obtained from a database that includes over 10,000 stations, collected since
2001, with sufficient detail to create hourly weather files for use in energy modeling
methods [53]. Cedar Falls in lowa is located in a cool-humid climate according to
ASHRAE Climate Zone definitions. In this climate zone the Heating Degree Day (HDD)

per year are in the range of 3000 to 4000 [54].

3 Methodology

The methodology described herein includes two main steps. First is the development of
a model to predict the annual and monthly site electricity consumption for single family
homes in Cedar Falls. This is accomplished through the utilization of the GA-NMM

12



method to obtain a set of index buildings and associated weighting criteria which
statistically represent the energy related features of the larger dataset of buildings, which
are used to develop building energy models of the index buildings, then used to predict
the annual and monthly site electricity consumption of the building population. The second

step is the verification of model results with measured monthly electric use.

3.1 Predicting electricity consumption for single family buildings

3.1.1 Genetic Algorithm-Based Numerical Moment Matching (GA-NMM)

The NMM technique is a point estimation method that is applicable for large scale data
by generating a small set of representative samples of a population. Different techniques
have been presented in the literature [39,50,55] that aim to enable fast and stable moment
matching. The more traditional NMM method based on the mNR has disadvantages such
as severe numerical divergence and initial-value dependency. However, these limitations
have been addressed by Karr et al. [56] and Cho et al. [50], by stabilizing NMM with a
genetic algorithm (GA), hereafter designated as GA-NMM. GA-NMM has no restrictions
forirregular distributions, large sizes, or number of variables. In this method, it is assumed
that an independent variable X describes the attribute(s) or feature(s) of the studied
population. It is also assumed that a function Y = g(X) can relate the response variable
Y to the independent variable X. The goal is to estimate expectation (E[Y]), and variance
(Var[Y]) of Y. In this study building electricity consumption is considered as the resultant
parameter which is a function of building characteristics, including cooling system

efficiency, building area, window type and attic insulation R-value. It should be noted that
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independency of the variables is the only requirement for this method, which is met for all

the proposed variables.

After checking interdependency of the variables, the next step is to generate a discrete
probability function that can statistically represent a continuous probability distribution
function (PDF) of the studied variable. This discrete probability can be considered as
probability mass function (PMF) which consists of positions and their associated weights
for each variable. In this study, as recommended in [39], to avoid computational
complications, the PMF for each variable consists of three positions and their associated
weights. The weights and positions of the PMF are chosen such that first five moments
(mean, variance, skewness, etc.) of both the discrete PMF and the original PDF are
identical. More detailed information on how to obtain the three positions and their weights
for each variables in a way that the resulted PMF exactly match the first five moments of
variable’s distribution is given in [39]. The next step combines all PMFs and develops a
junction distribution of all the variables” PMF. The final result is 2n+7 index buildings
where n is the number of variables that are selected as impactful variables on building
electricity consumption. For example, if there are four key variables from the population,
this would result in twelve positions and associated weights. Considering each variable
as an axis with three positions and their associated weights, combining all 4 axes would
result in a 4-dimensional junction distribution. All of these axes share one of their three
positions to make the centroid of the 4-dimensional junction distribution. Therefore, the
final number of positions in the 4-dimensional junction distribution would be 4 multiplied
by 2 plus 1, which results in 9 index building. The weight for the center of these axis is

obtained using, w; = 1 — Y2"*1w,; where n is the number of variables and w; is the
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associated weight of each index building. Further explanation on n-dimensional Moment

Matching using PMFs with three positions is given in [39].

3.1.2 Utilization of the GA-NMM method for building energy prediction

To generate index buildings using the GA-NMM method, the independent key features
that have significant impact on electricity consumption of the single family buildings must
be identified. Moreover, these features should vary among the studied building
population, and utilized data. For example, 93% of the surveyed buildings in Cedar Falls
use gas as a heating fuel. Given the high percentage of homes with gas as a heating fuel,
this variable, while it does impact the electricity consumption of a building, in this dataset
is considered a single variate feature and is not included in the GA-NMM analysis. Among
the main categories that are measured in the energy audit data, two of them (water
heating and heating components) are nearly uniformly gas-based equipment in the
dataset, and thus have almost no impact on electricity consumption for the studied
homes. It is noted that for homes in other climate zones or regions of the U.S. this may
not be the case, however, considering the referenced data, this level of uniformity does
occur, and thus is treated as appropriate. This is also consistent with the RECS data on
annual household site end-use consumption in very cold/cold regions in which the
electricity consumption for space heating and water heating contributes to less than 8%
of the total site energy consumption [57]. Considering these criteria, the key features that
have higher impacts on electricity consumption of single family homes are chosen,
including building area, cooling system efficiency, attic insulation R-value, and window
type (single pane (clear), double pane (clear, metal frame, air filled), and double pane

(low E, non-metal frame, air filled).
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As explained in Section 3.1.2, after identifying impactful variables, the PMFs of each
variable with three positions are generated using GA-NMM. Then by combining the
resultant twelve PMFs and their associated weights, and generating a joint distribution,
nine index buildings and their associated weights are developed. It should be noted that
the obtained index buildings with their associated weights can statistically represent the
expected electricity consumption of the population when the weighted average is
calculated from all the index buildings. Therefore, an individual index building does not

represent the characteristics of the population.

3.1.3 Modeling energy consumption for the index buildings

To model energy consumption for each resulting index building, a building energy model
is developed in EnergyPlus [58], using the software BEopt (Building Energy Optimization)
v.2.8.0.0 to establish the base models. This interface is specifically designed for
implementing residential building energy models. Since weather data highly impacts the
energy behavior of buildings, for modeling the energy behavior of the index buildings,
measured weather data in 2010 for Cedar Falls, lowa is used, paralleling the measured
energy use data used during this same time period. The majority of the input parameters
utilized in the building energy models originate from the assumptions and data discussed

in the Building America House Simulation Protocol [60].

To better represent the homes included in the measured data, several factors are
adjusted. The cooling and heating setpoints are modeled to be 22.7°C, and 20°C
respectively. This is consistent with the housing characteristics and baseline consumption
for U.S. single family homes in this region, as discussed in [45], where 89% of the lowa

single family homes have a cooling setpoint of 22.7°C and 61% have a heating setpoint
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of 20°C [45]. In addition, the miscellaneous plug loads (MELSs) are considered be double
that of the value calculated by the empirical formula discussed in the Building America
Housing Simulation Protocols [61]. This was adjusted since the energy use for non-HVAC
loads for very cold/cold regions has been found to have the highest level of site energy
consumption comparing to other climate regions [57]. All modifications are applied to all

nine index building models.

The annual site electricity consumption is then calculated for each index building. To
determine the expected value of annual site electricity consumption for the whole sample,

obtain from the population, Equation (1) is utilized,

) N 2n+1 N 1)
E[Y] = f PDF(X)Y(X)dXNMjM Zl w,Y;

where Y; is annual site electricity consumption for each index building and w; is the
associated weight used for each index building i, X is underlying variable vector that
determines the outcome Y. As easily seen, the main role of NMM here is to replace the

intractable integration of Equation (1) with the simple weighted summation of outcomes.

Therefore, the expected monthly and yearly energy consumption of single family homes
for the studied population is predicted using the weighted average of all index buildings.
To measure the confidence of the statistical conclusion of the expected value, the
expected standard deviation (denoted as STD) is calculated using Equation (2). The
E[x] £ STD is used to represent the statistical acceptable interval for the obtained result.
The same procedures are applied for calculating expected electricity consumption for

each month.
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STD = \/E[Y?] — E[Y]?

2n+1 2n+1 (2)

Z w;Y;; E[Y?] = z w; Y/
3.2 GA-NMM Model Validation

To validate results obtained from GA-NMM technique, monthly measured electricity
consumption of all single family homes in Cedar Falls is calculated from the recorded
electric utility bills in 2010. The measured average monthly and yearly electricity
consumption are compared with the expected yearly and monthly electricity consumption
obtained from the GA-NMM model. Guidelines on the validation of building energy
simulation models is currently based on a model’s compliance with standard criteria for
Coefficient of Variation of Root Mean Square Error (CVRMSE) (%) and Mean Bias Error
(MBE) (%), which are obtained from Equations (3) and (4). The acceptable values for
MBE and CVRMSE given in ASHRAE Guideline 14 for monthly time interval are 5% and

15% respectively [62,63].

Yor (m — s)
MBE (%) === — <~
) Z ,(m;) (3)
(Z (ml - Sl) / )
CV RMSE (%) = ‘/ (4)

3.2.1 Obtaining monthly electricity consumption from electricity bills
The original dataset of billing data used in this study includes metered residential
dwellings, condominiums/townhouses, two-family dwellings (duplexes), multiple-family

dwellings, and apartment units. In this study, since the focus of this study is on single
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family homes, the multi-family buildings in this dataset, including some of which do not

individually meter their electricity use at each unit, are excluded.

The time period that is used for this study is from January to December 2010. Therefore,
the bills which have measurements during and after January 1st, 2010 are considered in
this analysis. It is also noted that in working with utility billing data, the billing data
durations vary from 5 to 90 days. However, since more than 90% of the bill’s duration are
between 25 to 35 days, the bills outside this range of 25 to 35 days are excluded from the
dataset. After applying these adjustments and excluding the outliers, from the original bill
records, a dataset of 101,220 electric bill records for 8,370 single family buildings in 2010

are ultimately utilized.

Using the refined dataset, it is also noted that the start and end dates of each billing cycle
are not uniform, as is typical for residential building billing in the U.S. To support
comparison of electricity consumption across uniform time periods, the electricity
consumption recorded for each bill is divided by the billing duration and then multiplied
by the number of days in each month. For example, if a bill starts on January 26 and ends
on March 2, hence, it covers 5 days of January, 28 days of February and 2 days of March,
then the number of days in each month will be multiplied with average daily electricity

consumption obtained from bill amount divided by bill duration.

4 Results and Discussion
The GA-NMM technique is used to generate the three PMF positions with their weights
for each of the four selected variables. Using the joint distribution function that combines

all the PMFs, 9 index buildings were developed with their associated weights. The energy
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models were developed for each of the defined index buildings and the annual and
monthly site electricity consumption of the index buildings and their associated weights
were calculated based on the energy model results. Using a weighted summation, the
expected annual and monthly site electricity consumption of the single family buildings in
Cedar Falls are then estimated and reported in this section, and compared to the

measured data.

41 GA-NMM model results

Applying the GA-NMM technique for the four main building variables (area, cooling
efficiency, attic insulation R-value, window type), results in 3 PMF positions with their

associated weights for each variable, as shown in Table 1.

Table 1. PMF positions for each of the four building variables utilized in GA-NMM

Variables L1 L2 L3 Wi w2 1z

Area (m?) 95.1 161 264 0.46 0.47 0.08
Cooling Efficiency (SEER) 7 11 15 0.15 0.62 0.23
Attic insulation R-value 13 27 47 0.27 0.52 0.21
Window type 1 2 3 0.30 0.31 0.39

Note: For window type, 1, 2, and 3 represent single pane (clear), double pane (clear, metal frame, air filled), and double
pane (low E, nonmetal frame, air filled)

These discrete distribution functions for each variable need to be combined to generate
a junction distribution, which consists of nine indices that statistically reflect the building
population characteristics. Table 2 shows the characteristics of the final nine index
buildings that statistically represent the population. Since the summation of the weights

should be equal to one, the weigh for index 1 is calculated using the normality condition,
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w; = 1 — Y3 w;. This condition may result in a “negative” weight value for index 1 that is
mathematically derived to match the desired moments of original data, however, it does

not have a physical correspondence.

The energy model for each of these index buildings was then developed separately using
EnergyPlus. The annual site electricity consumption for each index building and their

associated weights are given in Table 3.

Table 2. Index building characteristics

Cooling Attic Window
Index Area (m?) Efficiency insulation type

(SEER) R-value
1 161.1 11 27 2
2 95.1 11 27 2
3 263.6 11 27 2
4 161.1 7 27 2
5 161.1 15 27 2
6 161.1 11 13 2
7 161.1 11 47 2
8 161.1 11 27 1
9 161.1 11 27 3

Note: For window type, 1, 2, and 3 represent single pane (clear), double pane (clear, metal frame, air filled), and double
pane (low E, nonmetal frame, air filled)

Table 3. Annual site electricity consumption of the index buildings with their associated
weights

Site Electricity

Index  Weights consumption

kWh/yr

1 -1.079 11,040

2 0.456 9,601

3 0.076 12,110

4 0.150 11,527

5 0.227 10,281

6 0.266 11,169

7 0.211 10,832

8 0.300 11,158
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9 0.393 10,598

Using Equations (1) and (2), the expectation of yearly site electricity consumption of single
family buildings in Cedar Falls is calculated to be 10,219 kWh, with standard deviation of
786 kWh per year. The same procedure are applied to calculate the expected monthly
electricity consumption and their associated standard deviation which are reported in

Table 4.

Table 4. Expected monthly site electricity consumption for a single family buildings in
Cedar Falls and their standard deviation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Expected

monthly

electricity 979 859 776 687 791 849 1137 1180 769 702 737 920
consumption

(kwh)

Standard
Deviation 119 102 85 66 68 85 153 175 60 66 80 108
(kwWh)

4.2 GA-NMM Model Validation

The average monthly measured electricity consumption for a single family building in
Cedar Falls is compared with the expected electricity consumption from the model results;
the percentage difference for each month is reported in Table 5. MBE and CV-RMSE are
calculated as 4.5% and 7.8%, respectively, which is below the recommended maximum
monthly acceptance criteria in ASHRAE Guideline 14 [63]. This indicates that there is
reasonable agreement between measured data and GA-NMM model results. The

proposed methodology is applied for the year 2010 and validated with the electricity
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consumption of the single family homes in Cedar Falls for this year. The performance of
the model in other years has not been investigated in this research due to lack of a
complete dataset of electricity consumption measured data in other years. Further

investigation of the performance of this model in other years is the subject of future work.

Reviewing other building modeling studies also indicate that the performance of GA-NMM
model is acceptable, and performs similar or better. For example, in a study by Harberl
et al [64], a four zone, single story electrically heated and cooled building was simulated
and compared with hourly measured electricity. MBE of -0.7% and CV-RMSE of 23.1%
are reported for their model results. In another study by Wan and Yik [65], a model
representing typical residential buildings in Hong Kong is developed to predict the annual
and monthly electricity consumption and compared with data found from surveys of
building characteristics and relevant public statistics. Based on the reported results, the

estimated overall annual electricity consumption is higher than measured data by 44%.

Table 5. Monthly electricty use comparision between GA-NMM model results and
measured data

Monthly electricity
consumption Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(kwh)

Measured data 967 813 770 665 798 1001 1263 1230 847 735 810 973

GA-NMM model

results 979 859 776 687 791 849 1138 1180 769 702 738 920

Difference % -1% 6% 1% -3% 1% 15% 10% 4% 9% 5% 9% 6%

With the expected standard deviation from the expected electricity consumption for each
month, the uncertainty range for the model results is calculated by adding and subtracting

the calculated STD, then compared with the measured data. As shown in Figure 2, in
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most cases the measured data is within the expected band for electricity consumption
obtained from the model. It is noted that the model under-predicts the electricity use in
June and September in comparison to other months. This may be due to a slight under

prediction in the non-weather dependent loads during these periods.

1,600
Measured
o 1400 Model
> upper band
QT_J 200 Lower band
e
= § 1,000
QO
w =" 800
2
n 600
400

1 2 3 4 5 6 7 8 9 10 11 12
Months

Figure 2. Measured monthly electricity consumption data compared to the expected site
electricity consumption and the confidence interval band obtained from model. The
upper band is E[x] + STD and the lower band is E[x] — STD.

5 Conclusions

In this study, a new technique is proposed to predict the annual and monthly site electricity
consumption for single family homes by utilizing the GA-NMM method, a sampling
method that develops a small group of index buildings and associated weighting criteria.
These index buildings statistically represent the energy-related features of the larger
dataset of buildings. Building energy models of the index buildings were developed to
predict the annual and monthly site electricity consumption of the building population. This
methodology was applied to predict the annual and monthly electricity consumption use
of 8,370 single family homes in Cedar Falls, IA. The following main conclusions can be

drawn from this study:
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- Based on data available from energy audit information and assessor’s data, four
influential variables, including area, cooling system efficiency, attic insulation R-
value and window type were found to be available and influential variables for use
as inputs into the model development.

- With out-of-sample data, which includes electricity use data for all homes except
those used to develop the model index buildings, the annual electricity
consumption predicted is 10,219 kWh, which is within 6% of the measured
electricity consumption for single family buildings in Cedar Falls. The predicted
monthly electricity consumption MBE and CV-RMSE are 4.5% and 7.8%
respectively, which are within the acceptable range based on ASHRAE
Guideline14. Thus for these frequencies of data, this method has acceptable

performance, with relatively low computational effort.

Moving forward, with additional data, including smart meter data, this method can be
further tested to evaluate performance at a broader range of data frequencies. In addition,
particularly for applications where limited data is available about housing energy-related
characteristics across a broad set of homes, evaluating the level of accuracy of
performance which can be achieved with the use of various input variables may also be
beneficial. The proposed method is capable of predicting a reasonably accurate
estimation of the energy behavior of the studied population by utilizing the characteristics
of local buildings. The main advantage of the proposed method is preserving the accuracy
of the results while the computational time and cost is decreased. Furthermore, other
outcomes from the energy model such as site energy consumption and source energy

consumption, including those with monthly and yearly time resolution, can be estimated
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for the studied population using the proposed method. As proposed, this effort
demonstrates the use of a low-computational intensity method for evaluating energy
performance of a set of residential buildings, which can be extrapolated to the city-level
and be used by decision makers, utilities and other stakeholders interested in assessing

the energy performance of an urban area.
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Appendix
In this section the distribution of each variable utilized in this work is provided. Four
variables which are (area, cooling efficiency, attic insulation R-value, window type)

investigated in this study are distributed as shown in Figure A1.
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Figure A1. Characteristics of variables : a) building area (m?), b) cooling system
efficiency, c) attic insulation R-value, d) window type

The input values to the GA-NMM model, which include the maximum and minimum of
each variable (Table A1) and the calculated first five moments, including area, cooling
efficiency, attic insulation R-value (Table A2), are also presented. It should be noted that
for window type since the original data is categorical (single pane (clear), double pane
(clear, metal frame, air-filled), and double pane (low-E, non-metal frame, air-filled) its

original distribution is used as the probability mass function (PMF) positions.
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Table A1 Maximum and minimum values of the variables

Variables Min Max

Area (m?) 49 312
Cooling Efficiency (SEER) 2 19
Attic insulation R-value 0 58

Table A2 First five moments of the variables

Variables E(x) E(x?) E(x3) E(x*) E(x°)

Area (m?) 1.49E+03 2.50E+06 4.67E+09 9.67E+12 2.19E+16
Cooling Efficiency (SEER) 1.11E+01 1.30E+02 1.59E+03 2.01E+04 2.64E+05
Attic insulation R-value 2.76E+01 8.99E+02 3.30E+04 1.32E+06 5.60E+07
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