
Introducing Privacy in Screen Event Frequency
Analysis for Android Apps

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev

Ohio State University, Columbus, Ohio, USA

Email: {zhang.4858,latif.28,bassily.1,rountev.1}@osu.edu

Abstract—Mobile apps often use analytics infrastructures pro-
vided by companies such as Google and Facebook to gather
extensive fine-grained data about app performance and user
behaviors. It is important to understand and enforce suitable
trade-offs between the benefits of such data gathering (for app
developers) and the corresponding privacy loss (for app users).

Our work focuses on screen event frequency analysis, which
is one of the most popular forms of data gathering in mobile
app analytics. We propose a privacy-preserving version of such
analysis using differential privacy (DP), a popular principled
approach for creating privacy-preserving analyses. We describe
how DP can be introduced in screen event frequency analysis for
mobile apps, and demonstrate an instance of this approach for
Android apps and the Google Analytics framework. Our work
develops the automated app code analysis, code rewriting, and
run-time processing needed to deploy the proposed DP solu-
tion. Experimental evaluation demonstrates that high accuracy
and practical cost can be achieved by the developed privacy-
preserving screen event frequency analysis.

I. INTRODUCTION

Mobile apps often use analytics infrastructures provided by

companies such as Google and Facebook [1]: e.g., Google

Analytics [2], Google Firebase [3], and Facebook Analyt-

ics [4]. The extensive fine-grained data gathered from such

analytics can be used for analysis of app performance and user

behaviors such as clicks, screen transitions, purchase history,

and location data. The libraries implementing the analytics

infrastructure are independent modules of apps installed on

users’ devices. They silently collect information in the back-

ground, usually without users’ knowledge. The use of such

tracking is widespread, as indicated by recent studies [5].

For an app developer, the benefits of such analytics could

be substantial. Information obtained from the detailed stream

of app-generated events could be used for targeted advertis-

ing, behavioral analytics, location tracking, and app improve-

ments [1]. Unfortunately, such benefits come at the expense

of reduced privacy for app users. In the broader societal

context there are increasingly-strong expectations for better

understanding and control of the privacy-related effects of data

gathering. In this context, there is very little understanding of

such effects in the area of mobile app analytics.

Techniques for privacy-preserving data analysis can be

employed to study and evaluate the privacy implications of

data gathering from mobile apps. Privacy-preserving analysis

techniques are designed with theoretical guarantees about

the loss of privacy and the accuracy of analysis results.

Differential privacy (DP) [6] has been proposed and studied as

a broad principled approach for designing privacy-preserving

data analyses. Based on a rigorous definition of privacy, this

approach has been investigated extensively by researchers and

has recently been adopted by industry—for example, in the

Chrome browser [7] and in iOS-10 [8].

While there is a large body of work on differential privacy,

the practical applications of these techniques in the context of

the widely-used analytics frameworks for mobile apps have

not been studied. Introducing DP mechanisms in apps that

use such frameworks has clear benefits to users. The app

developers also benefit from such mechanisms: the gathered

information provides analytics value while at the same time

the app creators can claim, with confidence, that users are

provably protected against leaks of their sensitive data. Such

claims by developers make their product more attractive to

users. In addition, privacy-by-design protections may be of

interest to regulatory bodies.

Challenges. Despite significant advances in DP theory, ap-

plying DP solutions to analytics frameworks for mobile apps

faces two major obstacles. First, the providers of analyt-

ics frameworks—companies such as Google, Facebook, and

Yahoo—do not supply DP capabilities and are unlikely to

provide them in the near future. Any DP solution deployed

by an app developer today—e.g., a developer who is using

the Google Analytics framework—should work without any

changes to the framework implementation and APIs, both

locally on the user’s device and remotely at Google’s servers.

This “black box” view is a significant departure from the

standard assumption in DP research, where the researchers

have complete control over the entire analytics infrastructure

and can deploy various sophisticated DP protocols.

The second challenge is to introduce DP in a given app

with little effort from the app developer. Ideally, the developer

would write their app without any DP considerations, and an

automated code rewriting step would introduce DP-enforcing

code. Such separation of concerns is highly valuable for

software development, testing, debugging, and evolution.

Our proposal. Our work focuses on these two challenges for

screen view event frequency analysis, which is one of the most

popular forms of data gathering in mobile app analytics. We

propose a privacy-preserving version of such analysis using

differential privacy, and instantiate this design for Android

apps that use the Google Analytics framework. To the best of

our knowledge, this is the first work that attempts to introduce

268

2019 19th International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/19/$31.00 ©2019 IEEE
DOI 10.1109/SCAM.2019.00037

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

DP in the behavioral analysis of Android apps.

Our approach treats the analytics infrastructure as a black

box and uses its own event frequency pre/post-processing to

achieve DP. This means that the approach can be deployed

in the current ecosystem of mobile app analytics frameworks.

The event frequency processing, which requires both static

code rewriting and run-time data manipulation, is achieved

transparently with the help of a code rewriting tool and a

run-time support layer. This allows a developer to focus on

the business logic of the app without directly creating or

manipulating DP-related code.

Contributions. The work makes the following contributions:

• We define a privacy-preserving event frequency analysis

for apps that use mobile app analytics frameworks. We

describe how randomized noise can be added to the

collected data in a way that provides well-defined privacy

protections for an app user while still reporting high-

accuracy analytics measurements to an app developer.

• We develop static code rewriting and run-time support

needed to instantiate this analysis for the popular Google

Analytics mobile app analytics infrastructure. We demon-

strate techniques that are easy to incorporate in the app

development process and enable low-effort introduction

of DP features in an existing app.

• We describe an evaluation that demonstrates the feasibil-

ity and performance of the proposed techniques.

Mobile apps are used pervasively. They have access to a

wide range of data that can be used to make inferences about

app user features and behaviors. Such data is being collected

on a massive scale. This provides strong motivation to study

privacy-preserving techniques for mobile app analytics. Our

current work, as well as future efforts based on it, could help

establish well-founded approaches to address this challenge.

II. BACKGROUND: ANALYTICS FOR ANDROID

There are several analytics infrastructures that offer full-

stack solutions to an app developer. Google Analytics (GA) [2]

and its successor Firebase [3] are among the most popular

ones. They allow a developer to collect and conduct various

analyses against users’ data. Facebook [4], Yahoo [9], and

several others also provide similar services. Even though their

policies [10]–[13] require developers to avoid recording (or at

least to anonymize) user-identifiable information, users may

still be left vulnerable to data breaches and surveillance by

infrastructure providers and app developers [14]–[16].

A recent study of thousands of popular Android apps [5]

has identified that Google Analytics was used by 42% of the

analyzed apps. This popularity motivates our focus on privacy-

preserving analysis for GA; however, the theoretical machinery

and program analyses are general and should be applicable to

other analytics libraries. One of the key features of GA is to

provide the frequency of screen view events. Such frequency

information helps a developer understand how users interact

with her app, by quantifying user engagement and behaviors.

A screen view event is defined by the developer to track a

user’s visit to a specific screen within an app. Conceptually,

1 class ParKingApplication extends Application {
2 Tracker t;
3 Tracker a() {
4 if (t == null) {
5 GoogleAnalytics i =
6 GoogleAnalytics.getInstance(this);
7 t = i.newTracker(R.xml.global_tracker); }
8 return t; } }

9 class AutoParkActivity extends Activity {
10 Tracker t;
11 void onCreate(...) {
12 t = ((ParKingApplication)getApplication()).a(); }
13 void onResume() {
14 t.setScreenName("AutoParkActivity");
15 ScreenViewBuilder b = new ScreenViewBuilder();
16 t.send(b.build()); } }

(a) Decompiled code

1 <resources>
2 <string name="ga_trackingId">UA-65112504-3</string>
3 </resources>

(b) global_tracker.xml

(c) GA report

Fig. 1. Example derived from ParKing.

it is identical to a pageview for web analytics. GA, as well as

other similar analytics libraries, allows a developer to insert

API calls to track such events and to send information about

them to backend servers (which themselves are maintained by

Google, Facebook, etc.) for further analysis.

A. Running Example

GA is offered by Google to app developers to collect de-

tailed statistics about user information and behaviors including

session duration, user-triggered events, etc. For example, GA

can track when the user has navigated to a particular screen

in the app, or has performed an action such as sharing content

with someone from her contact list. As another example, e-

commerce data could be gathered, including product clicks,

viewing product details, adding a product to a shopping cart,

transactions, and refunds. The GA framework is general and

the type of data being collected is up to the app developer.

To illustrate GA’s capability of screen view event track-

ing, we use the example in Fig. 1. The ParKing
app [17] navigates users to parking places, records his-

tory of parking locations, and reminds users about parking

269

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

time. It has over 100K installs via Google Play. Fig. 1a

shows a snippet of decompiled code from the app. Class

ParKingApplication maintains a global context and its

instance is retrieved via getApplication (line 12). Classes

GoogleAnalytics and Tracker are helper classes to

create and send data to Google’s remote server. Method

ParKingApplication.a creates a Tracker singleton at

line 7 by calling GoogleAnalytics.newTracker with

the resource ID of an XML file containing a Google-provided

tracking ID, which is shown in Fig. 1b. All data recorded for

this ID can be accessed by the developer of ParKing. We

utilize this API in experiments to redirect all tracking data in

closed-source apps to our own GA account.

Activities are the core components in Android apps. An

activity displays a window containing GUI widgets. Class

AutoParkActivity shows a screen with settings for

automatic parking detection. The onCreate callback is

called when an activity is created. It retrieves and stores

the Tracker to field t at line 12. When an activity

comes to the foreground, its onResume callback is invoked.

Lines 14–16 create a screen view event and send it to the

GA servers. A screen represents some displayed content.

Each screen has a unique string name that is used as an

identifier. A call to Tracker.setScreenName at line 14

records a name for the current screen as “AutoParkActiv-

ity”. GA uses the builder pattern for creation of events.

ScreenViewBuilder at line 15 is the helper class to build

the event. ScreenViewBuilder.build returns a map

containing data for the event together with other GA-internal

data. The call to Tracker.send at line 16 uploads the event

to Google’s backend servers.

Besides activities, developers can specify other GUI com-

ponents as screens, e.g., fragments. We inspected the app

code and determined that there are 11 screens: “AboutAc-

tivity”, “AutoParkActivity”, “CompassActivity”, “HelpActiv-

ity”, “HistoryFragment”, “LastParkingFragment”, “ParkActiv-

ity”, “SettingsActivity”, “Splash”, “TransparentActivity”, and

“ZoneEditorActivity”. One of the challenges is to identify all

possible screen names automatically. Technical details about

our solution will be provided in later sections.

Google aggregates data from many app users and provides

the result to the app developer. Fig. 1c is a sample report

of screen view events in ParKing from GA’s website. We

have replaced the app’s tracking ID with ours so that all

data from our app runs is sent to our account. GA supports

generation of reports for specific types of users (the orange

box) within a certain time period (the blue box). The report

contains a histogram of all screens, including their names and

frequencies, as shown in the red and purple dotted boxes.

B. User Privacy

GA and similar analytics frameworks provide some rudi-

mentary privacy protection. For example, an app developer

can instruct GA to remove the last octet of the IP address

being recorded. As another example, Google’s guidelines for

app developers are to avoid collecting personally-identifiable

information such as names, etc. However, to the best of

our knowledge, there is no systematic enforcement of such

protection mechanisms. Furthermore, even seemingly-innocent

information that has been anonymized can lead to real pri-

vacy leaks when combined with additional information from

other sources [14], [15], [18]. For example, existing analytics

frameworks assign a pseudonym to each user. Developers can

use the pseudonym to make requests to other services, such

as Google Ads and Tag Manager. This mechanism allows

developers to track seemingly-independent actions and devices

for user identification [16], [19]. Screen view tracking reveals

a user’s access to certain software components that reflects

her interests and patterns using the app. This, together with

the user identification threat, could be utilized, for instance,

for targeted advertisement. We propose a principled solution

to protect users’ screen view behaviors while still allowing

developers to obtain meaningful results without modifying the

underlying analytics infrastructures.

III. BACKGROUND: DIFFERENTIAL PRIVACY

A. Overview

The goal of differential privacy is to protect against a broad

class of privacy attacks. Consider a situation where certain

data is released intentionally by a party that has that data,

in order to serve some data analytics goals. The data is

legitimately released to government/business/research entities,

but it is assumed that an adversary will also gain access to it.

The adversary attempts to learn private individual information

from the released data. Examples of such attempts are re-

identification of persons, linking of records from different

sources, and differencing attacks (e.g., comparing statistics

before and after an event of interest). Here “adversary” is

used broadly: for example, data released by the user to some

company under certain terms may later be obtained by another

company (e.g., as part of a corporate takeover) and used in a

manner that was not anticipated by the user. As another exam-

ple, data shared with some organization could be subpoenaed

in legal proceedings despite the user’s expectations.

Differential privacy (DP) [6], [20], [21] is a powerful

method to defend, with formal guarantees, against privacy

attacks. An adversary observing the DP analysis output will

essentially make the same inference about any individual’s

private information, regardless of whether or not that informa-

tion is part of the analysis input. Its strong privacy guarantees

make DP an attractive alternative to other privacy-preserving

techniques, as elaborated elsewhere [20]. DP solutions have

been studied extensively by researchers and been deployed in

practice (e.g., by Google [7], Apple [8], Uber [22], and the

U.S. Census Bureau [23]). The rest of this section will focus

on DP aspects that are relevant to mobile app analytics.

In the centralized DP model, individuals’ private data is

provided to a trusted data curator, where DP analysis is

performed and its results are released to untrusted analysis

clients. In the local DP (LDP) model, the curator is not trusted;

in fact, the curator itself could be an adversary. For such LDP

problems, each user performs local data perturbation before

270

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

releasing any information to the curator (and, by extension, to

any adversaries). The LDP model is a natural match for mobile

app analytics. The app user releases data to the curator (e.g.,

Google, if the app uses GA). The curator analyzes the data

and provides the results to the analysis client—that is, to the

app developer. Regardless of the actions of the curator or the

app developer, the design of the LDP analysis provides formal

privacy guarantees to the app user, as described shortly.

B. LDP Frequency Estimates

We illustrate LDP analysis using a fundamental problem in

data analytics: constructing estimates of data item frequencies.

This problem is closely related to many other analytics prob-

lems, including counting (e.g., number of individuals whose

data satisfies some predicate), histograms (e.g., counts of data

in disjoint categories), heavy hitters (e.g., most frequently oc-

curring items), distribution estimation, regression, clustering,

and classification.

Consider a set of n app users. Each user i ∈ {1, . . . , n}
has a single data item vi from some data dictionary D that

is pre-defined by the app developer based on her analytics

needs. For any v ∈ D, its frequency is f(v) = |{i ∈
{1, . . . , n} : vi = v}|. The app developer’s goal is to obtain the

histogram defined by f(v) for all v ∈ D. An LDP solution

to this problem will apply a local randomizer R : D → Z
to each user’s item vi. The resulting zi = R(vi) is sent to

the LDP curator. Following convention, we will refer to this

curator as “server”, which is also a terminology well-suited for

existing mobile app analytics infrastructures such as Google

Analytics/Firebase. The server collects all zi and uses them

to compute a frequency estimate f̂(v) for the real frequency

f(v) of each v ∈ D.

The design of the local randomizer R is parameterized

by a privacy loss parameter ε. Intuitively, this parameter

characterizes how much knowledge an adversary could gain

by observing the randomizer’s output R(vi). An ε-local ran-

domizer R satisfies the following property:

∀v, v′ ∈ D, z ∈ Z : Pr[R(v) = z] ≤ eε Pr[R(v′) = z]

Here Pr[a] denotes the probability of a. The randomization

achieves privacy by allowing plausible deniability: if a user

has item v and as a result z = R(v) is reported to the server,

the observation of that z (by the server or by an adversary)

does not reveal “too much” information about which item

was actually held by the user. This is because the probability

Pr[R(v′) = z] that the item was some other v′ is close (by

a factor of eε) to the probability Pr[R(v) = z] that the item

was the actual v. The privacy loss parameter is used to limit

and quantify what can be learned about a user as a result of

her data item being included in the analysis. Larger values of

ε result in less privacy but higher accuracy.

Clearly, the introduction of random noise affects the accu-

racy of the frequency estimates reported by an LDP analysis.

This accuracy is typically measured based on the �∞ norm

of the difference between the vector of actual frequencies and

the vector of estimates [21], that is, maxv∈D |f̂(v)− f(v)|.

Fig. 2. Design overview.

IV. OVERVIEW OF LDP SCREEN EVENT FREQUENCY

ANALYSIS

Screen view events, introduced in Section II, track each

user’s views of particular screens in an app. They are one

of the most fundamental data items being collected in mobile

app analytics. They feature prominently in all popular analytics

frameworks for Android apps: Google Analytics, Google Fire-

base, Facebook Analytics, and Yahoo Flurry. These platforms

allow developers to conduct various analyses on such data. For

instance, funnel analysis visualizes users’ engagement for each

screen and identifies screens that many users are not converting

through. The analysis results allow potential optimizations in

the design and business logic of an app.

In addition to gathering statistics to characterize the entire

community of app users, such data is also used for analy-

sis of each individual’s behavior patterns—for example, to

determine her interests for targeted advertisement, or even

for fingerprinting for user identification [16]. Each user is

assigned an (anonymized) identifier at her first use of the app

and any following data collection will contain this identifier.

This enables developers/analysts to link a user’s behavior data,

e.g., viewing some screens that contain sensitive content, with

existing data and models (possibly from third-party sources)

to connect seemingly independent actions by the user [19].

Despite the potential for such user identification/tracking,

as well as other related privacy concerns [24]–[27], current

analytics frameworks for mobile apps do not provide protec-

tion for users’ screen view data. We propose to address this

problem by introducing LDP into the data collection, with

transparent pre- and post-processing steps. Existing analytics

infrastructures for mobile apps do not have LDP features

and there is no prior work on performing LDP analytics in

them. Achieving LDP without any changes to the underlying

analytics infrastructure is a challenge. We tackle this challenge

using the design outlined in Fig. 2.

On top of the standard analytics libraries running on the

user’s device, we introduce a layer that implements local

randomization. To make the discussion more concrete, we

describe the components of this layer for an instance of the

approach specific to Google Analytics. Similar structure and

behavior would be applicable to other analytics frameworks.

Relevant GA API calls (e.g., Tracker.send in Fig. 1)

can be automatically redirected to corresponding proxy APIs

(e.g., Proxy.send). This redirection can be achieved with

an automated code rewriting tool. As described later, our

concrete implementation uses the Soot code analysis/rewriting

framework [28], but many other choices are also available. The

proxy API methods coordinate the remaining components. The

271

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

randomizer component, which is described in the next section,

applies the local randomization and sends the relevant events to

the dispatcher component. The dispatcher maintains a queue of

pending events and periodically makes GA API calls to deliver

them to the GA layer. The dispatcher also makes unsent events

persistent when the app is closed, to allow sending when the

app is reopened. Our implementation utilizes JobService
in Android for scheduling and SQLite for storing events. One

GA-specific implementation detail is that the GA layer drops

events if they arrive too frequently. The dispatcher ensures that

events are forwarded to the GA layer with sufficient delays

between them. GA also records event timestamps. Since the

dispatcher delays the dispatching of events, perturbation of

timestamps is achieved in an ad hoc manner. In the future it

would be interesting to consider more principled approaches

for randomization of event timestamps.

The implementation layer is built at the time the app is

created, and distributed as part of the app code when the app

is published in an app market. The code in this layer should

be open-source and created by a trusted party (e.g., privacy

researchers). App-specific configuration parameters (e.g., the

privacy loss parameter ε) are defined by the app developer at

app assembly time. On the user’s device, there are no changes

to the standard analytics API implementations that process

events and send them to the server. The analytics server is

completely unaware of the fact that there is any DP aspect to

the data collection. After the server reports its results, they are

post-processed by the app developer (as described below) to

obtain the actual estimates of the desired analytics data. Such

a “black box” solution is easy to deploy today.

V. DESIGN AND IMPLEMENTATION OF LDP SCREEN

EVENT FREQUENCY ANALYSIS

This section elaborates on the details of the approach

outlined in the previous section. Recall that each screen in the

app has a string identifier and the app uses GA API calls to

send screen view events to the server (lines 14–16 in Fig. 1a).

The GA event frequency reports, similar to the one shown

in Fig. 1c, can be created using local randomization and then

post-processed to account for the effects of this randomization.

Next, we describe the building blocks of this solution.

A. Obtaining LDP Frequency Estimates

The problem we define is a generalization of the frequency

problem from Section III-B. While in that problem each user

reports a single data item, here each user reports a sequence

of items. Each app user has an integer id i ∈ {1, . . . , n}. Such

ids are used for the conceptual definition and are not needed

in a practical implementation. The set of string identifiers for

screens defines a data dictionary D. For example, as described

in Section II-A, ParKing has 11 strings in its dictionary. For

ease of notation, assume that D = {1, . . . , d}. As with user

ids, these event ids are used only for explanation purposes.

Data collection is performed for all n users over some period

of time. During this period, user i generates a sequence of

screen view events v1i , v
2
i , . . . , v

k
i where vji ∈ {1, . . . , d}. To

(a) Regular GA workflow

(b) LDP workflow using baseline randomizer R with ε = ln(9)

Fig. 3. Regular analysis vs LDP analysis, with two app users.

simplify the discussion, assume that each user generates the

same number of events k. If this is not the case, conceptual

“padding” events with no effect can be introduced. The event

sequence v1i , v
2
i , . . . , v

k
i can be thought of as a histogram

xi ∈ N
d—that is, a d-dimensional vector of frequencies, where

xi[v] ∈ N is the number of occurrences of v in the sequence.

In a non-LDP setting, all events vji for all users i are sent to

the GA server, which aggregates their counts and produces a

histogram H =
∑

i xi, where the summation is element-wise

for vectors xi. For any v ∈ D, its frequency is H(v). The

resulting histogram is similar to the one shown in Fig. 1c.

Example. Fig. 3a illustrates this scenario with two app users.

The data shown in the example was obtained by running

the Monkey GUI testing tool [29] on the ParKing app.

Monkey randomly triggers GUI events that result in GA API

calls inside the app code. Two different Monkey runs were

used to obtain the data representing the two app users. Each

user produces 100 events. In the figure, the corresponding

histograms are denoted by x1 and x2. Note that GA does

not send the histograms to the server, but rather the individual

events that were observed. The server adds up the event counts

from the two users and reports the resulting histogram H .

The next subsection describes the design of the local ran-

domizer for this problem. As with existing solutions for the

single-item-per-user problem from Section III-B (e.g., [7],

[30]), our solution for the generalized problem presented in

this section is based on the technique of randomized response
described below. While it may be possible to define more

advanced solutions with better theoretical accuracy and cost

(e.g., generalization of [31], [32]), they would require signifi-

cant “white box” re-design of the analytics infrastructure and

would not be easily deployed. Instead, we define an approach

272

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

that keeps the existing analytics infrastructure intact.

Randomized response is a classic technique that has been

used in social sciences to gather sensitive data (e.g., about

illegal or embarrassing behaviors). For our analysis problem,

randomized response would add noise to each observed event

vji by probabilistically (1) ”dropping” event vji and/or (2)

spuriously reporting other events when vji is observed.

Formally, an ε-LDP solution applies an ε-local randomizer

R : Nd → N
d. The resulting zi = R(xi) is sent to the server.

The server, which is LDP-unaware, computes a histogram

Ĥ =
∑

i zi and reports it to the app developer. The app

developer performs post-processing of Ĥ to compute, for each

v, an estimate f̂(v) for the actual frequency f(v) = H(v) that

would have been observed without differential privacy.

Example. Fig. 3b illustrates the steps of the LDP solution.

Each user i, independently of any other users or the server,

applies R to her real event sequence to generate a randomized

event sequence. (The definition of R will be presented shortly.)

All resulting events are sent to the GA server. In the figure,

zi denotes the histogram for this new sequence. The data was

obtained by applying our technique to the real GA events in

ParKing that were used for xi in Fig. 3a. Value ε = ln(9)
is used in prior work [7] and reused here.

Comparing xi with zi, it is clear that significant noise

was added by R to each user’s data. The server adds up the

counts of reported events and provides the resulting histogram

Ĥ = z1 + z2 to the app developer. The developer performs

post-processing of Ĥ (described later) to obtain the f̂(·)
frequency estimates. The accuracy of these estimates—that

is, their differences from the real histogram H in Fig. 3a—

depends on the number n of app users and on the value of ε.
In this particular example, the number of users is very small

(n = 2) and the estimates are rather inaccurate. Section VI

presents an extensive experimental evaluation of the accuracy

that can be achieved in realistic scenarios.

B. Design of the Local Randomizer

One standard choice for the desired properties of R is

based on the notion of user-level privacy [21]. In our context,

the definition is as follows. Consider event sequences v1, v2,
. . . , vk and v′1, v

′
2, . . . , v

′
k and their corresponding histograms

x ∈ N
d and x′ ∈ N

d. An ε-local randomizer satisfies

∀z ∈ N
d, ∀x, x′ ∈ N

d : Pr[R(x) = z] ≤ eε Pr[R(x′) = z]

In essence, the observation of z by an adversary provides very

little information about the user’s real event sequence, as (with

high probability) any other event sequence could have been the

user’s raw data before randomization.
1) Baseline Local Randomizer: We first define a baseline

randomizer R. Refinements of this solution are described later.

For any v ∈ D, let r(v) be a subset of D defined as follows:

• v is included in r(v) with probability (e
ε
2)/(1 + e

ε
2)

• for any v′ �= v, v′ is included in r(v) with probability

1/(1 + e
ε
2)

Given a sequence of events v1i , v
2
i , . . . , v

k
i which corresponds

to a histogram xi ∈ N
d, consider the multi-set that is the union

for (String name : D) {
if (name.equals(observed)) {

if (rand() <= THIS_PROBABILITY) {
// probability: exp(epsilon/2)/(1+exp(epsilon/2))
send(name); }

} else if (rand() <= OTHER_PROBABILITY) {
// probability: 1/(1+exp(epsilon/2))
send(name); } }

Fig. 4. Pseudo-code for event randomization.

of all r(vji). The histogram zi ∈ N
d for this multi-set is R(xi).

Fig. 3 shows examples of xi and zi.
This approach can be implemented on demand: every time

we observe an event vji at run time, r(vji) is computed and

the resulting events are sent to the GA server. The pseudo-

code for this processing is shown in Fig. 4. The call to rand
returns a new pseudo-random number ∈ [0, 1). This processing

is executed each time an event is observed. The cumulative

effect over the entire event sequence is equivalent to applying

a histogram randomizer R : N
d → N

d. However, instead

of computing histogram xi first and then applying R, we

randomize each event as soon as we see it, which achieves

the same effect as directly computing zi = R(xi).
To obtain the frequency estimate f̂(v) for each event v,

the app developer adjusts the server-reported count Ĥ(v) to

”undo” the effects of the added noise:

f̂(v) =
(1 + e

ε
2)Ĥ(v)− nk

e
ε
2 − 1

(1)

Here n is the number of users and k is the number of real

events per user. This equation can be derived by considering

the expected value of Ĥ(v), which is f(v)(e
ε
2 /(1 + e

ε
2)) +

(nk − f(v)) (1/(1+e
ε
2)) since there are f(v) occurrences of v

and nk−f(v) occurrences of v′ �= v across all n users. Based

on this, the expected value of f̂(v) is the real frequency f(v).
Thus, f̂(v) is an unbiased estimator of f(v).
Example. Consider the v for which Ĥ(v) = 71 in Fig. 3b.

We have ε = ln(9) and e
ε
2 = 3. After post-processing, f̂(v)

becomes (4× 71− 2× 100)/(3− 1) = 42, which matches the

f̂(·) value shown in Fig. 3b. If the estimate becomes negative,

the reported frequency is 0. For example, the first bar for Ĥ
in Fig. 3b has the value of 42. Since (4 × 42 − 2 × 100) is

negative, the first bar for f̂(·) has zero height.
2) Achieving Trade-Offs via Sampling: For user-level pri-

vacy, the randomizer R defined above is a kε-local randomizer:

the level of privacy protection is worsened by a factor of k,

where k is the length of the user’s event sequence. Intuitively,

instead of “hiding” a single event, the randomization now has

to hide k events. Given the practical consideration that k would

often be large (e.g., hundreds of events), achieving useful user-

level privacy presents a significant challenge due to the large

value of kε and the resulting weakened privacy guarantees.

Another challenge is the potential overhead of this approach.

For each event vji observed at run time, all events in r(vji)
are sent to the analytics server. The expected size of r(vji) is

(d − 1 + e
ε
2)/(1 + e

ε
2). Thus, the overhead depends on the

size of D. For illustration, consider d = 11 as in the running

273

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

example, and e
ε
2 = 3. In this case, for each real event there

will be 3.25 events on average reported to the server.

To address these challenges, we employ sampling [32], [33].

Each user assigns herself independently and randomly to one

of several subsets of {1, . . . , k}. Each such subset is of size t,
where t is a small constant independent of the number of users

n and the event sequence length k. Instead of considering all of

its k real events, the user only considers the t real events whose

indices are in the user’s subset. These t events are randomized

and the results are reported to the server. We develop a simple

implementation of this approach which does not require any

synchronization with the server or other users. For any user i,
when the analytics infrastructure is initialized, t independent

random values from {1, . . . , k} are drawn (without repetition)

and recorded. For any event vji , index j is checked against

this set of t values. The event is ignored if j is not in this set.

Using this sampling achieves two important goals. First,

the privacy guarantees for user-level privacy are significantly

improved: instead of having a kε-local randomizer, we now

have a tε-local randomizer where t is a small constant. Further,

the overhead of extra events is reduced: instead of incurring

this overhead k times, we incur it t times. Although sampling

could reduce accuracy, our experiments indicate that for real

Android apps it is possible to achieve practical accuracy when

there is a sufficiently large number of app users.

C. Implementation via Code Analysis and Rewriting

The approach described above was implemented with the

help of several components, following the design from Fig. 2.

We built a proxy for GA APIs, as well as a code rewriting tool

that takes as input an app’s APK and automatically replaces

GA API calls with calls to the corresponding proxy APIs. This

rewritten code, together with our implementation layer, is then

packed back into a new APK which can later be installed on

a user’s device. This approach has the advantage that the app

developer does not have to write any DP-related code.

More specifically, the proxy is initialized immediately af-

ter the call to GoogleAnalytics.getInstance. This

initialization includes the creation of the randomizer and the

dispatcher, as well as loading of the embedded dictionary D
discussed shortly. We insert code to record each GA tracker

created by GoogleAnalytics.newTracker for later use

in the dispatcher. In our experiments, we replaced it with our

own tracking ID so that all traffic was redirected to our GA

account. For each call to Tracker.send, we replace it with

a call to the Proxy.send method, in which the screen view

event is randomized and sent to the dispatcher. The dispatcher

stores every perturbed event into a local SQLite database.

Android’s JobService is then used to periodically fetch

unsent events from the database and invoke Tracker.send
with the recorded tracker and sufficient delays to deliver the

event to Google’s backend server.

The randomizer is parameterized by ε, t, and k. Only

the first k events from a user are considered; this increases

privacy by limiting the amount of information released to the

server. Randomization also depends on the dictionary D. Our

xml_id:global_tracker obj:Tracker

field:ParKingApplication.t

field:AutoParkActivity.t

mtd:setScreenName mtd:send

string_const:"AutoParkActivity"

obj:ScreenViewBuilder

mtd:build

variable:map

Fig. 5. Simplified constraint graph for the running example.

implementation takes as input a dictionary per tracker in XML

format and encodes it in the library during code rewriting,

together with the parameters described above.

The dictionary D is defined by the app developer based on

the desired app analytics. To reduce the developer’s effort for

constructing this dictionary, we built a static code analysis to

track the flow of string constants. The output of this analysis

can be used by the developer as a starting point for defining

the dictionary. Of course, in the general case no static analysis

can determine all run-time strings that could be used as

screen names. Nevertheless, our experience with several close-

sourced apps (described in the next section) demonstrated that

our analysis significantly reduced the effort to define D.

The analysis algorithm considers relevant API calls (e.g.,

setScreenName at line 14 in Fig. 1) to determine the screen

names that flow into calls to send (e.g., at line 16). For

each GoogleAnalytics.newTracker call site, it creates

an artificial object representing the corresponding Tracker
instance. It then propagates references to these objects, as

well as references to string constants, to setScreenName
calls. This information is used to determine the possible screen

names associated with each Tracker. There are two types

of strings that are considered: string constants in the code and

strings defined in XML resources. The propagation is done

via a value-flow analysis similar to control-flow-insensitive,

calling-context-insensitive, field-based points-to analysis [34].

The static analysis also creates an object for each new
ScreenViewBulder site. These objects are propagated to

build calls (e.g., line 16 in Fig. 1). The resulting objects,

which are maps storing information about the GA event to be

sent, are then propagated to send calls. The Tracker objects

are also propagated to the send calls. Note that the example

in Fig. 1 shows straightforward propagation of such object

references, but the analysis can handle the general case where

the propagation is done through a sequence of assignments,

parameter passing, and method returns. Since the analysis

is field-based [34], it handles aliasing for object references.

The resulting analysis solution determines which tracker is

responsible for sending which screen view event, as well as

what screen names are attached to each event. We record

these associations during the static value-flow propagation.

This information is then added in the app’s APK as part of

the implementation layer.

Fig. 5 presents a simplified constraint graph of the

running example. Nodes in the graph correspond to

274

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

objects, methods, variables, fields, and resources such

as strings and IDs. Edges correspond to the flow

of values. During the analysis, string constant “Au-

toParkActivity” is propagated to setScreenName (node

“mtd:setScreenName”), the ScreenViewBuilder object

(node “obj:ScreenViewBuilder”) is propagated to send (node

“mtd:send”), and the tracker object (node “obj:Tracker”) is

propagated to the two methods. Using this propagation, we

can determine that the tracker with tracking ID stored in

global_tracker.xml is used to send screen view events

with name “AutoParkActivity”. This analysis identifies the 11

screen names in the ParKing app described in Section II-A.

One technical detail is that the app developer may have pro-

vided an incomplete dictionary and as a result the randomizer

occasionally may observe run-time events that are not in D.

It is easy to recover on-the-fly when an unknown event v is

observed on a user’s device. First, this event is added to set

D locally. Next, all real events for this user that were already

processed and randomized are revisited. For each such past

event, v is reported with probability 1/(1+e
ε
2). In effect, this

is equivalent to the processing that would have been performed

in the past had the dictionary been D ∪ {v} at that time.

VI. EXPERIMENTAL EVALUATION

Our implementation of LDP analysis for GA screen view

events was based on app analysis and rewriting with the

Soot analysis/rewriting framework [28]. The experiments were

performed on two machines with Xeon E5 2.2GHz and 64GB

RAM. To generate GUI events that simulate user actions

(and internally trigger GA events) we utilized the Monkey

tool for GUI testing [29]. All experimental subjects, source

code for the static analysis and code writing, scripts to

manage Monkey runs, and intermediate results are available

at http://web.cse.ohio-state.edu/presto/software.

A. Study Subjects

We analyzed a corpus of the most popular apps in each

category in the Google Play store, and identified apps that

include GA API calls. The static analysis was used to construct

an potential dictionary D of string identifiers for screens in

each app. Since we did not have the app knowledge that the

developers had when they added GA screen view tracking, and

furthermore the apps were close-sourced, we performed run-

time validation and manual code inspection of the decompiled

code to ensure that we used the correct dictionary in our

experiments. The run-time validation used several independent

runs of the Monkey tool to trigger different GUI behaviors

(and thus different sequences of GA screen view events).

For our experiments, we selected 15 subjects that covered a

representative range of values for |D| and for which Monkey

achieved high run-time coverage of the dictionary.

Table I describes the characteristics of these subjects. The

names of the studied apps are listed in column “App”. Columns

“#Classes” and “#Stmts” show the numbers of classes and

statements in Soot’s Jimple IR, excluding some well-known

third-party libraries such as com.google, org.joda and

TABLE I
STUDY SUBJECTS.

App #Classes #Stmts |D| Time (s)

SpeedLogic 119 5881 10 0.51 + 13.3
ParKing 543 37478 11 1.84 + 17.6

DPM 10859 939666 12 80.2 + 67.0
Barometer 668 52252 13 1.91 + 32.5
LocTracker 269 24575 14 1.10 + 21.6

Vidanta 2652 162705 15 12.4 + 36.0
MoonPhases 295 44522 16 1.24 + 18.2
DailyBible 3297 332708 17 11.4 + 57.5

DrumPads 1449 126951 17 5.73 + 60.5
QuickNews 3297 332708 17 12.3 + 57.3

Posts 3297 332708 17 13.3 + 56.8
Mitula 1522 120347 20 5.73 + 29.3

KFOR 3708 284581 29 13.9 + 40.2
Equibase 1697 127290 35 7.85 + 25.3

Parrot 1869 120470 64 6.53 + 25.9

org.apache. The size of dictionary for each subject is

shown in column “|D|”. As described earlier, we chose apps

that cover a representative range of dictionary sizes, in order

to study their effect on overhead. Column “Time (s)” shows

the running time of the static analysis (the first number) and

code rewriting (the number after the “+”). The average cost of

the static analysis is 5.78 seconds per 100K Jimple statements.

The cost of code rewriting mainly depends on the size of the

app and Soot’s performance on code transformation and is

22.4 seconds on average across all apps.

B. Accuracy

For our evaluation, we extended the implementation with

testing/profiling infrastructure that allows experimentation

with various analysis parameters. That same infrastructure

could be used by app developers to understand the characteris-

tics of their LDP app analytics and to fine-tune the parameters

of the data collection to achieve the desired trade-offs.

We utilized Monkey [29] to simulate user interactions, by

issuing GUI events every 200 ms until k = 100 GA screen

view events were triggered by those GUI events. For each

app, we installed and ran it on 100 emulators in parallel to

simulate n = 100 users’ interactions with that app. Each of

the 100 runs used a different seed for Monkey’s generation

of random GUI events, thus triggering a different sequence of

screen view events. Since we had to repeat this process several

times per app (e.g., to study the effects of sampling and the

choice of ε), in each repetition of the 100 Monkey runs we

used the same set of 100 seeds for Monkey. Note that this

randomization for Monkey is unrelated to the randomization

used by the local randomizer R to compute the probabilities

for including/excluding events. To account for the variability

in the behavior of R under the same Monkey run and under

the same choice of all other parameters (e.g., ε), every reported

metric was measured 20 times, in 20 independent repetitions of

the same experiment. The variations among the 20 repetitions

were entirely due to R. For the metrics, we collected the mean

over the 20 repetitions, as well as the 95% confidence interval.

The execution of many thousands of Monkey runs, even

with emulators running in parallel, is prohibitively expensive

275

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

(a) With sampling (b) Without sampling

Fig. 6. Accuracy.

for evaluations with a large number of users n. To facilitate

the simulation of thousands of users, we conducted offline

runs based on the traces of real run-time events (i.e., the input

to the randomizer R) gathered during the Monkey runs for

n = 100. There were 100 such traces for each app. We ran

R offline on all such traces 10 times, all with different seeds

for R’s internal randomizations, to generate 1000 estimated

histograms for each app. This simulates the scenario when an

app is used by n = 1000 users. The same process was repeated

for n = 10000. We calculated and reported the accuracy and

overhead based on these histograms.

Fig. 6 show the accuracy with and without sampling, with

different values of ε and number of users n. The values of

ε match those used in prior work [7]. As discussed at the

end of Section III, accuracy is measured based on the largest

difference between the estimated and actual frequencies of all

elements in the dictionary, i.e., maxv∈D |f̂(v)− f(v)|. Here

we normalize this value by dividing it by the total number

of actual screen views f =
∑

v∈D f(v). The y-axes show the

mean of 20 separate repetitions, with 95% confidence interval.

The x-axes show the names of apps sorted by |D|.
More users result in better accuracy. The nature of dif-

ferential privacy requires sufficiently large number of users

to be useful. With small values of n, high accuracy cannot

be achieved in our setting (and, in all likelihood, in similar

settings). Fig. 6 shows the dramatic improvement in accuracy

due to the increase in the number of users, for all possible

choices of other parameters. The practical implications are that

thousands of users should be included in the data gathering

in order to obtain accurate results. While the accuracy also

depends on other parameters (e.g., ε), the number of users is a

primary factor that should be considered carefully. Fortunately,

this is not a significant limitation for practical use: most non-

trivial apps have non-trivial numbers of users. For example,

for 14 out of the 15 apps used in our study, the number of

installs according to Google Play is over 100K, with several

apps having more than a million installs.

Larger ε provides better accuracy. The privacy loss param-

eter ε controls how much can be learned from a user’s data.

Larger values of ε result in higher privacy loss and better

accuracy. The top chart in Fig. 6a is based on a value of

ε = ln(9) (i.e., e
ε
2 = 3). In other words, when an event is

observed, it is reported to the server with probability 3/4 and

each other element of D is reported with probability 1/4. The

bottom chart in the figure uses a larger value of ε and as a

result the max error is reduced: for example, for ParKing
with n = 100, this reduction is from 0.48 to 0.23. The same

trend also holds without sampling, as shown in Fig. 6b.

Sampling does not hurt accuracy. Sampling achieves both

lower overhead and increased user-level privacy. However, a

natural concern is whether sampling will reduce accuracy.

The trend exhibited by our results is that high accuracy can

be achieved with large number of users. For the analysis

parameters used in our evaluation, the estimates are reasonably

accurate when n = 10000: in Fig. 6a, the max error is around

0.05 for ε = ln(9) and 0.02 for ε = ln(49). Practically, this

means that for any event, the estimated relative frequency (as

percentage of the total number of events) is a few percentage

points off its real value.

C. Overhead

Fig. 7 shows the number of events sent to the GA server,

relative to the number of real events triggered by calls to send
in the app code. In other words, we consider how many events,

on average, are produced by the local randomizer R for each

real event. We only report the measurements for 10000 users

as the conclusions for other values of n are similar. The y-axes

show the mean of 20 separate repetitions of each experiment.

Sampling reduces overhead. Recall that for each actual event,

we expect (d − 1 + e
ε
2)/(1 + e

ε
2) events to be sent to the

server; here d is the size of the dictionary. The results in

Fig. 7b meet this expectation. For example, for ParKing
we have d = 11 and about 3 events were sent per actual

event when ε = ln(9). Sampling can reduce this cost by

276

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

(a) With sampling (b) Without sampling

Fig. 7. Overhead.

a magnitude of k/t, as we are sending only t events per

k actual events. Fig. 7a shows that, by using sampling, the

overhead of additional events introduced by the randomizer

R can be controlled well. Together with the accuracy results

from Fig. 6a, these experiments indicate that practical trade-

offs between accuracy, overhead, and privacy can be achieved

when the number of users n is reasonably large.

D. Threats to Validity

The small number of subject apps poses a threat to external

validity, which we have attempted to ameliorate by selecting

apps with representative dictionary sizes. Apps with login

mechanisms are omitted due to low screen coverage, which

is another threat to external validity. The static analysis and

the run-time processing could suffer from incorrect implemen-

tation. This internal validity threat was partially addressed via

extensive testing. Another issue is that, although Monkey is a

standard tool for large-scale random testing, the “users” in the

experiments are simulated and they may not be representative

of real-world behaviors. Despite these limitations, we believe

that this study presents promising initial evidence that black-

box LDP mobile app analytics is feasible.

VII. RELATED WORK

There is growing attention to privacy in various fields of

software engineering [35], e.g., in testing [36]–[39] and defect

prediction [40]–[42]. Budi et al. [37] propose k-anonymity-

based generation of new test cases while preserving their

original behaviors. Their following work [39] extends the

approach to evolving programs. MORPH [40] preserves data

privacy of software defects in a cross-company scenario,

by perturbing instance values. CLIFF+MORPH [41] removes

dominant attributes for each class before perturbation. Li et

al. [42] adopt a sparse representation obfuscation for defect

prediction, while preserving privacy of data from multiple

sources. Although our overall goal is similar, we aim to protect

data gathered by analytics frameworks from mobile apps using

differential privacy techniques.

Several examples of prior work on differential privacy

were already discussed. There also exist several practical

realizations of LDP for data analytics. Google’s RAPPOR

combines randomized responses and Bloom filters to identify

popular URLs in the Chrome browser without revealing users’

browsing habits [7]. Apple applies DP for gathering analytics

data for emoji and quick type suggestions, search hints, and

health-related usage [8]. Samsung proposed the Harmony LDP

system to collect data from smart devices for both basic

statistics and complex machine learning tasks [43]. Microsoft

uses LDP to collect telemetry data over time across millions

of devices [44]. We are not aware of any efforts to apply these

techniques to analytics for Android apps. One challenge is that,

unlike this prior work, we need to assume that the analytics

infrastructure is LDP-unaware.

The problem considered in our work is similar in spirit

to software analytics [45] which aims to help developers

learn from software data such as app store data [46]–[50],

code repositories [51]–[56] and bug/security reports [57]–

[60]. Many companies utilize error/crash reporting systems

to collect various categories of execution information from

their users [61]. Lu et al. [62] and Liu et al. [63] leverage an

Android-native application management app with over 250M

users for app usage pattern mining. Böhmer et al. [64] conduct

analysis on usage logs of thousands of users for three popular

apps. PMP [65] is deployed to collect users’ data protection

decisions to help make privacy recommendations for over

90K users. GAMMA [66] continuously gathers and analyzes

execution information from a large number of users through

lightweight instrumentation. Liblit et al. [67] gather execution

data from a large distributed community of users running a

program remotely. Their approach samples the data and sends

it to a central database for later isolation of bugs.

VIII. SUMMARY

We demonstrate that LDP features can be added to existing

screen event analytics in Android apps without changes to

the underlying analytics infrastructure. The proposed approach

increases user privacy, requires little effort from app devel-

opers, and does not sacrifice analytics accuracy. There are

many other interesting software analytics problems for mobile

apps. Rather than simple frequency counts, more powerful

LDP analyses could be performed [32], [33], [68]–[70]. Future

work should consider such analyses as well as the necessary

tool support for app developers, including related app code

analyses and rewriting, to enable deployment of LDP solutions

with ease and confidence.

Acknowledgments. We thank the reviewers for their valuable

feedback. This material is based upon work supported by the

National Science Foundation under Grant No. CCF-1907715.

277

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Yale Privacy Lab, “App trackers for Android,” https://privacylab.yale.
edu/trackers.html, Nov. 2017.

[2] Google, “Google Analytics,” https://analytics.google.com, Jun. 2019.
[3] ——, “Firebase,” https://firebase.google.com, Jun. 2019.
[4] Facebook, “Facebook Analytics,” https://analytics.facebook.com, Jun.

2019.
[5] Exodus Privacy, “Most frequent app trackers for Android,” https://

reports.exodus-privacy.eu.org/reports/stats/, Jun. 2019.
[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to

sensitivity in private data analysis,” in TCC, 2006, pp. 265–284.
[7] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized

aggregatable privacy-preserving ordinal response,” in CCS, 2014, pp.
1054–1067.

[8] Apple, “Learning with privacy at scale,” https://machinelearning.apple.
com/2017/12/06/learning-with-privacy-at-scale.html, Dec. 2017.

[9] Oath, “Flurry,” http://flurry.com, Jun. 2019.
[10] Google, “Measurement protocol/SDK/user ID policy,” https://developers.

google.com/analytics/devguides/collection/android/v4/policy, Jun. 2019.
[11] ——, “Google Analytics for Firebase use policy,” https://firebase.google.

com/policies/analytics, Jun. 2019.
[12] Facebook, “Facebook platform policy,” https://developers.facebook.com/

policy, Jun. 2019.
[13] Oath, “Flurry analytics terms of service,” https://developer.yahoo.com/

flurry/legal-privacy/terms-service/flurry-analytics-terms-service.html,
Aug. 2018.

[14] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in S&P, 2008, pp. 111–125.

[15] ——, “De-anonymizing social networks,” in S&P, 2009, pp. 173–187.
[16] A. Goldfarb and C. E. Tucker, “Privacy regulation and online advertis-

ing,” Management Science, vol. 57, no. 1, pp. 57–71, 2011.
[17] TalentApps, “ParKing: Where is my car? Find my car - Automatic,”

https://play.google.com/store/apps/details?id=il.talent.parking.
[18] I. Dinur and K. Nissim, “Revealing information while preserving pri-

vacy,” in PODS, 2003, pp. 202–210.
[19] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending

against third-party tracking on the web,” in NSDI, 2012, pp. 12–12.
[20] A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker,

K. Nissim, D. R. O’Brien, T. Steinke, and S. Vadhan, “Differential
privacy: A primer for a non-technical audience,” Vanderbilt Journal of
Entertainment and Technology Law, vol. 21, no. 1, pp. 209–276, 2019.

[21] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

[22] Uber, “Uber releases open source project for differ-
ential privacy,” https://medium.com/uber-security-privacy/
differential-privacy-open-source-7892c82c42b6, Jul. 2017.

[23] A. Dajan, A. Lauger, P. Singer, D. Kifer, J. Reiter, A. Machanava-
jjhala, S. Garfinkel, S. Dahl, M. Graham, V. Karwa, H. Kim,
P. Leclerc, I. Schmutte, W. Sexton, L. Vilhuber, and J. Abowd,
“The modernization of statistical disclosure limitation at the U.S.
Census Bureau,” https://www2.census.gov/cac/sac/meetings/2017-09/
statistical-disclosure-limitation.pdf, Sep. 2017.

[24] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,
M. Allman, C. Kreibich, and P. Gill, “Apps, trackers, privacy, and
regulators: A global study of the mobile tracking ecosystem,” in NDSS,
2018, pp. 1–15.

[25] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee, “The price of free:
Privacy leakage in personalized mobile in-apps ads.” in NDSS, 2016.

[26] H. Feng, K. Fawaz, and K. G. Shin, “LinkDroid: Reducing unregulated
aggregation of app usage behaviors,” in USENIX Security, 2015, pp.
769–783.

[27] S. Seneviratne, H. Kolamunna, and A. Seneviratne, “A measurement
study of tracking in paid mobile applications,” in WiSec, 2015.

[28] Sable, “Soot analysis framework,” http://www.sable.mcgill.ca/soot, Aug.
2018.

[29] Google, “Monkey: UI/Application exerciser for Android,” http://
developer.android.com/tools/help/monkey.html, Aug. 2018.

[30] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in USENIX Security, 2017, pp. 729–
745.

[31] R. Bassily and A. Smith, “Local, private, efficient protocols for succinct
histograms,” in STOC, 2015, pp. 127–135.

[32] R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta, “Practical locally
private heavy hitters,” in NIPS, 2017, pp. 2285–2293.

[33] M. Bun, J. Nelson, and U. Stemmer, “Heavy hitters and the structure of
local privacy,” in PODS, 2018, pp. 435–447.

[34] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using Spark,”
in CC, 2003, pp. 153–169.

[35] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and
A. Balissa, “Privacy by designers: software developers privacy mindset,”
Empirical Software Engineering, vol. 23, no. 1, pp. 259–289, 2018.

[36] M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data privacy always
good for software testing?” in ISSRE, 2010, pp. 368–377.

[37] A. Budi, D. Lo, L. Jiang et al., “kb-anonymity: A model for anonymized
behaviour-preserving test and debugging data,” in PLDI, 2011, pp. 447–
457.

[38] K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing software in
age of data privacy: A balancing act,” in FSE, 2011, pp. 201–211.

[39] D. Lo, L. Jiang, A. Budi et al., “kbe-anonymity: Test data anonymization
for evolving programs,” in ASE, 2012, pp. 262–265.

[40] F. Peters and T. Menzies, “Privacy and utility for defect prediction:
Experiments with MORPH,” in ICSE, 2012, pp. 189–199.

[41] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and
utility in cross-company defect prediction,” TSE, vol. 39, no. 8, pp.
1054–1068, 2013.

[42] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, “On the
multiple sources and privacy preservation issues for heterogeneous
defect prediction,” TSE, pp. 1–21, 2017.

[43] T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin,
“Collecting and analyzing data from smart device users with local
differential privacy,” arXiv:1606.05053, 2016.

[44] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data
privately,” in NIPS, 2017, pp. 3571–3580.

[45] T. Menzies and T. Zimmermann, “Software analytics: So what?” IEEE
Software, no. 4, pp. 31–37, 2013.

[46] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining
informative reviews for developers from mobile app marketplace,” in
ICSE, 2014, pp. 767–778.

[47] W. Martin, F. Sarro, and M. Harman, “Causal impact analysis for app
releases in Google Play,” in ICSE, 2016, pp. 435–446.

[48] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in ICSE, 2016, pp. 14–
24.

[49] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of
app store analysis for software engineering,” TSE, vol. 43, no. 9, pp.
817–847, Sept 2017.

[50] Y. Z. Ehsan Noei, Daniel Alencar da Costa, “Winning the app production
rally,” in FSE, 2018, pp. 1–12.

[51] P. Devanbu, P. Kudigrama, C. Rubio-González, and B. Vasilescu, “Time-
zone and time-of-day variance in GitHub teams: An empirical method
and study,” in SWAN, 2017, pp. 19–22.

[52] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. De-
vanbu, and V. Filkov, “The sky is not the limit: Multitasking on GitHub
projects,” in ICSE, 2016, pp. 994–1005.

[53] M. Zhou, Q. Chen, A. Mockus, and F. Wu, “On the scalability of Linux
kernel maintainers’ work,” in FSE, 2017, pp. 27–37.

[54] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-
vanyk, “Deep learning similarities from different representations of
source code,” in MSR, 2018, pp. 542–553.

[55] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on TensorFlow program bugs,” in ISSTA, 2018, pp. 129–140.

[56] E. Cohen and M. P. Consens, “Large-scale analysis of the co-commit
patterns of the active developers in GitHub’s top repositories,” in MSR,
2018, pp. 426–436.

[57] Y. Zhao, F. Zhang, E. Shihab, Y. Zou, and A. E. Hassan, “How are
discussions associated with bug reworking?: An empirical study on open
source projects,” in ESEM, 2016, pp. 21:1–21:10.

[58] F. Peters, T. Tun, Y. Yu, and B. Nuseibeh, “Text filtering and ranking
for security bug report prediction,” TSE, pp. 1–16, 2017.

[59] M. Linares-Vásquez, G. Bavota, and C. Escobar-Velásquez, “An empir-
ical study on Android-related vulnerabilities,” in MSR, 2017, pp. 2–13.

[60] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: A large-scale empirical study,” in MSR, 2017, pp. 413–424.

[61] Apple, “Share analytics information with Apple,” https://support.apple.
com/kb/ph25654, Aug. 2018.

278

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

[62] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, and F. Feng,
“PRADA: Prioritizing Android devices for apps by mining large-scale
usage data,” in ICSE, 2016, pp. 3–13.

[63] X. Liu, X. Lu, H. Li, T. Xie, Q. Mei, H. Mei, and F. Feng, “Understand-
ing diverse usage patterns from large-scale appstore-service profiles,”
TSE, vol. 44, no. 4, pp. 384–411, 2017.

[64] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer, “Falling
asleep with Angry Birds, Facebook and Kindle: A large scale study on
mobile application usage,” in MobileHCI, 2011, pp. 47–56.

[65] Y. Agarwal and M. Hall, “ProtectMyPrivacy: Detecting and mitigating
privacy leaks on iOS devices using crowdsourcing,” in MobiSys, 2013,
pp. 97–110.

[66] A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “GAMMA system:
Continuous evolution of software after deployment,” in ISSTA, 2002, pp.
65–69.

[67] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” in PLDI, 2003, pp. 141–154.

[68] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS, 2013, pp. 429–438.

[69] K. Nissim and U. Stemmer, “Clustering algorithms for the centralized
and local models,” arXiv:1707.04766, 2017.

[70] A. Smith, A. Thakurta, and J. Upadhyay, “Is interaction necessary for
distributed private learning?” in S&P, 2017, pp. 58–77.

279

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

