2019 19th International Working Conference on Source Code Analysis and Manipulation (SCAM)

Introducing Privacy in Screen Event Frequency
Analysis for Android Apps

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev
Ohio State University, Columbus, Ohio, USA
Email: {zhang.4858,latif.28,bassily.1,rountev.1} @osu.edu

Abstract—Mobile apps often use analytics infrastructures pro-
vided by companies such as Google and Facebook to gather
extensive fine-grained data about app performance and user
behaviors. It is important to understand and enforce suitable
trade-offs between the benefits of such data gathering (for app
developers) and the corresponding privacy loss (for app users).

Our work focuses on screen event frequency analysis, which
is one of the most popular forms of data gathering in mobile
app analytics. We propose a privacy-preserving version of such
analysis using differential privacy (DP), a popular principled
approach for creating privacy-preserving analyses. We describe
how DP can be introduced in screen event frequency analysis for
mobile apps, and demonstrate an instance of this approach for
Android apps and the Google Analytics framework. Our work
develops the automated app code analysis, code rewriting, and
run-time processing needed to deploy the proposed DP solu-
tion. Experimental evaluation demonstrates that high accuracy
and practical cost can be achieved by the developed privacy-
preserving screen event frequency analysis.

I. INTRODUCTION

Mobile apps often use analytics infrastructures provided by
companies such as Google and Facebook [1]: e.g., Google
Analytics [2], Google Firebase [3], and Facebook Analyt-
ics [4]. The extensive fine-grained data gathered from such
analytics can be used for analysis of app performance and user
behaviors such as clicks, screen transitions, purchase history,
and location data. The libraries implementing the analytics
infrastructure are independent modules of apps installed on
users’ devices. They silently collect information in the back-
ground, usually without users’ knowledge. The use of such
tracking is widespread, as indicated by recent studies [5].

For an app developer, the benefits of such analytics could
be substantial. Information obtained from the detailed stream
of app-generated events could be used for targeted advertis-
ing, behavioral analytics, location tracking, and app improve-
ments [1]. Unfortunately, such benefits come at the expense
of reduced privacy for app users. In the broader societal
context there are increasingly-strong expectations for better
understanding and control of the privacy-related effects of data
gathering. In this context, there is very little understanding of
such effects in the area of mobile app analytics.

Techniques for privacy-preserving data analysis can be
employed to study and evaluate the privacy implications of
data gathering from mobile apps. Privacy-preserving analysis
techniques are designed with theoretical guarantees about
the loss of privacy and the accuracy of analysis results.

Differential privacy (DP) [6] has been proposed and studied as
a broad principled approach for designing privacy-preserving
data analyses. Based on a rigorous definition of privacy, this
approach has been investigated extensively by researchers and
has recently been adopted by industry—for example, in the
Chrome browser [7] and in iOS-10 [8].

While there is a large body of work on differential privacy,

the practical applications of these techniques in the context of
the widely-used analytics frameworks for mobile apps have
not been studied. Introducing DP mechanisms in apps that
use such frameworks has clear benefits to users. The app
developers also benefit from such mechanisms: the gathered
information provides analytics value while at the same time
the app creators can claim, with confidence, that users are
provably protected against leaks of their sensitive data. Such
claims by developers make their product more attractive to
users. In addition, privacy-by-design protections may be of
interest to regulatory bodies.
Challenges. Despite significant advances in DP theory, ap-
plying DP solutions to analytics frameworks for mobile apps
faces two major obstacles. First, the providers of analyt-
ics frameworks—companies such as Google, Facebook, and
Yahoo—do not supply DP capabilities and are unlikely to
provide them in the near future. Any DP solution deployed
by an app developer today—e.g., a developer who is using
the Google Analytics framework—should work without any
changes to the framework implementation and APIs, both
locally on the user’s device and remotely at Google’s servers.
This “black box” view is a significant departure from the
standard assumption in DP research, where the researchers
have complete control over the entire analytics infrastructure
and can deploy various sophisticated DP protocols.

The second challenge is to introduce DP in a given app
with little effort from the app developer. Ideally, the developer
would write their app without any DP considerations, and an
automated code rewriting step would introduce DP-enforcing
code. Such separation of concerns is highly valuable for
software development, testing, debugging, and evolution.
Our proposal. Our work focuses on these two challenges for
screen view event frequency analysis, which is one of the most
popular forms of data gathering in mobile app analytics. We
propose a privacy-preserving version of such analysis using
differential privacy, and instantiate this design for Android
apps that use the Google Analytics framework. To the best of
our knowledge, this is the first work that attempts to introduce

2470-6892/19/$31.00 ©2019 |IEEE
DOI 10.1109/SCAM.2019.00037

268

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

DP in the behavioral analysis of Android apps.

Our approach treats the analytics infrastructure as a black
box and uses its own event frequency pre/post-processing to
achieve DP. This means that the approach can be deployed
in the current ecosystem of mobile app analytics frameworks.
The event frequency processing, which requires both static
code rewriting and run-time data manipulation, is achieved
transparently with the help of a code rewriting tool and a
run-time support layer. This allows a developer to focus on
the business logic of the app without directly creating or
manipulating DP-related code.

Contributions. The work makes the following contributions:

« We define a privacy-preserving event frequency analysis
for apps that use mobile app analytics frameworks. We
describe how randomized noise can be added to the
collected data in a way that provides well-defined privacy
protections for an app user while still reporting high-
accuracy analytics measurements to an app developer.

« We develop static code rewriting and run-time support
needed to instantiate this analysis for the popular Google
Analytics mobile app analytics infrastructure. We demon-
strate techniques that are easy to incorporate in the app
development process and enable low-effort introduction
of DP features in an existing app.

« We describe an evaluation that demonstrates the feasibil-
ity and performance of the proposed techniques.

Mobile apps are used pervasively. They have access to a
wide range of data that can be used to make inferences about
app user features and behaviors. Such data is being collected
on a massive scale. This provides strong motivation to study
privacy-preserving techniques for mobile app analytics. Our
current work, as well as future efforts based on it, could help
establish well-founded approaches to address this challenge.

II. BACKGROUND: ANALYTICS FOR ANDROID

There are several analytics infrastructures that offer full-
stack solutions to an app developer. Google Analytics (GA) [2]
and its successor Firebase [3] are among the most popular
ones. They allow a developer to collect and conduct various
analyses against users’ data. Facebook [4], Yahoo [9], and
several others also provide similar services. Even though their
policies [10]-[13] require developers to avoid recording (or at
least to anonymize) user-identifiable information, users may
still be left vulnerable to data breaches and surveillance by
infrastructure providers and app developers [14]-[16].

A recent study of thousands of popular Android apps [5]
has identified that Google Analytics was used by 42% of the
analyzed apps. This popularity motivates our focus on privacy-
preserving analysis for GA; however, the theoretical machinery
and program analyses are general and should be applicable to
other analytics libraries. One of the key features of GA is to
provide the frequency of screen view events. Such frequency
information helps a developer understand how users interact
with her app, by quantifying user engagement and behaviors.
A screen view event is defined by the developer to track a
user’s visit to a specific screen within an app. Conceptually,

269

class ParKingApplication extends Application {
Tracker t;
Tracker a() {
if (t null) |
GoogleAnalytics i
GoogleAnalytics.getInstance (this);
i.newTracker (R.xml.global_tracker); }

b

t
return t;

W J oUW N

9 class AutoParkActivity extends Activity {

10 Tracker t;

11 void onCreate(...) {

12 t = ((ParKingApplication)getApplication()).a(); }
13 void onResume () {

14 t.setScreenName ("AutoParkActivity");

15 ScreenViewBuilder b = new ScreenViewBuilder();

16 t.send(b.build()); } }

(a) Decompiled code

1 <resources>
2 <string name="ga_trackingId">UA-65112504-3</string>
3 </resources>

(b) global_ tracker.xml

il talent parking

A GA

Screens

(£ GO TO REPORT

Time period £ *

Al Users
100.00% Screen View

Explorer

230 230;
%5 of Total: 100.00% (230) % of Total: 100.00% (230),

1 Screen names

1. LastParkingFragment 56— 37.3%%
74 | 32.17%

33 I 14.35%

19 [8.26%

7 W0

.
w2, SettingsActivity
=3, ParkActivity

=4, Splash
.
s,
3

HelpActivity

AutoParkActivity 5 W217%

Compa 3 030%

H H Frequencies

HistoryFragment

2 J087%

1]043%

FENEEEEE R REEER R RERRR R RRRRR R RRRY
R L e LT T LT T T T LR O YT T

(c) GA report

Fig. 1. Example derived from ParKing.

it is identical to a pageview for web analytics. GA, as well as
other similar analytics libraries, allows a developer to insert
API calls to track such events and to send information about
them to backend servers (which themselves are maintained by
Google, Facebook, etc.) for further analysis.

A. Running Example

GA is offered by Google to app developers to collect de-
tailed statistics about user information and behaviors including
session duration, user-triggered events, etc. For example, GA
can track when the user has navigated to a particular screen
in the app, or has performed an action such as sharing content
with someone from her contact list. As another example, e-
commerce data could be gathered, including product clicks,
viewing product details, adding a product to a shopping cart,
transactions, and refunds. The GA framework is general and
the type of data being collected is up to the app developer.

To illustrate GA’s capability of screen view event track-
ing, we use the example in Fig. 1. The ParKing
app [17] navigates users to parking places, records his-
tory of parking locations, and reminds users about parking

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

time. It has over 100K installs via Google Play. Fig. la
shows a snippet of decompiled code from the app. Class
ParKingApplication maintains a global context and its
instance is retrieved via getApplication (line 12). Classes
GoogleAnalytics and Tracker are helper classes to
create and send data to Google’s remote server. Method
ParKingApplication.a creates a Tracker singleton at
line 7 by calling GoogleAnalytics.newTracker with
the resource ID of an XML file containing a Google-provided
tracking ID, which is shown in Fig. 1b. All data recorded for
this ID can be accessed by the developer of ParKing. We
utilize this API in experiments to redirect all tracking data in
closed-source apps to our own GA account.

Activities are the core components in Android apps. An
activity displays a window containing GUI widgets. Class
AutoParkActivity shows a screen with settings for
automatic parking detection. The onCreate callback is
called when an activity is created. It retrieves and stores
the Tracker to field t at line 12. When an activity
comes to the foreground, its onResume callback is invoked.
Lines 14-16 create a screen view event and send it to the
GA servers. A screen represents some displayed content.
Each screen has a unique string name that is used as an
identifier. A call to Tracker.setScreenName at line 14
records a name for the current screen as “AutoParkActiv-
ity”. GA uses the builder pattern for creation of events.
ScreenViewBuilder at line 15 is the helper class to build
the event. ScreenViewBuilder.build returns a map
containing data for the event together with other GA-internal
data. The call to Tracker. send at line 16 uploads the event
to Google’s backend servers.

Besides activities, developers can specify other GUI com-
ponents as screens, e.g., fragments. We inspected the app
code and determined that there are 11 screens: “AboutAc-
tivity”, “AutoParkActivity”, “CompassActivity”, “HelpActiv-
ity”, “HistoryFragment”, “LastParkingFragment”, “ParkActiv-
ity”, “SettingsActivity”’, “Splash”, “TransparentActivity”, and
“ZoneEditorActivity”. One of the challenges is to identify all
possible screen names automatically. Technical details about
our solution will be provided in later sections.

Google aggregates data from many app users and provides
the result to the app developer. Fig. 1c is a sample report
of screen view events in ParKing from GA’s website. We
have replaced the app’s tracking ID with ours so that all
data from our app runs is sent to our account. GA supports
generation of reports for specific types of users (the orange
box) within a certain time period (the blue box). The report
contains a histogram of all screens, including their names and
frequencies, as shown in the red and purple dotted boxes.

B. User Privacy

GA and similar analytics frameworks provide some rudi-
mentary privacy protection. For example, an app developer
can instruct GA to remove the last octet of the IP address
being recorded. As another example, Google’s guidelines for
app developers are to avoid collecting personally-identifiable

270

information such as names, etc. However, to the best of
our knowledge, there is no systematic enforcement of such
protection mechanisms. Furthermore, even seemingly-innocent
information that has been anonymized can lead to real pri-
vacy leaks when combined with additional information from
other sources [14], [15], [18]. For example, existing analytics
frameworks assign a pseudonym to each user. Developers can
use the pseudonym to make requests to other services, such
as Google Ads and Tag Manager. This mechanism allows
developers to track seemingly-independent actions and devices
for user identification [16], [19]. Screen view tracking reveals
a user’s access to certain software components that reflects
her interests and patterns using the app. This, together with
the user identification threat, could be utilized, for instance,
for targeted advertisement. We propose a principled solution
to protect users’ screen view behaviors while still allowing
developers to obtain meaningful results without modifying the
underlying analytics infrastructures.

III. BACKGROUND: DIFFERENTIAL PRIVACY
A. Overview

The goal of differential privacy is to protect against a broad
class of privacy attacks. Consider a situation where certain
data is released intentionally by a party that has that data,
in order to serve some data analytics goals. The data is
legitimately released to government/business/research entities,
but it is assumed that an adversary will also gain access to it.
The adversary attempts to learn private individual information
from the released data. Examples of such attempts are re-
identification of persons, linking of records from different
sources, and differencing attacks (e.g., comparing statistics
before and after an event of interest). Here “adversary” is
used broadly: for example, data released by the user to some
company under certain terms may later be obtained by another
company (e.g., as part of a corporate takeover) and used in a
manner that was not anticipated by the user. As another exam-
ple, data shared with some organization could be subpoenaed
in legal proceedings despite the user’s expectations.

Differential privacy (DP) [6], [20], [21] is a powerful
method to defend, with formal guarantees, against privacy
attacks. An adversary observing the DP analysis output will
essentially make the same inference about any individual’s
private information, regardless of whether or not that informa-
tion is part of the analysis input. Its strong privacy guarantees
make DP an attractive alternative to other privacy-preserving
techniques, as elaborated elsewhere [20]. DP solutions have
been studied extensively by researchers and been deployed in
practice (e.g., by Google [7], Apple [8], Uber [22], and the
U.S. Census Bureau [23]). The rest of this section will focus
on DP aspects that are relevant to mobile app analytics.

In the centralized DP model, individuals’ private data is
provided to a trusted data curator, where DP analysis is
performed and its results are released to untrusted analysis
clients. In the local DP (LDP) model, the curator is not trusted;
in fact, the curator itself could be an adversary. For such LDP
problems, each user performs local data perturbation before

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

releasing any information to the curator (and, by extension, to
any adversaries). The LDP model is a natural match for mobile
app analytics. The app user releases data to the curator (e.g.,
Google, if the app uses GA). The curator analyzes the data
and provides the results to the analysis client—that is, to the
app developer. Regardless of the actions of the curator or the
app developer, the design of the LDP analysis provides formal
privacy guarantees to the app user, as described shortly.

B. LDP Frequency Estimates

We illustrate LDP analysis using a fundamental problem in
data analytics: constructing estimates of data item frequencies.
This problem is closely related to many other analytics prob-
lems, including counting (e.g., number of individuals whose
data satisfies some predicate), histograms (e.g., counts of data
in disjoint categories), heavy hitters (e.g., most frequently oc-
curring items), distribution estimation, regression, clustering,
and classification.

Consider a set of n app users. Each user 7 € {1,...,n}
has a single data item v; from some data dictionary D that
is pre-defined by the app developer based on her analytics
needs. For any v € D, its frequency is f(v) = |{i €
{1,...,n} : v; = v}|. The app developer’s goal is to obtain the
histogram defined by f(v) for all v € D. An LDP solution
to this problem will apply a local randomizer R : D — Z
to each user’s item v;. The resulting z; = R(v;) is sent to
the LDP curator. Following convention, we will refer to this
curator as “server”, which is also a terminology well-suited for
existing mobile app analytics infrastructures such as Google
Analytics/Firebase. The server collects all z; and uses them
to compute a frequency estimate f (v) for the real frequency
f(w) of each v € D.

The design of the local randomizer R is parameterized
by a privacy loss parameter e. Intuitively, this parameter
characterizes how much knowledge an adversary could gain
by observing the randomizer’s output R(v;). An e-local ran-
domizer R satisfies the following property:

Yo,v' € D,z € Z: Pr[R(v) = 2] < e Pr[R(v') = 7]

Here Pr[a] denotes the probability of a. The randomization
achieves privacy by allowing plausible deniability: if a user
has item v and as a result z = R(v) is reported to the server,
the observation of that z (by the server or by an adversary)
does not reveal “too much” information about which item
was actually held by the user. This is because the probability
Pr[R(v") = z] that the item was some other v’ is close (by
a factor of e€) to the probability Pr[R(v) = z]| that the item
was the actual v. The privacy loss parameter is used to limit
and quantify what can be learned about a user as a result of
her data item being included in the analysis. Larger values of
€ result in less privacy but higher accuracy.

Clearly, the introduction of random noise affects the accu-
racy of the frequency estimates reported by an LDP analysis.
This accuracy is typically measured based on the ¢, norm
of the difference between the vector of actual frequencies and
the vector of estimates [21], that is, max,ep | f(v) — f(v)].

271

App Code]

Implementation Layer

(

[Analytics Library

Proxy H Randomizer H Dispatcher

Fig. 2. Design overview.

IV. OVERVIEW OF LDP SCREEN EVENT FREQUENCY
ANALYSIS

Screen view events, introduced in Section II, track each
user’s views of particular screens in an app. They are one
of the most fundamental data items being collected in mobile
app analytics. They feature prominently in all popular analytics
frameworks for Android apps: Google Analytics, Google Fire-
base, Facebook Analytics, and Yahoo Flurry. These platforms
allow developers to conduct various analyses on such data. For
instance, funnel analysis visualizes users’ engagement for each
screen and identifies screens that many users are not converting
through. The analysis results allow potential optimizations in
the design and business logic of an app.

In addition to gathering statistics to characterize the entire
community of app users, such data is also used for analy-
sis of each individual’s behavior patterns—for example, to
determine her interests for targeted advertisement, or even
for fingerprinting for user identification [16]. Each user is
assigned an (anonymized) identifier at her first use of the app
and any following data collection will contain this identifier.
This enables developers/analysts to link a user’s behavior data,
e.g., viewing some screens that contain sensitive content, with
existing data and models (possibly from third-party sources)
to connect seemingly independent actions by the user [19].

Despite the potential for such user identification/tracking,
as well as other related privacy concerns [24]-[27], current
analytics frameworks for mobile apps do not provide protec-
tion for users’ screen view data. We propose to address this
problem by introducing LDP into the data collection, with
transparent pre- and post-processing steps. Existing analytics
infrastructures for mobile apps do not have LDP features
and there is no prior work on performing LDP analytics in
them. Achieving LDP without any changes to the underlying
analytics infrastructure is a challenge. We tackle this challenge
using the design outlined in Fig. 2.

On top of the standard analytics libraries running on the
user’s device, we introduce a layer that implements local
randomization. To make the discussion more concrete, we
describe the components of this layer for an instance of the
approach specific to Google Analytics. Similar structure and
behavior would be applicable to other analytics frameworks.

Relevant GA API calls (e.g., Tracker.send in Fig. 1)
can be automatically redirected to corresponding proxy APIs
(e.g., Proxy.send). This redirection can be achieved with
an automated code rewriting tool. As described later, our
concrete implementation uses the Soot code analysis/rewriting
framework [28], but many other choices are also available. The
proxy API methods coordinate the remaining components. The

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

randomizer component, which is described in the next section,
applies the local randomization and sends the relevant events to
the dispatcher component. The dispatcher maintains a queue of
pending events and periodically makes GA API calls to deliver
them to the GA layer. The dispatcher also makes unsent events
persistent when the app is closed, to allow sending when the
app is reopened. Our implementation utilizes JobService
in Android for scheduling and SQLite for storing events. One
GA-specific implementation detail is that the GA layer drops
events if they arrive too frequently. The dispatcher ensures that
events are forwarded to the GA layer with sufficient delays
between them. GA also records event timestamps. Since the
dispatcher delays the dispatching of events, perturbation of
timestamps is achieved in an ad hoc manner. In the future it
would be interesting to consider more principled approaches
for randomization of event timestamps.

The implementation layer is built at the time the app is
created, and distributed as part of the app code when the app
is published in an app market. The code in this layer should
be open-source and created by a trusted party (e.g., privacy
researchers). App-specific configuration parameters (e.g., the
privacy loss parameter €) are defined by the app developer at
app assembly time. On the user’s device, there are no changes
to the standard analytics API implementations that process
events and send them to the server. The analytics server is
completely unaware of the fact that there is any DP aspect to
the data collection. After the server reports its results, they are
post-processed by the app developer (as described below) to
obtain the actual estimates of the desired analytics data. Such
a “black box” solution is easy to deploy today.

V. DESIGN AND IMPLEMENTATION OF LDP SCREEN
EVENT FREQUENCY ANALYSIS

This section elaborates on the details of the approach
outlined in the previous section. Recall that each screen in the
app has a string identifier and the app uses GA API calls to
send screen view events to the server (lines 14-16 in Fig. 1a).
The GA event frequency reports, similar to the one shown
in Fig. lc, can be created using local randomization and then
post-processed to account for the effects of this randomization.
Next, we describe the building blocks of this solution.

A. Obtaining LDP Frequency Estimates

The problem we define is a generalization of the frequency
problem from Section III-B. While in that problem each user
reports a single data item, here each user reports a sequence
of items. Each app user has an integer id ¢ € {1,...,n}. Such
ids are used for the conceptual definition and are not needed
in a practical implementation. The set of string identifiers for
screens defines a data dictionary D. For example, as described
in Section II-A, ParKing has 11 strings in its dictionary. For
ease of notation, assume that D = {1,...,d}. As with user
ids, these event ids are used only for explanation purposes.

Data collection is performed for all n users over some period
of time. During this period, user ¢ generates a sequence of
screen view events v}, vZ, ..., vF where v] € {1,...,d}. To

272

X, H
Userl | ozize27" | dNd | .~ i 2 g
|
XZ
G
) GA App
Server Developer
User 2
(a) Regular GA workflow
Z Q
Eg
B -
/
/
3 / ’
User1 | _HNNEENENEENE _au= HNNNNNANNNA Y ’ Post
: i Processing
’ ~
% \ ® [#)
L s «
® o
Server
User 2 App A0 BEENN
Developer

(b) LDP workflow using baseline randomizer R with € = In(9)

Fig. 3. Regular analysis vs LDP analysis, with two app users.

simplify the discussion, assume that each user generates the
same number of events k. If this is not the case, conceptual
“padding” events with no effect can be introduced. The event
sequence v},vZ,...,v¥ can be thought of as a histogram
x; € Ne—that is, a d-dimensional vector of frequencies, where
x;[v] € N is the number of occurrences of v in the sequence.
In a non-LDP setting, all events v] for all users ¢ are sent to
the GA server, which aggregates their counts and produces a
histogram H = ZL x;, where the summation is element-wise
for vectors z;. For any v € D, its frequency is H(v). The
resulting histogram is similar to the one shown in Fig. lc.
Example. Fig. 3a illustrates this scenario with two app users.
The data shown in the example was obtained by running
the Monkey GUI testing tool [29] on the ParKing app.
Monkey randomly triggers GUI events that result in GA API
calls inside the app code. Two different Monkey runs were
used to obtain the data representing the two app users. Each
user produces 100 events. In the figure, the corresponding
histograms are denoted by z; and x,. Note that GA does
not send the histograms to the server, but rather the individual
events that were observed. The server adds up the event counts
from the two users and reports the resulting histogram H.
The next subsection describes the design of the local ran-
domizer for this problem. As with existing solutions for the
single-item-per-user problem from Section III-B (e.g., [7],
[30]), our solution for the generalized problem presented in
this section is based on the technique of randomized response
described below. While it may be possible to define more
advanced solutions with better theoretical accuracy and cost
(e.g., generalization of [31], [32]), they would require signifi-
cant “white box” re-design of the analytics infrastructure and
would not be easily deployed. Instead, we define an approach

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

that keeps the existing analytics infrastructure intact.

Randomized response is a classic technique that has been
used in social sciences to gather sensitive data (e.g., about
illegal or embarrassing behaviors). For our analysis problem,
randomized response would add noise to each observed event
v] by probabilistically (1) “dropping” event v} and/or (2)
spuriously reporting other events when v] is observed.

Formally, an e-LDP solution applies an e-local randomizer
R :N? — N¢, The resulting z; = R(x;) is sent to the server.
The server, which is LDP-unaware, computes a histogram
H = > ;% and reports it to the app developer. The app
developer performs post-processing of Hto compute, for each
v, an estimate f(v) for the actual frequency f(v) = H (v) that
would have been observed without differential privacy.
Example. Fig. 3b illustrates the steps of the LDP solution.
Each user ¢, independently of any other users or the server,
applies R to her real event sequence to generate a randomized
event sequence. (The definition of R will be presented shortly.)
All resulting events are sent to the GA server. In the figure,
z; denotes the histogram for this new sequence. The data was
obtained by applying our technique to the real GA events in
ParKing that were used for z; in Fig. 3a. Value € = In(9)
is used in prior work [7] and reused here.

Comparing z; with z;, it is clear that significant noise
was added by R to each user’s data. The server adds up the
counts of reported events and provides the resulting histogram
H = 2z + 2 to the app developer. The developer performs
post-processing of H (described later) to obtain the f(-)
frequency estimates. The accuracy of these estimates—that
is, their differences from the real histogram H in Fig. 3a—
depends on the number 7 of app users and on the value of e.
In this particular example, the number of users is very small
(n = 2) and the estimates are rather inaccurate. Section VI
presents an extensive experimental evaluation of the accuracy
that can be achieved in realistic scenarios.

B. Design of the Local Randomizer

One standard choice for the desired properties of R is
based on the notion of user-level privacy [21]. In our context,
the definition is as follows. Consider event sequences vy, V2,
..., v and v}, v5,...,v; and their corresponding histograms
x € N? and 2/ € N, An e-local randomizer satisfies

Vz € N% Va,2’ € N* : Pr[R(z) = z] < e* Pr[R(2/) = Z]

In essence, the observation of z by an adversary provides very
little information about the user’s real event sequence, as (with
high probability) any other event sequence could have been the
user’s raw data before randomization.
1) Baseline Local Randomizer: We first define a baseline
randomizer R. Refinements of this solution are described later.
For any v € D, let r(v) be a subset of D defined as follows:
o v is included in r(v) with probability (e2)/(1 +e?)
o for any v’ # v, v’ is included in r(v) with probability
1/(1+e2)
Given a sequence of events v},v2, ..., v¥ which corresponds
to a histogram z; € N9, consider the multi-set that is the union

273

for (String name :
if

D) {
(name.equals (observed)) {
if (rand() <= THIS_PROBABILITY) {
// probability: / (l+exp (epsilon/2))
send (name) ; }
} else if (rand()
// probability:
send (name); } }

gxp (epsilon/2)

<= OTHER_PROBABILITY) {
1/ (1+exp (epsilon/2))

Fig. 4. Pseudo-code for event randomization.

of all r(v]). The histogram z; € N for this multi-set is R(x;).
Fig. 3 shows examples of x; and z;.

This approach can be implemented on demand: every time
we observe an event v} at run time, r(v]) is computed and
the resulting events are sent to the GA server. The pseudo-
code for this processing is shown in Fig. 4. The call to rand
returns a new pseudo-random number € [0, 1). This processing
is executed each time an event is observed. The cumulative
effect over the entire event sequence is equivalent to applying
a histogram randomizer R : N¢ — N¢ However, instead
of computing histogram z; first and then applying R, we
randomize each event as soon as we see it, which achieves
the same effect as directly computing z; = R(z;).

To obtain the frequency estimate f(v) for each event v,
the app developer adjusts the server-reported count H (v) to
“undo” the effects of the added noise:

fo) = LEe)Hw) = nk)
Here n is the number of users and % is the number of real
events per user. This equation can be derived by considering
the expected value of H(v), which is f(v)(e5/(1 4 e%)) +
(nk — f(v)) (1/(1+e%)) since there are f(v) occurrences of v
and nk — f(v) occurrences of v/ # v across all n users. Based
on this, the expected value of f(v) is the real frequency f(v).
Thus, f(v) is an unbiased estimator of f(v).
Example. Consider the v for which H(v) = 71 in Fig. 3b.
We have ¢ = In(9) and e2 = 3. After post-processing, f(v)
becomes (4 x 71 —2 x 100)/(3 — 1) = 42, which matches the
f(-) value shown in Fig. 3b. If the estimate becomes negative,
the reported frequency is 0. For example, the first bar for H
in Fig. 3b has the value of 42. Since (4 x 42 — 2 x 100) is
negative, the first bar for f(-) has zero height.

2) Achieving Trade-Offs via Sampling: For user-level pri-
vacy, the randomizer R defined above is a ke-local randomizer:
the level of privacy protection is worsened by a factor of k,
where k is the length of the user’s event sequence. Intuitively,
instead of “hiding” a single event, the randomization now has
to hide k£ events. Given the practical consideration that k£ would
often be large (e.g., hundreds of events), achieving useful user-
level privacy presents a significant challenge due to the large
value of ke and the resulting weakened privacy guarantees.

Another challenge is the potential overhead of this approach.
For each event Uf observed at run time, all events in r(vf)
are sent to the analytics server. The expected size of r(v]) is
(d—1+4e3)/(1 + e3). Thus, the overhead depends on the
size of D. For illustration, consider d = 11 as in the running

<
ez —1

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

example, and ez = 3. In this case, for each real event there
will be 3.25 events on average reported to the server.

To address these challenges, we employ sampling [32], [33].
Each user assigns herself independently and randomly to one
of several subsets of {1,..., k}. Each such subset is of size ¢,
where ¢ is a small constant independent of the number of users
n and the event sequence length k. Instead of considering all of
its k real events, the user only considers the ¢ real events whose
indices are in the user’s subset. These ¢ events are randomized
and the results are reported to the server. We develop a simple
implementation of this approach which does not require any
synchronization with the server or other users. For any user ¢,
when the analytics infrastructure is initialized, ¢ independent
random values from {1,...,k} are drawn (without repetition)
and recorded. For any event v/, index j is checked against
this set of ¢ values. The event is ignored if j is not in this set.

Using this sampling achieves two important goals. First,
the privacy guarantees for user-level privacy are significantly
improved: instead of having a ke-local randomizer, we now
have a te-local randomizer where ¢ is a small constant. Further,
the overhead of extra events is reduced: instead of incurring
this overhead £ times, we incur it ¢ times. Although sampling
could reduce accuracy, our experiments indicate that for real
Android apps it is possible to achieve practical accuracy when
there is a sufficiently large number of app users.

C. Implementation via Code Analysis and Rewriting

The approach described above was implemented with the
help of several components, following the design from Fig. 2.
We built a proxy for GA APIs, as well as a code rewriting tool
that takes as input an app’s APK and automatically replaces
GA API calls with calls to the corresponding proxy APIs. This
rewritten code, together with our implementation layer, is then
packed back into a new APK which can later be installed on
a user’s device. This approach has the advantage that the app
developer does not have to write any DP-related code.

More specifically, the proxy is initialized immediately af-
ter the call to GoogleAnalytics.getInstance. This
initialization includes the creation of the randomizer and the
dispatcher, as well as loading of the embedded dictionary D
discussed shortly. We insert code to record each GA tracker
created by GoogleAnalytics.newTracker for later use
in the dispatcher. In our experiments, we replaced it with our
own tracking ID so that all traffic was redirected to our GA
account. For each call to Tracker. send, we replace it with
a call to the Proxy . send method, in which the screen view
event is randomized and sent to the dispatcher. The dispatcher
stores every perturbed event into a local SQLite database.
Android’s JobService is then used to periodically fetch
unsent events from the database and invoke Tracker.send
with the recorded tracker and sufficient delays to deliver the
event to Google’s backend server.

The randomizer is parameterized by €, ¢, and k. Only
the first k& events from a user are considered; this increases
privacy by limiting the amount of information released to the
server. Randomization also depends on the dictionary D. Our

274

[xmud:glubal,u-ackcr]{ubj:'nackcr] [ubj:Scrcchichuildcr]
mtd:build

field:ParKingApplication.t

[slringcousl:"AuluParkAcli»ily’D [ﬁeld:AumParkAclivily.l] [variable:map]

Fig. 5. Simplified constraint graph for the running example.

implementation takes as input a dictionary per tracker in XML
format and encodes it in the library during code rewriting,
together with the parameters described above.

The dictionary D is defined by the app developer based on
the desired app analytics. To reduce the developer’s effort for
constructing this dictionary, we built a static code analysis to
track the flow of string constants. The output of this analysis
can be used by the developer as a starting point for defining
the dictionary. Of course, in the general case no static analysis
can determine all run-time strings that could be used as
screen names. Nevertheless, our experience with several close-
sourced apps (described in the next section) demonstrated that
our analysis significantly reduced the effort to define D.

The analysis algorithm considers relevant API calls (e.g.,
setScreenName at line 14 in Fig. 1) to determine the screen
names that flow into calls to send (e.g., at line 16). For
each GoogleAnalytics.newTracker call site, it creates
an artificial object representing the corresponding Tracker
instance. It then propagates references to these objects, as
well as references to string constants, to setScreenName
calls. This information is used to determine the possible screen
names associated with each Tracker. There are two types
of strings that are considered: string constants in the code and
strings defined in XML resources. The propagation is done
via a value-flow analysis similar to control-flow-insensitive,
calling-context-insensitive, field-based points-to analysis [34].

The static analysis also creates an object for each new
ScreenViewBulder site. These objects are propagated to
build calls (e.g., line 16 in Fig. 1). The resulting objects,
which are maps storing information about the GA event to be
sent, are then propagated to send calls. The Tracker objects
are also propagated to the send calls. Note that the example
in Fig. 1 shows straightforward propagation of such object
references, but the analysis can handle the general case where
the propagation is done through a sequence of assignments,
parameter passing, and method returns. Since the analysis
is field-based [34], it handles aliasing for object references.
The resulting analysis solution determines which tracker is
responsible for sending which screen view event, as well as
what screen names are attached to each event. We record
these associations during the static value-flow propagation.
This information is then added in the app’s APK as part of
the implementation layer.

Fig. 5 presents a simplified constraint graph of the
running example. Nodes in the graph correspond to

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

objects, methods, variables, fields, and resources such
as strings and IDs. Edges correspond to the flow
of values. During the analysis, string constant ‘“Au-

toParkActivity” is propagated to setScreenName (node
“mtd:setScreenName”), the ScreenvViewBuilder object
(node ““obj:ScreenViewBuilder”) is propagated to send (node
“mtd:send”), and the tracker object (node “obj:Tracker”) is
propagated to the two methods. Using this propagation, we
can determine that the tracker with tracking ID stored in
global_tracker.xml is used to send screen view events
with name “AutoParkActivity”. This analysis identifies the 11
screen names in the ParKing app described in Section II-A.

One technical detail is that the app developer may have pro-
vided an incomplete dictionary and as a result the randomizer
occasionally may observe run-time events that are not in D.
It is easy to recover on-the-fly when an unknown event v is
observed on a user’s device. First, this event is added to set
D locally. Next, all real events for this user that were already
processed and randomized are revisited. For each such past
event, v is reported with probability 1/(1+4¢%). In effect, this
is equivalent to the processing that would have been performed
in the past had the dictionary been D U {v} at that time.

VI. EXPERIMENTAL EVALUATION

Our implementation of LDP analysis for GA screen view
events was based on app analysis and rewriting with the
Soot analysis/rewriting framework [28]. The experiments were
performed on two machines with Xeon E5 2.2GHz and 64GB
RAM. To generate GUI events that simulate user actions
(and internally trigger GA events) we utilized the Monkey
tool for GUI testing [29]. All experimental subjects, source
code for the static analysis and code writing, scripts to
manage Monkey runs, and intermediate results are available
at http://web.cse.ohio-state.edu/presto/software.

A. Study Subjects

We analyzed a corpus of the most popular apps in each
category in the Google Play store, and identified apps that
include GA API calls. The static analysis was used to construct
an potential dictionary D of string identifiers for screens in
each app. Since we did not have the app knowledge that the
developers had when they added GA screen view tracking, and
furthermore the apps were close-sourced, we performed run-
time validation and manual code inspection of the decompiled
code to ensure that we used the correct dictionary in our
experiments. The run-time validation used several independent
runs of the Monkey tool to trigger different GUI behaviors
(and thus different sequences of GA screen view events).
For our experiments, we selected 15 subjects that covered a
representative range of values for |D| and for which Monkey
achieved high run-time coverage of the dictionary.

Table I describes the characteristics of these subjects. The
names of the studied apps are listed in column “App”. Columns
“#Classes” and “#Stmts” show the numbers of classes and
statements in Soot’s Jimple IR, excluding some well-known
third-party libraries such as com.google, org. joda and

275

TABLE 1
STUDY SUBJECTS.

App #Classes #Stmts | D| Time (s)
SpeedLogic 119 5881 10 0.51 + 13.3
ParKing 543 37478 11 1.84 + 17.6
DPM 10859 939666 12 802 +67.0
Barometer 668 52252 13 191 + 325
LocTracker 269 24575 14 1.10 + 21.6
Vidanta 2652 162705 15 12.4 + 36.0
MoonPhases 295 44522 16 1.24 + 182
DailyBible 3297 332708 17 11.4 + 575
DrumPads 1449 126951 17 5.73 + 60.5
QuickNews 3297 332708 17 123 +57.3
Posts 3297 332708 17 13.3 +56.8
Mitula 1522 120347 20 5.73+293
KFOR 3708 284581 29 139 +40.2
Equibase 1697 127290 35 7.85+1253
Parrot 1869 120470 64 6.53 +259

org.apache. The size of dictionary for each subject is
shown in column “|D|”. As described earlier, we chose apps
that cover a representative range of dictionary sizes, in order
to study their effect on overhead. Column “Time (s)” shows
the running time of the static analysis (the first number) and
code rewriting (the number after the “+”). The average cost of
the static analysis is 5.78 seconds per 100K Jimple statements.
The cost of code rewriting mainly depends on the size of the
app and Soot’s performance on code transformation and is
22.4 seconds on average across all apps.

B. Accuracy

For our evaluation, we extended the implementation with
testing/profiling infrastructure that allows experimentation
with various analysis parameters. That same infrastructure
could be used by app developers to understand the characteris-
tics of their LDP app analytics and to fine-tune the parameters
of the data collection to achieve the desired trade-offs.

We utilized Monkey [29] to simulate user interactions, by
issuing GUI events every 200 ms until £ = 100 GA screen
view events were triggered by those GUI events. For each
app, we installed and ran it on 100 emulators in parallel to
simulate n = 100 users’ interactions with that app. Each of
the 100 runs used a different seed for Monkey’s generation
of random GUI events, thus triggering a different sequence of
screen view events. Since we had to repeat this process several
times per app (e.g., to study the effects of sampling and the
choice of ¢€), in each repetition of the 100 Monkey runs we
used the same set of 100 seeds for Monkey. Note that this
randomization for Monkey is unrelated to the randomization
used by the local randomizer R to compute the probabilities
for including/excluding events. To account for the variability
in the behavior of R under the same Monkey run and under
the same choice of all other parameters (e.g., €), every reported
metric was measured 20 times, in 20 independent repetitions of
the same experiment. The variations among the 20 repetitions
were entirely due to R. For the metrics, we collected the mean
over the 20 repetitions, as well as the 95% confidence interval.

The execution of many thousands of Monkey runs, even
with emulators running in parallel, is prohibitively expensive

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

£=1In(9), t=10, k=100

#users=100

SEEEEEEREER

I

#users=1000 s #users=10000

l

max error

&

E gz B B & ®m B B B g OE

ool i Be Ve S Ve o Ve Ua Se Ua Ue Ua Ua 00 B |

AN o o @ P I R o
o CPFCRT &5 @ ¢ e
@"“\ @c“a W Oa*(é o Q\)\c\“\ W

W o

R
«© GO g

He 9
o3
(,vee& <o o

£=1In(49), t=10, k=100

#users=100

HHIIIHHI”

&

#users=1000 WM #users=10000

I

T

izl 8 & & & &8 &8 &8 B B

&

ool —® & = =& &% s = = = = = & 8 & @& |

© S

X) e @ P R O - JPVT Y o2«
N S 20 o o2 @ g8 eoo® o s
%vzeé (e o @5\@ N \M“W oW g e W P

&

(a) With sampling
Fig. 6.

for evaluations with a large number of users n. To facilitate
the simulation of thousands of users, we conducted offline
runs based on the traces of real run-time events (i.e., the input
to the randomizer R) gathered during the Monkey runs for
n = 100. There were 100 such traces for each app. We ran
R offline on all such traces 10 times, all with different seeds
for R’s internal randomizations, to generate 1000 estimated
histograms for each app. This simulates the scenario when an
app is used by n = 1000 users. The same process was repeated
for n = 10000. We calculated and reported the accuracy and
overhead based on these histograms.

Fig. 6 show the accuracy with and without sampling, with

different values of € and number of users n. The values of
e match those used in prior work [7]. As discussed at the
end of Section III, accuracy is measured based on the largest
difference between the estimated and actual frequencies of all
elements in the dictionary, i.e., max,ep | f)=f (v)|. Here
we normalize this value by dividing it by the total number
of actual screen views f = > ., f(v). The y-axes show the
mean of 20 separate repetitions, with 95% confidence interval.
The z-axes show the names of apps sorted by |D|.
More users result in better accuracy. The nature of dif-
ferential privacy requires sufficiently large number of users
to be useful. With small values of n, high accuracy cannot
be achieved in our setting (and, in all likelihood, in similar
settings). Fig. 6 shows the dramatic improvement in accuracy
due to the increase in the number of users, for all possible
choices of other parameters. The practical implications are that
thousands of users should be included in the data gathering
in order to obtain accurate results. While the accuracy also
depends on other parameters (e.g., €), the number of users is a
primary factor that should be considered carefully. Fortunately,
this is not a significant limitation for practical use: most non-
trivial apps have non-trivial numbers of users. For example,
for 14 out of the 15 apps used in our study, the number of
installs according to Google Play is over 100K, with several
apps having more than a million installs.

£=1In(9), k=100

N #users=10000

TN

0051 & z & & 1 & z I 3 I I F

o.00 i fm fm O bl Te G Ce D 0@ Ce 06 f8 |

c < . o
2(\@‘3;3&4‘\@ o < & L\@\e“‘sws‘ s
& Q

#users=1000

B B

I

° e
0@“’25\\@‘“
o

&

Y
NS
ST
o O

* e &
o 6 (e
oF o o o

£=1In(49), k=100

#users=1000

IIIIIIIIIIIIII

I & & & & & & 3 & & & B B B

000 Mm He B Ba e B e Se B e BelBe B e BE |

© o @ N RS
et F B (@ oo
o= = o o o e

s #users=10000
0.10 1

0.05 4

max error

I

o
o

5
RS

S @ SN e o
a»i\ oﬁ“‘ Vh\‘“\ «9 Qo\“:ﬁ Qa“e
«

(b) Without sampling

Accuracy.

276

Larger ¢ provides better accuracy. The privacy loss param-
eter e controls how much can be learned from a user’s data.
Larger values of e result in higher privacy loss and better
accuracy. The top chart in Fig. 6a is based on a value of
e = In(9) (e, e3 = 3). In other words, when an event is
observed, it is reported to the server with probability 3/4 and
each other element of D is reported with probability 1/4. The
bottom chart in the figure uses a larger value of € and as a
result the max error is reduced: for example, for ParKing
with n = 100, this reduction is from 0.48 to 0.23. The same
trend also holds without sampling, as shown in Fig. 6b.
Sampling does not hurt accuracy. Sampling achieves both
lower overhead and increased user-level privacy. However, a
natural concern is whether sampling will reduce accuracy.
The trend exhibited by our results is that high accuracy can
be achieved with large number of users. For the analysis
parameters used in our evaluation, the estimates are reasonably
accurate when n = 10000: in Fig. 6a, the max error is around
0.05 for € = In(9) and 0.02 for € = In(49). Practically, this
means that for any event, the estimated relative frequency (as
percentage of the total number of events) is a few percentage
points off its real value.

C. Overhead

Fig. 7 shows the number of events sent to the GA server,
relative to the number of real events triggered by calls to send
in the app code. In other words, we consider how many events,
on average, are produced by the local randomizer R for each
real event. We only report the measurements for 10000 users
as the conclusions for other values of n are similar. The y-axes
show the mean of 20 separate repetitions of each experiment.
Sampling reduces overhead. Recall that for each actual event,
we expect (d — 1+ e2)/(1 + e2) events to be sent to the
server; here d is the size of the dictionary. The results in
Fig. 7b meet this expectation. For example, for ParKing
we have d = 11 and about 3 events were sent per actual
event when € = In(9). Sampling can reduce this cost by

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

t=10, k=100, #users=10000

k=100, #users=10000

£=1In(9)

<« =In(49)

#sent-events/#real-events

6
2 e
o o

< SRS P
& o o™ A

o & e 000\;@09\\{6
s W

W

5
W o0

© ® @
B¢ 0®
Qaé\‘ oo e

o

(a) With sampling
Fig. 7.

a magnitude of k/t, as we are sending only t events per
k actual events. Fig. 7a shows that, by using sampling, the
overhead of additional events introduced by the randomizer
R can be controlled well. Together with the accuracy results
from Fig. 6a, these experiments indicate that practical trade-
offs between accuracy, overhead, and privacy can be achieved
when the number of users n is reasonably large.

D. Threats to Validity

The small number of subject apps poses a threat to external
validity, which we have attempted to ameliorate by selecting
apps with representative dictionary sizes. Apps with login
mechanisms are omitted due to low screen coverage, which
is another threat to external validity. The static analysis and
the run-time processing could suffer from incorrect implemen-
tation. This internal validity threat was partially addressed via
extensive testing. Another issue is that, although Monkey is a
standard tool for large-scale random testing, the “users” in the
experiments are simulated and they may not be representative
of real-world behaviors. Despite these limitations, we believe
that this study presents promising initial evidence that black-
box LDP mobile app analytics is feasible.

VII. RELATED WORK

There is growing attention to privacy in various fields of
software engineering [35], e.g., in testing [36]—-[39] and defect
prediction [40]-[42]. Budi et al. [37] propose k-anonymity-
based generation of new test cases while preserving their
original behaviors. Their following work [39] extends the
approach to evolving programs. MORPH [40] preserves data
privacy of software defects in a cross-company scenario,
by perturbing instance values. CLIFF+MORPH [41] removes
dominant attributes for each class before perturbation. Li et
al. [42] adopt a sparse representation obfuscation for defect
prediction, while preserving privacy of data from multiple
sources. Although our overall goal is similar, we aim to protect
data gathered by analytics frameworks from mobile apps using
differential privacy techniques.

Several examples of prior work on differential privacy
were already discussed. There also exist several practical
realizations of LDP for data analytics. Google’s RAPPOR
combines randomized responses and Bloom filters to identify
popular URLSs in the Chrome browser without revealing users’
browsing habits [7]. Apple applies DP for gathering analytics

£=In(9)

£ =1In(49)

#sent-events/#real-events

<
&

s SR
33@“\ R

S e 3
PR & O ool S
SN wogv\“ g oo Q&“‘“ ¥

.
asTge® o W (o
°

BN

(b) Without sampling

Overhead.

277

data for emoji and quick type suggestions, search hints, and
health-related usage [8]. Samsung proposed the Harmony LDP
system to collect data from smart devices for both basic
statistics and complex machine learning tasks [43]. Microsoft
uses LDP to collect telemetry data over time across millions
of devices [44]. We are not aware of any efforts to apply these
techniques to analytics for Android apps. One challenge is that,
unlike this prior work, we need to assume that the analytics
infrastructure is LDP-unaware.

The problem considered in our work is similar in spirit
to software analytics [45] which aims to help developers
learn from software data such as app store data [46]-[50],
code repositories [51]-[56] and bug/security reports [57]-
[60]. Many companies utilize error/crash reporting systems
to collect various categories of execution information from
their users [61]. Lu et al. [62] and Liu et al. [63] leverage an
Android-native application management app with over 250M
users for app usage pattern mining. Boshmer et al. [64] conduct
analysis on usage logs of thousands of users for three popular
apps. PMP [65] is deployed to collect users’ data protection
decisions to help make privacy recommendations for over
90K users. GAMMA [66] continuously gathers and analyzes
execution information from a large number of users through
lightweight instrumentation. Liblit et al. [67] gather execution
data from a large distributed community of users running a
program remotely. Their approach samples the data and sends
it to a central database for later isolation of bugs.

VIII. SUMMARY

We demonstrate that LDP features can be added to existing
screen event analytics in Android apps without changes to
the underlying analytics infrastructure. The proposed approach
increases user privacy, requires little effort from app devel-
opers, and does not sacrifice analytics accuracy. There are
many other interesting software analytics problems for mobile
apps. Rather than simple frequency counts, more powerful
LDP analyses could be performed [32], [33], [68]-[70]. Future
work should consider such analyses as well as the necessary
tool support for app developers, including related app code
analyses and rewriting, to enable deployment of LDP solutions
with ease and confidence.

Acknowledgments. We thank the reviewers for their valuable
feedback. This material is based upon work supported by the
National Science Foundation under Grant No. CCF-1907715.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

[10

[11]
[12]

[13]

[14]

[15]
[16

[17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31

REFERENCES

Yale Privacy Lab, “App trackers for Android,” https:/privacylab.yale.
edu/trackers.html, Nov. 2017.

Google, “Google Analytics,” https://analytics.google.com, Jun. 2019.
——, “Firebase,” https://firebase.google.com, Jun. 2019.

Facebook, “Facebook Analytics,” https://analytics.facebook.com, Jun.
2019.

Exodus Privacy, “Most frequent app trackers for Android,” https://
reports.exodus-privacy.eu.org/reports/stats/, Jun. 2019.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC, 2006, pp. 265-284.

U. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
aggregatable privacy-preserving ordinal response,” in CCS, 2014, pp.
1054-1067.

Apple, “Learning with privacy at scale,” https://machinelearning.apple.
com/2017/12/06/learning-with-privacy-at-scale.html, Dec. 2017.

Oath, “Flurry,” http://flurry.com, Jun. 2019.

Google, “Measurement protocol/SDK/user ID policy,” https://developers.
google.com/analytics/devguides/collection/android/v4/policy, Jun. 2019.
——, “Google Analytics for Firebase use policy,” https://firebase.google.
com/policies/analytics, Jun. 2019.

Facebook, “Facebook platform policy,” https://developers.facebook.com/
policy, Jun. 2019.

Oath, “Flurry analytics terms of service,” https://developer.yahoo.com/
flurry/legal-privacy/terms-service/flurry-analytics-terms-service.html,
Aug. 2018.

A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in S&P, 2008, pp. 111-125.

——, “De-anonymizing social networks,” in S&P, 2009, pp. 173-187.
A. Goldfarb and C. E. Tucker, “Privacy regulation and online advertis-
ing,” Management Science, vol. 57, no. 1, pp. 57-71, 2011.
TalentApps, “ParKing: Where is my car? Find my car - Automatic,”
https://play.google.com/store/apps/details?id=il.talent.parking.

I. Dinur and K. Nissim, “Revealing information while preserving pri-
vacy,” in PODS, 2003, pp. 202-210.

F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against third-party tracking on the web,” in NSDI, 2012, pp. 12-12.

A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker,
K. Nissim, D. R. O’Brien, T. Steinke, and S. Vadhan, “Differential
privacy: A primer for a non-technical audience,” Vanderbilt Journal of
Entertainment and Technology Law, vol. 21, no. 1, pp. 209-276, 2019.
C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211-407, 2014.

Uber, “Uber releases open source project for differ-
ential privacy,” https://medium.com/uber-security-privacy/
differential-privacy-open-source-7892c82c¢42b6, Jul. 2017.

A. Dajan, A. Lauger, P. Singer, D. Kifer, J. Reiter, A. Machanava-
jjhala, S. Garfinkel, S. Dahl, M. Graham, V. Karwa, H. Kim,
P. Leclerc, I. Schmutte, W. Sexton, L. Vilhuber, and J. Abowd,
“The modernization of statistical disclosure limitation at the U.S.
Census Bureau,” https://www2.census.gov/cac/sac/meetings/2017-09/
statistical-disclosure-limitation.pdf, Sep. 2017.

A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,
M. Allman, C. Kreibich, and P. Gill, “Apps, trackers, privacy, and
regulators: A global study of the mobile tracking ecosystem,” in NDSS,
2018, pp. 1-15.

W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee, “The price of free:
Privacy leakage in personalized mobile in-apps ads.” in NDSS, 2016.
H. Feng, K. Fawaz, and K. G. Shin, “LinkDroid: Reducing unregulated
aggregation of app usage behaviors,” in USENIX Security, 2015, pp.
769-783.

S. Seneviratne, H. Kolamunna, and A. Seneviratne, “A measurement
study of tracking in paid mobile applications,” in WiSec, 2015.

Sable, “Soot analysis framework,” http://www.sable.mcgill.ca/soot, Aug.
2018.

Google, “Monkey: Ul/Application exerciser for Android,” http:/
developer.android.com/tools/help/monkey.html, Aug. 2018.

T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in USENIX Security, 2017, pp. 729—
745.

R. Bassily and A. Smith, “Local, private, efficient protocols for succinct
histograms,” in STOC, 2015, pp. 127-135.

278

[32]
[33]
[34]

[35]

[36]

[37]

[38]
[39]
[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]
[60]

[61]

R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta, “Practical locally
private heavy hitters,” in NIPS, 2017, pp. 2285-2293.

M. Bun, J. Nelson, and U. Stemmer, “Heavy hitters and the structure of
local privacy,” in PODS, 2018, pp. 435-447.

O. Lhotak and L. Hendren, “Scaling Java points-to analysis using Spark,”
in CC, 2003, pp. 153-169.

1. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and
A. Balissa, “Privacy by designers: software developers privacy mindset,”
Empirical Software Engineering, vol. 23, no. 1, pp. 259-289, 2018.
M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data privacy always
good for software testing?” in ISSRE, 2010, pp. 368-377.

A. Budi, D. Lo, L. Jiang et al., “kb-anonymity: A model for anonymized
behaviour-preserving test and debugging data,” in PLDI, 2011, pp. 447—
457.

K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing software in
age of data privacy: A balancing act,” in FSE, 2011, pp. 201-211.

D. Lo, L. Jiang, A. Budi et al., “kbe-anonymity: Test data anonymization
for evolving programs,” in ASE, 2012, pp. 262-265.

F. Peters and T. Menzies, “Privacy and utility for defect prediction:
Experiments with MORPH,” in ICSE, 2012, pp. 189-199.

F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and
utility in cross-company defect prediction,” TSE, vol. 39, no. 8, pp.
1054-1068, 2013.

Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, “On the
multiple sources and privacy preservation issues for heterogeneous
defect prediction,” TSE, pp. 1-21, 2017.

T. T. Nguyén, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin,
“Collecting and analyzing data from smart device users with local
differential privacy,” arXiv:1606.05053, 2016.

B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data
privately,” in NIPS, 2017, pp. 3571-3580.

T. Menzies and T. Zimmermann, “Software analytics: So what?” IEEE
Software, no. 4, pp. 31-37, 2013.

N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining
informative reviews for developers from mobile app marketplace,” in
ICSE, 2014, pp. 767-778.

W. Martin, F. Sarro, and M. Harman, “Causal impact analysis for app
releases in Google Play,” in ICSE, 2016, pp. 435-446.

L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in /ICSE, 2016, pp. 14—
24.

W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of
app store analysis for software engineering,” TSE, vol. 43, no. 9, pp.
817-847, Sept 2017.

Y. Z. Ehsan Noei, Daniel Alencar da Costa, “Winning the app production
rally,” in FSE, 2018, pp. 1-12.

P. Devanbu, P. Kudigrama, C. Rubio-Gonzalez, and B. Vasilescu, “Time-
zone and time-of-day variance in GitHub teams: An empirical method
and study,” in SWAN, 2017, pp. 19-22.

B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. De-
vanbu, and V. Filkov, “The sky is not the limit: Multitasking on GitHub
projects,” in ICSE, 2016, pp. 994-1005.

M. Zhou, Q. Chen, A. Mockus, and F. Wu, “On the scalability of Linux
kernel maintainers’ work,” in FSE, 2017, pp. 27-37.

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-
vanyk, “Deep learning similarities from different representations of
source code,” in MSR, 2018, pp. 542-553.

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on TensorFlow program bugs,” in ISSTA, 2018, pp. 129-140.

E. Cohen and M. P. Consens, “Large-scale analysis of the co-commit
patterns of the active developers in GitHub’s top repositories,” in MSR,
2018, pp. 426-436.

Y. Zhao, F. Zhang, E. Shihab, Y. Zou, and A. E. Hassan, “How are
discussions associated with bug reworking?: An empirical study on open
source projects,” in ESEM, 2016, pp. 21:1-21:10.

F. Peters, T. Tun, Y. Yu, and B. Nuseibeh, “Text filtering and ranking
for security bug report prediction,” TSE, pp. 1-16, 2017.

M. Linares-Vasquez, G. Bavota, and C. Escobar-Veldsquez, “An empir-
ical study on Android-related vulnerabilities,” in MSR, 2017, pp. 2-13.
Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: A large-scale empirical study,” in MSR, 2017, pp. 413-424.
Apple, “Share analytics information with Apple,” https://support.apple.
com/kb/ph25654, Aug. 2018.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

[62] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, and F. Feng,
“PRADA: Prioritizing Android devices for apps by mining large-scale
usage data,” in ICSE, 2016, pp. 3—13.

[63] X.Liu, X. Lu, H. Li, T. Xie, Q. Mei, H. Mei, and F. Feng, “Understand-
ing diverse usage patterns from large-scale appstore-service profiles,”
TSE, vol. 44, no. 4, pp. 384411, 2017.

[64] M. Bohmer, B. Hecht, J. Schoning, A. Kriiger, and G. Bauer, “Falling
asleep with Angry Birds, Facebook and Kindle: A large scale study on
mobile application usage,” in MobileHCI, 2011, pp. 47-56.

[65] Y. Agarwal and M. Hall, “ProtectMyPrivacy: Detecting and mitigating
privacy leaks on iOS devices using crowdsourcing,” in MobiSys, 2013,
pp. 97-110.

[66] A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “GAMMA system:

Continuous evolution of software after deployment,” in ISSTA, 2002, pp.

65-69.

B. Liblit, A. Aiken, A. X. Zheng, and M. 1. Jordan, “Bug isolation via

remote program sampling,” in PLDI, 2003, pp. 141-154.

[68] J. C. Duchi, M. L. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS, 2013, pp. 429-438.

[69] K. Nissim and U. Stemmer, “Clustering algorithms for the centralized
and local models,” arXiv:1707.04766, 2017.

[70] A. Smith, A. Thakurta, and J. Upadhyay, “Is interaction necessary for
distributed private learning?” in S&P, 2017, pp. 58-77.

[67

279

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2020 at 14:39:56 UTC from IEEE Xplore. Restrictions apply.

