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PACS 82.40.Ck – Pattern formation in reactions with diffusion, flow, and heat transfer
PACS 89.75.Kd – Patterns
PACS 02.40.Ky – Riemannian geometries

Abstract – Diffusion-driven patterns appear on curved surfaces in many settings, initiated by
unstable modes of an underlying Laplacian operator. On a flat surface or perfect sphere, the
patterns are degenerate, reflecting translational/rotational symmetry. Deformations, e.g., by a
bulge or indentation, break symmetry and can pin a pattern. We adapt methods of conformal
mapping and perturbation theory to examine how curvature inhomogeneities select and pin pat-
terns, and confirm the results numerically. The theory provides an analogy to quantum mechanics
in a geometry-dependent potential and yields intuitive implications for cell membranes, tissues,
thin films, and noise-induced quasipatterns.
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In 1952, Turing coined the term “morphogen” in a seminal
paper that showed how combining diffusion with general-
ized reactions can create spatial and temporal patterns
even though separately each leads to uniform, static con-
centrations [1]. Such reaction-diffusion (RD) patterns
are but one example of diffusion-driven instabilities that
have since been studied on scales ranging from microns
in cells [2] and active fluids [3–8], millimeters in hydrody-
namics [9], centimeters in zoology [10], to meters in ecol-
ogy [11]. Diffusion-driven patterns are known to determine
morphology [12] in model organisms like zebrafish [13,14]
and complex organs like the eye [15]. Recent theoretical
progress in patterning [16,17] encourages further study.

Substrate curvature plays a role in pattern formation
in many systems, including cell membranes [18] and thin
films [19]. The importance of surface curvature on col-
lective behavior has recently been explored in liquid crys-
tals [20], flocking [21], and wave propagation [22]. Closer
to our work, the geometric dependence of pattern forma-
tion has recently been studied in various models of pro-
tein [23,24] and molecular bonding [25].

Recent studies of Turing patterns have explored the
effects of curvature on highly symmetric shapes such
as spheres, cylinders, toroids [26,27], and ellipsoids [28]
where the Laplacian is known in closed form. Inho-
mogeneities in curvature, such as protrusions or cav-
ities, reduce such symmetries and can pin or modify

the patterns. To understand how nonuniform curva-
ture can entrain and modify patterns, we study pertur-
bations to the Laplacian, and its eigenmodes. To our
knowledge, the intimate link between pinning of pat-
terns and the spectrum of the Laplacian has not been
pursued.

We follow a two-prong strategy. First, we identify the
onset of instabilities, by linearizing evolution equations ex-
pressed in terms of the appropriate “modes”, e.g., Fourier,
cylindrical, or spherical harmonics. Modes with the
largest positive real part grow fastest and are harbingers of
the final patterns molded by nonlinearities. The modes are
eigenfunctions of the diffusion (Laplacian) operator on the
relevant manifold. Symmetries of the manifold, reflected
in degeneracies of the eigenfunctions, must be broken in
the final patterns. Previous work on the Laplacian on Rie-
mannian manifolds focused on its determinant [29–32] and
short-time behavior appropriate to field theory [33–35].
We focus instead on how nonuniform curvature breaks
degeneracies, pinning eigenfunctions to inhomogeneities.
To do this, we utilize conformal mappings and perturba-
tion theory. There is no guarantee, however, that patterns
resulting from nonlinear evolution are similarly entrained,
so the second step in our study explores patterns with sim-
ulations. We implemented the Thomas-Murray RD equa-
tions [10] on COMSOL Multiphysics R© [36]. We conclude
with suggestions for experiments.
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We first consider a cylinder with axially symmetric de-
formations described in cylindrical polar coordinates as
ρ = R(z). The surface line element is

ds2 = (1 + R2
z)dz2 + R2dϕ2 , (1)

where Rz denotes the derivative with respect to z. The
Laplacian of a scalar φ is

Δφ =
1√
g
∂a(

√
ggab∂bφ), (2)

where gab is the metric of the underlying geometry; g is
the determinant of the metric. Conformal mapping sim-
plifies analysis through mapping to a flat geometry. We
introduce a conformal axial coordinate v, such that the
line element acquires the conformally flat form

ds2 = Ω2(v)(dv2 + R2
0dϕ2), (3)

where R0 is the asymptotic radius and Ω is the conformal
factor. In the conformal coordinates,

√
g = Ω2R0, and

thus the Laplacian on the deformed geometry takes the
simple form ΔG = Ω−2Δ0, where Δ0 is the Laplacian in
the conformally flat coordinates. Since the behavior of Δ0

is well understood, and Ω is determined by the equality
of eqs. (1) and (3), this conformal mapping provides a
tractable method of understanding ΔG.

Solutions for v and Ω for arbitrary R(z) are in the sup-
plementary material Supplementarymaterial.pdf (SM).
To develop the perturbation theory, we set R = R0(1 +
εh(z)), in which case v ≈ z and Ω ≈ 1 + 2εh(v) to low-
est order. Therefore, the eigenfunctions φk of ΔG with
eigenvalues λ, satisfy

− Δ0φk + 2ελεh(v)φk = −λφk + O(ε2). (4)

In analogy with quantum mechanics, one can interpret the
deformation as giving rise to a potential in the conformal
coordinates, whose magnitude is dependent on the eigen-
value λ. (This differs from da Costa’s geometric potential,
which comes from confining a particle to a surface [37].)
For physical phenomena described by the Laplacian, this
mapping can be interpreted as the replacement of the dif-
fusion operator −DΔ on a deformed geometry, with a
spatially dependent diffusion coefficient D̃(v) ≡ D/Ω2 in
the conformally related homogeneous geometry. This pro-
vides an intuitive picture of how diffusion is modified by
curvature.

The undistorted cylinder of length L with periodic
boundary conditions has eigenfunctions and eigenvalues

φ
(0)
sk =

eisϕ

√
2πR0

ei2πkz/L

√
L

,

λ
(0)
sk = − s2

R2
0

−
(

2πk

L

)2

≡ −s̄2 − k̄2,

with integers s and k. Consider an axially symmetric
bump on the cylinder, shaped like a Gaussian of stan-
dard deviation σ and height v0. We apply the Rayleigh-
Schrödinger perturbation theory to eq. (4) to calculate

eigenvalue corrections to first order in ε ≡ v0/R, which
simplify for the case s = 0 to

λ±
0k = −k̄2

(
1 ± 2εσ

√
2π

L
e−2k̄2σ2

)
+ O(ε2).

The positive/negative sign is set by the mode: positive for
cosine (symmetric) modes, and negative for sine (antisym-
metric) modes. The sign of ε depends on the orientation of
the ridge-like deformation: positive for a bulge and nega-
tive for a constriction. Thus, to first order, a ridge breaks
the degeneracy in the eigenvalues of a Laplacian on the
cylinder, causing the eigenvalues of sine (cosine) modes to
become more negative in the case of an outward (inward)
ridge. This correction is largest for 2π/k̄ = 4πσ, when the
wavelength is approximately twice the width of the ridge.
This is a general trait of deformations, explored later for
a rippled cylinder. The ridge can be positioned anywhere
along the cylinder, and the modes will shift with the ridge.

Modifications to the Laplacian spectrum affect any
physical system involving diffusion. For example, consider
a two-component RD system:

∂t

(
Ψ1(x, t)
Ψ2(x, t)

)
=

Reactions︷ ︸︸ ︷(
R1 (Ψ1, Ψ2)
R2 (Ψ1, Ψ2)

)

+

Diffusion︷ ︸︸ ︷(
ν1 0
0 ν2

)
ΔG

(
Ψ1

Ψ2

)
. (5)

After linearization, small deviations around a uniform sta-
ble fixed point of the reactions, (Ψ1, Ψ2)∗, evolve as(

Ψ1(x, t)
Ψ2(x, t)

)
=

(
Ψ1

Ψ2

)∗
+

∑
k

(
u1k

u2k

)
etω(k)φk (x) ,

with ω(k) satisfying the eigenvalue equation, M(λ) = R+
λν,[(

R1,1 R1,2

R2,1 R2,2

)∗
+

(
ν1λk 0

0 ν2λk

)](
u1k

u2k

)
= ω(k)

(
u1k

u2k

)
.

While the diffusion and stable reaction matrices separately
possess negative eigenvalues, Turing showed that their
sum can have positive eigenvalues (ω+(k) > 0) signaling
finite-wavelength instabilities [1]. The possibly degenerate
modes, k∗, with largest eigenvalue evolve to the final pat-
tern. On a cylinder with a ridge, the degeneracy between
sine and cosine modes is broken: an outward (inward)
ridge leads to sine (cosine) growing faster.

This linear analysis indicates only the onset of instabil-
ities. To understand the patterns formed after nonlinear-
ities stabilize the dynamics, we conducted finite element
simulations of the Thomas-Murray model [10]:

Ψ̇1 = ν1ΔGΨ1 + γ
(
Ψ1 − u10 − ρΨ1Ψ2

1+Ψ1+Ψ2
1/K

)
,

Ψ̇2 =ν2ΔGΨ2+γ
(
α (Ψ2 − u20)− ρΨ1Ψ2

1+Ψ1+Ψ2
1/K

)
.

(6)
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Fig. 1: Patterns from the Thomas-Murray RD model in eq. (6)
are entrained to a Gaussian-shaped ridge, switching in phase
between inward and outward deformations. Red (blue) indi-
cates a high (low) concentration of chemicals. Vertical dimen-
sion magnified 3×. Parameters: ν1 = 1, ν2 = 10, u10 = 92,
u20 = 64, α = 1.5, K = 0.1, γ = 2, and ρ = 18.5. Unless
specified otherwise, other figures have these parameters.

We used COMSOL Multiphysics R© [36], which approx-
imates the Laplacian by finite differences on a mesh
and computes the fully nonlinear reaction terms. (See
supplemental COMSOL models, cylinder gaussian
deformation.mph, deformed sphere.mph, noise.mph,
periodic-cylinder-length-sweep.mph.) It should be
noted that, although periodic boundary conditions are en-
forced in the numerical calculations, the computational
methods using by COMSOL have a tendency to pin the
resulting Turing patterns in a specific configuartion, even
on a flat cylinder. Despite this, as shown in fig. 1, density
maxima of Turing patterns on a deformed cylinder are en-
trained by a ridge. An inward (outward) ridge selects the
sine (cosine) mode.

This conformal mapping approach enables studies of
other geometries, including bumps on spheres (below),
drums (see SM), and rippled cylinders. An axially sym-
metric rippled cylinder, h(z) = cos[(2πp/L)z] ≡ cos(p̄z),
gives a Schrödinger-like equation at O(ε) (cf. eq. (4)):

[−Δ0 − 2ελ
(0)
sk cos(p̄v)]φk = k2φk. (7)

This Schrödinger equation describes a particle moving in a
weak periodic potential, whose properties are well under-
stood in the context of solid-state physics [38]. At leading
order, this perturbation gives rise to a broken degener-
acy (band-gap) at k = p/2 with magnitude 4ελ

(0)
sk . Our

analysis predicts that when an RD system governs surface
concentrations, the effective diffusion rate will increase in
troughs and slow down on ridges. Hence, diffusion is en-
hanced (diminished) where Gaussian curvature is nega-
tive (positive). This agrees with the short-time analysis
of diffusion on Riemannian manifolds, where the leading-
order correction to diffusion is proportional to the Gaus-
sian curvature [33–35]. For Turing patterns, steady-state
regions of high concentration switch sharply from ridges
to troughs as the most unstable wavelength is dialed past
twice the ripple wavelength, see fig. 2 and supplemen-
tary video rippled-cylinder.mov. Note that eq. (7)
predicts a broken degeneracy only when the most unstable

λ λ

λ,

(0,0)
k

k*

ω

Fig. 2: Top: three functions of wave number: Laplacian eigen-
values on a rippled cylinder, including a band gap at p/2 (blue
line); Turing spectrum on a nonrippled cylinder (black dotted
line); Turing spectrum on a rippled cylinder (red line). For the
case shown with k∗ > p/2, the sine mode is selected; (cosine se-
lected if k∗ < p/2). Bottom line: numerical confirmation: con-
centration patterns in the Thomas-Murray model switch from
troughs to ridges as the unstable chemical wavelength, k∗, is
dialed past twice the ripple wavelength by changing γ = 1.125
(upper image) to γ = 0.975 (lower image). Vertical dimen-
sion magnified 3×. The SM includes a video of sweeping p
(Mathematica and COMSOL files).

wavelength is commensurate with the ripple wavelength.
However, in numerical simulations (presumably due to
higher-order effects), we observe pinning for a range of
wavelengths close to commensurability, although the pat-
terns become unpinned for sufficiently incommensurate
wavelengths.

An axially symmetric distorted sphere, described by
R(θ), has line element

ds2 =
(
R2 + R′2) dθ2 + R2 sin2 θdϕ2 ,

where the prime denotes derivatives. Mapping to confor-
mally flat coordinates:

ds2 = Ω2 (
dΘ2 + sin2 Θdϕ2) .

The Laplacian eigenvalue equation in conformal coordi-
nates becomes (see SM)[

−Δ0 + k2
(

R2
0 − R2 sin2 θ

sin2 Θ

)]
Φ = k2R2

0Φ , (8)

where Δ0 is the Laplacian on a round sphere. Setting
R = R0 (1 + εh(θ)), we expand in powers of ε. To O(ε),
θ = Θ, and eq. (8) reduces to[−Δ0 − 2εk2R2

0h
]
Φ = k2Φ . (9)
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Fig. 3: Sufficiently large bumps entrain spotted patterns (top
pair). Initial patterning on an undeformed sphere shows Y 5

5

(bottom left); the inward bumps of a “pinched sphere” amplify
lower harmonics, causing Y 0

3 to appear (bottom right).

Using eq. (9), we study how deformations modify the
Laplacian eigenfunctions Y m

� (θ, φ). The perturbation
depends only on θ, breaking rotational symmetry by
fixing polar orientation of eigenmodes while preserving az-
imuthal symmetry. This can potentially entrain Turing
patterns, although there are competing influences from
nonlinear effects and incommensurability of length scales
as seen in fig. 3. In fact, in numerical simulations, we of-
ten found that the initial patterning predicted by linear
stability analysis would stabilize to more complex pat-
terns. In contrast, on a cylinder, initial patterning tends
to persist indefinitely. We attribute this to differing de-
grees of degeneracy. The spherical eigenmodes, Y m

� , have
2� + 1 degeneracy. Thus, near the most unstable eigen-
mode, there are 2� additional unstable modes that can
contribute to nonlinear pattern formation. In contrast, a
cylinder presents only a twofold degeneracy.

As evident from eq. (9), eigenfunction modifications are
sensitive to the sign of h. An inward (outward) bump
causes an increase (decrease) in diffusion. Nonlinear ef-
fects in the Thomas-Murray model are known to stabilize
spotted patterns instead of the single most unstable spher-
ical harmonic, see ref. [39]. However, during the initial
development of Turing patterns, the most unstable Y m

� is
visible, and the mode selected by a deformed sphere differs
from that of a uniform sphere, see fig. 3.

Including extrinsic noise in RD systems leads to tem-
porally fluctuating quasi-patterns for a broader range of
parameters than those required for a Turing instabil-
ity [11,16,40,41]. We have investigated how curvature in-
fluences such noise-induced transient patterns. We add
uncorrelated white noise η(x, t) of zero mean and variance
D to eq. (5). In the linearly stable regime, this noise leads
to eigenfunction fluctuations with a power spectrum P (λ)
proportional to D[detM(λ)]−1. On a uniform surface,

Fig. 4: Noise-induced quasipatterns appear when geometric
ripples split degenerate eigenmodes of an RD system below
threshold. Deformations pin the time-averaged intensity of
fluctuations in RD quasipatterns (top); compare with the same
intensity of extrinsic noise on a flat surface (bottom). For both
panels, ν2 = 6 and K = 0.15.

time-averaged fluctuations are translationally invariant,
〈〈|Ψ(x)|2〉 = Ψ2

0. Deformations break this symmetry,
leading to average fluctuations on a cylinder of the form

〈|Ψ(x)|2〉 ∝
∑

k

cos2(k̄x)
detM(λ+

0k)
+

sin2(k̄x)
detM(λ−

0k)
+ O(ε2). (10)

On spheres, the spherical harmonics replace the Fourier
modes. Figure 4 shows numerical verification that such de-
formations fix the phase of fluctuations and create nonuni-
form time-averaged intensities. Such behavior is expected
to hold generically for quasi-patterns induced by intrinsic
noise [11,16,40,41], where the power spectrum describing
fluctuations is qualitatively similar.

If these effects can be realized in manufactured or ex-
perimental systems, they could enable systematic manip-
ulation of patterns. For example, collagen vitrigel (CV)
for corneal endothelial regenerative treatment [42] could
be molded in a hemispherical or eggcrate geometry and
used to support zebrafish chromatophores, which were re-
cently cultured for in vitro studies [14] to explore RD
models [13]. Mice hair follicle patterning is also driven
by an RD system involving WNT growth factor [43], and
might be cultured on molded CV using established in
vitro techniques [44]. Zebrafish stripes and hair follicles
have spacing on the order of one hundred microns. Three
orders of magnitude smaller, cytoskeletal suspensions ex-
hibit patterns [3–5] that may realize our results. For exam-
ple, a pinched sphere might be constructed in the recently
studied encapsulations of actomyosin in giant unilamellar
vesicles [6]. A recent review of such active fluids suggests
that coupling to RD systems looks like a fruitful direction
for research [7].

Even in a system as simple as a cylinder with a ridge,
geometry can dramatically affect pattern formation. Our
approach to the Laplacian on curved surfaces opens a
new route to the analytical understanding of patterns
in real systems, taking advantage of intuition and tools
from quantum mechanics. Future directions include pat-
tern formation in the presence of advection [8], and on
time-varying shapes. Our approach can also be applied to
scenarios involving interactions between the surface and
boundary physics. In particular, it would be interesting to
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examine the effect of nonuniform surface curvature when
additional reaction-diffusion processes take place at the
boundary [45]. More generally, our mathematical methods
apply to any process described by the Laplacian, and may
also find application in soap films [46], or Marangoni flows
from surface tension gradients [47].
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