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When a biological population expands into new territory, genetic drift develops an enormous influence
on evolution at the propagating front. In such range expansion processes, fluctuations in allele frequen-
cies occur through stochastic spatial wandering of both genetic lineages and the boundaries between
genetically segregated sectors. Laboratory experiments on microbial range expansions have shown that
this stochastic wandering, transverse to the front, is superdiffusive due to the front’s growing roughness,
implying much faster loss of genetic diversity than predicted by simple flat front diffusive models. We
study the evolutionary consequences of this superdiffusive wandering using two complementary numer-
ical models of range expansions: the stepping stone model, and a new interpretation of the model of
directed paths in random media, in the context of a roughening population front. Through these ap-
proaches we compute statistics for the times since common ancestry for pairs of individuals with a given
spatial separation at the front, and we explore how environmental heterogeneities can locally suppress

these superdiffusive fluctuations.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In evolutionary biology, changes in an allele’s frequency in a
population are driven not only by Darwinian selection but also
by random fluctuations, the phenomenon of genetic drift. Selec-
tively neutral or even deleterious alleles can rise to prominence
purely by chance. In many scenarios an individual competes
directly only with a small subset of the population, e.g. due to
spatial proximity, and this small effective population size increases
the influence of genetic drift (Korolev et al., 2010).

Range expansions provide an important example: When a
population expands spatially into new territory, as during species
invasion or following environmental changes, the new territory is
dominated by the descendants of a few ancestors at the expansion
front. Genetic drift is amplified by the small effective population
size at the front (Korolev et al., 2010) - the founder effect - and
by the related phenomenon of gene “surfing”, in which alleles that
happen to be present at the front spread to high frequency in the
newly occupied space, despite being selectively neutral or even
deleterious (Hallatschek et al., 2007; Excoffier and Ray, 2008).
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Genetic drift in range expansions strongly ties fluctuations
in allele frequencies to spatial fluctuations. In laboratory experi-
ments, Hallatschek et al. (2007) have shown that microbial range
expansions develop, after a short demixing time, genetic sectors
containing almost exclusively the descendants of a single indi-
vidual. Thereafter, genetic drift occurs through spatial fluctuations
of the sector boundaries, with a sector lost from the front each
time two sector boundaries intersect. Similarly, the genealogical
ancestry tree traced backward in time from the front becomes
a tree of space curves that fluctuate transversely to the front
propagation direction and coalesce upon intersection (Gralka et al.,
2016). (See Fig. 2.)

The reverse-time coalescence of lineages is of central impor-
tance in population genetics, particularly in the approach known
as coalescent theory (Kingman, 1982; Wakeley, 2009). One of the
key estimates of interest in coalescent theory is the expected num-
ber of pairwise site differences I'T between two sampled genomes,
which is proportional to the expected time since common ancestry
of the two sampled individuals, T,, under the assumption that
neutral mutations have accumulated in the (very long) genome
at a constant rate since the two lineages diverged. The relation
[MxT, allows inferences to be made about the population’s recent
evolutionary past from measured genomic differences in the
present, given reliable models of genealogy. The structured coales-
cent, which extends coalescent theory to populations with spatial
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structure (as opposed to well-mixed populations) (Wilkinson-
Herbots, 1998), typically assumes migration rules that produce
diffusive dynamics for gene flow. Theoretical studies of the ge-
nealogical structure of range expansions have similarly assumed
diffusive spatial fluctuations of genetic boundaries (as would be
appropriate to a flat front range expansion model; see below)
in the interests of analytical tractability (Korolev et al., 2010).
Flat front models are equivalent to conventional stepping stone
models (Kimura and Weiss, 1964) and many exact results are
available (Wilkins and Wakeley, 2002).

However, there is strong evidence that evolutionary dy-
namics in range expansions are often driven by superdiffusive
spatial wandering of both genetic sector boundaries and lineages.
Hallatschek et al. (2007) measured the mean-square transverse
displacement of sector boundaries in E. coli growing across hard
agar Petri dishes, and found it to scale with the expansion distance
y as y?¢ with wandering exponent ¢ = 0.65 + 0.05, greater than
the value of ¢ = 1/2 characterizing diffusive wandering. In both E.
coli and the yeast species Saccharomyces cerevisiae, genetic lineages
similarly fluctuate with wandering exponent ¢ ~2/3 (Gralka et al.,
2016). The same superdiffusive wandering exponent was found
numerically for genetic lineages in an off-lattice model of micro-
bial colony growth (Gralka et al., 2016) and for sector boundaries
in a two-species Eden model (Korolev et al., 2010; Saito and
Miiller-Krumbhaar, 1995). Consequently, the number of distinct
sectors decreases as y~¢, with ¢ measured to be ~0.67 (Saito
and Miiller-Krumbhaar, 1995), a progressively faster loss of genetic
diversity than the y—1/2 scaling that would result from diffusive
dynamics (Korolev et al., 2010); see Fig. 2, where genetically
neutral strains are competing.

The underlying cause of this superdiffusive behavior is that
the population front profile has a characteristic roughness that
increases with time. Because the range expansion causes the front
to advance along its local normal direction, stochastically gener-
ated protrusions in the front are self-amplifying, and the lineages
and genetic sector boundaries moving with these protrusions
experience a faster-than-diffusive average lateral motion.

Such roughening fronts are characterized by the Kardar-Parisi-
Zhang (KPZ) equation (Kardar et al., 1986; Medina et al., 1989)

Oh(x,t) = vV2h+ A(Vh)?/2 + n(x,1), (1)

where h(x, t) is the height of the front at position x and time
t, subject to diffusion, growth in the front’s local normal direc-
tion, and a stochastic noise n(x, t). The front roughness Ah =

(h2) — (h)2 initially grows with time as t#, before saturating for
a strip of width L as LP/%. The scaling exponents, 8 =1/3 and
¢ =2/3 are known analytically in d =1+ 1 dimensions (Kardar,
1987; Sasamoto and Spohn, 2010); this value of the wandering ex-
ponent ¢ nicely matches the measured value from experiments
and simulations of the microorganism range expansions discussed
above.

Throughout this work, we choose the stochastic noise n(x, t)
to be Gaussian white noise with Dirac delta correlation
(nx, )N, t")) «c 8(x —x')§(t —t’). The exponent B is known
to be modified in the case of heavy-tailed noise (Gueudré
et al., 2015), or, in higher dimensions, noise with bounded
support (Newman and Swift, 1997).

There exists a wealth of literature on the KPZ equation and
its rich universality class (Halpin-Healy and Zhang, 1995; Halpin-
Healy and Takeuchi, 2015; Quastel and Spohn, 2015), including
on the scaling behavior of structures analogous to the bacterial
genealogical trees in the context of ballistic deposition (Meakin,
1987; Krug and Meakin, 1989). However, there does not yet exist
a similar understanding of the rate statistics of coalescing space
curves - here, lineages and genetic sector boundaries - whose
superdiffusive wandering is driven by KPZ roughening. We term

these curves “KPZ walkers” in contrast to diffusive random walkers.
In developing a quantitative understanding of neutral evolution in
a biological range expansion, we are thus led to new questions in
statistical physics.

In this work, we numerically investigate the genealogical
structure of populations with superdiffusive migration of the KPZ
walker type, driven by roughening fronts. We are chiefly interested
in how the expected time since common ancestry T, for a pair of
individuals depends on spatial separation Axq at the front, as well
as in the probability per unit time J(T|Axg) of lineage coalescence
at time 7 in the past, whose first moment [;° dt tJ(7|Axo) equals
T>(Axg). As a first approach to this problem, our work focuses
on neutral evolution from a linear inoculation, avoiding effects
such as selection, mutualism/antagonism, and geometrical infla-
tion (Lavrentovich et al., 2013), interesting topics of future study.

We employ a complementary pair of simulation approaches:
The first, a lattice-based stepping stone model, introduces front
roughness through stochasticity in replication time. In our second
approach, we reinterpret the problem of directed paths in random
media (DPRM) (Kardar and Zhang, 1987), a simple and widely-
used model from the KPZ universality class (Kim et al., 1991a;
1991b; Halpin-Healy, 1991), as a model for range expansions
with stochastic variation in organism size. The DPRM approach
can be simulated at large scales with much less computational
expense than our stochastic stepping stone model. We also ap-
ply analytical results from the DPRM problem to rationalize the
measured asymptotic coalescence behaviors. Finally, we study
numerically how environmental heterogeneities temporarily sup-
press the wandering of KPZ walkers, an effect observed recently in
experiment (Mdbius et al., 2015).

2. Methods

The stepping stone model (Kimura and Weiss, 1964) imagines
a biological population arranged on a spatial lattice of individually
well-mixed subpopulations called “demes”, each containing N
individuals, with exchange of individuals between neighboring
demes. We implement the stepping stone model on a triangular
lattice with N =1 individual per deme, which models cases in
which local fixation of one allele occurs rapidly compared to
spatial diffusion (Korolev et al., 2010).

As an initial condition, we take the lattice of demes in two
dimensions to be unpopulated except for a linear inoculation
“homeland”. Once a deme is populated, its allele remains un-
changed thereafter, as in the microbial experiments on agar
plates, where cell divisions occur only near the frontier, so that
the spatial pattern of alleles is effectively frozen behind the
front (Hallatschek et al., 2007). We choose as our update rule
that of the Eden model (Eden, 1961) for two-dimensional growth
processes: One site is chosen at random from among all occupied
sites with some empty neighbor site, and the allele is copied from
the chosen occupied site into a randomly chosen empty neighbor
(Fig. 1a)." By introducing stochasticity in the replication time, this
procedure generates an irregular interface between the occupied
and empty regions (see Fig. 2a), simulating a rough front range
expansion. By contrast, the expansion front remains flat (Fig. 2b)
if the update rule fills an entire row in parallel (Fig. 1b), with each
newly filled site inheriting the allele marker of one of its two filled
neighbors below, chosen randomly with equal probability. The

T The n =1 stepping stone model is also studied as the voter model with L dif-
ferent opinions (Odor, 2004). We note that accelerated coarsening brought about
by superdiffusive wandering has been studied for the voter model (Hinrichsen and
Howard, 1999), but with opinions spreading by Lévy flights of algebraically dis-
tributed distances, in contrast to the purely nearest-neighbor microscopic dynamics
employed in this work.
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Fig. 1. Illlustrations of the update rules in our numerical models of range expan-
sions. (a,b) The stepping stone model with deme size N =1 on a triangular lattice,
using (a) rough front and (b) flat front update rules. We visualize each individual on
the initial line and its descendants with a distinct color. (c) DPRM model of range
expansion. At horizontal position x, the height of the front in the y-direction, h(x,
t), is increased by a quantity that depends on the two adjacent heights, namely
max{h(x—t,t —1) +n,h(x+1,t —1) +n'}, where n, 1’ are zero-mean stochastic
Gaussian white noise terms that cause front roughness. The nearest neighbor cell
which maximizes the above relation is chosen to reproduce, and passes on its al-
lele label (denoted by the color), as represented by white arrows in the illustration.

dynamics in Fig. 1b is equivalent to a one-dimensional stepping
stone model in discrete time with deme size N = 1.

The second model, DPRM (Kardar and Zhang, 1987), arises from
the problem of finding a minimal-energy directed path through a
random energy landscape n(x, t). Directed paths must propagate in
the ‘time’ direction ¢, but can fluctuate in the spatial direction x.

We can reinterpret DPRM as an alternative model of range ex-
pansions with roughening fronts. In Fig. 1c, we illustrate that the

(a) Rough front growth

Fig. 2. Range expansions generated by the stepping stone model, using the (a)
rough front and (b) flat front update rules, with periodic boundary conditions in the
horizontal direction. The colors represent allele labels, while the black lines mark
the genetic lineages. Time runs upward in both cases. Note that there are fewer
sectors at the top (genetic coarsening), but fewer lineages at the bottom (lineage
coalescence). Typical coalescence rates are much larger in (a) than in (b).

accumulated “energy” of the directed path, characterized by the
KPZ equation, can be mapped to the height of a range expansion
front. In this mapping, the stochastic noise n corresponds to fluc-
tuations in the lengths of individual microbes in the direction of
average propagation y, about a mean length ¢. An allele label is
added to each site, as in the stepping stone model. The height of
the front h(x, t) is updated according to

h(x,t) =¢+max{fh(x—t,t = 1) +n,h(x+1,t-1)+7n'}, (2)

where 1, n’ are independent and identically distributed Gaussian
white noise random variables with zero mean and correlations
(nx. OHn', t'))y =8(x —x")6(t —t') and likewise for n’. Each site
at time t is then filled by the offspring of one of its nearest neigh-
bors from time t — 1, and inherits the corresponding allele label.
The choice of competing mother cells is taken to be the cell that
optimizes the relation in Eq. (2). Each DPRM directed path is inter-
preted as a single lineage, and the set of optimal directed paths to
all available endpoints forms the lineage tree.

Thus, while replication time is constant in this model, front
roughness is generated by stochasticity in cell size, with larger
size favored for propagation. While we assume that the mean cell
size at time of division for the microbe in question has already
evolved to a fitness maximum, variance in the cell size leads to
front roughness and accelerated loss of genetic diversity (Fig. 3a).

Note that if we fix 1 to have zero variance, and instead choose
the mother cell at random between the left- and right-neighbors,
we recover a flat front range expansion with diffusive dynamics
associated with lineages and genetic boundaries (Fig. 3b). Also,
if we reduce the system width to a single organism, the front
height h(x, t) performs a random walk about the deterministic
value ¢t, the variance growing linearly in t with slope given by
the variance in 7. A dramatic experimental realization of such a
scenario in E. coli was demonstrated by the “mother machine” of
Wang et al. (2010): Bacteria growing and dividing in narrow chan-
nels, quasi-one-dimensionally, show stability in growth rate over
hundreds of generations.

In both the rough front stepping stone model and the DPRM
model, lineages and sector boundaries have superdiffusive lat-
eral fluctuations with wandering exponent ¢ = 2/3 (Kardar, 1987;
Kardar and Zhang, 1987; Sasamoto and Spohn, 2010; Korolev
et al., 2010; Saito and Miiller-Krumbhaar, 1995). For DPRM models,

(a) Rough front growth

(b) Flat front growth
okt 6

Fig. 3. Range expansions generated by the DPRM model, with periodic boundary
conditions in the horizontal direction, as in Fig. 2. The colors represent allele labels,
while the black lines mark the genetic lineages. In contrast to the flat front case (b),
the rough front case (a) with the same number of generations shows a significantly
faster decrease in genetic diversity, and much larger lineage coalescence rates, sim-
ilar to Fig. 2. The noise term 7 is given standard deviation 0.2 for (a) and 0 for (b)
to illustrate the two cases.
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this behavior is well-known as the transverse fluctuations of the
minimal-energy directed path. In contrast, for the flat front step-
ping stone model and the zero-noise variant of DPRM, the lateral
fluctuations of lineages and sector boundaries are merely diffusive,
£=1/2.

This superdiffusive behavior has stark consequences for the ge-
netic structure of the population. Comparing the flat front and
rough front realizations for the stepping stone model in Fig. 2 and
for the DPRM model in Fig. 3, we see striking differences in both
the coalescing lineage trees and the decay in the number of surviv-
ing monoclonal sectors. Genetic diversity is lost much more rapidly
in the rough front case, and nearby individuals at the front are
much more likely to have a common ancestor in the recent past,
reflecting much larger coalescence rates.

Further details about the numerical implementation of these
two methods are given in the Supporting Information.

3. Results and discussion
3.1. Coalescence of lineages

3.1.1. Rate of coalescence J(t|AXp)

For two lineages separated by Axg at the front, J(T|Axg) is the
probability per unit time for them to coalesce in a common an-
cestor at reverse time t. In the diffusive case, on an infinite line,
this is the well-known coalescence rate for two diffusive random
walkers with diffusion constant D (Redner, 2001):

1 1/a2\" 1( A%
]diff(T|AX0):mt(D§)> eXp|:—8<D)_;°>:|. (3)

As a function of the dimensionless ratio Axg/(Dr), this rate be-
haves as a power law in the limit of large reverse time or small
separations at the front, and as an exponential decay in the oppo-
site limit.

Results such as Eq. (3), valid here for flat front models, will
serve as a useful guide to our investigations of more complex
coalescent phenomena at rough frontiers. In population genet-
ics, systems analogous to our flat front models also arise in the
continuum limit of one-dimensional Kimura-Weiss stepping
stone models (Kimura and Weiss, 1964). As reviewed in
Korolev et al. (2010), many exact results for quantities such as the
heterozygosity correlation function and coalescent times are avail-
able (Barton et al., 2002; Malécot, 1975; Nagylaki, 1974; Wilkinson-
Herbots, 1998). The x-coordinate of stepping stone models repre-
sents the horizontal axis of flat front simulations such as those
displayed in Figs. 2b and 3b, while its time coordinate maps on to
the y-axis. Nullmeier and Hallatschek have used a stepping stone
model to study how coalescent times change in 1-dimensional
populations when one boundary of a habitable domain moves in a
linear fashion due to, say, a changing climate (Nullmeier and Hal-
latschek, 2013).

Results from this later investigation could thus be reinterpreted
as applicable to a two-dimensional range expansion in a trape-
zoidal domain, in the flat front approximation with diffusive ge-
netic boundaries.

For superdiffusive lineages, however, the full expression for
J(t|Axg) is not known. We focus instead on its asymptotic behav-
iors using predictions from DPRM and intuition gained from the
diffusive case. For lattice models like those in Fig. 1, it will be con-
venient to measure distances Axg in units of the space-like direc-
tion x, and t in units of the fundamental step in the time-like di-
rection, which amounts to scaling out the analog of the diffusion
constant in Eq. (3). We expect on theoretical grounds that J de-
pends on Axp only through the combination Axgy/t¢, with expo-
nent ¢ = 2/3 as opposed to ¢ = 1/2 in the diffusive case. (The co-
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Fig. 4. Log-log plot of — In[Ax3/%](t]| Axo)] vs. the KPZ-rescaled variable t/Ax3/? for
lineages in the stepping stone model and for DPRM. Here, we focus on the regime

Axo <L, to avoid finite size effects associated with periodic boundary conditions.

Asymptotically for © /Axg/ 2 « 1, the relationship is linear, indicating an exponential

form for J(t|xo). The fitted slopes are —1.93 £ 0.02 for stepping stone, and —1.96 &+
0.03 for DPRM, providing measurements of y as defined in Eq. (4). (For comparison,
the DPRM theory predicts a slope of —2.)

efficient making this combination dimensionless, analogous to D,
will be system-specific and is suppressed in our notation.)

First, we consider the regime T/Axg/2 « 1, representing rare
coalescence events where lineages located far apart at the front
can be traced back to a recent common ancestor. For the analo-
gous regime of ‘L’/AX% « 1 in the diffusive case, the coalescence
rate behaves as Jyi (T|AXg) ~ exp[—(Axy/T1/2)2]. We hypothesize

a similar decay for the superdiffusive case, as

Ax\ T Y
J(|Ax0) ~ exp —<T2/§> =exp<—<Ax3,2>> 4)

for some exponent y = —%y/. In Fig. 4, we plot
~In[Ax)*](t|Ax)] vs. T/Ax)* for both the stepping stone
model and DPRM on a log-log scale, so that Eq. (4) predicts a
linear plot with slope y. At small 7 /Axg/ 2 both sets of data
appear linear, confirming the above hypothesized form. The slopes
in the linear regime provide estimates of y = —1.96+0.03 for
DPRM and —1.93 £ 0.02 for the stepping stone model.

In fact, we can analytically derive this exponential form, includ-
ing the value of y, using the known distribution of directed path
endpoints in DPRM (Flores et al., 2013), in the regime r/Axg/z < 1.
The calculation, given in the Supporting Information, shows that

172 3
1( Ax c{ Ax
J(T|Axo) ~ r(_rz/g> exp —4<T2/g) ) (5)

where c is a constant of order unity. For r/Axg/2 <« 1, the leading

asymptotic behavior of J(t|Axg) ~ exp(—1c(Axg/t?/3)3) thus cor-
responds to ¥y’ =3, y = —2. From the numerical results in Fig. 4,
we see from DPRM that y ~ —-1.96+0.03, and from the rough
front stepping stone model we compute y ~ —1.93 £+ 0.02. Both
numerical results are in good agreement with the analytically de-
rived prediction.

In the opposite regime of 7 /Axf’)/2 > 1, we can again hypoth-
esize a form for J in analogy with the diffusive case, for which
Eq. (3) shows Jyir(T|AXg) ~ T-1(Axo/T1/2). For KPZ walkers, the
analogous form is

1( Axg o 1 T *
(t|Axg) ~ = == =———=], (6)
J(z|Axo o\ 7253 jxg/z ﬁXg/z

for some exponent o = —(1+ %o/). Although the expression in
Eq. (5) is consistent with this form, that result is obtained by as-
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Fig. 5. Log-log plot of Ax3J(T|Axo) vs. the KPZ-rescaled variable 7/Ax3/? for lin-

eages in the stepping stone model and for DPRM. For /Axg/ 2> 1, the exponent of

the power-law decay (Eq. (6)) is extracted from a linear fit to the numerical data,
yielding o = —1.62 +0.03 for stepping stone, and o = —1.65+£0.01 for DPRM. As
in Fig. 4, we work in the limit Axy <L to avoid effects due to periodic boundary
conditions.

suming the two KPZ walkers to be independent (valid at small
r/Axg/z), so there is no reason to expect the apparent value of
o' =1/2, a = —4/3 to hold for /AX}/> > 1.

The rate of coalescence for the two computational approaches
in this regime is plotted in Fig. 5. The asymptotic behavior is con-
sistent with the hypothesized power-law decay. The exponent «
is determined numerically to be o = —1.62 4 0.03 for the stepping
stone model, and o = —1.65 £0.01 for DPRM, giving good agree-
ment between the two models. Furthermore, these values do not
rule out the possibility that @ = —5/3, a’ =1, which would give
the noteworthy conclusion that J(t|Axg) is linear in the separation
AXg, just as in the diffusive case.

3.1.2. Expected time to coalescence T,

For a range expansion that has proceeded for a time tmax after
a linear inoculation, if two lineages separated by Ax, share a com-
mon ancestor on the initial line, we can calculate their expected
time to coalescence (time since common ancestry) as

famx dT 7] (T| AXo)
Jom=dT J(t| Axg)

Note that the denominator represents normalization by the proba-
bility that the two lineages do indeed coalesce.

In the case of diffusive lineages, Eq. (3) leads to an analytic ex-
pression for Ty,

T aifr (AXo, tmax) _ AX% F[—]/z, AX%/SDtmax]
8Dtmax ) T'[1/2, AX2/8Dtmax ]|

where I'(x, y) is the incomplete gamma function. In Fig. 6 we com-
pare the numerical T, data for KPZ walkers in the rough front step-
ping stone model with the analytical prediction from the diffusive
case under the same conditions. For large Axg, in principle T, ap-
proaches tmax; our data do not show this saturation because lin-
eage coalescence events at T ~tmax are so rare that the statistics
become poor as Axg approaches tmax. The behavior for small Axg
is controlled by the scaling in Eq. (6): an approximately linear scal-
ing leading to T, ~ Axotgn;f(. We see that lineages with the same
separation Axg coalesce much faster on average when they behave
as KPZ walkers, and that this difference becomes more pronounced
for large tmax, as is evident qualitatively from Figs. 2 and 3. The
scaling of T, for KPZ walkers can be written in a form analogous
to Eq. (8), and reflects the KPZ transverse scalings inherent in the
system (see Supporting Information).

T, (AXo, tmax) = (7)

(8)
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Fig. 6. Average time T, since common ancestry for pairs of individuals with some
common ancestor and with separation Axy <L at the front, and for a range of sys-
tem expansion times tmax. Solid lines represent numerical data for KPZ walkers in
the stepping stone model, and dashed lines represent analytical predictions for dif-
fusive walkers with the same parameters. The plateau values are simply tmax.

In biological terms, common ancestry is expected to be more
recent with rough front dynamics than under diffusive dynam-
ics. As a result, assuming a constant rate of neutral mutations,
the number of differences I1(Axy) between pairs of two sampled
genomes at the front is expected to increase more slowly with sep-
aration Axg along the front. This anomaly arises because we ex-
pect the habitat to be populated by the offspring of a small num-
ber of common ancestors, which decays as t=2/3 for KPZ walkers,
rather than the t~1/2 decay characterizing diffusive random walk-
ers, where t is the time since the initial inoculation.

3.2. Environmental heterogeneities

The presence of environmental heterogeneities in the habitat
can have a significant impact on a range expansion, including on
the front shape and propagation speed, and on the genetic diver-
sity at the front. A prototypical example of environmental hetero-
geneity is the obstacle, a nutrient-depleted zone, that the popula-
tion must grow around rather than through. As we show here, two
different types of KPZ fluctuations come into play when an obsta-
cle is present.

Range expansions around an obstacle were studied ex-
perimentally and via simple geometrical optics ideas by
Mébius et al. (2015) (see also Tesser, 2016). A notable feature of the
experimental (and numerical) results from Mdbius et al. (2015) is
that the sector boundary which forms at the apex of the obstacle
shows suppressed transverse fluctuations compared to all other
sector boundaries. As the front propagates past the obstacle, a
component of its velocity is directed inward from both sides. This
in effect pins the sector boundary to the middle, at a kink in the
front, and suppresses this sector boundary’s fluctuations.

While we have considered only fluctuations of lineages until
now, the fluctuations of sector boundaries are inextricably related,
as a lineage necessarily remains inside a single sector. Since the
lineage fluctuations grow in reverse time as %, their coalescence
causes the number of distinct lineages to decay as T~¢. Thus for a
front at time t, the number of roots that the lineage tree has in the
initial population decays as t—¢. As this number of roots equals the
number of sectors, the sector boundaries must fluctuate in forward
time as t¢.

Here, we study the suppression of sector boundary fluctuations
by obstacles in greater detail using the stepping stone model with
a rough front. A gap of width wgap of unoccupied sites is left in the
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(a) (b)

Fig. 7. Geometries of the sector boundary between two alleles (labeled red and
green). The initial inoculations are marked by dashed lines. (a) Illustration of the
gap geometry: A segment of width wg,, is left unpopulated initially, separating the
two alleles which grow from an otherwise flat initial condition. The width wgap
could represent, say, the width of a square obstacle that terminates at time t =0,
or the size of an interval along the horizontal x-direction where all organisms are
removed by an environmental trauma. (b) Illustration of the wedge geometry: The
initial population occupies two triangular regions whose growth fronts meet at a
wedge angle 6. In both systems, the two alleles meet at a single sector boundary,
along which fluctuations are suppressed. The front of the range expansion is illus-
trated for a series of equally spaced time values t, with lighter shades representing
later times. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

initially populated line, providing a simplified representation of a
range expansion past an obstacle of such width, or the result of an
environmental trauma (Fig. 7a). By considering only two “alleles”
(colors), we can track the wandering of the single sector boundary
that forms approximately above the center of the obstacle. We ex-
amine only times sufficiently early that the system’s finite width
cannot affect the sector boundary (see Supporting Information). As
shown in Fig. 8a, the effective wandering exponent ¢ is suppressed
from the usual value of 2/3, to ¢ ~1/3 for times vt < wgap, Where v
is the average front velocity. At later times, as the kink in the front
heals and the average front normals return to the vertical, { recov-
ers the expected value of 2/3 for KPZ genetic boundaries. Notably,
the effective { appears to exceed 2/3 in an intermediate transitory
regime when vt~ wg,p.

To gain further insight into this changing wandering expo-
nent, we modify the numerical experiment to a wedge geometry
(Fig. 7b). This allows us to fix the kink angle 6 to be a constant
value, as opposed to the gap geometry where the kink heals from
some initial 6y toward r with increasing time.

Now, the stepping stone model with deme size of 1 is, in
essence, identical to the Eden model on a triangular lattice,
with the added complication of tracking different genotypes. The
boundary between two Eden clusters meeting at an angle 6 has
previously been studied (Derrida and Dickman, 1991). The trans-
verse fluctuations scale as t¢, where t is the simulation time, and
the wandering exponent ¢ was conjectured to be

1/3, 0 <m,
¢@)=12/3, O=m, 9)
1, 0.

The value 6 = r corresponds to two Eden clusters growing side by
side with flat initial conditions, in which case one recovers the KPZ
value of ¢ =2/3 as expected.

The regime 0 < is of relevance to range expansions with ob-
stacles. Heuristically, the sector boundary becomes pinned by the
two Eden clusters growing into each other, and the usual KPZ
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Fig. 8. (a) Log-log plot of fluctuations of the sector boundary (Ax?)'/2 vs. vertical
distance along the sector boundary vt in the gap geometry for a range of gap sizes
Wagap. Fits to a power law scaling form (Ax2)'2 ~ ¢ yield exponents varying from
¢~1/3 to ¢ ~2/3, with a crossover region in between. Inset: Data collapse after
rescaling with respect to wg,p. By geometrical arguments, vt/wg,p,, where v is the
average front speed, is a measure of the angle of incidence of the fronts as deter-
mined by a constant speed or “geometrical optics” model. We see a reasonably good
collapse across many different gap sizes, with ¢ ~1/3 for vt/wgp < 1, and ¢ ~2/3 for
Vt/Wgap > 1. (b) Wandering exponent ¢ as a function of the angle of incidence 6 in
the wedge geometry. As 6 increases from 0 to i, the wandering exponent increases
smoothly from approximately { = 1/3 (marked by the dashed line) to the KPZ value
of ¢ =2/3.

transverse fluctuations are suppressed. Instead, the fluctuations
which dominate are those of the propagating fronts themselves,
which scale with the KPZ growth exponent 8 = 1/3 rather than
the wandering exponent ¢ = 2/3.

The original simulations which led to the estimates in
Eq. (9) sampled only 3 points in the range 6 <, namely 6 = 7 /3,
/2, and 27 /3 (Derrida and Dickman, 1991). We expand on this
previous work by fitting to an effective ¢{(0) for many more values
of 6.

The results plotted in Fig. 8b indicate a smooth crossover be-
tween ¢ =1/3 and ¢ =2/3 as 6 increases from 0 to 7. A heuris-
tic explanation for this change in ¢ is given in the Supporting In-
formation. The results from the wedge geometry are qualitatively
consistent with the ¢ values measured from the “gap geometry”
(Fig. 8a). As the range expansion propagates around an obstacle,
the fronts from either side meet at some angle 6 <, which can
be predicted by a deterministic model of constant-speed propaga-
tion for wavefronts in the same geometry, inspired by geometri-
cal optics (Mobius et al., 2015). The incident angle increases up
to 6 = as the kink in the front heals. Therefore, for the sector
boundary formed after the obstacle, we expect the wandering ex-
ponent to initially take some value ¢ <2/3, and then slowly re-
cover to ¢ = 2/3. The kink has healed when the fluctuations of the
front (perpendicular to the direction of propagation) are compara-
ble to the size of the dip.
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4. Conclusion and outlook

The propagating front of a range expansion is expected to
roughen over time, and in this work we have connected the pop-
ulation genetics of such range expansions with new calculations
in statistical physics models from the KPZ universality class. We
have shown, through both DPRM calculations and a stepping stone
model with rough fronts, that the superdiffusive “KPZ walkers” de-
scribing genetic lineages have coalescence statistics whose limiting
behaviors are qualitatively, but not at all quantitatively, similar to
those of coalescing diffusive random walkers. In the limit of large
separation or small time in the past, the coalescence rate for KPZ
walkers decays as | ~ exp[—(t/Axg/z)‘Z], in contrast to the scaling
Jaite ~ exp[—(t/Ax2)~1] for the diffusive case in the same limit.

In the opposite limit of small separation or large time in the
past, we find that J varies algebraically as 7~ (Axq/72/3)* with
o’ ~1, whereas diffusive random walkers coalesce according to the
form Jyier ~ 771 (Axo/T!/2).

From these numerically measured coalescence rates, we have
calculated the expected time T, since common ancestry for pairs
of individuals as a function of their spatial separation, an impor-
tant quantity in population genetics. The superdiffusive wandering
of lineages suppresses T, significantly compared to estimates based
on diffusive dynamics. Our results go beyond the known scaling
difference between diffusive and KPZ lineages and genetic bound-
aries, and provide quantitative information about how front rough-
ness leads to more recent, and fewer, common ancestors for the
“pioneers” comprising the front.

We have also used the stepping stone model to explain how en-
vironmental heterogeneities can alter this superdiffusive dynamics,
even leading to time regimes with subdiffusive dynamics. Our re-
sults explain the suppressed fluctuations of genetic sector bound-
aries behind an obstacle observed in recent experimental work,
and connect them with prior numerical work on Eden model
growth. The effect of obstacles can be viewed as a competition
between the usual roughening of the front, which favors the KPZ
wandering exponent ¢ = 2/3, and the collision of two segments
of the front propagating around either side of the obstacle, which
suppresses ¢ toward the value of the front roughness exponent
B=1/3.

Going forward, our calculations of J and T, for KPZ walkers in a
totally uniform environment will be valuable as a standard against
which deviations can be measured, to reveal the effects of var-
ious realistic complications. These complications include end ef-
fects from habitat boundaries (Nullmeier and Hallatschek, 2013;
Wilkins and Wakeley, 2002), selectively advantageous or delete-
rious mutations, mutualism or antagonism between subpopula-
tions (Lavrentovich and Nelson, 2014), geometrical inflationary ef-
fects in radial expansions (Lavrentovich et al., 2013), and more
complex heterogeneities in the environment (Mobius et al., 2015).

On the latter topic, we have made headway here by studying
a simplified representation of an obstacle as a prototypical envi-
ronmental heterogeneity, which already illustrates the subtle issue
of locally suppressed fluctuations. It will be interesting to extend
this analysis of Eden model growth to situations with multiple
obstacles, and with other types of heterogeneities such as nutrient
“hotspots” (Tesser, 2016) and uneven topography (Beller et al.,
2018). The dynamics can also be made more sophisticated by
increasing the number of organisms per deme above N =1,
and reintroducing aspects of the original stepping stone model’s
migration dynamics between neighboring demes (Kimura and
Weiss, 1964).

From the perspective of statistical physics, range expansions
provide not only an experimental testing ground for the predic-
tions of KPZ scaling, but also an incentive to introduce and ex-

plore variants of rough growth. For example, the coalescing domain
boundaries in Figs. 2 and 3 qualitatively resemble coarsening of
domains in a multi-component growth process (Kardar, 1999), and
should be quantitatively described by the coupling of directed per-
colation (of genetic domains) to the rough interface (Horowitz and
Kardar, 2019).

Finally, our results have drawn upon connections between two
quite different processes in the KPZ universality class, the rough
front stepping stone model and DPRM, to obtain quantitative in-
sights about biological experiments that can be realized in the lab-
oratory. We hope that this work will inspire future investigations
to seek other useful links between disparate model systems that
shed light on the evolutionary dynamics of rough front range ex-
pansions, a problem with much fertile territory.

Acknowledgments

DRN and DAB acknowledge frequent conversations with W.
Mobius during the early stages of this investigation and helpful
comments on the manuscript. MK and SC acknowledge support
from NSF through grant DMR-1708280. Work by DRN and DAB
was supported in part by the National Science Foundation, through
Grants DMR-1608501 and via the Harvard Materials Science Re-
search and Engineering Center via Grant DMR-1420570. DAB grate-
fully acknowledges computing time on the Multi-Environment
Computer for Exploration and Discovery (MERCED) cluster at UC
Merced, which was funded by National Science Foundation Grant
No. ACI-1429783, as well as on the Odyssey cluster supported by
the FAS Division of Science, Research Computing Group at Har-
vard University. This research was initiated during a visit to the
Kavli Institute for Theoretical Physics supported through Grant
No. NSF PHY 1748958 at KITP.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/.jtbi.2019.06.018.

References

Barton, N.E, Depaulis, E, Etheridge, A., 2002. Theor Popul. Biol. 61, 31.

Beller, D.A., Alards, K.M., Tesser, F., Mosna, R.A., Toschi, F., Mobius, W., 2018. Euro-
phys. Lett. 123, 58005.

Derrida, B., Dickman, R., 1991. J. Phys. A: Math. Gen. 24. L191

Eden, M., 1961. Proc. Fourth Berkeley Symp. Math. Stat. Prob. 4, 223.

Excoffier, L., Ray, N., 2008. Trends Ecol. Evol. 23, 347.

Flores, G.M., Quastel, J., Remenik, D., 2013. Commun. Math. Phys. 317, 363.

Gralka, M., Stiewe, F., Farrell, F., M&bius, W., Waclaw, B., Hallatschek, O., 2016. Ecol.
Lett. 19, 889.

Gueudré, T., Le Doussal, P,, Bouchaud, J.-P., Rosso, A., 2015. Phys. Rev. E 91, 062110.

Hallatschek, O., Hersen, P, Ramanathan, S., Nelson, D.R., 2007. Proc. Nat. Acad. Sci.
104, 19926.

Halpin-Healy, T., 1991. Phys. Rev. A 44, R3415.

Halpin-Healy, T., Takeuchi, K.A., 2015. ]. Stat. Phys. 160, 794.

Halpin-Healy, T., Zhang, Y.C., 1995. Phys. Rep. 254, 215.

Hinrichsen, H., Howard, M., 1999. Eur. Phys. ]J. B 7, 635.

Horowitz, J., Kardar, M., 2019. preprint, ArXiv:1901.07956.

Kardar, M., 1987. Nucl. Phys. B 290, 582. [FS20]

Kardar, M., 1999. Physica A 263, 345.

Kardar, M., Parisi, G., Zhang, Y.-C., 1986. Phys. Rev. Lett. 56, 889.

Kardar, M., Zhang, Y.-C., 1987. Phys. Rev. Lett. 58, 2087.

Kim, J.M., Moore, M.A., Bray, AJ., 1991. Phys. Rev. A 44, 2345.

Kim, ].M., Moore, M.A., Bray, A.J., 1991. Phys. Rev. A 44, R4782.

Kimura, M., Weiss, G.H., 1964. Genetics 49, 561.

Kingman, J.F,, 1982. J. Appl. Prob. 19, 27.

Korolev, K., Avlund, M., Hallatschek, O., Nelson, D.R., 2010. Rev. Mod. Phys 82, 1691.

Krug, J., Meakin, P., 1989. Phys. Rev. A 40, 2064.

Lavrentovich, M.O., Korolev, K.S., Nelson, D.R., 2013. Phys. Rev. E 87, 012103.

Lavrentovich, M.O., Nelson, D.R., 2014. Phys. Rev. Lett. 112, 138102.

Malécot, G., 1975. Theor Popul. Biol. 8, 212.

Meakin, P, 1987. J. Phys. A 20. L1113

Medina, E., Hwa, T., Kardar, M., Zhang, Y.-C., 1989. Phys. Rev. A 39, 3053.

Mobius, W., Murray, A.W., Nelson, D.R., 2015. PLoS Comput. Biol. 11, e1004615.


https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100013111
https://doi.org/10.13039/501100008982
https://doi.org/10.13039/100005956
https://doi.org/10.1016/j.jtbi.2019.06.018
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0001
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0001
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0001
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0001
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0004
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0004
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0005
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0005
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0005
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0006
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0006
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0006
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0006
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0009
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0009
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0009
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0009
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0009
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0010
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0010
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0011
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0011
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0011
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0012
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0012
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0012
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0013
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0013
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0013
http://arXiv:1901.07956
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0014
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0014
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0014
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0015
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0015
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0016
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0016
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0016
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0016
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0017
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0017
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0017
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0018
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0018
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0018
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0018
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0019
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0019
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0019
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0019
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0020
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0020
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0020
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0021
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0021
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0022
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0022
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0022
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0022
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0022
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0023
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0023
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0023
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0024
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0024
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0024
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0024
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0025
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0025
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0025
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0027
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0027
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0027
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0028
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0028
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0028
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0028
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0028
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0029
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0029
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0029
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0029

160 S. Chu, M. Kardar and D.R. Nelson et al./Journal of Theoretical Biology 478 (2019) 153-160

Nagylaki, T., 1974. Proc. Natl. Acad. Sci. US.A. 71, 2932. Sasamoto, T., Spohn, H., 2010. Phys. Rev. Lett. 104, 230602.

Newman, TJ., Swift, M.R., 1997. Phys. Rev. Lett. 79, 2261. Tesser, F,, 2016. Ph.D. thesis. Technische Universiteit Eindhoven.

Nullmeier, ]J., Hallatschek, O., 2013. Evolution 67, 1307. Wakeley, J., 2009. Coalescent Theory: an Introduction. Roberts & Co.

Odor, G., 2004. Rev. Mod. Phys. 76, 663. Wang, P, Robert, L., Pelletier, J., Dang, W.L., Taddei, F.,, Wright, A., Jun, S., 2010. Curr.
Quastel, ., Spohn, H., 2015. ]. Stat. Phys. 160, 965. Biol. 20, 1099.

Redner, S., 2001. A Guide to First-Passage Processes. Cambridge University Press. Wilkins, ]J.F., Wakeley, ]., 2002. Genetics 161, 873.

Saito, Y., Miiller-Krumbhaar, H., 1995. Phys. Rev. Lett. 74, 4325. Wilkinson-Herbots, H.M., 1998. ]. Math. Biol. 37, 535.


http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0030
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0030
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0031
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0031
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0031
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0032
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0032
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0032
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0034
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0034
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0034
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0035
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0035
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0036
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0036
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0036
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0037
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0037
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0037
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0038
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0038
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0039
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0039
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0040
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0041
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0041
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0041
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0042
http://refhub.elsevier.com/S0022-5193(19)30253-X/sbref0042

	Evolution in range expansions with competition at rough boundaries
	1 Introduction
	2 Methods
	3 Results and discussion
	3.1 Coalescence of lineages
	3.1.1 Rate of coalescence J(&#x03C4;|&#x0394;x0)
	3.1.2 Expected time to coalescence T2

	3.2 Environmental heterogeneities

	4 Conclusion and outlook
	Acknowledgments
	Supplementary material
	References


