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a b s t r a c t 

When a biological population expands into new territory, genetic drift develops an enormous influence 

on evolution at the propagating front. In such range expansion processes, fluctuations in allele frequen- 

cies occur through stochastic spatial wandering of both genetic lineages and the boundaries between 

genetically segregated sectors. Laboratory experiments on microbial range expansions have shown that 

this stochastic wandering, transverse to the front, is superdiffusive due to the front’s growing roughness, 

implying much faster loss of genetic diversity than predicted by simple flat front diffusive models. We 

study the evolutionary consequences of this superdiffusive wandering using two complementary numer- 

ical models of range expansions: the stepping stone model, and a new interpretation of the model of 

directed paths in random media, in the context of a roughening population front. Through these ap- 

proaches we compute statistics for the times since common ancestry for pairs of individuals with a given 

spatial separation at the front, and we explore how environmental heterogeneities can locally suppress 

these superdiffusive fluctuations. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In evolutionary biology, changes in an allele’s frequency in a

opulation are driven not only by Darwinian selection but also

y random fluctuations, the phenomenon of genetic drift. Selec-

ively neutral or even deleterious alleles can rise to prominence

urely by chance. In many scenarios an individual competes

irectly only with a small subset of the population, e.g. due to

patial proximity, and this small effective population size increases

he influence of genetic drift ( Korolev et al., 2010 ). 

Range expansions provide an important example: When a

opulation expands spatially into new territory, as during species

nvasion or following environmental changes, the new territory is

ominated by the descendants of a few ancestors at the expansion

ront. Genetic drift is amplified by the small effective population

ize at the front ( Korolev et al., 2010 ) – the founder effect – and

y the related phenomenon of gene “surfing”, in which alleles that

appen to be present at the front spread to high frequency in the

ewly occupied space, despite being selectively neutral or even

eleterious ( Hallatschek et al., 20 07; Excoffier and Ray, 20 08 ). 
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Genetic drift in range expansions strongly ties fluctuations

n allele frequencies to spatial fluctuations. In laboratory experi-

ents, Hallatschek et al. (2007) have shown that microbial range

xpansions develop, after a short demixing time, genetic sectors

ontaining almost exclusively the descendants of a single indi-

idual. Thereafter, genetic drift occurs through spatial fluctuations

f the sector boundaries, with a sector lost from the front each

ime two sector boundaries intersect. Similarly, the genealogical

ncestry tree traced backward in time from the front becomes

 tree of space curves that fluctuate transversely to the front

ropagation direction and coalesce upon intersection ( Gralka et al.,

016 ). (See Fig. 2 .) 

The reverse-time coalescence of lineages is of central impor-

ance in population genetics, particularly in the approach known

s coalescent theory ( Kingman, 1982; Wakeley, 2009 ). One of the

ey estimates of interest in coalescent theory is the expected num-

er of pairwise site differences � between two sampled genomes,

hich is proportional to the expected time since common ancestry

f the two sampled individuals, T 2 , under the assumption that

eutral mutations have accumulated in the (very long) genome

t a constant rate since the two lineages diverged. The relation

∝ T 2 allows inferences to be made about the population’s recent

volutionary past from measured genomic differences in the

resent, given reliable models of genealogy. The structured coales-

ent, which extends coalescent theory to populations with spatial

https://doi.org/10.1016/j.jtbi.2019.06.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.06.018&domain=pdf
mailto:dbeller@ucmerced.edu
https://doi.org/10.1016/j.jtbi.2019.06.018


154 S. Chu, M. Kardar and D.R. Nelson et al. / Journal of Theoretical Biology 478 (2019) 153–160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

I  

a  

s

 

s  

w  

i  

i  

a  

a  

T  

o  

s  

t

 

T  

r  

a  

m  

u  

1  

w  

c  

e  

p  

m  

n  

p  

e

2

 

a  

w  

i  

d  

l  

w  

s

 

d  

“  

c  

p  

t  

f  

t  

p  

s  

t  

(  

p  

a  

e  

i  

n  

n  

1 The n = 1 stepping stone model is also studied as the voter model with L dif- 

ferent opinions ( Ódor, 2004 ). We note that accelerated coarsening brought about 

by superdiffusive wandering has been studied for the voter model ( Hinrichsen and 

Howard, 1999 ), but with opinions spreading by Lévy flights of algebraically dis- 

tributed distances, in contrast to the purely nearest-neighbor microscopic dynamics 

employed in this work. 
structure (as opposed to well-mixed populations) ( Wilkinson-

Herbots, 1998 ), typically assumes migration rules that produce

diffusive dynamics for gene flow. Theoretical studies of the ge-

nealogical structure of range expansions have similarly assumed

diffusive spatial fluctuations of genetic boundaries (as would be

appropriate to a flat front range expansion model; see below)

in the interests of analytical tractability ( Korolev et al., 2010 ).

Flat front models are equivalent to conventional stepping stone

models ( Kimura and Weiss, 1964 ) and many exact results are

available ( Wilkins and Wakeley, 2002 ). 

However, there is strong evidence that evolutionary dy-

namics in range expansions are often driven by superdiffusive

spatial wandering of both genetic sector boundaries and lineages.

Hallatschek et al. (2007) measured the mean-square transverse

displacement of sector boundaries in E. coli growing across hard

agar Petri dishes, and found it to scale with the expansion distance

y as y 2 ζ with wandering exponent ζ = 0 . 65 ± 0 . 05 , greater than

the value of ζ = 1 / 2 characterizing diffusive wandering. In both E.

coli and the yeast species Saccharomyces cerevisiae , genetic lineages

similarly fluctuate with wandering exponent ζ ≈2/3 ( Gralka et al.,

2016 ). The same superdiffusive wandering exponent was found

numerically for genetic lineages in an off-lattice model of micro-

bial colony growth ( Gralka et al., 2016 ) and for sector boundaries

in a two-species Eden model ( Korolev et al., 2010; Saito and

Müller-Krumbhaar, 1995 ). Consequently, the number of distinct

sectors decreases as y −ζ , with ζ measured to be ≈0.67 ( Saito

and Müller-Krumbhaar, 1995 ), a progressively faster loss of genetic

diversity than the y −1 / 2 scaling that would result from diffusive

dynamics ( Korolev et al., 2010 ); see Fig. 2 , where genetically

neutral strains are competing. 

The underlying cause of this superdiffusive behavior is that

the population front profile has a characteristic roughness that

increases with time. Because the range expansion causes the front

to advance along its local normal direction, stochastically gener-

ated protrusions in the front are self-amplifying, and the lineages

and genetic sector boundaries moving with these protrusions

experience a faster-than-diffusive average lateral motion. 

Such roughening fronts are characterized by the Kardar-Parisi-

Zhang (KPZ) equation ( Kardar et al., 1986; Medina et al., 1989 ) 

∂ t h ( x , t) = ν∇ 
2 h + λ(∇h ) 2 / 2 + η(x , t) , (1)

where h ( x , t ) is the height of the front at position x and time

t , subject to diffusion, growth in the front’s local normal direc-

tion, and a stochastic noise η( x , t ). The front roughness �h ≡√ 〈 h 2 〉 − 〈 h 〉 2 initially grows with time as t β , before saturating for

a strip of width L as L β/ ζ . The scaling exponents, β = 1 / 3 and

ζ = 2 / 3 are known analytically in d = 1 + 1 dimensions ( Kardar,

1987; Sasamoto and Spohn, 2010 ); this value of the wandering ex-

ponent ζ nicely matches the measured value from experiments

and simulations of the microorganism range expansions discussed

above. 

Throughout this work, we choose the stochastic noise η( x , t )
to be Gaussian white noise with Dirac delta correlation

〈 η(x , t) η(x ′ , t ′ ) 〉 ∝ δ(x − x ′ ) δ(t − t ′ ) . The exponent β is known

to be modified in the case of heavy-tailed noise ( Gueudré

et al., 2015 ), or, in higher dimensions, noise with bounded

support ( Newman and Swift, 1997 ). 

There exists a wealth of literature on the KPZ equation and

its rich universality class ( Halpin-Healy and Zhang, 1995; Halpin-

Healy and Takeuchi, 2015; Quastel and Spohn, 2015 ), including

on the scaling behavior of structures analogous to the bacterial

genealogical trees in the context of ballistic deposition ( Meakin,

1987; Krug and Meakin, 1989 ). However, there does not yet exist

a similar understanding of the rate statistics of coalescing space

curves – here, lineages and genetic sector boundaries – whose

superdiffusive wandering is driven by KPZ roughening. We term
hese curves “KPZ walkers” in contrast to diffusive random walkers.

n developing a quantitative understanding of neutral evolution in

 biological range expansion, we are thus led to new questions in

tatistical physics. 

In this work, we numerically investigate the genealogical

tructure of populations with superdiffusive migration of the KPZ

alker type, driven by roughening fronts. We are chiefly interested

n how the expected time since common ancestry T 2 for a pair of

ndividuals depends on spatial separation �x 0 at the front, as well

s in the probability per unit time J ( τ | �x 0 ) of lineage coalescence

t time τ in the past, whose first moment 
∫ ∞ 

0 dτ τ J(τ | �x 0 ) equals

 2 ( �x 0 ). As a first approach to this problem, our work focuses

n neutral evolution from a linear inoculation, avoiding effects

uch as selection, mutualism/antagonism, and geometrical infla-

ion ( Lavrentovich et al., 2013 ), interesting topics of future study. 

We employ a complementary pair of simulation approaches:

he first, a lattice-based stepping stone model, introduces front

oughness through stochasticity in replication time. In our second

pproach, we reinterpret the problem of directed paths in random

edia (DPRM) ( Kardar and Zhang, 1987 ), a simple and widely-

sed model from the KPZ universality class ( Kim et al., 1991a;

991b; Halpin-Healy, 1991 ), as a model for range expansions

ith stochastic variation in organism size. The DPRM approach

an be simulated at large scales with much less computational

xpense than our stochastic stepping stone model. We also ap-

ly analytical results from the DPRM problem to rationalize the

easured asymptotic coalescence behaviors. Finally, we study

umerically how environmental heterogeneities temporarily sup-

ress the wandering of KPZ walkers, an effect observed recently in

xperiment ( Möbius et al., 2015 ). 

. Methods 

The stepping stone model ( Kimura and Weiss, 1964 ) imagines

 biological population arranged on a spatial lattice of individually

ell-mixed subpopulations called “demes”, each containing N

ndividuals, with exchange of individuals between neighboring

emes. We implement the stepping stone model on a triangular

attice with N = 1 individual per deme, which models cases in

hich local fixation of one allele occurs rapidly compared to

patial diffusion ( Korolev et al., 2010 ). 

As an initial condition, we take the lattice of demes in two

imensions to be unpopulated except for a linear inoculation

homeland”. Once a deme is populated, its allele remains un-

hanged thereafter, as in the microbial experiments on agar

lates, where cell divisions occur only near the frontier, so that

he spatial pattern of alleles is effectively frozen behind the

ront ( Hallatschek et al., 2007 ). We choose as our update rule

hat of the Eden model ( Eden, 1961 ) for two-dimensional growth

rocesses: One site is chosen at random from among all occupied

ites with some empty neighbor site, and the allele is copied from

he chosen occupied site into a randomly chosen empty neighbor

 Fig. 1 a). 1 By introducing stochasticity in the replication time, this

rocedure generates an irregular interface between the occupied

nd empty regions (see Fig. 2 a), simulating a rough front range

xpansion. By contrast, the expansion front remains flat ( Fig. 2 b)

f the update rule fills an entire row in parallel ( Fig. 1 b), with each

ewly filled site inheriting the allele marker of one of its two filled

eighbors below, chosen randomly with equal probability. The
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Fig. 1. Illlustrations of the update rules in our numerical models of range expan- 

sions. (a,b) The stepping stone model with deme size N = 1 on a triangular lattice, 

using (a) rough front and (b) flat front update rules. We visualize each individual on 

the initial line and its descendants with a distinct color. (c) DPRM model of range 

expansion. At horizontal position x , the height of the front in the y -direction, h ( x, 

t ), is increased by a quantity that depends on the two adjacent heights, namely 

max { h (x − t, t − 1) + η, h (x + 1 , t − 1) + η′ } , where η, η′ are zero-mean stochastic 

Gaussian white noise terms that cause front roughness. The nearest neighbor cell 

which maximizes the above relation is chosen to reproduce, and passes on its al- 

lele label (denoted by the color), as represented by white arrows in the illustration. 

d  

s

 

t  

r  

t

 

p  

F

r

h

t

s

c

a  

K  

f  

t  

a  

a  

t

h  

w  

w  

〈  

a  

b  

T  

o  

p  

a

 

r  

s  

s  

e  

f

 

t  

w  

a  

i  

h  

v  

t  

s  

W  

n  

h

 

m  

e  

K  

e  
ynamics in Fig. 1 b is equivalent to a one-dimensional stepping

tone model in discrete time with deme size N = 1 . 

The second model, DPRM ( Kardar and Zhang, 1987 ), arises from

he problem of finding a minimal-energy directed path through a

andom energy landscape η( x, t ). Directed paths must propagate in

he ‘time’ direction t , but can fluctuate in the spatial direction x . 

We can reinterpret DPRM as an alternative model of range ex-

ansions with roughening fronts. In Fig. 1 c, we illustrate that the
ig. 2. Range expansions generated by the stepping stone model, using the (a) 

ough front and (b) flat front update rules, with periodic boundary conditions in the 

orizontal direction. The colors represent allele labels, while the black lines mark 

he genetic lineages. Time runs upward in both cases. Note that there are fewer 

ectors at the top (genetic coarsening), but fewer lineages at the bottom (lineage 

oalescence). Typical coalescence rates are much larger in (a) than in (b). 

F

c

w

t

f

i

t

ccumulated “energy” of the directed path, characterized by the

PZ equation, can be mapped to the height of a range expansion

ront. In this mapping, the stochastic noise η corresponds to fluc-

uations in the lengths of individual microbes in the direction of

verage propagation y , about a mean length � . An allele label is

dded to each site, as in the stepping stone model. The height of

he front h ( x, t ) is updated according to 

 (x, t) = � + max { h (x − t, t − 1) + η, h (x + 1 , t − 1) + η′ } , (2)

here η, η′ are independent and identically distributed Gaussian
hite noise random variables with zero mean and correlations

 η(x, t) η(x ′ , t ′ ) 〉 = δ(x − x ′ ) δ(t − t ′ ) and likewise for η′ . Each site
t time t is then filled by the offspring of one of its nearest neigh-

ors from time t − 1 , and inherits the corresponding allele label.

he choice of competing mother cells is taken to be the cell that

ptimizes the relation in Eq. (2) . Each DPRM directed path is inter-

reted as a single lineage, and the set of optimal directed paths to

ll available endpoints forms the lineage tree. 

Thus, while replication time is constant in this model, front

oughness is generated by stochasticity in cell size, with larger

ize favored for propagation. While we assume that the mean cell

ize at time of division for the microbe in question has already

volved to a fitness maximum, variance in the cell size leads to

ront roughness and accelerated loss of genetic diversity ( Fig. 3 a). 

Note that if we fix η to have zero variance, and instead choose

he mother cell at random between the left- and right-neighbors,

e recover a flat front range expansion with diffusive dynamics

ssociated with lineages and genetic boundaries ( Fig. 3 b). Also,

f we reduce the system width to a single organism, the front

eight h ( x, t ) performs a random walk about the deterministic

alue � t , the variance growing linearly in t with slope given by

he variance in η. A dramatic experimental realization of such a

cenario in E. coli was demonstrated by the “mother machine” of

ang et al. (2010) : Bacteria growing and dividing in narrow chan-

els, quasi-one-dimensionally, show stability in growth rate over

undreds of generations. 

In both the rough front stepping stone model and the DPRM

odel, lineages and sector boundaries have superdiffusive lat-

ral fluctuations with wandering exponent ζ = 2 / 3 ( Kardar, 1987;

ardar and Zhang, 1987; Sasamoto and Spohn, 2010; Korolev

t al., 2010; Saito and Müller-Krumbhaar, 1995 ). For DPRM models,
ig. 3. Range expansions generated by the DPRM model, with periodic boundary 

onditions in the horizontal direction, as in Fig. 2 . The colors represent allele labels, 

hile the black lines mark the genetic lineages. In contrast to the flat front case (b), 

he rough front case (a) with the same number of generations shows a significantly 

aster decrease in genetic diversity, and much larger lineage coalescence rates, sim- 

lar to Fig. 2 . The noise term η is given standard deviation 0.2 for (a) and 0 for (b) 

o illustrate the two cases. 
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Fig. 4. Log-log plot of − ln [�x 3 / 2 
0 

J(τ | �x 0 )] vs. the KPZ-rescaled variable τ/ �x 3 / 2 
0 

for 

lineages in the stepping stone model and for DPRM. Here, we focus on the regime 

�x 0 � L , to avoid finite size effects associated with periodic boundary conditions. 

Asymptotically for τ/ �x 3 / 2 
0 

� 1 , the relationship is linear, indicating an exponential 

form for J ( τ | x 0 ). The fitted slopes are −1 . 93 ± 0 . 02 for stepping stone, and −1 . 96 ±
0 . 03 for DPRM, providing measurements of γ as defined in Eq. (4) . (For comparison, 

the DPRM theory predicts a slope of −2 .) 

e  

w

 

c  

c  

g  

r  

a

J  

f  

−  

m  

l  

a  

i  

D

 

i  

e  

T

J  

w  

a  

r  

w  

f  

n  

r

 

e  

E  

a

J  

f  

E  
this behavior is well-known as the transverse fluctuations of the

minimal-energy directed path. In contrast, for the flat front step-

ping stone model and the zero-noise variant of DPRM, the lateral

fluctuations of lineages and sector boundaries are merely diffusive,

ζ = 1 / 2 . 

This superdiffusive behavior has stark consequences for the ge-

netic structure of the population. Comparing the flat front and

rough front realizations for the stepping stone model in Fig. 2 and

for the DPRM model in Fig. 3 , we see striking differences in both

the coalescing lineage trees and the decay in the number of surviv-

ing monoclonal sectors. Genetic diversity is lost much more rapidly

in the rough front case, and nearby individuals at the front are

much more likely to have a common ancestor in the recent past,

reflecting much larger coalescence rates. 

Further details about the numerical implementation of these

two methods are given in the Supporting Information. 

3. Results and discussion 

3.1. Coalescence of lineages 

3.1.1. Rate of coalescence J ( τ | �x 0 ) 

For two lineages separated by �x 0 at the front, J ( τ | �x 0 ) is the

probability per unit time for them to coalesce in a common an-

cestor at reverse time τ . In the diffusive case, on an infinite line,
this is the well-known coalescence rate for two diffusive random

walkers with diffusion constant D ( Redner, 2001 ): 

J diff (τ | �x 0 ) = 

1 √ 

8 π

1 

τ

(
�x 2 0 
Dτ

)1 / 2 

exp 

[
−1 

8 

(
�x 2 0 
Dτ

)]
. (3)

As a function of the dimensionless ratio �x 2 
0 
/ (Dτ ) , this rate be-

haves as a power law in the limit of large reverse time or small

separations at the front, and as an exponential decay in the oppo-

site limit. 

Results such as Eq. (3) , valid here for flat front models, will

serve as a useful guide to our investigations of more complex

coalescent phenomena at rough frontiers. In population genet-

ics, systems analogous to our flat front models also arise in the

continuum limit of one-dimensional Kimura-Weiss stepping

stone models ( Kimura and Weiss, 1964 ). As reviewed in

Korolev et al. (2010) , many exact results for quantities such as the

heterozygosity correlation function and coalescent times are avail-

able ( Barton et al., 2002; Malécot, 1975; Nagylaki, 1974; Wilkinson-

Herbots, 1998 ). The x -coordinate of stepping stone models repre-

sents the horizontal axis of flat front simulations such as those

displayed in Figs. 2 b and 3 b, while its time coordinate maps on to

the y -axis. Nullmeier and Hallatschek have used a stepping stone

model to study how coalescent times change in 1-dimensional

populations when one boundary of a habitable domain moves in a

linear fashion due to, say, a changing climate ( Nullmeier and Hal-

latschek, 2013 ). 

Results from this later investigation could thus be reinterpreted

as applicable to a two-dimensional range expansion in a trape-

zoidal domain, in the flat front approximation with diffusive ge-

netic boundaries. 

For superdiffusive lineages, however, the full expression for

J ( τ | �x 0 ) is not known. We focus instead on its asymptotic behav-

iors using predictions from DPRM and intuition gained from the

diffusive case. For lattice models like those in Fig. 1 , it will be con-

venient to measure distances �x 0 in units of the space-like direc-

tion x , and τ in units of the fundamental step in the time-like di-

rection, which amounts to scaling out the analog of the diffusion

constant in Eq. (3) . We expect on theoretical grounds that J de-

pends on �x 0 only through the combination �x 0 / τ
ζ , with expo-

nent ζ = 2 / 3 as opposed to ζ = 1 / 2 in the diffusive case. (The co-
fficient making this combination dimensionless, analogous to D ,

ill be system-specific and is suppressed in our notation.) 

First, we consider the regime τ/ �x 3 / 2 
0 

� 1 , representing rare

oalescence events where lineages located far apart at the front

an be traced back to a recent common ancestor. For the analo-

ous regime of τ/ �x 2 
0 

� 1 in the diffusive case, the coalescence

ate behaves as J diff (τ | �x 0 ) ∼ exp [ −(�x 0 /τ
1 / 2 ) 2 ] . We hypothesize

 similar decay for the superdiffusive case, as 

(τ | �x 0 ) ∼ exp 

( 

−
(

�x 0 
τ 2 / 3 

)γ ′ ) 

= exp 

(
−
(

τ

�x 3 / 2 
0 

)γ )
(4)

or some exponent γ = − 2 
3 γ

′ . In Fig. 4 , we plot

ln [�x 3 / 2 
0 

J(τ | �x 0 )] vs. τ/ �x 3 / 2 
0 

for both the stepping stone

odel and DPRM on a log-log scale, so that Eq. (4) predicts a

inear plot with slope γ . At small τ/ �x 3 / 2 
0 

, both sets of data

ppear linear, confirming the above hypothesized form. The slopes

n the linear regime provide estimates of γ = −1 . 96 ± 0 . 03 for

PRM and −1 . 93 ± 0 . 02 for the stepping stone model. 

In fact, we can analytically derive this exponential form, includ-

ng the value of γ , using the known distribution of directed path

ndpoints in DPRM ( Flores et al., 2013 ), in the regime τ/ �x 3 / 2 
0 

� 1 .

he calculation, given in the Supporting Information, shows that 

(τ | �x 0 ) ∼ 1 

τ

(
�x 0 
τ 2 / 3 

)1 / 2 

exp 

( 

− c 

4 

(
�x 0 
τ 2 / 3 

)3 
) 

, (5)

here c is a constant of order unity. For τ/ �x 3 / 2 
0 

� 1 , the leading

symptotic behavior of J(τ | �x 0 ) ∼ exp (− 1 
4 c(�x 0 /τ

2 / 3 ) 3 ) thus cor-

esponds to γ ′ = 3 , γ = −2 . From the numerical results in Fig. 4 ,

e see from DPRM that γ ≈ −1 . 96 ± 0 . 03 , and from the rough

ront stepping stone model we compute γ ≈ −1 . 93 ± 0 . 02 . Both

umerical results are in good agreement with the analytically de-

ived prediction. 

In the opposite regime of τ/ �x 3 / 2 
0 

� 1 , we can again hypoth-

size a form for J in analogy with the diffusive case, for which

q. (3) shows J diff (τ | �x 0 ) ∼ τ−1 (�x 0 /τ
1 / 2 ) . For KPZ walkers, the

nalogous form is 

(τ | �x 0 ) ∼ 1 

τ

(
�x 0 
τ 2 / 3 

)α′ 

= 

1 

�x 3 / 2 
0 

(
τ

�x 3 / 2 
0 

)α

, (6)

or some exponent α = −(1 + 
2 
3 α

′ ) . Although the expression in
q. (5) is consistent with this form, that result is obtained by as-
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Fig. 5. Log-log plot of �x 3 / 2 
0 

J(τ | �x 0 ) vs. the KPZ-rescaled variable τ/ �x 3 / 2 
0 

for lin- 

eages in the stepping stone model and for DPRM. For τ/ �x 3 / 2 
0 

� 1 , the exponent of 

the power-law decay ( Eq. (6) ) is extracted from a linear fit to the numerical data, 

yielding α = −1 . 62 ± 0 . 03 for stepping stone, and α = −1 . 65 ± 0 . 01 for DPRM. As 

in Fig. 4 , we work in the limit �x 0 � L to avoid effects due to periodic boundary 

conditions. 
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Fig. 6. Average time T 2 since common ancestry for pairs of individuals with some 

common ancestor and with separation �x 0 � L at the front, and for a range of sys- 

tem expansion times t max . Solid lines represent numerical data for KPZ walkers in 

the stepping stone model, and dashed lines represent analytical predictions for dif- 

fusive walkers with the same parameters. The plateau values are simply t max . 
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a  
uming the two KPZ walkers to be independent (valid at small

/ �x 3 / 2 
0 

), so there is no reason to expect the apparent value of
′ = 1 / 2 , α = −4 / 3 to hold for τ/ �x 3 / 2 

0 
� 1 . 

The rate of coalescence for the two computational approaches

n this regime is plotted in Fig. 5 . The asymptotic behavior is con-

istent with the hypothesized power-law decay. The exponent α
s determined numerically to be α = −1 . 62 ± 0 . 03 for the stepping

tone model, and α = −1 . 65 ± 0 . 01 for DPRM, giving good agree-

ent between the two models. Furthermore, these values do not

ule out the possibility that α = −5 / 3 , α′ = 1 , which would give

he noteworthy conclusion that J ( τ | �x 0 ) is linear in the separation

x 0 , just as in the diffusive case. 

.1.2. Expected time to coalescence T 2 
For a range expansion that has proceeded for a time t max after

 linear inoculation, if two lineages separated by �x 0 share a com-

on ancestor on the initial line, we can calculate their expected

ime to coalescence (time since common ancestry) as 

 2 (�x 0 , t max ) ≡
∫ t max 

0 dτ τ J(τ | �x 0 ) ∫ t max 

0 dτ J(τ | �x 0 ) 
. (7)

ote that the denominator represents normalization by the proba-

ility that the two lineages do indeed coalesce. 

In the case of diffusive lineages, Eq. (3) leads to an analytic ex-

ression for T 2 , 

T 2 , diff(�x 0 , t max ) 

t max 
= 

(
�x 2 0 

8 Dt max 

)
�
[
−1 / 2 , �x 2 0 / 8 Dt max 

]
�
[
1 / 2 , �x 2 

0 
/ 8 Dt max 

] , (8) 

here �( x, y ) is the incomplete gamma function. In Fig. 6 we com-

are the numerical T 2 data for KPZ walkers in the rough front step-

ing stone model with the analytical prediction from the diffusive

ase under the same conditions. For large �x 0 , in principle T 2 ap-

roaches t max ; our data do not show this saturation because lin-

age coalescence events at τ ≈ t max are so rare that the statistics

ecome poor as �x 0 approaches t max . The behavior for small �x 0 
s controlled by the scaling in Eq. (6) : an approximately linear scal-

ng leading to T 2 ∼ �x 0 t 
1 −ζ
max . We see that lineages with the same

eparation �x 0 coalesce much faster on average when they behave

s KPZ walkers, and that this difference becomes more pronounced

or large t max , as is evident qualitatively from Figs. 2 and 3 . The

caling of T 2 for KPZ walkers can be written in a form analogous

o Eq. (8) , and reflects the KPZ transverse scalings inherent in the

ystem (see Supporting Information). 
In biological terms, common ancestry is expected to be more

ecent with rough front dynamics than under diffusive dynam-

cs. As a result, assuming a constant rate of neutral mutations,

he number of differences �( �x 0 ) between pairs of two sampled

enomes at the front is expected to increase more slowly with sep-

ration �x 0 along the front. This anomaly arises because we ex-

ect the habitat to be populated by the offspring of a small num-

er of common ancestors, which decays as t −2 / 3 for KPZ walkers,

ather than the t −1 / 2 decay characterizing diffusive random walk-

rs, where t is the time since the initial inoculation. 

.2. Environmental heterogeneities 

The presence of environmental heterogeneities in the habitat

an have a significant impact on a range expansion, including on

he front shape and propagation speed, and on the genetic diver-

ity at the front. A prototypical example of environmental hetero-

eneity is the obstacle, a nutrient-depleted zone, that the popula-

ion must grow around rather than through. As we show here, two

ifferent types of KPZ fluctuations come into play when an obsta-

le is present. 

Range expansions around an obstacle were studied ex-

erimentally and via simple geometrical optics ideas by

öbius et al. (2015) (see also Tesser, 2016 ). A notable feature of the

xperimental (and numerical) results from Möbius et al. (2015) is

hat the sector boundary which forms at the apex of the obstacle

hows suppressed transverse fluctuations compared to all other

ector boundaries. As the front propagates past the obstacle, a

omponent of its velocity is directed inward from both sides. This

n effect pins the sector boundary to the middle, at a kink in the

ront, and suppresses this sector boundary’s fluctuations. 

While we have considered only fluctuations of lineages until

ow, the fluctuations of sector boundaries are inextricably related,

s a lineage necessarily remains inside a single sector. Since the

ineage fluctuations grow in reverse time as τ ζ , their coalescence

auses the number of distinct lineages to decay as τ−ζ . Thus for a

ront at time t , the number of roots that the lineage tree has in the

nitial population decays as t −ζ . As this number of roots equals the

umber of sectors, the sector boundaries must fluctuate in forward

ime as t ζ . 

Here, we study the suppression of sector boundary fluctuations

y obstacles in greater detail using the stepping stone model with

 rough front. A gap of width w gap of unoccupied sites is left in the
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Fig. 7. Geometries of the sector boundary between two alleles (labeled red and 

green). The initial inoculations are marked by dashed lines. (a) Illustration of the 

gap geometry: A segment of width w gap is left unpopulated initially, separating the 

two alleles which grow from an otherwise flat initial condition. The width w gap 

could represent, say, the width of a square obstacle that terminates at time t = 0 , 

or the size of an interval along the horizontal x -direction where all organisms are 

removed by an environmental trauma. (b) Illustration of the wedge geometry: The 

initial population occupies two triangular regions whose growth fronts meet at a 

wedge angle θ . In both systems, the two alleles meet at a single sector boundary, 

along which fluctuations are suppressed. The front of the range expansion is illus- 

trated for a series of equally spaced time values t , with lighter shades representing 

later times. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) Log-log plot of fluctuations of the sector boundary 〈 �x 2 〉 1/2 vs. vertical 
distance along the sector boundary vt in the gap geometry for a range of gap sizes 

w gap . Fits to a power law scaling form 〈 �x 2 〉 1/2 ∼ t ζ yield exponents varying from 

ζ ≈1/3 to ζ ≈2/3, with a crossover region in between. Inset: Data collapse after 

rescaling with respect to w gap . By geometrical arguments, vt / w gap , where v is the 

average front speed, is a measure of the angle of incidence of the fronts as deter- 

mined by a constant speed or “geometrical optics” model. We see a reasonably good 

collapse across many different gap sizes, with ζ ≈1/3 for vt / w gap < 1, and ζ ≈2/3 for 

vt / w gap > 1. (b) Wandering exponent ζ as a function of the angle of incidence θ in 

the wedge geometry. As θ increases from 0 to π , the wandering exponent increases 

smoothly from approximately ζ = 1 / 3 (marked by the dashed line) to the KPZ value 

of ζ = 2 / 3 . 
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initially populated line, providing a simplified representation of a

range expansion past an obstacle of such width, or the result of an

environmental trauma ( Fig. 7 a). By considering only two “alleles”

(colors), we can track the wandering of the single sector boundary

that forms approximately above the center of the obstacle. We ex-

amine only times sufficiently early that the system’s finite width

cannot affect the sector boundary (see Supporting Information). As

shown in Fig. 8 a, the effective wandering exponent ζ is suppressed

from the usual value of 2/3, to ζ ≈1/3 for times vt � w gap , where v

is the average front velocity. At later times, as the kink in the front

heals and the average front normals return to the vertical, ζ recov-

ers the expected value of 2/3 for KPZ genetic boundaries. Notably,

the effective ζ appears to exceed 2/3 in an intermediate transitory

regime when vt ≈w gap . 

To gain further insight into this changing wandering expo-

nent, we modify the numerical experiment to a wedge geometry

( Fig. 7 b). This allows us to fix the kink angle θ to be a constant

value, as opposed to the gap geometry where the kink heals from

some initial θ0 toward π with increasing time. 

Now, the stepping stone model with deme size of 1 is, in

essence, identical to the Eden model on a triangular lattice,

with the added complication of tracking different genotypes. The

boundary between two Eden clusters meeting at an angle θ has

previously been studied ( Derrida and Dickman, 1991 ). The trans-

verse fluctuations scale as t ζ , where t is the simulation time, and

the wandering exponent ζ was conjectured to be 

ζ (θ ) = 

{ 

1 / 3 , θ < π, 

2 / 3 , θ = π, 

1 , θ > π. 

(9)

The value θ = π corresponds to two Eden clusters growing side by

side with flat initial conditions, in which case one recovers the KPZ

value of ζ = 2 / 3 as expected. 

The regime θ < π is of relevance to range expansions with ob-

stacles. Heuristically, the sector boundary becomes pinned by the

two Eden clusters growing into each other, and the usual KPZ
ransverse fluctuations are suppressed. Instead, the fluctuations

hich dominate are those of the propagating fronts themselves,

hich scale with the KPZ growth exponent β = 1 / 3 rather than

he wandering exponent ζ = 2 / 3 . 

The original simulations which led to the estimates in

q. (9) sampled only 3 points in the range θ < π , namely θ = π/ 3 ,

/2, and 2 π /3 ( Derrida and Dickman, 1991 ). We expand on this

revious work by fitting to an effective ζ ( θ ) for many more values

f θ . 
The results plotted in Fig. 8 b indicate a smooth crossover be-

ween ζ = 1 / 3 and ζ = 2 / 3 as θ increases from 0 to π . A heuris-

ic explanation for this change in ζ is given in the Supporting In-

ormation. The results from the wedge geometry are qualitatively

onsistent with the ζ values measured from the “gap geometry”

(Fig. 8a). As the range expansion propagates around an obstacle,

he fronts from either side meet at some angle θ0 < π , which can

e predicted by a deterministic model of constant-speed propaga-

ion for wavefronts in the same geometry, inspired by geometri-

al optics ( Möbius et al., 2015 ). The incident angle increases up

o θ = π as the kink in the front heals. Therefore, for the sector

oundary formed after the obstacle, we expect the wandering ex-

onent to initially take some value ζ < 2/3, and then slowly re-

over to ζ = 2 / 3 . The kink has healed when the fluctuations of the

ront (perpendicular to the direction of propagation) are compara-

le to the size of the dip. 
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. Conclusion and outlook 

The propagating front of a range expansion is expected to

oughen over time, and in this work we have connected the pop-

lation genetics of such range expansions with new calculations

n statistical physics models from the KPZ universality class. We

ave shown, through both DPRM calculations and a stepping stone

odel with rough fronts, that the superdiffusive “KPZ walkers” de-

cribing genetic lineages have coalescence statistics whose limiting

ehaviors are qualitatively, but not at all quantitatively, similar to

hose of coalescing diffusive random walkers. In the limit of large

eparation or small time in the past, the coalescence rate for KPZ

alkers decays as J ∼ exp [ −(τ / �x 3 / 2 
0 

) −2 ] , in contrast to the scaling

 diff ∼ exp [ −(τ / �x 2 0 ) 
−1 ] for the diffusive case in the same limit. 

In the opposite limit of small separation or large time in the

ast, we find that J varies algebraically as τ−1 (�x 0 /τ
2 / 3 ) α

′ 
with

′ ≈1, whereas diffusive random walkers coalesce according to the

orm J diff ∼ τ−1 (�x 0 /τ
1 / 2 ) . 

From these numerically measured coalescence rates, we have

alculated the expected time T 2 since common ancestry for pairs

f individuals as a function of their spatial separation, an impor-

ant quantity in population genetics. The superdiffusive wandering

f lineages suppresses T 2 significantly compared to estimates based

n diffusive dynamics. Our results go beyond the known scaling

ifference between diffusive and KPZ lineages and genetic bound-

ries, and provide quantitative information about how front rough-

ess leads to more recent, and fewer, common ancestors for the

pioneers” comprising the front. 

We have also used the stepping stone model to explain how en-

ironmental heterogeneities can alter this superdiffusive dynamics,

ven leading to time regimes with subdiffusive dynamics. Our re-

ults explain the suppressed fluctuations of genetic sector bound-

ries behind an obstacle observed in recent experimental work,

nd connect them with prior numerical work on Eden model

rowth. The effect of obstacles can be viewed as a competition

etween the usual roughening of the front, which favors the KPZ

andering exponent ζ = 2 / 3 , and the collision of two segments

f the front propagating around either side of the obstacle, which

uppresses ζ toward the value of the front roughness exponent

= 1 / 3 . 

Going forward, our calculations of J and T 2 for KPZ walkers in a

otally uniform environment will be valuable as a standard against

hich deviations can be measured, to reveal the effects of var-

ous realistic complications. These complications include end ef-

ects from habitat boundaries ( Nullmeier and Hallatschek, 2013;

ilkins and Wakeley, 2002 ), selectively advantageous or delete-

ious mutations, mutualism or antagonism between subpopula-

ions ( Lavrentovich and Nelson, 2014 ), geometrical inflationary ef-

ects in radial expansions ( Lavrentovich et al., 2013 ), and more

omplex heterogeneities in the environment ( Möbius et al., 2015 ). 

On the latter topic, we have made headway here by studying

 simplified representation of an obstacle as a prototypical envi-

onmental heterogeneity, which already illustrates the subtle issue

f locally suppressed fluctuations. It will be interesting to extend

his analysis of Eden model growth to situations with multiple

bstacles, and with other types of heterogeneities such as nutrient

hotspots” ( Tesser, 2016 ) and uneven topography ( Beller et al., 

018 ). The dynamics can also be made more sophisticated by

ncreasing the number of organisms per deme above N = 1 ,

nd reintroducing aspects of the original stepping stone model’s

igration dynamics between neighboring demes ( Kimura and

eiss, 1964 ). 

From the perspective of statistical physics, range expansions

rovide not only an experimental testing ground for the predic-

ions of KPZ scaling, but also an incentive to introduce and ex-
lore variants of rough growth. For example, the coalescing domain

oundaries in Figs. 2 and 3 qualitatively resemble coarsening of

omains in a multi-component growth process ( Kardar, 1999 ), and

hould be quantitatively described by the coupling of directed per-

olation (of genetic domains) to the rough interface ( Horowitz and

ardar, 2019 ). 

Finally, our results have drawn upon connections between two

uite different processes in the KPZ universality class, the rough

ront stepping stone model and DPRM, to obtain quantitative in-

ights about biological experiments that can be realized in the lab-

ratory. We hope that this work will inspire future investigations

o seek other useful links between disparate model systems that

hed light on the evolutionary dynamics of rough front range ex-

ansions, a problem with much fertile territory. 
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