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ABSTRACT
Ensembles of biological and artificial microswimmers produce long-range velocity fields with strong nonequilibrium fluctuations,
which result in a dramatic increase in diffusivity of embedded particles (tracers). While such enhanced diffusivity may point to
enhanced mixing of the fluid, a rigorous quantification of the mixing efficiency requires analysis of pair dispersion of tracers,
rather than simple one–particle diffusivity. Here, we calculate analytically the scale-dependent coefficient of relative diffusivity
of passive tracers embedded in a dilute suspension of run-and-tumble microswimmers. Although each tracer is subject to strong
fluctuations resulting in large absolute diffusivity, the small-scale relative dispersion is suppressed due to the correlations in fluid
velocity which are relevant when the inter-tracer separation is below the persistence length of the swimmer’s motion. Our results
suggest that the reorientation of swimming direction plays an important role in biological mixing and should be accounted in the
design of potential active matter devices capable of effective fluid mixing at microscale.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081006

Suspensions of swimming microorganisms, a prototype
of non-equilibrium, exhibit fascinating behaviors distinct from
their equilibrium counterparts. Even at dilute concentrations,
active swimmers can produce large non-Gaussian fluctua-
tions in fluid velocity with long-range/time correlations and
not constrained by the fluctuation-dissipation theorem.1–4
The swimmer-induced hydrodynamic fluctuations have been
shown to significantly enhance diffusivity of passive tracers
placed in active suspensions.5–10 This observation is relevant
to transport of nutrients andmay be relevant to understanding
features of bacterial swimming.11 The enhanced tracer diffu-
sion, driven either by motile organisms or by artificial self-
propelled particles, can potentially be used for efficient mixing
in microfluidic devices.12,13

But, does the enhanced diffusivity of tracers in active sus-
pensions actually result in high mixing efficiency? Diffusive
transport and mixing/stirring are often (and in some cases
mistakenly, in our opinion) used interchangeably. Whereas the
former is quantified by the one-particle diffusivity, the latter is
associated with the relative dispersion of initially nearby trac-
ers. Here we analytically investigate the effect of swimmer-
induced hydrodynamic fluctuations on pair dispersion in a

dilute active suspension. Our analysis uncovers the relation
between scale-dependent mixing properties and randomiza-
tion of swimming direction via stochastic tumbling. If the
inter-tracer separation is sufficiently large, compared to the
persistence length of swimmer trajectories, the relative dis-
persion is determined by the absolute diffusivity as the distant
tracers move in an uncorrelated manner. By contrast, on spa-
tial scales below the swimmer persistence length, correlations
in the fluid velocity fluctuations cannot be neglected, leading
to weaker relative dispersion.

Consider two non-Brownian tracer particles moving
along Lagrangian trajectories in the incompressible fluid flow
v(r, t) produced by an ensemble of active swimmers; see
Fig. 1(a). Following the seminal work by Richardson,14 who
established the foundations of two-particle dispersion in
hydrodynamic turbulence, we consider the diffusion equa-
tion for the probability density p(R, t) of finding the tracers
at separation R at time t,

∂p
∂t
=

1
R2

∂

∂R

[
R2D(R)

∂p
∂R

]
, (1)
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FIG. 1. (a) Relative dispersion of passive tracers (dashed line trajectories)
in a suspension of active swimmers. (b) Run-and-tumble motion of an active
swimmer.

in which the (scale dependent) diffusion coefficient is defined
as

D(R) =

∞∫

0

〈δv‖ (R, 0)δv‖ (R, t)〉dt, (2)

where δv‖ (R, t) = (v(R, t) − v(0, t)) · R/R represents the Eulerian
longitudinal velocity difference along the direction of parti-
cle separation and the angular brackets denote averaging over
the statistics of flow fluctuations. We assume spatial homo-
geneity and isotropy of the suspension, implying that the rel-
ative diffusivity depends only on the absolute value of the
separation vector. In addition, Eq. (1) assumes that the prob-
ability distribution p(R, t) is spherically symmetric. Further-
more, describing the advection of passive tracers by means
of a diffusion equation is based on the important assump-
tion that the random velocity field is short-range correlated
in time. This assumption will be justified at the end of the
article.

As shown in Refs. 15 and 16 (see Appendix A for the details),
the diffusion coefficient defined in Eq. (2) can be written
as

D(R) =
2
R3

∞∫

0

R∫

0

r2(F(0, t) − F(r, t))dtdr, (3)

in terms of the scalar pair correlation function of the fluid
velocity,

F(R, t) = 〈v(0, 0) · v(R, t)〉. (4)

Equation (3) explicitly relates the scale dependencies of rel-
ative diffusivity and velocity correlations. One may expect
that at sufficiently large separations R, the term F(r, t) in the
integrand of this equation can be neglected as correlations
between velocity fluctuations experienced by distant tracers
are almost absent. Then the coefficient of relative diffusion is
simply twice the absolute diffusivity, which can far exceed its
thermal value even for dilute suspensions. It is clear, however,
that the small-scale dispersion must be less pronounced due
to the correlations present in the flow. Indeed, as we will see

below, the relative diffusivity vanishes as the interparticle sep-
aration goes to zero. What is the characteristic length scale
associated with the scale-dependent diffusivity D(R)? This is
the central question of this work.

To calculate D(R), we need to describe the statistics of the
flow fluctuations created by the active swimmers. Since the
Reynolds number associated with swimming at microscale is
small17 (<10−4), the fluid motion is governed by the Stokes
equation. For an autonomously moving neutrally buoyant
swimmer, a propulsive force is balanced by the resistive drag
so that the swimmer exerts no net force on the fluid. Then the
velocity field produced by the swimmer far away from its sur-
face is determined by the leading order dipole term in a mul-
tipole expansion. Noting that the near-field flow (where high
order harmonics are relevant) is not universal, we will con-
sider dipolar swimmers for simplicity. Then, the fluid velocity
induced at r by a swimmer with orientation n placed in the
origin is given by (see, e.g., Refs. 18 and 19)

u(r,n) =
κ

8πµ
�
�

3(n · r)2

r2
− 1�

�

r
r3

, (5)

where κ denotes the strength of the force dipole exerted by
the swimmer on the fluid with viscosity µ. The short-distance
cutoff required to regularize singularity at r→ 0 is of the order
of the physical size a of a swimmer’s body. The strength κ is
positive for pushers and negative for pullers.18

In the Stokes regime, the total fluid velocity is given by
the superposition of flow contributions from all N � 1 swim-
mers present in the system, i.e., v(R, t) =

∑N
k=1 u(R − rk(t),nk(t)),

where rk(t) and nk(t) indicate, correspondingly, the position
and the orientation of the kth swimmer and u is given by
Eq. (5). (We consider only a dilute suspension in which inter-
actions between swimmers can be neglected, and thus assume
that they move independently from each other.) In a statisti-
cally stationary state, the swimmers are uniformly distributed
in the fluid with a concentration c and the probability distribu-
tion P0(n) of the swimmer orientation vector is isotropic. Then
the two-point correlation function of the fluid velocity defined
in Eq. (4) can be written as (see Appendix C)

F(R, t) = c
∫

u(−r1,n1) · u(R − r2,n2)P0(n1)

G(r2,n2, t |r1,n1, 0) dr1 dr2 dn1 dn2, (6)

where G(r2, n2, t|r1, n1, 0) denotes the probability density that
after the time t the swimmer will be in r2 with orientation
n2 having started at r1 with the initial swimming direction
n1. Equation (6) is valid at the leading order in concentra-
tion c, accounting for correlations between the positions and
orientations of the same swimmer at different moments of
time.

To proceed further, we need to specify the model for the
swimmer’s motion. Let us assume that each swimmer moves
ballistically with constant speed v0 and undergoes complete
reorientation at the rate α. The random reorientations mimic
the run-and-tumble behavior of bacteria20 [see Fig. 1(b)]. It
is known that real run-and-tumble dynamics is characterized

J. Chem. Phys. 150, 064907 (2019); doi: 10.1063/1.5081006 150, 064907-2

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

by quick but non-instantaneous tumbles and exhibits cor-
relations between directions of subsequent runs. Moreover,
the runs are not perfectly straight due to rotational diffusion.
However, what is important for succeeding arguments is that
the swimmer’s orientation stochastically changes with time,
and the fine details of the particular reorientation mechanism
are not significant. As such, we adopt the analytically tractable
model of uncorrelated Poisson tumbling to illustrate the main
idea. In this case, the propagator G entering Eq. (6) satisfies
the kinetic equation21

∂tG = −v0(n2 · ∇2)G − αG + αP0(n2)
∫

G dn′2, (7)

supplemented by the initial condition G(r2, n2, 0|r1, n1, 0)
= δ(r2 − r1)δ(n2 − n1).

Equation (7) is equivalent to the Boltzmann equation for
the Lorentz model of electron conduction.22 The exact ana-
lytical solution of this equation can be constructed in the
Fourier-Laplace space, as shown in Refs. 23 and 24 (see also
Appendix B). After lengthy but straightforward calculations,
Eq. (6) reduces to

F(R, t) = ce−αt
∫

u(−r,n) · u(R − r − v0tn,n)P0(n) dr dn. (8)

The appealing simplicity of the above relation is due to the
vanishing of the contribution from the last term on the right-
hand side of Eq. (7); see Appendix C for the details.

Using Eqs. (5) and (8), we obtain the one-point correlation
function (see Appendix D)

F(0, t) =
cκ2e−αt

20πµ2a




1 − 3
7 (

v0t
a )2, t ≤ a

v0

( a
v0t

)3
(
1 − 3

7 (
a
v0t

)2
)
, t > a

v0
,

(9)

while the two-point correlation function for R � a is found to
be (see Appendix E)

F(R, t) =
cκ2e−αt

30πµ2R




1, t ≤ R
v0
,

1
2 (

R
v0t

)3
(
5 − 3( R

v0t
)2
)
, t > R

v0
.

(10)

See Fig. 2 for the illustration. Equations (9) and (10) generalize
the results of Refs. 27 and 28 where the one-point correlator
F(0, t) (in the case α = 0) and the one-time correlator F(R, 0)
were derived for the dipolar swimmer model.

Finally, inserting Eqs. (9) and (10) into Eq. (3), and perform-
ing integration, one finds

D(R) =
cκ2

24πµ2v0

[
1 +

24(1 − e− R
λ )

35

(
λ

R

)3
− 4λ
5R

−4e
− R

λ

35

(
λ

R

)2 (3R
λ

+ 20
)
+
4λ
R

E4[
R
λ
]

+
4
35

(
3 + 56

(
λ

R

)2)
E5[

R
λ
]
]
, (11)

where we have introduced the swimmer persistence length
λ = α−1v0, which is assumed to be large compared to the swim-
mer’s size a, and En[x] = ∫ ∞1 dte−xt/tn denotes the exponential
integral.

FIG. 2. The two-point correlator F(R, t) of the fluid velocity fluctuations as a function
of time, for different spatial separations. The microscopic time scale ta is given by
ta = a/v0. The plots correspond to the choice αta = 10−2 (or, equivalently, a/λ
= 10−2).

Equation (11) indicates that the relative diffusivity is a
monotonically decreasing function of the interparticle separa-
tion, saturating toD∞ = cκ2

24πµ2v0
for R � λ; see Fig. 3. Estimating

the strength of the force dipole as κ ∼ µa2v0 (see, e.g., Ref. 18),
we obtain D∞ ∼ ϕv0a, where ϕ = ca3 � 1 is the volume fraction
of swimmers. Obviously, the limit of large separation corre-
sponds to the uncorrelated motion of tracers so that D∞ is just
twice the absolute diffusivity. Our estimate for D∞ is in agree-
ment with previous studies of the hydrodynamic diffusion
of non-Brownian tracers in dilute three-dimensional sus-
pensions of dipolar swimmers with large persistence length
(i.e., λ � a).25,26,29

The small-scale asymptotic behavior of the relative diffu-
sivity is linear, D(R) ≈ D∞

λ R for R � λ. Equation (1) then implies
a linear growth of the mean interparticle distance with time,

FIG. 3. Relative diffusivity as a function of inter-tracer separation.
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d〈R(t)〉/dt = U, with

U =
cκ2α

8πµ2v20
, (12)

playing the role of a mean relative velocity. Estimated as U
∼ ϕv0a/λ, it is much smaller than the (rms) absolute tracer

velocity
√
〈v2〉 =

√
F(0, 0) ∼ ϕ1/2v0 as a/λ � 1 and ϕ � 1 by

assumption. Despite the enhanced diffusivity at the single par-
ticle level, nearby trajectories diverge relatively slowly due to
the underlying velocity correlation. Indeed, the typical time
it takes for two nearby fluid parcels to reach a separation of
R � λ is given by R/U ∼ Rλ/(ϕv0a), much longer than the naive
estimate R2/D∞ ∼ R2/(ϕv0a) based on the assumption that
the parcels undergo independent diffusive motions (as they do
for R � λ).

As was noted in the beginning of the article, describing
dispersion by the diffusion equation is valid only when the
fluid velocity fluctuations are short-range correlated in time.
This is justified since the characteristic time associated with
evolution of the separation vector according to Eqs. (1) and (11)
is large compared to the correlation time of a tracer’s relative
velocity. Using Eqs. (9) and (10), the latter can be estimated

as τc =
∫ ∞0 〈δv‖ (R,0)δv‖ (R,t)〉tdt
∫ ∞0 〈δv‖ (R,0)δv‖ (R,t)〉dt

∼ α−1 for R � λ, while τc ∼ a/v0

when R � λ. It is then evident that Rλ/(ϕv0a) � α−1 and
R2/(ϕv0a) � a/v0 and, therefore, the assumption of short cor-
relation times is valid in both limits of small and large tracer
separation.

Noteworthy, setting tumbling rate α to zero, we readily
find from Eq. (11) that in the idealized system where swimmers
move along infinite straight trajectories the relative diffusiv-
ity vanishes. This allows us to argue that independently on
the particular mechanism underlying the randomization of the
swimming direction, swimmer persistence length λ sets the
boundary between two regimes of relative dispersion char-
acterized by different mixing efficiencies. In particular, one
may expect that mixing is always suppressed in the systems
where swimmer reorientation occurs mainly upon hitting the
container walls since in this case the inter-tracer separation
cannot be larger than the swimmer persistence length which
is determined by the system size.

In conclusion, let us discuss some limitations of the
analysis presented above and possible directions for future
studies. First, since we model the swimmer disturbance
field as a point force dipole, our results cannot be directly
applied to suspensions of quadrupolar swimmers such as
active colloids and certain microorganisms.30 Second, our
analysis does not incorporate a detailed model of the
near-field hydrodynamic interactions between the swim-
mer and the tracer particle. According to a recent exper-
imental study of enhanced diffusion in a suspension of
micro-alga,31 tracer entrainment by the near-flow of swim-
ming microorganisms plays a crucial role in the physical
regime when the tracer’s size is significantly smaller than
that of the swimmers. Third, our model ignores Brown-
ian motion, focusing on the purely convective transport of
the tracers. This restricts applicability of the above results

to the limit of large Peclet numbers, Pe = D∞/Dth � 1,
where Dth is the Brownian diffusivity of tracers. It may be
possible to generalize calculation of the relative diffusiv-
ity beyond the assumptions Pe � 1 and λ � a adopted
here, based on recent theoretical progress29,32 in quantify-
ing the absolute diffusivity. Fourth, here we focused on the
very dilute regime neglecting any swimmer-swimmer cor-
relations. However, a recent theoretical study33 indicates
that, due to long-range nature of hydrodynamic interactions
between swimmers, such correlations can become signifi-
cant well below the onset of turbulence, resulting in non-
linear scaling of the tracer diffusivity with swimmer concen-
tration. Thus, further theoretical development is required to
extend the present analysis to the case of moderate swimmer
densities.

To summarize, we have characterized the spatio-
temporal correlations present in a dilute suspension of
run-and-tumble microswimmers by calculating the pair cor-
relation function of the fluid velocity fluctuations. The knowl-
edge of the two-point correlator allows us to derive an
analytical expression for the relative diffusivity of passive
tracers, thus revealing those aspects of the mixing pro-
cess that cannot be captured by the single-particle diffu-
sivity. Our results provide insight into the role of swimmer
tumbling (and other reorientation mechanisms) in bacteria-
induced mixing in natural systems and should be relevant
to the design of mixing enhancement systems using active
swimmers.

S.B. gratefully acknowledges support from the James
S. McDonnell Foundation via its postdoctoral fellowship in
studying complex systems. M.K. acknowledges support from
NSF through grant DMR-1708280.

APPENDIX A: RELATIVE DIFFUSIVITY
IN INCOMPRESSIBLE RANDOM FLOW

Here we derive Eq. (3) for the relative diffusivity of passive
tracers. The probability distribution of the separation vec-
tor of two tracers advected by short-time correlated incom-
pressible random flow evolves according to the diffusion
equation

∂p
∂t
=

∂

∂Ri

[
Dij(R)

∂p
∂Rj

]
, (A1)

with the diffusivity tensor given byDij = ∫ +∞0 〈δvi(R, t)δvj(R, 0)〉dt.
If the flow is statistically homogeneous and isotropic, and the
probability distribution p(R, t) is spherically symmetric, then
Eq. (1) reduces to (see, e.g., Ref. 16)

∂p
∂t
=

1
R2

∂

∂R

[
R2D(R)

∂p
∂R

]
, (A2)

where D is the longitudinal diagonal element of the diffusivity
tensor Dij in the coordinate system aligned with R, which can
be expressed as
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D(R) =

∞∫

0

〈δv‖ (R, 0)δv‖ (R, t)〉dt

=

∞∫

0

〈(v‖ (R, 0) − v‖ (0, 0))(v‖ (R, t) − v‖ (0, t))〉dt

=

∞∫

0

(
〈v‖ (R, 0)v‖ (R, t)〉 − 〈v‖ (R, 0)v‖ (0, t)〉

− 〈v‖ (0, 0)v‖ (R, t)〉 + 〈v‖ (0, 0)v‖ (0, t)〉
)
dt

= 2

∞∫

0

(F‖ (0, t) − F‖ (R, t))dt, (A3)

in terms of the scalar correlation function

F‖ (R, t) = 〈v‖ (R, t)v‖ (0, 0)〉, (A4)

and relying on homogeneity and isotropy.
To derive Eq. (3), we note that the general form of

the two-point velocity correlator in the homogeneous and
isotropic random flow is given by (see Ref. 15)

Fij(R, t) = 〈vi(R, t)vj(0, 0)〉 = A(R, t)RiRj + δijB(R, t), (A5)

where A and B are arbitrary functions of R and t. Let us also
introduce the following scalar correlator:

F⊥(R, t) = 〈v⊥(R, t)v⊥(0, 0)〉. (A6)

Here v⊥ is the velocity component along an arbitrary chosen
direction orthogonal to the separation vector R. As it fol-
lows Eq. (A5), the longitudinal and lateral velocity correlation
functions, F‖ are F⊥, are related to the functions A and B as

F‖ (R, t) = A(R, t)R2 + B(R, t), (A7)

F⊥(R, t) = B(R, t), (A8)

and, therefore, Eq. (A5) can be rewritten as

Fij(R, t) =
F‖ − F⊥

R2
RiRj + δijF⊥. (A9)

Next, the incompressibility condition, ∇ · v = 0, implies that

∂Fij
∂Ri

=

(
(d − 1)(F‖ − F⊥)

R2
+
1
R
∂F‖
∂R

)
Rj = 0, (A10)

where d is the number of spatial dimensions, and consequently

(d − 1)(F‖ − F⊥)
R2

+
1
R
∂F‖
∂R
= 0. (A11)

The above equation allows us to express F⊥ in terms of F‖

F⊥ = F‖ +
R

d − 1
∂F‖
∂R

. (A12)

Using Eqs. (A9) and (A12), we find

F(R, t) = 〈v(R, t) · v(0, 0)〉 = Fii(R, t)

= F‖ + (d − 1)F⊥ = dF‖ + R
∂F‖
∂R

, (A13)

and, therefore,

F‖ (R, t) =
1
Rd

R∫

0

F(r, t)rd−1dr. (A14)

Finally, inserting Eq. (A14) into Eq. (A3), one obtains

D(R) =
2
Rd

∞∫

0

R∫

0

rd−1(F(0, t) − F(r, t))dtdr. (A15)

This expression gives Eq. (3) for d = 3. An equivalent represen-
tation of D(R) in terms of the energy-spectrum function (i.e.,
Fourier transform of F(r, t)) can be found in Ref. 16.

APPENDIX B: PROPAGATOR OF THE
RUN-AND-TUMBLE SWIMMER

Here we construct the solution to Eq. (7) by exploiting the
trick proposed in Ref. 23. It is convenient to use the spherical
system of coordinates to parametrize the orientation vector n.
Then P0(n) = sin θ/(4π), where θ is the polar angle, and Eq. (7)
from the main text can be written as

∂tG = −v0(n2 · ∇2)G − αG + α
sin θ2
4π

∫ 2π

0

∫ π

0
Gdϕ′2dθ

′
2. (B1)

After the Fourier-Laplace transform

G̃(k2,n2, s |k1,n1, 0) =
∫ +∞

0
dte−st

∫
dr1dr2e−ik2 ·r2−ik1 ·r1

× G(r2,n2, t |r1,n1, 0), (B2)

we obtain

G̃(k2,n2, s |k1,n1, 0)

=
(2π)3δ(ϕ2 − ϕ1)δ(θ2 − θ1)δ(k2 + k1)

α + s + iv0(n2 · k2)

+
α sin θ2 ∫ 2π0 ∫ π0 G̃(k2,n′2, s |k1,n1, 0)dϕ′2dθ

′
2

4π(α + s + iv0(n2 · k2))
. (B3)

Let us integrate Eq. (B3) over dϕ2dθ2 assuming that the polar
angle θ2 is measured from the direction determined by the
wave vector k2,

�
�
1 − α

4π

∫ 2π

0

∫ π

0

sin θ2
α + s + iv0(n2 · k2)

dϕ2dθ2�
�

×
∫ 2π

0

∫ π

0
G̃(k2,n′2, s |k1,n1, 0)dϕ′2dθ

′
2 =

(2π)3δ(k2 + k1)
α + s + iv0(n1 · k2)

.

(B4)

This allows us to express
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∫ 2π

0

∫ π

0
G̃(k2,n′2, s |k1,n1, 0)dϕ′2dθ

′
2

=
(2π)3δ(k2 + k1)

(α + s + iv0(n1 · k2))(1 − α
v0k2

arctan v0k2
α+s )

. (B5)

Substituting this expression into Eq. (B3), one obtains

G̃(k2,n2, s |k1,n1, 0)

=
(2π)3δ(k2 + k1)

α + s + iv0(n2 · k2)


δ(ϕ2 − ϕ1)δ(θ2 − θ1)

+
α sin θ2

4π(α + s + iv0(n1 · k2))(1 − α
v0k2

arctan v0k2
α+s )


, (B6)

or, equivalently,

G̃(k2,n2, s |k1,n1, 0)

=
(2π)3δ(k2 + k1)

α + s + iv0(n2 · k2)


δ(n2 − n1)

+
αP0(n2)

(α + s + iv0(n1 · k2))(1 − α
v0k2

arctan v0k2
α+s )


. (B7)

APPENDIX C: VELOCITY CORRELATION FUNCTION
IN SUSPENSION OF SWIMMERS

In this section, we derive Eqs. (6) and (8). To compute the
velocity field of the fluid, we need to sum the contributions
produced by all swimmers,

v(R, t) =
N∑

k=1

u(R − rk(t),nk(t))

=

N∑

k=1

∫
δ(r − rk(t))δ(n − nk(t))u(R − r,n)dr dn. (C1)

Here rk(t) and nk(t) are, respectively, the position and the ori-
entation of the kth swimmer and u is given by Eq. (5) in the
main text. Then, the two-point correlation function of the
velocity can be written as

F(R, t) =
N∑

k,l=1

∫ 〈
δ(r1 − rl(0))δ(n1 − nl(0))δ(r2 − rk(t))

× δ(n2 − nk(t))
〉
u(−r1,n1)u(R − r2,n2)dr1 dr2 dn1 dn2.

(C2)

It is easy to check that in the absence of correlations
between the different swimmers, all terms with k � l go to zero
after integration. Therefore the leading contribution comes
from the correlations between the position and the orien-
tation of the same swimmer at different moments of time.
Taking into account that all swimmers are identical, we then
obtain

F(R, t) = N
∫ 〈

δ(r1 − r(0))δ(n1 − n(0))δ(r2 − r(t))

× δ(n2 − n(t))
〉
u(−r1,n1)u(R − r2,n2)dr1 dr2 dn1 dn2,

(C3)

where we have dropped the label for the swimmer number.
Next, simple implementation of the Bayes formula yields

〈δ(r1 − r(0))δ(n1 − n(0))δ(r2 − r(t))δ(n2 − n(t))〉

= Pr(r(0) = r1,n(0) = n1)Pr
(
r(t) = r2,n(t) = n2 |r(0)

= r1,n(0) = n1
)
. (C4)

The first term in the right hand side of the last equation
represents the joint probability distribution of the swimmer
position and orientation, i.e.,

Pr(r(0) = r1,n(0) = n1) =
1
V
P0(n1), (C5)

where P0 is the steady-state probability distribution of swim-
mer orientation and V (=N/c) is the volume of the system.
We used the fact that in the statistically stationary state the
probability density of the swimmer’s position is uniform at all
positions.

The second factor in the right hand side of Eq. (C4) repre-
sents the probability density that after the time t the swimmer
will be in r2 having the orientation n2 provided it starts in r1
with orientation n1, i.e.,

Pr(r(t) = r2,n(t) = n2 |r(0) = r1,n(0) = n1) = G(r2,n2, t |r1,n1, 0).

(C6)

From Eq. (C3) together with Eqs. (C4)–(C6), one obtains Eq. (6)
from the main text.

Next, using the Fourier-Laplace transform of G and u, we
can rewrite Eq. (6) as

F(R, t) = − ic
2π

∫

γ

dsest
∫

dk1dk2
(2π)6

dn1dn2eik2 ·Rũi(k1,n1)

× ũi(k2,n2)P0(n1)G̃(k2,n2, s |k1,n1, 0), (C7)

where γ is the contour in the plane of the complex variable s,
G̃ is given by Eq. (B7), and

ũi(k,n) =
∫

ui(r,n)e−ik·rdr =
iκ
µk2

�
�

(k · n)2

k2
ki − (k · n)ni�

�
. (C8)

Taking into account Eq. (B7), we find

F(R, t) = − ic
(2π)4

∫
dkeik·R

∫

γ

dsest
∫

dnP0(n)

×
ũi(−k,n)ũi(k,n)
α + s + iv0(n · k)

− iαc
(2π)4

∫
dkeik·R

∫

γ

dsest
∫

dn1dn2

×
ũi(−k,n1)ũi(k,n2)P0(n1)P0(n2)

(α+s+ iv0(n1 ·k))(α+s+ iv0(n2 ·k))(1− α
v0k

arctan v0k
α+s )

.

(C9)

To perform integration over the swimmer orientations, we
choose a spherical system of coordinates with the zenith
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direction parallel to the wave vector k. Then the vector ni is
parametrised by the angle variables θ i and ϕi. Let us note that

ũi(−k,n1)ũi(k,n2) =
κ2

ν2k4
�
�

(k · n1)2

k2
ki − (k · n1)n1i�

�

× �
�

(k · n2)2

k2
ki − (k · n2)n2i�

�

=
κ2

ν2k4
�
�
(k · n1)(k · n2)(n1 · n2) −

(k · n1)2(k · n2)2

k2
�
�

=
κ2

ν2k2
cos θ1 cos θ2 sin θ1 sin θ2 cos(ϕ1 − ϕ2), (C10)

and, therefore, the second term in the rhs of Eq. (C9) goes
to zero after integration over ϕ1 or ϕ2. Since this zero con-
tribution comes from the last term on the right hand side
of Eq. (7), and there are no other contributions associated
with this term, we can ignore it from the very beginning, thus
passing to the simpler kinetic equation

∂tG = −v0(n2 · ∇2)G − αG, (C11)

which is exactly solvable and gives

G(r2,n2, t |r1,n1, 0) = e−αtδ(r2 − r1 − v0tn1)δ(n2 − n1). (C12)

Substitution of Eq. (C12) into Eq. (6) leads to Eq. (8).

APPENDIX D: THE ONE-POINT CORRELATION FUNCTION
The one-point correlator F(0, t) can be calculated by inserting the velocity field u given by Eq. (5) into Eq. (8) and setting

R = 0. This yields

F(0, t) = c
(

κ

8πµ

)2
e−αt

∫
drdnP0(n)

(r, r + v0tn)
r3 |r + v0tn |3

�
�

3(n · r)2

r2
− 1�

�
�
�

3(n · (−r − v0tn))2

|r + v0tn |2
− 1�

�

= c
(

κ

8πµ

)2
e−αt

∫
dr

∫ 2π

0

dϕ
4π

∫ π

0
dθ sin θ

(r2 + rv0t cos θ)(3 cos2 θ − 1)
r3(r2 + v20t

2 + 2rv0t cos θ)3/2
�
�

3(r2 cos2 θ + 2rv0t cos θ + v20t
2)

r2 + v20t
2 + 2rv0t cos θ

− 1�
�

=
c
2

(
κ

8πµ

)2
e−αt

∫
dr
r3

∫ +1

−1
dy

(r2 + rv0ty)(3y2 − 1)
(r2 + v20t

2 + 2rv0ty)3/2
�
�

3(r2y2 + 2rv0ty + v20t
2)

r2 + v20t
2 + 2rv0ty

− 1�
�

=
cκ2e−αt

32πµ2v0t

∫ ∞
a

dr
r
�
�

8
35

v30t
3

r3
(−9 + 7

r2

v20t
2
)h[

r
v0t
− 1] + 16

5
r2

v20t
2
(
6
7

r2

v20t
2
− 1)h[1 − r

v0t
]�
�

=
cκ2e−αt

32πµ2v0t

�




�

16
5
h[1 − a

v0t
]

1∫

a
v0t

(
6
7
r2 − 1)rdr + 8

35

+∞∫

max(1, a
v0t

)

7r2 − 9
r4

dr
�����
�

=
cκ2e−αt

20πµ2a

(
(1 − 3

7
(
v0t
a

)2)h[1 − v0t
a

] + (
a
v0t

)3(1 − 3
7
(
a
v0t

)2)h[
v0t
a
− 1]
)
, (D1)

where h(x) is the step function, defined by h(x) = 0, x < 0 and h(x) = 1, x ≥ 0. This result identifies with Eq. (9) in the main text.

APPENDIX E: THE TWO-POINT CORRELATION FUNCTION
Here we derive the pair correlator F(R, t) for R � a. It is convenient to use the representation given by Eq. (C7). Taking into

account Eqs. (C8) and (C12), we obtain

F(R, t) = − ic
(2π)4

∫
dkeik·R

∫

γ

dsest
∫

dnP0(n)
ũi(−k,n)ũi(k,n)
α + s + iv0(n · k)

=
cκ2e−αt

2(2π)3µ2

∫
dk
k2

eik·R
π∫

0

dθ sin3 θ cos2 θe−iv0tk cos θ =
cκ2e−αt

(2π)3µ2

∫
dk
k2

eik·R
∫ 1

0
dy(y2 − y4) cos(v0tky)

=
cκ2e−αtv0t
2π2µ2R

kmax∫

0

dk sin(kR)
(2v0tk(12 − (v0tk)2) cos(v0tk) + 2(5(v0tk)2 − 12) sin(v0tk))

(v0tk)6

=
cκ2e−αt

2π2µ2R

v0tkmax∫

0

dq sin
(
qR
v0t

)
(2q(12 − q2) cos q + 2(5q2 − 12) sin q)

q6
, (E1)
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where kmax ∼ a−1. At R � a, we can replace the upper limit of integration by +∞ to get

F(R, t) =
cκ2e−αt

2π2µ2R

∞∫

0

dq sin
(
qR
v0t

)
(2q(12 − q2) cos q + 2(5q2 − 12) sin q)

q6
(E2)

=
cκ2e−αt

30πµ2R

(
h[1 − v0t

R
] +

1
2
(
R
v0t

)3(5 − 3( R
v0t

)2)h[
v0t
R
− 1]
)
. (E3)

This result identifies with Eq. (10) in the main text.
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