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Abstract

We define a new representation for immersed surfaces in
R3 by combining the SRNF and the induced surface met-
ric. Using the L? metric on the space of SRNFs and the
DeWitt metric on the space of surface metrics, we obtain a
3-parameter family of metrics that corresponds to the fam-
ily of “elastic metrics” proposed by Jermyn et al. in [19]
on the space of immersed surfaces. Similar to the original
SRNF representation this new representation results in an
extrinsic distance function on the space of immersed sur-
faces that is easy to compute as it is given by an explicit for-
mula. In addition to avoiding the degeneracy of the SRNF
it allows for a data-driven choice of the parameters of the
metric, while still providing for fast and accurate registra-
tion of surfaces.

1. Introduction

Shape analysis of surfaces plays an important role in
many applications such as anatomy, bioinformatics, com-
puter graphics, computer vision, and medical imaging [25,
2, 17, 18, 34]. The main goals in this area are to quan-
tify the difference between the shapes of two surfaces and
to conduct statistical analyses on the space of shapes. If,
as in this paper, we assume that our surfaces are given in
parametrized form, the main challenge is to remove the ef-
fects of shape-preserving transformations, which consist of
reparametrizations and/or rigid motions.

The problem of removing the effects of reparametriza-
tions can be thought of as a registration problem, i.e.,
finding the optimal point-correspondence between two sur-
faces. This problem is challenging because it is an op-
timization problem over the infinite-dimensional group of
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reparametrizations. In previous work, this problem was of-
ten solved by a 2-step process, in which the two surfaces
first were registered using one criterion, while deformations
and distances were then computed independently using a
different criterion [2, 6, 16, 29, 12, 18, 22]. However, be-
cause of the different sets of criteria, this approach can lead
to undesirable statistical biases and make the overall analy-
sis suboptimal [31].

Elastic shape analysis is an approach in which the deter-
mination of optimal point correspondences and optimal de-
formations is accomplished by a single criterion. The main
idea is to equip the space of parametrized surfaces with a
Riemannian metric that is invariant under the group of all
relevant shape-preserving transformations. This metric then
induces a metric on the quotient space (“shape space”) un-
der this group, and geodesics and distances on the shape
space are defined using this induced metric.

In recent years several metrics and frameworks [19, 27,
26,3,31,35,32, 33,4, 5] have been introduced for the study
of elastic shape analysis. In [19], Jermyn et al. proposed a
family of metrics, called the “general elastic metric” for sur-
faces in R3, which is a generalization of a previously stud-
ied family of elastic metrics on the space of curves [28].
It is defined as a weighted sum of three components that
measure changes in shearing, stretching and bending of the
surface. In the same paper [19], motivated by the SRVF
framework for comparing curves [31], Jermyn et al. intro-
duced the Square Root Normal Fields (SRNF) for compar-
ing shapes of surfaces. In this method, a map is defined
from the space of parametrized surfaces to an L? space, and
the pullback of the L? metric under this map is shown to be
one member of the family of general elastic metrics, albeit
a degenerate member, in which one of the three coefficients
vanishes. The SRNF framework has proven efficient and
successful in many applications [27, 20, 21, 24]. However,
the degeneracy creates serious problems; for example, there
exist pairs of surfaces with different shapes having exactly
the same SRNF (so their SRNF distance vanishes) [23]. In
fact, the SRNF map is neither injective nor surjective and
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its image is not fully understood. In [27], appealing de-
formations of surfaces are produced by producing numeri-
cal approximations to the inverse of the SRNF map along
straight lines in the L? space. Of course, geodesics in the
L? image space are straight lines, but these straight lines
generally leave the image of the SRNF map and thus the
resulting deformations are not geodesics.

In [32], Su et al. proposed a 4-parameter family of met-
rics on the space of parametrized surfaces which has the
desired invariance properties. This 4-parameter family con-
tains the 3-parameter general elastic metrics as a special
case. Most of the metrics in this family are not degenerate
and geodesics and distances in shape space can be computed
numerically. The drawback of this method is that computa-
tionally it is not as fast as the SRNF representation.

Contributions of this article: The purpose of this arti-
cle is to introduce a new representation for surfaces by com-
bining the SRNF map with a direct consideration of the Rie-
mannian metric on the parametrized surface induced by its
immersion into R3. By endowing the space of SRNFs with
the L? metric and the space of metrics with the DeWitt met-
ric, the pullback of the product metric gives an open subset
of the 3-parameter family of the general elastic metrics. In
addition, there are explicit formulas for minimal geodesics
and for the geodesic distance function in the image space,
which make the matching of surfaces computationally ef-
ficient. This new representation is injective but not surjec-
tive. Thus our new method overcomes the degeneracy of the
SRNF-method, but similarly to the SRNF, the geodesics in
the image space do leave the image of the space of surfaces.
For this reason, the method given in this article does not pro-
vide a computation of actual geodesics with respect to this
family of metrics. The main uses of this article are (1) to
efficiently calculate a first-order approximation of geodesic
distance, and (2) to provide an effective method of register-
ing two surfaces, thereby yielding a good initialization for
the methods of [32].

Acknowledgements: The authors thank Stephen Pre-
ston for invaluable discussions on the formula for the
geodesic distance of the DeWitt metric and Hamid Laga for
providing the initial parametrizations of the boundary sur-
faces in Fig 4.

2. The Space of Shapes

For the purpose of this article we model all parametrized
surfaces as immersions from a two dimensional compact,
smooth manifold M with a possible boundary to R3, ie.,
smooth maps from M to R? with injective tangent map-
pings. Denote by Imm(M,R?) the space of immersions
and G the group of shape-preserving transformations. Then
the “shape space” of surfaces is a quotient space

S(M,R?) = Imm(M,R?)/G,
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where G = Diff, (M) or G = Diff, (M) x SO(3) x R?
depending on different applications. Here the group of
orientation-preserving diffeomorphisms Diff ; (M) acts on
the space of immersions Imm (M, R?) by right composi-
tion (f,v) — f o~; the group of rigid motions, given by
the semidirect product SO(3) x R? of the group of rotations
SO(3) and the group of translations R?, acts on the space
of immersions Imm (M, R?) according to ((R,v), f) —
Rf + v. Two surfaces will be considered to have the same
shape if they are in the same orbit under the action of the
group G.

The shape space S(M, R?) is not a smooth manifold but
only an orbifold [10]. However, we will ignore these sub-
tleties and assume that we are working away from the singu-
larities. To study the space of shapes, we will put a Rieman-
nian metric on the space of immersions Imm (M, R?) that is
invariant under the action of G. Then this Riemannian met-
ric on Imm(M, R3) induces a Riemannian metric on the
shape space S(M, R?) and makes it - via the geodesic dis-
tance function - into a metric space. It thus enables us to
calculate geodesics and geodesic distance and conduct sta-
tistical analysis on the shape space S(M, R3).

Denote by dim the distance function with respect to the
Riemannian metric on Imm (M, R?). Let [f] be the equiv-
alence class of f € Imm(M,RR?) under the action of G.
Then given two surfaces f1, f» € Imm(M,R3), the dis-
tance function on S(M, R3) is given by

dS([fl]a [fQ]) = WED%EE(A/I) dImm(fl °7, f2)
if G = Diff; (M) and
dS([fl]? [fQ]) = inf dhnm(fl o7, RfQ + U)

~€EDiff, (M)
ReSO(3),veR?

if G = Diff { (M) x SO(3) x R3. To calculate the distance
between two shapes, we will need to find an element in G
that realizes the infimum on the right side if it is realized, or
at least approximates it if the infimum is not realized.

2.1. The Elastic Metric on the Space of Surfaces

Jermyn et al. in [19] introduced a 3-parameter family of
metrics on the space of surfaces, which is invariant under
the action of the group of diffeomorphisms and the action
of the group of rigid motions. This 3-parameter family of
metrics is called the general elastic metric. To define this
family of metrics, we first introduce the (g, n) representa-
tion for surfaces. Let (u,v) be local coordinates on M. It
is well known, see e.g. [I], that (up to translation) each
surface f has a unique (g, n) representation, where g is the
Riemannian metric on M induced by f and n = ‘Qii
is the unit normal vector field to the surface f. Using this
(g,n) representation, the general elastic metric is given as

Authorized licensed use limited to: University of Minnesota. Downloaded on September 15,2020 at 16:43:12 UTC from IEEE Xplore. Restrictions apply.



follows:
G(g,n) ((597 6”)7 (69: 6”)) (1)

=a/ tr (97" 8909 90) g + b/ (tr (97"09))" g
M M
+ c/ (0m, dn)gs g,
M

where a,b,c > 0 and p, is the induced volume form of
the surface f. The first term in formula (1) measures the
area-preserving change in metric, the second term measures
the change in area and the last term measures the change
of the normal direction. However, this 3-parameter family
of metrics was not used for comparing surfaces. Instead,
Jermyn et al. [19] proposed the Square Root Normal Field
(SRNF) representation of surfaces and used the L? metric
on the space of SRNFs, which corresponds to a special case
of the general elastic metric, for shape analysis of surfaces.
We will give more detail about the SRNF representation in
Section 3.1.

3. A Simplifying Transformation

In this section we will introduce a new transformation
that will lead to efficient algorithms for the 3-parameter
family of elastic metrics (1); similarly to the SRNF-
representation, the new representation will provide a first-
order approximation of the geodesic distance with respect
to more general members of the family of elastic metrics
(instead of just the single degenerate case that is handled by
the SRNF). Before we propose the new representation, we
will describe the SRNF representation in more detail and
describe an important one-parameter family of metrics on
the space of all Riemannian metrics.

3.1. The SRNF Representation

The SRNF representation, proposed by Jermyn et al.
[19], is a map given by

Imm(M,R?) — C>(M,R?)
f(s) = VA(s) n(s),

where A(s) = |fu X fu| is the area measure induced by
f and n is the unit normal vector field to the surface f.
The motivation for this transformation is given by the ob-
servation that the pullback of the L? metric on the target
space C°° (M, R3) is the general elastic metric (1) for a =
0,b = 1=, ¢ = 1 on the space of immersions Imm (M, R?),
see [19]. The geodesic distance of the L? (Riemannian)
metric on C*°(M,R?) is simply the L? norm of the differ-
ence between the given two functions and thus this frame-
work presents an extremely efficient approximation of the
geodesic distance of the corresponding elastic metric on the
space of surfaces. Note that it is only an approximation

@)
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of the geodesic distance, since the linear path between two
SRNFs will, in general, leave the image of the SRNF map.
Thus the resulting distance should be viewed as an extrinsic
distance obtained by embedding the space of parametrized
surfaces in a linear space. Furthermore the pullback met-
ric consists only of the last two terms of the general elastic
metric (1), thus it is degenerate: in the recent paper [23] the
authors describe several examples of pairs of surfaces with
different geometric features for which the SRNF distance
vanishes.

3.2. The DeWitt Metric on the Space of Metrics

In this section we will describe the second main in-
gredient for the proposed transformation, a family of
reparametrization invariant Riemannian metrics on the
space of all Riemannian metrics, often referred to as DeWitt
or (for a special choice of constant) Ebin metric. A Rieman-
nian metric on M is a smooth, positive definite symmetric
(0,2) tensor field on M. The space of all Riemannian met-
rics Met(M) is thus the set of all smooth, positive definite
symmetric (0, 2) tensor fields on M, which is an infinite di-
mensional manifold [14]. The tangent space at each point in
Met (M) is the space of all smooth, symmetric (0, 2) tensor
fields. In local coordinates, a metric g can be represented
as a field of 2 x 2 positive definite symmetric matrices that
vary smoothly over M and every tangent vector at g can be
represented as a field of symmetric matrices.

The DeWitt (or Ebin) metric is a one parameter family
of metrics defined on the space of metrics Met(M). It has
been introduced in [13] and studied in detail in [15]. For
g € Met(M) and dg € T, Met(M) this family of metrics
is defined as

G, (89.09)
= [ (0 5000 500) + A 1xt5769)°)

3

where A > 0, §gp = dg — 5 tr(g_lég)g is called the trace-
less part of dg and 4 is the volume form on M induced
by g. To understand better the geometric meaning of this
family of metrics we take a closer look at the purpose of
the two terms in the metric: using the variational formula
of the volume form of a Riemannian metric it is easy to see
that second term measures exactly the change in the volume
form, while the first term measures the change in the metric
within a family of metrics with the same volume form. This
family of metrics is a generalization of the Ebll’l metrlc [1—1]
which is given by the metric (3) for A = 5 ( M) =

In the following, we consider the action of the group of
diffeomorphisms Diff ; (M) on Met(M) by pullbacks:

Met(M) x Diff ; (M) — Met(M)
(9,0) = @*g=dp

“4)
Tg(p)dep.
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The following theorem shows the invariance under this ac-
tion of the family of metrics (3), which guarantees that the
metric is independent of choice of local coordinates on M.
The proof of this result follows immediately from Theo-
rem 5 in Appendix A and the transformation formula for
multi-dimensional integrals. (This theorem is also an imme-
diate consequence of DeWitt’s original paper on this metric

[13].)

Theorem 1. Letr g € Met(M) and §g € Ty Met(M).
Then the DeWitt metric (3) is invariant under the action
(4) of the group of diffeomorphisms Diff | (M), ie., let
w € Diff { (M) we have

Gy (9"0g, 9*89) = G (g, 59).

For most Riemannian metrics on infinite dimensional
manifolds, calculating geodesics and geodesic distance is
a challenging task that can usually only be solved approxi-
mately by (numerically) minimizing a discretized version of
the energy functional. The beauty of the DeWitt metrics (3)
lies in the observation that they are pointwise metrics, i.e.
they can be written as integrals of Riemannian metrics on
the space of positive definite, symmetric 2 X 2-matrices. By
the results of [9] this enables us to reduce the study to the
study of the corresponding metric on the space of positive
definite symmetric 2 x 2 matrices, We will present some
results of the induced geometry on the space of positive
definite symmetric matrices in Appendix A. These results
will allow us to obtain explicit formulas for geodesics on
the space Met(M ), which are given for each x € M by
the geodesic formula in Theorem 6 on the space of positive
definite symmetric matrices in Appendix A.

For the purpose of this article, we are mainly interested
in the formula for the induced geodesic distance. The space
of metrics Met (M) with respect to the geodesic distance of
the DeWitt metric is not metrically complete for any choice
of \. However, following the analysis of Clarke [ 1] for
the Ebin metric, we can determine the metric completion of
Met(M) for any choice of A, denoted in the following by
Met(M), which is given by Met(M)/ ~. Here Met(M)
is the space of all semi-metrics on M, i.e., the space of all
measurable, positive semi-definite symmetric (0, 2) tensor
fields on M, and the equivalence relation ~ is defined via
g1 ~ gs if the statement

g1(x) # g2(x) <= g1(x) and g2(x) both are degenerate

holds almost everywhere on M.

The following theorem, in which we present an explicit
formula for the distance function on the metric completion
Met (M), will be essential for the construction of our family
of transformations.
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Theorem 2. Let g1, g2 € Met(M). Then the square of the
geodesic distance for the family of metrics (3) is

oo = [ B (0@) ) e G
M

where

B (012, ga(0))?
= 16X (s1(z) — 251 (2)sa(x) cos(0(x)) + s3(z))

with

Vdet(g1(x)),

ALt K2
0(x) = min {71' r( }
if either g1 (x) or g2(x) is degenerate

R :{ 1(2)10g(g1 (z) 1)) else
Kola) = K(@) — (g @)K (@)1 a).

Proof. This result is a generalization of the result given by
Clarke in [11] for the standard Ebin metric. The details of
this proof would exceed the page limits of this article; in-
stead, we refer the interested reader to [15] which contains
the most important ingredients and allows us to generalize
the results of Clarke. O

x)),

s1(z) = v det(g2(z

3.3. The (g, q) Representation

In the following we will present a new family of trans-
formations by considering both the induced surface (Rie-
mannian) metric and the SRNF of the surface. Note that us-
ing the (g, n) representation, we could obtain the whole 3-
parameter family of the elastic metrics (1). However, there
exists no explicit formula for geodesics (geodesic distance
resp.) under this representation and thus this (g, n) repre-
sentation is not a good choice for our purposes.

Motivated by the results of the previous two subsections,
we consider the (g, ¢) representation for a surface, where ¢
is the metric induced by the surface and ¢ is the SRNF of
the surface, i.e., we consider the map

Q : Imm(M, R?)/R? — Met (M) x C*(M,R?)
f= (9,9,

where the R? being modded out by denotes the group of
translations, g = df Tdf and q(s) = /A(s)n(s) with df
being the differential of f and A(s) and n(s) asin (2). It fol-
lows from the uniqueness (up to translations) of the (g, n)
representation [ 1] that the map Q is injective.

Let (g,q) € Met(M) x C>°(M,R3) and (§g,dq) €
T, Met(M) x T,C>(M,R3). In the following we will
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define a 3-parameter family of Riemannian metrics on the
product space Met(M) x C>°(M,R3) as follows

G2 (39, 69), (39, 8q)) = G (89, 09) + B(dq, q) 2,

(6)
where a, 3 > 0, G* is the family of metrics on Met (M)
given by (3) and (-,-)r> denotes the L? inner product on
C°°(M,R3). The following theorem, which constitutes the
first of our main results, connects this family of new Rie-
mannian metrics to the general elastic metric:

Theorem 3. The pullback of the family of metrics (6) on the
space Imm (M, R3) under the map Q is the general elastic
metric as introduced in (1) with a = o, b = a\ + 1% and

c=p.

Proof. Using that the pullback of the L? metric gives the
general elastic metric fora = 0,b = %, ¢ = 1, the proof of
this result is straightforward. O

Note that we have thus constructed a transformation
for the 3-parameter family of elastic metrics (1) for all
choices of coefficients with a > 0,0 > {5,¢ > 0. The
main reason for introducing this particular representation
will become clear in the next theorem, which will provide
us with a first order approximation of the geodesic dis-
tance on the space of immersions. Let diy,, be the pull-
back via Q of the geodesic distance on the product space
Met(M) x C°°(M,R3). Then diyy, is reparametrization
invariant. The following theorem provides an explicit for-
mula for it:

Theorem 4. Let f1, fo € Imm(M, R?) and
(91,01) = Q(f1),  (92,q2) = Q(f2)-

Then the square of the distance dymy, between f1 and f is
given by

dimm (f1, f2)? = ad(g1,92) + Bl — @232, (D)

where d is given by (5) and ||-|| ;> denotes the L? norm on

C>(M,R3).

Note that the map Q is not surjective and the image of the
representation is not totally geodesic. Thus the geodesics in
the product space Met(M) x C°°(M,R3) will leave the
image of the space of immersions and the distance dypm,
only gives an approximation to the geodesic distance be-
tween surfaces. Similar to the SRNF representation, there
is also no explicit formula for the inverse of this (g, ¢) rep-
resentation. However, an advantage of this new (g, g) rep-
resentation for shape analysis of surfaces is the fact that the
map Q is injective. Like the (g, n) representation, it yields
a family of non-degenerate elastic metrics. In addition, we
have explicit formulas for the minimal geodesics and the
geodesic distance function in the image space, which makes
the matching between two surfaces computationally effi-
cient.
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4. Optimization Over Shape Preserving Trans-
formations

In this section we present the resulting optimization pro-
cedure for solving the registration problem in the newly pro-
posed framework. For the presentation in this section we
will assume that M = S2, which allows us to parametrize
any surface using spherical coordinates (6, ¢) € [0, 27] X
[0, 7], where 6 denotes the azimuthal angle and ¢ denotes
the polar angle. For the construction of such a parametriza-
tion we refer to the articles [30, 26].

Given two surfaces fi, fo € Imm(M,R3) we aim to
find the optimal point correspondence between the shapes
of these two surfaces, i.e. we want to find the optimal v €
Diff ; (S?) that realizes the following infimum

ds([f1], [f2])? WeDiigflf(Sz) dimm (f1 07, f2)?,

where [fi] and [f2] are the equivalence classes of f;
and f> under the action of the group of diffeomorphisms
Diff ; (5?), respectively, and the distance function diyy, is
given by formula (7). Note that, in general, the existence of
optimal reparametrizations is not guaranteed, see e.g. [8].
We observed however a good and stable convergence be-
havior of our numerical algorithms.

In the following let Id be the identity map from S? to
itself and let {v;,i = 1,--- , L} be a truncated orthogonal
basis for the space of all smooth tangent vector fields on 52
with respect to the Euclidean metric, see e.g. [32] on how
to construct such a basis. We then define

L
v = Proj (Id—l— ZXivi
i=1
where Proj is the projection map from R? to the unit sphere
S2. The resulting mapping 7 is a diffeomorphism of S? if
the size of the coefficient vector X = (X!, X2 ... XT)
is small enough, see [32, Theorem 3]. We are aiming to
minimize the functional F : R — R given by

F(X) = dhnm(fl o, f2)2?

where 7y is of the form (8). To find the best coefficient vec-
tor X = (X', X2,---, X*) we employ a BFGS method as
provided in the optimize package of scipy with the gradient
calculated using automatic differentiation in Pytorch. Since
the maps obtained by formula (8) only lead to ‘small’ de-
formations we iterate this optimization procedure. Like any
gradient based method it is important to choose a good ini-
tialization for our BFGS method. For this purpose, we use
the icosahedral group, which contains 60 orientation pre-
serving rotations, and can be viewed as a discrete subset
of the diffeomorphism group of S2. We use as our initial
guess the element of the icosahedral group that minimizes
the distance.

®)
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We will now describe how one can deal with other shape
preserving group actions, i.e., translations and rotations.
Our family of metrics (6) is naturally defined on the quo-
tient space of surfaces modulo translations, as translations
(constant vector fields) form exactly the kernel of our met-
ric. Therefore to solve the registration problem on the space
of unparametrized sufaces modulo rigid motions it remains
to minimize over the group of rotations, i.e. we need to
solve a joint optimization problem of finding the optimal
v € Diff 4 (S?) and R € SO(3) that realize

ds([f1], [f2])? = )dlmm(flo%Rh)Z,

inf
~EDiff 4 (52
RESO(3)

where [f1] and [fs] are the equivalence classes of f; and
fo under the actions of the group of diffeomorphisms
Diff ; (5?) and the group of rotations SO(3). We use a sim-
ilar approach as we discussed before to solve this joint op-
timization problem and we omit the details here.

Remark 1. The framework developed in [32] for calcu-
lating geodesics with respect to the 4-parameter family of
elastic metrics could be used here for calculating geodesics
with respect to the new family of metrics (6) both in the
space of unparametrized surfaces and in the space of un-
parametrized surfaces modulo rigid motions. This is based
on the following correspondence: the pullback of the metric
(6) gives the 4-parameter family of metrics for a = 4o, b =
8aA+/2,¢ = 3,0 = 0. Therefore, the geodesics could be
calculated after solving the registration problem first using
this new (g, q) representation. We expect this procedure to
lead to a significant speed-up over the algorithm of [32].

5. Numerical Experiments

In this section, we will present numerical results to val-
idate our proposed method for surface matching. To bet-
ter visualize the obtained registrations we will also depict
the corresponding geodesics, which are calculated using
the framework developed in [32] where the point registra-
tions are obtained from the present implementation, cf. Re-
mark 1.

In Figure 1 we consider a pair of parametrized spher-
ical surfaces with one bump on different positions. The
parametrization of the surface is visualized by the color
map of the surface. The initial and final correspondences
between this pair of surfaces for the general elastic metric
(1) with different constants are depicted. One can clearly
see the effect of the constants a, b, ¢ on the resulting surface
registrations. To better visualize the resulting point corre-
spondences we depict the corresponding geodesics between
these pairs of surfaces in Figure 2: In the first row the bump
on the first surface is shrunk and a new bump is grown out
on the correct location. If we decrease the weight that mea-
sures the change in the metric then the bump on the target
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Figure 1. Matchings between surfaces with one bump in the space
of unparametrized surfaces Tmm(S?, R?)/ Diff ; (S?) with re-
spect to the general elastic metric (1) fora = 0.1,b = 0.07,c =1
(first row), a 0.01,b = 0.07,¢ = 1 (second row) and
a=1,b=1,c = 0.1 (third row). In each row, the surfaces on the
left and right show the original parametrizations of the boundary
surfaces; the second one gives the final parametrization of the first
boundary surface after the whole optimization process.

shape corresponds to the bump on the initial shape and the
target shape is obtained by shearing the neighborhood of the
initial bump, which can be seen in the second row. In the
last row, where we put only a small weight on measuring
the change of normal directions, the bump is simply mov-
ing (sliding) along the surface to its new position. This ex-
periment suggests that one can model a variety of different
behaviors by appropriately choosing the constants. Similar
effects can be observed in our second toy example where we
consider a pair of spherical surfaces with two bumps at dif-
ferent locations, cf. Figure 3. Finally in Figure 4 we show
an example of surface matching using real data from the
SHRECO07 watertight models database [7], where the ini-
tial parametrizations of the boundary surfaces are obtained
using the code from [26]. All results were obtained on a
standard laptop with 16 basis elements for the space of tan-
gent vector fields on S2. With this setup all each of our
experiments was computed in less than 10 seconds.

6. Conclusion

In this paper we have introduced a new representation
for immersed surfaces in R? by considering both the in-
duced metric and the SRNF of each surface. By endowing
the space of metrics with the DeWitt metric and the space
of SRNFs with the L2 metric, we have obtained an open
subset of the 3-parameter family of elastic metrics intro-
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Figure 2. Geodesics between surfaces with one bump in the space of unparametrized surfaces Imm(S?, R*)/ Diff (S?) with respect to
the general elastic metric (1) for a = 0.1,b = 0.07,¢ = 1 (first row), a = 0.01,b = 0.07,¢c = 1 (second row) and a = 1,b = 1,¢ = 0.1
(third row). Here each geodesic is calculated with the method provided in [32] using the final point correspondence of our new algorithm.

f

Figure 3. The matchings and geodesics between

fioy

surfaces with two bumps

fa

in the space of unparametrized surfaces

Imm(S?,R?)/ Diff + (S%) with respect to the general elastic metric (1) fora = 1,b = 1,¢ = 1 (firstrow) and @ = 0.1,b = 1,¢ = 1
(second row). In each row, the surface f1 on the left and f> on the right show the original parametrizations of the boundary surfaces; the
second one fi oy gives the final parametrization of the first boundary surface after the whole optimization process; the right 7 surfaces
on the right show the interpolating geodesic. Here each geodesic is calculated with the method provided in [32] using the final point

correspondence of our new algorithm.

duced by Jermyn et al. in [19]. Compared to the SRNF
representation, the advantage of using this new represen-
tation is that it leads to a whole family of non-degenerate
elastic metrics, which enables us to choose the constants in
a data-driven way. Additionally, it yields explicit formulas
for minimal geodesics and for the geodesic distance func-
tion in the image space, which makes the matching between
surfaces computationally efficient. Similar to the SRNF,
the geodesic in the image space might leave the image of
the space of surfaces. Although in this situation the method
does not provide the actual geodesics between shapes, it still
yields an effective method to register surfaces. We have pre-
sented several examples of registration between surfaces to
validate our framework.

In future work we plan to apply our algorithms to real
data sets to further investigate the influence of the constants
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and to generalize this new representation such that it allows
to represent the whole family of elastic metrics by consider-
ing the pseudo-Riemannian DeWitt metric on the space of
metrics where the constant A can be negative.

A. The Space of Positive Definite Symmetric
n x n Matrices

Denote by Sym | (n) the space of positive definite sym-
metric 7 x n matrices. The space Sym , (n) is an open sub-
set of the space of all n x n symmetric matrices, denoted
by Sym(n). Thus it is a manifold of dimension w and
its tangent space at each point is the vector space Sym(n).
Let A € Sym, (n) and K € T4 Sym_ (n) = Sym(n). In
this section we consider the Riemannian metric on the space
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f fiony

Figure 4. The matching and geodesic between two hand shapes in the space of unparametrized surfaces Imm(S?, R®)/ Diff  (S?) with

respect to the general elastic metric (1) for a

1,b = 1,c¢ = 1. The surface fi on the left and f> on the right show the original

parametrizations of the boundary surfaces; the second one fi o~y gives the final parametrization of the first boundary surface after the
whole optimization process; the right 7 hand shapes show the interpolating geodesic between the two hand shapes. The geodesic is
calculated with the method provided in [32] using the final point correspondence of our new algorithm.

Sym , (n) induced by the DeWitt metric:
(K, K)} = tr(A"'KgA~  Kg)+/det(A)
+ A (tr(AT1K))? V/det(A),

where Ky = K — %tr(A’lK)A is the traceless part of
K. This Riemannian metric (9) is not affine invariant, but
instead satisfies the following equivariance property, that is
necessary for the reparametrization invariance of the De-
Witt metric on the space of Riemannian metrics:

)

Theorem 5. Let A € Sym_ (n) and K € T Sym, (n).
Then the family of metrics (9) is invariant under the follow-
ing action of the group of invertible matrices:

Sym (n) x GL(n) — Sym_ (n)
(A,C) — CTAC,

that is, given C' € GL(n) the following equality always
holds:

(CTKC,CTKC)¢rpc = (K, K) a.
Proof. This result can be shown by direct calculation. [

For this family of metrics, the geodesic initial value
problem on Sym | (n) can be solved explicitly, see [15]:

Theorem 6. Let A € Sym, (n) and K € Ty Sym (n).
Define

() =1+ Ztr(A’lK),

t
ro(t) = Z\/A* tr (A-1K A—1Ky).

If Ko # 0, then the geodesic for the metric (9) in Sym | (n)
starting at A in the direction of K is given by

2 tarctan(re /7
(r% + 7’%) " Aexp (( 2/71)

At AlKo) ;

T2

otherwise, if Ko = 0, then the geodesic starting at A in the
4
direction of K is given by A, = r{* A.
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Notice that if Ko = 0 and tr(A7'K) < 0, then
the geodesic will leave the space Sym, (n) at time 7' =
—ﬁ. Thus the space Sym , (n) is not geodesically
complete.

Denote by S;rJn 4 (n) the space of positive semi-definite
n X n symmetric matrices. The metric completion of

Sym, (n) is then given by the quotient Sym(n)

Sym, (n)/ ~, where A ~ B if they both are degenerate.
In the metric completion Sym(n), the minimal geodesic be-
tween any two points always exists and is unique.

Theorem 7. Let A, B € Sym(n). Then there exists a
unique minimal path between A and B. If either A or
B is [0] (the equivalence class of the 0 matrix), the min-
imal path is the line between A and B. Otherwise let
K = Alog(A™1B), then the minimal path is given by

(1) the geodesic connecting A and B if
tr (A7 Ko A ' Ky) < (47m)2),
(2) the concatenation of the straight line segments from A
to 0 and from O to B if
tr (A Ko A~ Ky) > (4m) A
Furthermore, the squared distance on the metric completion
is explicitly given by
dg‘y—m(A7 B)? =16 (s — 25152 cosf + s3) ,

where

s1 = v/det(A4), s = v/det(B),

= {A log(A~!B) if A and B are non-degenerate

0 else
0 = min {77, VA Ttr (A’lKoAflKO)/‘l} .

Proof. For A = % the result was proven on [11]. The gen-
eral case follows by using the results of [ 1 1] and combining
it with the explicit formulas of [15]. This would however
exceed the scope of this conference paper and we thus refer
from presenting the full proof here. O
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