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Abstract

Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial
health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling
incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear
isotropic material relationships. Nevertheless, wrinkling associated with anisotropic constitutive models such as Ogden—
Gasser—Holzapfel (OGH), which is suitable for soft biological tissues, and in particular arteries, still requires investigation.
Here, the effects of OGH parameters such as fibers’ orientation, stiffness, and dispersion on the onset of wrinkling, wrinkle
wavelength and amplitude are elucidated through analysis of a bilayer system composed of a thin, stiff neo-Hookean mem-
brane and a soft OGH substrate subjected to compression. Critical contractile strain at which wrinkles occur is predicted
using both finite element analysis and analytical linear perturbation approach. Results suggest that besides stiffness mis-
match, anisotropic features associated with fiber stiffness and distribution might be used in natural layered systems to adjust
wrinkling and subsequent folding behaviors. Further analysis of a bilayer system with fibers in the (x—y) plane subjected to
compression in the x direction shows a complex dependence of wrinkling strain and wavelength on fiber angle, stiffness, and
dispersion. This behavior is captured by an approximation utilizing the linearized anisotropic properties derived from OGH
model. Such understanding of wrinkling in this artery wall-like system will help identify the role of wrinkling mechanisms
in biological artery in addition to the design of its synthetic counterparts.
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as arterial wall, skin, brain (Pocivavsek et al. 2018; Gen-
zer and Groenewold 2006; Hohlfeld and Mahadevan 2011),
a large amount of research has been performed to under-
stand various modes of surface instabilities such as wrin-
kling, creasing, and folding in layered materials. Wrinkling
is characterized by a smooth surface amplitude undulation
(Biot 1963; Allen 1969; Bowden et al. 1998; Pocivavsek
et al. 2008; Damman 2015) and is commonly observed on
the inner (luminal) surface of arteries (see Fig. 1) (Liu et al.
2014; Svendsen and Tindall 1988; Greensmith and Duling
1984; Pocivavsek et al. 2009). Furthermore, this natural sur-
face pattern often changes as a function of driving forces in
the environment, such as the wrinkling and un-wrinkling
of arteries with arterial distension due to changes in pres-
sure (see Fig. 1). Recent work of Pocivavsek et al. (2018)
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Fig.1 Examples of arterial wrinkling and the actuation of wrin-
kle amplitude with radial expansion, adapted from Pocivavsek et al.
(2018). a i. and b i. show luminal wrinkling and folding at low lumi-
nal pressure P,. The wrinkle-like topography is sensitive to overall
arterial expansion (see a ii.), as seen by the smooth inner surface at
higher luminal pressures. b ii. is an FE simulation of the histology
derived low-pressure arterial geometry, showing that the pattern can
be actuated with expansion

proposed that arterial luminal wrinkling may be used as a
mechanical anti-fouling mechanism in arteries. This topog-
raphy-driven surface renewal (Pocivavsek et al. 2018) is
the first model to propose an anti-fouling role for arterial
wrinkles.

Various factors that affect the emergence of wrinkling
and its transition into folds have been studied for bilayer
film-substrate systems subjected to compression. The
majority of published literature on buckling of such a sys-
tem is for isotropic, homogeneous, and linear or weakly
nonlinear elastic constitutive models (Sun et al. 2012;
Cao and Hutchinson 2012; Brau et al. 2011; Stewart et al.
2016). For a bilayer made from isotropic, elastic materi-
als, such as a neo-Hookean film adhered to a neo-Hookean
substrate, the stiffness mismatch of the two layers criti-
cally influences the onset of wrinkling and subsequent
instability modes at higher compression (Allen 1969;
Bowden et al. 1998; Sun et al. 2012; Cao and Hutchin-
son 2012). Other factors such as pre-stretch (Cao and
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Hutchinson 2012; Cardamone et al. 2009) and adhesion
energy (Rahmawan et al. 2014) also play a significant role
in how wrinkles, creases, and folds emerge and grow. For
most biological tissues, surface wrinkling occurs in the
presence of highly nonlinear constitutive responses (Poci-
vavsek et al. 2018; Stewart et al. 2016). Anisotropy adds
more complexity to the situation, and wrinkling under
this biologically relevant condition is poorly understood.
Stewart et al. (2016) examined wrinkling in a bilayer sys-
tem composed of a neo-Hookean film and an anisotropic
substrate described by a compressible constitutive model
suitable for brain tissues. For our own goal of modeling
wrinkling of arterial wall or skin, however, it is impor-
tant to consider incompressible materials and examine the
effects of fiber oriented in different planes, and dispersion
in fiber orientation. From a constitutive perspective, the
OGH model (Holzapfel et al. 2000; Gasser et al. 2006),
which is a structure-based constitutive law incorporat-
ing histology knowledge of collagen fiber distribution in
the arterial wall, provides appealing features for arterial
modeling. Moreover, the OGH model has been estab-
lished as the most well-developed and realistic constitu-
tive laws for arterial tissues (Holzapfel et al. 2000; Gasser
et al. 2006; Holzapfel and Ogden 2017; de Rooij and Kuhl
2016). Therefore, it is essential to understand how surface
instabilities correlate with different characteristics of this
widely used model, especially in light of the appreciation
for the role of arterial wrinkling in cardio-vascular health
(Pocivavsek et al. 2018; Svendsen and Tindall 1988; Poci-
vavsek et al. 2019).

This study focuses on wrinkling in a bilayer system com-
posed of a neo-Hookean thin film attached to an OGH sub-
strate. Following the Introduction, Sect. 2 presents experi-
mental data for undulation patterns in pig carotid arteries.
The measured wrinkle/fold amplitudes, which follow the
square root dependence on strain at high pressures and
change to a more linear relationship at low pressures, reveal
the need to analyze luminal undulations as interfacial insta-
bilities occurred at different strain levels in arterial wall.
Section 3 discusses aspects of the OGH constitutive model
that can affect the wrinkling phenomenon. Two solution
methods are developed, the analytical perturbation approach
and FE analysis, for determining the emergence of wrinkles.
Subsequently, the effects of fibers’ orientation planes are
presented in Sect. 4. Further details on the influence of fiber
stiffness and dispersion on the wrinkling strain, wavelength,
and amplitude are studied in Sect. 5 by examining a bilayer
system under plane strain condition in z direction with fibers
lying in the x—y plane, which is parallel to the compression
direction (x-axis). An approximation utilizing the linearized
orthotropic properties derived from OGH model is also con-
structed and used to explain the non-monotonic dependence
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of the wrinkling strain on fiber orientation. Discussions and
suggestions for further work are included in the final section.

2 Arterial wrinkles

As mentioned in the Introduction, many biologic surfaces
and in particular arteries show wrinkle-like patterns. How-
ever, no biologic study to date has quantitatively shown
that these surface patterns indeed follow the well estab-
lished scalings for amplitude and wavelength for wrinkled
bilayers. In general, a bilayer comprising a thin stiff mem-
brane attached to a much thicker, softer substrate under
an applied compressive strain € wrinkles with two charac-
teristic length scales: wavelength 4 ~ h X (E,,/E,)"/? and
amplitude A ~ /1\/2 , where E_ is the membrane modulus,
h is membrane thickness, and E, the substrate modulus
(Allen 1969; Bowden et al. 1998; Sun et al. 2012; Cao and
Hutchinson 2012). The amplitude scaling follows from the
well known inextensibility condition (Genzer and Groene-
wold 2006; Pocivavsek et al. 2008; Cerda and Mahadevan
2003), i.e., from treating the thin stiff membrane as a layer
that can bend but cannot change surface area. Post-wrinkle
instabilities, like folding and creasing, are less well under-
stood; however, it has been shown that when bilayers fold,
the amplitude scaling changes to a more linear dependence
on strain A ~ ¢ (Pocivavsek et al. 2008).

To explicitly study the amplitude scaling of arter-
ies, pig carotid arteries were harvested from a Pitt Core
Animal Facility as per IACUC approved animal pro-
tocols. A segment of carotid artery composed of a thin
inner elastic lamina (~ 10 um) and a thicker aterial wall
(~ 500-600 pm) was then immediately placed on a closed
pressurized system prior to any exposure to fixation solu-
tion. A saline bag was connected using short tubing to a
segment of artery affixed to a catheter tip. The other end of
the artery was connected to closed end tubing. Bags were
pressurized to a set pressure using a blood pressure cuff.
After pressurization, arteries were immediately placed in
2% paraformaldehyde (PFA, Sigma-Aldrich, MO) fixative
solution for further processing and imaging. Segments of
arteries were pressurized to 40, 60, 80, 100, 120, 140,
and 160 mmHg, subsequently fixed, sectioned and imaged
under confocal microscopy. Confocal images reveal a con-
tinuous undulating internal elastic lamina in a segment
of carotid artery that was not distended (see Fig. 2). As
the applied pressure increases, the wrinkled topography
becomes more flattened across the endothelium. While a
nondistended artery has a regular wrinkled appearance,
an analogous segment pressurized to 160 mmHg appears
flattened without wrinkles. In a non-distended artery, the
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Fig.2 Experimental data with rat arteries measuring wrinkle ampli-
tude A and wavelength A as a function of intra-luminal pressure P.
Each data point represents the average amplitude of the arterial wrin-
kles at a given pressure. The fits show that at high pressure (low
amplitude wrinkles) A scales linearly with A and follows a square
root dependence on azimuthal compressive strain \/a , the canonical
wrinkle scaling. At higher compression, lower P, the amplitude scal-
ing becomes linear with strain, a hallmark of post-wrinkle behavior

mean amplitude of wrinkles was 20.58 + 0.56 pym. An
artery exposed to 40 mmHg had a similar mean ampli-
tude of 20.52 + 0.65 pm. Amplitude continued to decrease
as pressure increased. In a segment pressurized to 160
mmHg, the mean amplitude was 5.32 + 0.23 pm, a reduc-
tion of 74%. Mean wavelength of wrinkles at 160 mmHg
was 34.36 + 1.60 pm. Wrinkle wavelength remained con-
stant until post-wrinkling folds began to appear with a
mean inter-fold distance of 17.32 + 0.77 pm.

Figure 2 plots the wrinkle/fold amplitudes as a function of
effective azimuthal compressive strain €y ~ —(P — 160)/P.
The left-hand data points correspond to arteries at high-
pressure while the right-hand data to arteries at low pres-
sure. Least-squares fits to the data show that at high-pressure,
where the luminal topography appears wrinkled, the surface
amplitude scales as A,, ~ 44/€g, the well known canonical
scaling for bilayer wrinkles (Genzer and Groenewold 2006;
Allen 1969; Bowden et al. 1998; Pocivavsek et al. 2008; Cerda
and Mahadevan 2003). At lower pressures, higher azimuthal
strains, the square root dependence on strain changes to a lin-
ear one, which is seen in fold instabilities (Pocivavsek et al.
2008), though precise scaling laws in this post-buckling regime
are lacking. These data strongly support the notion that the
luminal patterns in arteries are based on a surface instability of
a bilayer and may be analyzed accordingly. The second part of
this paper focuses on a detailed analysis of wrinkling utilizing
arealistic strain energy for the arterial media, the OGH model.
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3 Methods
3.1 Constitutive models

A bilayer composed of a thin, stiff, incompressible neo-
Hookean film attached to a soft, incompressible OGH sub-
strate is subjected to compression as shown in Fig. 3.

The stiff, incompressible film is described by a neo-
Hookean strain energy:

W = sully = 3)+ - = 17, M
f

where 2y is the shear modulus, K; is the bulk modulus,
D; = % is used in numerical implementation to impose
f

(quasi) incompressibility constraint to the film.

For the incompressible substrate, OGH strain energy
has the following form (Holzapfel et al. 2000; Gasser et al.
2006):

D\ 2

S

Woain = ol = 3) + ~ <J2 —1 —ln(J))
ki~ 2
Weper = 2_162 az:; {GXP [k2Ea] - 1} &
Woct = Whatix T Wiber
E,=x,=3)+ (1 =36)pe — 1)

Here, 2y is the shear modulus of the substrate matrix
which is described by a neo-Hookean model. K is the bulk
modulus and D = Kl is used in the numerical implementa-

s

tion to impose (quasi) incompressibility constraint to the
substrate. k; is a stress-like parameter associated with fiber
stiffness. k, is a non-dimensional parameter controlling the
nonlinear elasticity of the fibers. N is the number of fiber
families with distinct orientations. The invariant
Iy, = L,.(CL,) is a pseudo-invariant of the distortion part
of the right Cauchy—Green tensor C = FTF and unit vectors
L, in the direction of the ath fiber family. In other words, I,
represents the square of the stretch in the fiber direction .

h{
;[ ‘
L
Fig.3 Thin, stiff, incompressible neo-Hookean film attached to a

soft, incompressible OGH substrate with two symmetric families of
fibers
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So, I,,, and E, are dependent on the fiber orientations. x is
the degree of fiber angular dispersion and takes the value
between k = 0 (for perfectly aligned fibers) to x = % for ran-
domly oriented fibers (or isotropic response). Experimental
methods to measure these material properties have been pre-
sented in detail in Holzapfel and Ogden (2017), Annaidh
et al. (2012) and Hill et al. (2012).

The film/substrate modulus mismatch is the primary con-
trol parameter for wrinkle onset in isotropic, elastic bilayers
(Allen 1969; Bowden et al. 1998; Sun et al. 2012; Cao and
Hutchinson 2012; Brau et al. 2011). When the film is much
stiffer than the substrate, the wrinkling strain e,, scales with

2/3
the modulus mismatch as the power law: ¢, = (Z—) .
f

When the isotropic substrate is replaced by an anisotropic
OGH layer, the presence of fibers lead to the effect of addi-
tional factors on wrinkling phenomena. In the following sec-
tions, three cases of fiber plane orientations (x—y), (x—z),
(y—z) as shown in Fig. 4 are considered to explore the effects
of fiber stiffness &, fiber orientation €, and fiber dispersion
k. A plane strain condition in the z direction is assumed, and
two solution approaches (linear perturbation and FE) are
developed to analyze the wrinkling phenomena. Three limit-
ing cases (fibers oriented in either x, y or z direction) are also
presented and discussed in detail.

3.2 Linear perturbation approach

Linear perturbation has proved to be an efficient technique
in determining the onset of wrinkling in isotropic systems
(Biot 1963; Sun et al. 2012; Cao and Hutchinson 2012). A
recent work (Stewart et al. 2016) extended the technique
to analyze the wrinkling onset for a bilayer composed of a
compressible fiber-reinforced substrate and a neo-Hookean
thin film. Here, the technique is applied to analyze the neo-
Hookean film/OGH substrate bilayer in Figs. 3 and 4 with
the incompressibility consideration for the materials in both
layers. In particular, starting with the uniform, plane strain
deformation state described in Eq. 3, a perturbation of this
homogeneous deformation with the generic forms of per-
turbation shown in Eq. 4 for the case of incompressibility
(Sun et al. 2012) is applied to both the film and the substrate.
Homogeneous deformation state is specified as:

x=1X
1 (3)
=—Y
YT

X

where (X, Y) are coordinates in the undeformed configura-
tion and (x, y) are the corresponding coordinates in the cur-
rent configuration. 4, is the lateral stretch in the x direction.

A perturbation is applied with incompressibility
constraint:
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Compression
direction

X—y X—1z
fiber plane

Fig.4 Two fiber families lying in three planes (x—y), (x—z), (y—2) in
the OGH substrate. Compression is in the x direction and plane strain
condition in z direction are assumed. The fiber angle 6 is defined with
respect to different axes depending on the fiber plane. Three limiting

x = A X — ad A2 sin(kX)e™”

y= %Y + 8. cos(kX)e™ @)

X

p = po + 6p, cos(kX)e™”

where 6 << 1 is the perturbation amplitude parameter.
k= 27” is the wrinkle wave number, A is the undeformed-
configurational wavelength of the perturbation. « is a param-
eter to be determined from the equilibrium condition. p is
the hydrostatic pressure for incompressible solids. p,, p, are
to be determined from boundary conditions.

For each layer, substituting the prescribed constitutive
models in Sect. 3.1 and the perturbed deformation state in
Eq. 4 into the equilibrium equations, a fourth-order equation
for a is obtained. Four solutions of a are used to construct
four eigenmodes for the film. While for the substrate, the
undulation must disappear as Y — —oco. Here, Y = 0 corre-
sponds to the interface between the film and the substrate.
Due to this requirement, two solutions of a« with the negative
values for the real part can be neglected. Thus, only two
solutions of @ and correspondingly two eigenmodes for the
substrate are considered.

In the bilayer system, the deformation state of each layer
due to the above perturbation is a linear combination of its
corresponding eigenmodes. A total of 6 parameters (4 for
the film and 2 for the substrate), therefore, are needed in the
linear combinations for the film and substrate. They are then
substituted into a total of 6 continuity and boundary con-
ditions (normal, tangential displacement continuities, and
normal, tangential traction continuities at the interface; free
normal and tangential tractions on the top of the film). This
results in an eigenvalue problem of the form f(4,, kh) = O to
determine the wrinkling strain €,,. Here, fis the determinant
of the system of 6 equations constructed from continuity and
boundary conditions and is a nonlinear function in terms of
the applied stretch 4, and the product of wave number k and

fiber plane

y-12
fiber plane

cases are: fibers aligned in x direction (i.e, § = 0° in (x—y) and (x—z)
planes), fibers aligned in y direction (i.e, & = 90° in (x—y) plane and
6 = 0° in (y—z) plane), fibers aligned in z direction (i.e, 8 = 90° in (y—
z) and (x—z) planes)

film thickness 4. The eigenvalue problem is solved numeri-
cally and the critical stretch is the one that minimizes overall
kh values. Detailed derivations for this linear perturbation
procedure are provided in “Appendix 1.”

3.3 Finite element (FE) analysis

The wrinkling strain, wavelength, and amplitude are also
determined using FE analysis. FE simulations are imple-
mented using the commercial software package Abaqus v6
.18 (Dassault-Systemes Simulia Inc., Providence, RI 2018)
with the dynamic explicit solver. For fiber plane (x—y), two-
dimensional plane strain elements (CPE4R, 4-node bilin-
ear, reduced integration with hourglass control) are used to
model both the film and the substrate. For the (x—z) and (y—z)
planes, three-dimensional elements (C3D8R, 8-node linear
brick, reduced integration, with hourglass control) are used
as the 2D settings were not able to capture the effects of the
fibers in the z-directions. However, an effective plane strain
condition is still imposed by applying the displacement con-
straints in the z direction.

With the assumption that fibers bear no compressive load,
the built-in OGH model in Abaqus deactivates the contri-
bution of fibers, which are under compression, to the strain
energy. Here, an Abaqus material subroutine VUMAT for
the OGH substrate without this assumption is also imple-
mented in order to test the effect of this deactivation on
wrinkling phenomenon.

For both analytical and FE methods, the following sets
of material and geometric parameters are utilized. The ratio
H/h between the depth of the substrate and the thickness of
the film is taken to be more than 50 to ensure that the sub-
strate is sufficiently deep to be treated as a half-space. The
original length of the bilayer L is also set to be much larger
than the thickness /4 of the film: L &~ 200k. The shear modu-
lus u, and the fiber nonlinearity parameter k, for the OGH
substrate are adopted from a calibrated example for arterial
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wall in Holzapfel and Ogden (2017), specifically, u, = 3000
Pa, k, = 0.8393. The parameter D, = 1.6 X 107> Pa™" is
selected to ensure quasi-incomressibility in FE analysis as
suggested in ABAQUS (2018). Other parameters k, (fiber
stiffness), « (fiber dispersion), 8 (fiber orientation) are varied
to study how they influence ¢,,. For the neo-Hookean film,
a shear modulus value of y; = 307,500 Pa, and correspond-
ingly D; = 1.626 x 107 Pa™!, is selected which is approxi-
mately 100 times stiffer than the shear modulus g of the
substrate matrix. It is noted here that the analysis presented
in this paper is also applicable to other cases of u;/ y ratio,
but a specific ratio is considered here in order to reduce the
parameter space and have a more detailed analysis of the
contribution of fibers on wrinkling and folding phenomena.

4 Effects of fiber plane on €, of bilayer
system composed of a thin, stiff
neo-Hookean layer on an OGH substrate

In the absence of the fibers, the situation corresponds to a
neo-Hookean film bonded to a neo-Hookean substrate with
a modulus mismatch of 100. For this case, FE and analytical
perturbation analyses predict the wrinkle strain of 0.023,
which is designated as eyy. In the presence of fibers, con-
sider three cases of fiber plane orientations (x—y), (x—=z), (y—2)
with the assumption of a plane strain condition in the z direc-
tion as shown in Fig. 4. Two families of fibers are assumed
to be perfectly aligned along directions +6, i.e., k = 0. The
effects of fiber dispersion will be discussed in Sect. 5. €, is
determined by the two approaches which are outlined in the
method section. Figures 5, 6 and 7 show the critical strain for

neo-Hookean bilayer: ki /j; = 0
— Analytical analysis: k;/ps = 10
[| w Abaqus built-in: k1/ps = 10
—— Analytical analysis: ki/ps; =5
0.1 H O Abaqus built-in: k/ps =5
— Analytical analysis: k1/ps =2
m Abaqus built-in: ki/p, =2

Wrinkling strain: e,

0 10 20 30 40 50 60 70 80 90
Fiber angle: 6

Fig.5 ¢, for the case in which fibers are lying in (x—y) plane. The
markers indicate predictions by the built-in OGH in Abaqus. Note
that the triangles, squares, and circles overlap at small angles

@ Springer

0.04 T

o

=

)
T

od
[ ]
e
at

o

<]

s}
T

neo-Hookean bilayer: k;/p, =0

— Analytical analysis: k;/ps = 10
v Abaqus built-in: & /ps = 10
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0 10 20 30 40 50 60 70 80 90
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=0 0 =90
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X

Fig.6 ¢, for the case in which fibers are lying in (x—z) plane. The
markers indicate predictions by the built-in OGH in Abaqus. e,, for
6 = 0°in (x—z) plane here are in agreement with ¢, for # = 0° in (x—y)
plane presented in Fig. 5, which are for the limiting case where fibers
are perfectly aligned in x-direction

wrinkling e, with varying fiber stiffness and orientations as
fibers lie in (x—y), (x—z) and (y—z) planes, respectively. The
small schematics under each graph in Figs. 5, 6 and 7 show
how the fiber alignment varies as 6 changes from 0° to 90°.
All three figures show that when fiber stiffness k; = 0, the
response expected from a neo-Hookean bilayer is obtained
in three fiber planes.

o
=

neo-Hookean bilayer: k; /i, = 0
—— Analytical analysis: k/p, = 10
[| w Abaqus built-in: k/p, = 10
—— Analytical analysis: ki/ps =5
Ll © Abaqus built-in: ky/ps =5
—— Analytical analysis: ki/ps, =2

m Abaqus built-in: ky/ps =2

o
S

I

2
=3
&

=3
ES
o4

Wrinkling strain: e,
=]
=
P

0.02

0 10 2 30 40 50 60 70 80 90
Fiber angle:

Fig.7 e, for the case in which fibers are lying in (y—z) plane. The
markers indicate predictions by the built-in OGH in Abaqus. €, for
0 = 0° and @ = 90° in (y—z) plane here are in agreement with ¢, for
0 = 90° in (x—y) plane and # = 90° in (x—z) presented in Figs. 5 and 6,
which are for the limiting cases where fibers are perfectly aligned in
y-direction and z-direction, respectively
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€,, predicted from FE analysis using the built-in OGH
model in Abaqus are in good agreement with the predictions
of linear perturbation analysis for the case of (y—z) fiber
plane (see Fig. 7). For fibers oriented in (x—y) plane (Fig. 5),
similarly good agreement is obtained for high fiber angles
(6 > 45°). However, for angles below 45° in Fig. 5, the built-
in OGH model predicts ¢, = 0.023 = ey, independent of
the orientation or fiber modulus. This indicates that fibers
do not alter wrinkling onset in these cases. On the other
hand, the linear perturbation analysis at these low fiber
angles shows a non-monotonic dependence of ¢,, on fiber
angle 6. Figure 6 also demonstrates such a deviation between
the built-in OGH in Abaqus and our analytical analysis when
fibers are oriented close to compression direction (6 — 0°).
The reason for these discrepancies is that fibers are subjected
to compression under these situations and the built-in OGH
model in Abaqus deactivates their contribution to the strain
energy (Gasser et al. 2006; ABAQUS 2018), while our ana-
lytical analysis allows for anisotropic fiber-reinforcement in
compression (Brangwynne et al. 2006; Fraldi et al. 2019;
Ciarletta et al. 2011). To further verify this, in Sect. 5, the
results for a VUMAT subroutine for OGH model, but relax-
ing this assumption, show good agreements with the analyti-
cal approach even at low fiber angles. It is also noted that
when the fiber stiffness becomes very large, some differ-
ences in the predicted ¢, of these two approaches are
observed such as ati—‘ = 10,0 = 75°in Fig. 5. However, even

for these extreme ca:ses, the trend of ¢, with respect to the
fiber orientation and fiber stiffness is consistent between FE
and linear perturbation analyses.

The orientation planes of the fibers strongly affect €.
For fibers in (x—y) and (x—z) planes, if the fibers are oriented
closer to the axis of compression, meaning 6 =~ 0°, increas-
ing fiber stiffness can lead to either an increase or decrease
in €,,. For example, in the (x—z) fiber plane, when 6 = 0°
(i.e, fibers aligned in x-direction), €,, increases when k;
increases from 6000 to 15,000 Pa, but reduces at k; = 30,000
Pa. The results also correspond to the case of § = 0° in the
(x—y) plane (again, fibers aligned in x-direction) as shown
in Fig. 5. However, for fibers in (y—z) plane, a monotonic
increase in €, is observed when the fiber stiffness increases.
Furthermore, ¢, shows a non-monotonic behavior with
respect to the fiber inclination in the (x—y) plane. The non-
monotonic dependence on fiber angle for (x—y) fiber plane
was also reported by Stewart et al. (2016) but unlike the
non-monotonic shape that they found (see Fig. 4 in Stewart
et al. 2016), here two local maxima of €, for a specific level
of fiber stiffness k, were obtained (Fig. 5). On the other hand,
for fibers lying in (y—z), the behavior is monotonic (Fig. 7).

Figures 6 and 7 also indicate that if fibers are oriented
close to the z-axis (i.e, & — 90°), they have insignificant
effect and €, approaches eyy. However, as fibers are oriented

away from z-axis, e, increases, indicating that wrinkling
becomes more difficult. Among the three planes investigated
here, the (x—z) plane response shows less significant effect on
€,,- This might be due to the assumption of plane strain in the
z-direction. For (x—z) and (y—z) configurations, a coupling in
the z-direction departs the analysis from a 2D analysis which
is also observed in the FE analysis using 2D and 3D settings.
In addition, for these two configurations, plane strain in the
z-direction means that a compressive stress develops to
maintain zero strain in the z direction. Thus, very stiff fibers
could promote buckling in that direction. Therefore, it would
be interesting to extend the analysis here to investigate these
configurations with a general 3D setting.

5 The influence of fiber stiffness, orientation
and dispersion on wrinkling

In order to further investigate the effects of fibers’ stiffness,
orientation, dispersion on wrinkling, we analyze the (x—y)
fiber orientation in more detail.

5.1 Wrinkling straine,,
5.1.1 Fiber dispersion k

€,, for k = 0 (i.e., perfectly aligned fibers) is already pre-
sented in Fig. 5 of Sect. 4. For more dispersed fiber distri-
butions, the dependence of €, on fiber angle 6 at different
values of fiber stiffness &, is presented in Fig. 8 for k = 0.133
and k = 0.226.

All cases show reasonable agreements between FE
and analytical analyses. Again, €, is found to change non-
monotonically with fiber angle. €,, values at § = 45° and
0 = 90° are less than the values for § = 60° and 8 = 75°. As
k approaches 1/3, which corresponds to a more isotropic
distribution of fibers, the discrepancy between different fiber
angles and stiffness values becomes smaller. As expected,
Fig. 8 shows that e, = eygaskx — %

5.1.2 Fiber reinforcement in compression

As pointed in Sect. 4, at low fiber angles 8 with respect to
the compression direction (x-axis), the built-in OGH model
deviates from the linear analysis due to the assumption
that fiber bears no compressive load. Here, a comparison
between FE approach using a VUMAT material subroutine
that relaxes this assumption in ABAQUS and linear pertur-
bation analysis is shown in Fig. 9. Good agreement between
VUMAT predictions and analytical predictions indicates that
permitting the fiber to bear compressive stress leads to a
significant increase in e, for certain values of fiber angles
such as 30°, 15°. Specifically, an increase from 0.0233 (fiber
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Fig.8 ¢, for different fiber dispersion x values in (x—y) fiber plane.
The schematics at the bottom show the mean fiber orientation at
0 = 0°and 6 = 90°
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Fig.9 ¢, for the case of fiber dispersion ¥ = 0 in (x—y) fiber plane.
Abaqus VUMAT in which fiber compression is not deactivated shows
good agreement with analytical approach even at low fiber angles 6
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Fig. 11 Wrinkling wavelength versus fiber angle 6 for the case of
fiber dispersion ¥ = 0 in (x—y) fiber plane

bears no compressive stress) to 0.06 (fiber bears compressive
stress) is found for €, at k; = 30,000 Pa and 6 = 30°.

5.1.3 Fiber stiffness k,

The effects of fiber stiffness on €, at certain values of fiber
angle 6 are shown in Fig. 10. We focus this parameter sweep
to three angles 8 = 45°,60°, and 90° degrees. A monotonic
increase in €,, with respect to fiber stiffness &, is observed.

5.2 Wavelength and amplitude

Besides the onset of wrinkling, wavelength, and amplitude
are important features of the wrinkling pattern. Here, the
normalized wavelength A/h, where A is the film thickness,
is plotted in Fig. 11. This normalized wavelength is related
to the dimensionless wavenumber k as: % = i—Z

The wavelength also exhibits a non-monotonic behav-

ior with respect to the fiber angle 8. The change in the
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wavelength is not as significant as for e, though for certain
fiber angle and stiffness combination, a decrease factor of 2
in the wavelength can be observed as compared to the neo-
Hookean bilayer.

After wrinkles emerge, wrinkle amplitude grows with the
increasing applied strains as shown in Fig. 12. Here, wrinkle
amplitude is calculated as the deviation from the mean sur-
face height at each strain level by tracking back the evolu-
tions of two folds and the nearest and global maxima
between them. The data also clearly show that in the wrinkle
regime, amplitude follows the canonical square root

%1073 A SELECTED PROFILE

ol Nearest maximum)\ /Clobal Imaximum/
8f \ \vi V

6k Effective depth

~ H ~ mean (2Z)
aF
oF
First fold
ok N Second Fold
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02

Fig. 12 Wrinkle and transition to period doubling and folding in (x—
) fiber plane, fiber angle 6 = 90°, fiber stiffness k; /pu, = 2

dependence on the strain beyond e,: A ~ 4, / S;ﬁ as shown
in Fig. 13.

6 Discussion

Geometry and geometric instabilities are ubiquitous at natu-
ral interfaces (Genzer and Groenewold 2006; Hohlfeld and
Mahadevan 2011; Pocivavsek et al. 2008, 2019; Cerda and
Mahadevan 2003). Often the mechanisms that lead to the
beautiful array of surface buckling, wrinkling, folding, and
creasing can be understood from the vantage of elasticity
involving little if any biology; indeed, this approach has led
to scaling laws predicting the onset and dominant lengths
scales in arterial wrinkling (Pocivavsek et al. 2009), brain
sulcus formation (Hohlfeld and Mahadevan 2011), and skin
wrinkles (Cerda and Mahadevan 2003; Puntel et al. 2011;
Cerda 2005). This literature has focused on the universality
of the wrinkle instabilities and as such the elasticity prob-
lem is often solved in a reduced form where the nonlineari-
ties appear from the geometry alone, and the constitutive
response is limited to linear elasticity (Pocivavsek et al.
2009). This approach correctly captures the general wrin-
kling instability for composite bilayer systems. However,
the need for a more detailed and tissue specific analysis
has arisen in the last several years (Stewart et al. 2016),
particularly driven by the growing appreciation that these
patterns influence the functional biology of the given tissue
(Pocivavsek et al. 2018, 2019; Shivapooja et al. 2013; Shyer
et al. 2013; Ciarletta et al. 2014) and the desire to build this
bio-functionality into medical devices (Pocivavsek et al.
2018, 2019; Yang et al. 2010; Epstein et al. 2013; Hasan
and Chatterjee 2015; Levering et al. 2014; Chen et al. 2011;
Mao et al. 2009). Our work has focused on arterial wrinkling
and folding, and we have hypothesized that these patterns
could be used by native arteries as a biomechanical strat-
egy to prevent unwanted platelet adhesion (Pocivavsek et al.
2009, 2018, 2019). In the first part of this paper, we show
that arterial wrinkling is a dynamic instability that follows
the canonical (Genzer and Groenewold 2006; Hohlfeld and
Mahadevan 2011; Pocivavsek et al. 2008, 2019; Cerda and
Mahadevan 2003) scalings of wrinkle mechanics; in par-
ticular, the amplitude at low compressive strain scales lin-
early with wavelength and as the square root of the strain.
This point has not been shown in the literature thus far and
is an important experimental validation of the elasticity
approaches often used to describe these biologic patterns.
Furthermore, the change in surface amplitude with luminal
pressure demonstrates that arterial topography is sensitive
to intra-arterial pressure making plausible that topography
actuation is a biologically relevant surface renewal strategy
as hypothesized previously (Pocivavsek et al. 2018, 2019).
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Fig. 13 Wrinkle amplitude for three fiber angles 6 = 90°,60°,45°
with respect to x-axis in (x—y) fiber plane for the case of fiber stiffness
ki/pug=2. Red line is a fit to A/A=c,/== where ¢ is a fitting

€w
parameter. The fittings indicate that wrinkle amplitude grows with the
square root of the normalized applied strain
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The second part of this paper focuses on a detailed com-
putational and analytical analysis of the wrinkle instability
in a model bilayer where the substrate material response is
modeled using the well validated OGH arterial constitutive
law. Our work presents a detailed study of the influences of
several features in the OGH model on the wrinkling behav-
ior. We study the response utilizing both the built-in OGH
function in Abaqus, a more general implementation via a
VUMAT that allows for fiber bearing compressive loads,
and a purely analytical approach using linear perturbation
analysis. The three approaches overall give similar results
for e,,, validating that the correct physics has been captured.
In all three cases, we chose to model only the substrate using
OGH. The substrate anatomically corresponds to the thick
arterial media which is rich in collagen, elastin, and smooth
muscle cells (Holzapfel et al. 2000; Gasser et al. 2006). The
arterial media is also most prone to disease formation such
as atherosclerosis or thickening due to years of high cho-
lesterol and high blood pressure (Sidawy and Perler 2018).
As such, we elected to focus the increase in complexity in
material response onto the media. The thinner stiffer part of
the artery that acts as the film or membrane in the wrinkling
bilayer is often taken to be composed of both the endothe-
lium and internal elastic lamina (IEL) (Pocivavsek et al.
2009). In this paper, we utilize a neo-Hookean constitutive
response for the IEL/endothelium layer in order to reduce
the already large parameter space of the problem; further-
more, while this condition could be relaxed, prior work on
wrinkling has shown that the membrane undergoes primar-
ily bending dominated deformations and is often treated as
inextensible and linearly elastic with little loss of generality
(Allen 1969; Pocivavsek et al. 2008; Cerda and Mahadevan
2003).

6.1 Impact of fiber angle and orientationon ¢,

The fibers in the OGH model represent collagen, which in a
straight segment of artery is thought to wrap around the long
axis of the artery in helical fashion (Holzapfel et al. 2000;
Gasser et al. 2006). However, collagen orientation becomes
distorted in many disease states and is poorly understood
at bifurcations and along curved arterial segments, corre-
sponding to areas of the arterial tree most prone to disease.
The approach in this paper was to study the effect of fiber
orientation (0) in all three planes independently, as shown
in Fig. 4. Our main results in Figs. 5, 6 and 7 show that ¢,
is highly sensitive to 8 and the fiber orientation plane. Fib-
ers oriented in the x—y plane show the greatest impact on
€,, as a function of § and fiber stiffness, followed by fibers
oriented in the y—z plane. The least impact is exerted by fib-
ers in the x—z plane. One way to interpret the impact of fiber
orientation on wrinkling is to analyze the relative orientation
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of the fibers with respect to the two primary directions of
displacement in the problem: direction of compression (x)
and direction of amplitude growth (y).

Case 1 is fibers oriented purely along z and thus orthogo-
nal to both direction of compression and amplitude growth,
which is achieved for & = 90 in Figs. 6 and 7. In this case,
the fibers are effectively removed from the elastic response
of the substrate as it concerns wrinkling, which is shown in
our data by e, = eyxy. The other two limiting cases represent
fibers oriented in either the direction of compression (case
two) or amplitude growth (case three).

Case 2 is achievable for fibers oriented in the x—y and x—z
planes for 8 = 0 (note the same e, for this angle in Figs. 5
and 6). Case 3 is achievable for fibers oriented in the x—y
plane at & = 90 and fibers in the y—z plane for 8 = 0 (again,
€,, 1s identical at these angles in Figs. 5 and 7).

Case 3 is simplest to understand physically. The fibers
behave as extra springs in the direction of amplitude growth,
effectively stiffening the substrate response along this direc-
tion, which is seen in the increasing ¢, with increasing fiber
stiffness. Case 2 shows that fibers oriented purely along the
direction of compression perturb the onset of wrinkling far
more weakly compared to case 3. These results show that
the substrate elastic response in the two limiting cases of
fiber orientation, irrespective of fiber plane, is most sensitive
to perturbations along the direction of amplitude growth.
This is consistent with well known elasticity approaches for
wrinkling in bilayer systems, where the substrate is often
treated as a simple potential acting normal to the interface
(Pocivavsek et al. 2008) or spring-like Winkler foundation
(Damman 2015; Cerda and Mahadevan 2003).

6.2 Approximation based on linearized orthotropic
properties—case study of fibers in the x-y
plane

For plane strain, isotropic, and incompressible bilayers with
high modulus mismatch p;/u,, and in the absence of pre-
strain, the wrinkling strain and wavelength are approximated
as follows (Sun et al. 2012; Cao and Hutchinson 2012; Brau
etal. 2011):

3 ' 2/3 3 ' 1/3
ewz1< ”b> ,khz( “5> )
4\ pe He

Thus, LN approximately equal to 4. This ratio for bilayers

€y

of a neo-Hookean film bonded to an orthotropic OGH sub-
strate, however, shows deviations from this constant trend
(Fig. 16, “Appendix 27).

Equivalent relationships have also been derived in the lit-
erature for wrinkling in sandwich panels. Vonach and Ram-
merstorfer (2000) provides the following approximation in

which e, depends on the core’s transverse stiffness E7 and
shear modulus GY .

EGe\'"?
€y N 0.85< }szy> 6)

f

A further analysis in Vonach and Rammerstorfer (2000)
indicates that the orthotropic core’s longitudinal stiffness
E, might also influence e,

For the OGH model, the stiffnesses E,, Ey, E_, shear mod-
uli ny, ny G,,, and Poisson’s ratios Vigs Vors Vags Vars Vg Vay
can be derived through linearization (see “Appendix 27).
They are complex functions of fiber stiffness k, and angle 6.
Specifically, E, and E| depend nonlinearly and non-mono-
tonically on @ with a local minimum at the “magic angle”
(Goriely 2017) 6 =~ 55° and 0 =~ 35°, respectively (Fig. 17,
“Appendix 2”). Here, a similar combination of these quanti-
ties as in Eq. 6 is constructed with an attempt to explain and
correlate with the observed non-monotonic behavior in e,

: 1/3
E,.G VEE,
ewz0.85< e y> B Y )

2 of T 1y v
f(eff) XZ°X

where the film’s effective modulus under the condition of

plane strain and incompressibility is Egq5 = % = 0—7‘5 The
)2 ,

substrate’s effective modulus E7; is assumed to depend on
both the longitudinal and transverse stiffnesses E,, E, as sug-
gested in Vonach and Rammerstorfer (2000). “

The good agreement in Fig. 14 between the linear per-
turbation analysis and the derived approximation for various
fiber dispersion values suggests that ¢, may be predicted
from the longitudinal, transverse, and shear moduli and
Poisson’s ratio in certain directions of the OGH substrate.
Nevertheless, refinements are needed to obtain a universal
effective stiffness for the substrate that can be applicable to
different fiber planes and stiffness mismatch ratios and, pos-
sibly, in the presence of pre-strain. The limit y; >> k; >> u,
can be further explored to gain better insight into the new
scaling law that is similar to Eqgs. 5 and 6. Studying an
isotropic film on top of an orthotropic substrate with the
constitutive relations obtained in “Appendix 2” is another
approach to understand this limit.

6.3 Folding

Our primary focus in this paper was to analyze the impact
of fiber on wrinkling. However, Figs. 12 and 13 show a
limited FE analysis of post-wrinkling instabilities for fibers
oriented in the x—y plane. For k, / u, = 2, the strain required
for the wrinkle-to-fold transition increases in the sequence
0 =90°,60°,45°, which suggests that this transition can
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Fig. 14 Approximation based on linearized orthotropic moduli pre-
dicts the behavior of €,, for two different x values in (x—y) fiber plane

either be promoted or inhibited by fiber orientation. Fold-
ing occurs once a given wrinkle begins to deviate from the
square root law and develops a more linear scaling with e, as
predicted in our prior work (Pocivavsek et al. 2008). Future
work will focus on a more detailed study of folding on OGH
substrates, since folds are also clearly seen in native arteries
as demonstrated by our experiments.

7 Conclusion

We show experimentally that native arteries wrinkle and
fold as a function of intra-luminal pressure or azimuthal
compression, that the wrinkling observed in arteries fol-
lows scaling laws derived for stiffness mismatched bilay-
ers, and that arteries also undergo post-wrinkling instabili-
ties such as folds, which again follow scalings expected
from the past literature. Furthermore, we perform a
detailed computational and analytical analysis of wrin-
kling in a bilayer system where the substrate is modeled
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using the fiber-reinforced OGH energy functional. We
conclude that global fiber orientation has strong impact
on the critical strain of wrinkle onset. In general, the addi-
tion of fibers with even marginally larger moduli than the
surrounding matrix tends to increase the wrinkling strain.
Fibers oriented in the x—z plane have the weakest pertur-
bation, while fibers in the x—y plane the strongest. Fibers
oriented primarily along the z-axis (long arterial axis) play
little role in surface wrinkling; thus, it is not surprising
that fibers oriented in the x—y plane should have the strong-
est impact on wrinkling. Critical strain scaling with fiber
angles in y—z and x—z planes are easily understood from the
limiting cases. In the x—y plane, the strong non-monotonic
behavior is reproduced by taking into account the aniso-
tropic effect generated by fibers.
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Appendix 1: Perturbation analysis
for wrinkling in neo-Hookean/Ogden-
Gasser-Holzapfel Bilayer

Summary of notations

Symbols Notation meaning

L Length of the bilayer

H, h Substrate and film thicknesses

Ac=A1L A, A Applied stretch in x, y, z directions, respectively
6 Perturbation amplitude

a Parameter determined in the eigenvalue analysis
Ak Wavelength and wave number: k = 27”

€ The applied strain: € = %

Critical wrinkling strain

ky, ky Fiber stiffness, fiber nonlinearity parameter
K, 0 Fiber dispersion, orientation
L, Unit vector of the direction of the ith fiber

family
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Symbols Notation meaning

o,P,S,N Cauchy, first and second Piola—Kirchhoff,
nominal stresses

F,C,B Deformation gradient, right and left Cauchy—
Green tensor

I, 1y = Ll.TCLl. Invariants of the Cauchy—Green tensor

Hes My Shear modulus of film and substrate matrix

Ug, Ve, Ug, Vg Displacement in the film and substrate

Bifurcation of a thin, stiff neo-Hookean layer
on an OGH substrate

A bilayer composed of a thin, stiff incompressible neo-
Hookean film attached to a soft, incompressible OGH sub-
strate is subjected to compression as shown in Fig. 15.

Assume that the deformation is plane strain and uniform
with the deformation state described in Eq. 8.

x=1X
1 (®
=—Y
)

X

where (X, Y) are coordinates in the undeformed configura-
tion and (x, y) are the corresponding coordinates in the cur-
rent configuration. 4, is the lateral stretch in the x direction.

Consider the perturbation of this homogeneous deformation
state with the generic forms of perturbation shown in Eq. 9 for
the case of incompressibility (Sun et al. 2012):

x = A,X — adA2Asin(kX)e™”

1 a
y = /I_Y + 84 cos(kX)e™Y )

X

p = po + 6p, cos(kX)e™”

hy
{‘

L

Fig. 15 Thin stiff incompressible neo-Hookean film attached to a
soft, incompressible OGH substrate with two symmetric families of
fibers

where 6 << 1 is the perturbation amplitude parameter.
k = £ is the wrinkle wave number, A is the undeformed-
configurational wavelength of the perturbation. a is a param-
eter to be determined from the equilibrium condition. p is
the hydrostatic pressure for incompressible solids. p,, p, are
to be determined from boundary conditions.

The deformation state of each layer in the bilayer due to
the above perturbation is a linear combination of each layer
’s eigenmodes when each layer is considered separately and
is subjected to the same perturbation. Therefore, in the fol-
lowings, we first will consider the perturbation of each layer
individually. A linear combination of the obtained eigen-
modes will then be used to construct the deformation state of
each layer in the bilayer system. Continuity conditions at the
interface between the two layers and boundary conditions
at the free surface are used next to construct an eigenvalue
problem to determine the critical onset of wrinkling. Finally,
the critical wrinkling strain is determined by numerically
solving the resulting eigenvalue problem.

Analysis of eigenmodes of the neo-Hookean film

The analysis of eigenmodes of a neo-Hookean layer has been
carried out in Sun et al. (2012), Cao and Hutchinson (2012),
Stewart et al. (2016). Specifically, consider the neo-Hookean
strain energy density function given in Eq. 10:

Wyn = uly = 3) (10)

First Piola—Kirchhoff stress can be determined from this
strain energy function by taking the derivative with respect
to the deformation gradients F and taking into account the
hydrostatic pressure due to incompressibility, specifically:

oW,
p. = NH

v oF;

—1

PF; (11)

Note that the deformation gradient can be determined from
Eq. (9) for the perturbation state. Specifically,

_0x _ 2 aky
Fiy = o5 = A = adgak|cos(kX)e™]
_0X _ 2.0 . aky
Fip = 57 = =6 ALk [sin(kx)e™' |
Fo =2 = 5 ak[sin(kx)e™] (12)
0X
9
Fr=== % + 6 Aak[cos(kX)e|

X

Fiz=F; =F;=F;p =0, Fy=1

Note that this prescribed deformation gradient already satis-
fies the incompressibility constraint det(F) = 1 + O(5?).

The first invariant /; is the trace of the left Cauchy—Green
tensor B = FTF, which is:
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Fy, Fy, O||Fy Fy O
B =|F, Fy O||F, Fyp 0
0 0 11| O 0 1
- 2 ’ (13)
Fl +F F11F%1+F£2F22 0
=|FyFy + FuF), Fy +F, 0
| 0 0 1
and
I, =trace(B) = F}, + F1, + F3 + F3, + 1 (14)

With the consideration of incompressibility det(F) = 1 or
F\F,, — F|,F,, =1, the inverse of the deformation gradi-
ent F~! becomes:

1 F22 - F12 0
Fl=——  |-F, F, 0
F11F22_F12F2] 0 0 1
(15)
F22 - F12 0
=|-Fy Fy 0
0 0 1
Hence,
aWNH 1 a11 1
P, = — pF ' F-
11 aFll P 11 He ()Fl P 11
OWny B ol B
P, = —pF;! = yy—= — pF
12 aF12 P 21 MfaFl2 p 21
=2u;F), + [po + 0p, cos(kX)e”ky] F,,
oW, (16)
Py = —8 —pF} = y—1 — pF;]
2 aFZ] 12 faFZI 12
= 2ucFy, + [py + 6p, cos(kX)e™ | F,
a‘/VNH 1 011 1
P, = —pF, = uo—— — pF’.
22 anz P 22 2% 0F22 P 22

= 2uFy, — [po + p; cos(kX)e™ | Fy,

Note that for a more compact form, Eq. 16 can be written in
the matrix form which can be easily derived from the second

Piola Kirchhoff stress § = Zazvg”. Specifically,

ol
S =2~ = 2ul
oC )

P=FS—pF T =2uF—pFT

which are consistent with the stresses using index notations
in Eq. 16.

Substituting Eq. 12 into Eq. 16, the calculations result
in the following formulae for first Piola—Kirchhoff stress:

@ Springer

1
Py = (2Hf/1x —Po/1_>

- 5{2Mfka/1§,1 + pokad + ’% } cos(kX)e™Y

X

+ 0(8%)
Py = =5(2uka® 224 + pokA) sin(kX)e™ + 0(6%)  (18)
Py = =8 (2uckA + poka® A2 2) sin(kX)e™ + 0(6%)
2y
Py, = (T —Poﬂx>

X

+ 6(2ucka + pokai’a — Ap;) cos(kX)e™”
+ 0(5%)
The zeroth order (6 = 0) solution is obtained from Eq. 18,

and from the boundary condition for the single layer Pg2 =0,
.- ¢
it is shown that p, =

A2
Substituting the stresses into the two following equi-
librium equations, the following 2 equations are obtained:

Piux+Ppy= {47r,ufa/l)2r(1 —a?) + %}

X

Sk sin(kX)e™ + 0(8*) =0 (19)
Piox+Pyy = (—4ru + 4o’ — Aap)
5k cos(kX)e™ + 0(5*) =0

which leads to:

47r,ufaﬂi(l - az) +2 0
Ay (20)
— dzp + 4zp’ — Aap, =0

From the first part of Eq. 20, p, = —47r/4fa/1)3c(1 —a?).
Substituting this p, into the second part of Eq. 20 yields
a fourth-order equation of a: 4z u(A*a® — 1)(1 — a?) = 0.
Solving this equation gives four solutions of a and hence
4 pairs of solutions (a;,p;) corresponding with 4 eigen-
values: @ = 1,a = —1,@ = 1/4%, @ = —1/A2. Substituting
each pair of solutions into Eqgs. (9) and (18) provides an
eigenmode and its stress state for the single neo-Hookean
layer subjected to perturbation. Specifically, from Eq. (9),
(Lgﬁ,\{ﬁ>,i = ﬂ are obtained for the deformation where
u=x—AX,v=y-Y/4,. From Eq. (18), tangential and
normal tractions Nﬁzl’Nﬁzz’i = m are obtained from the
nominal stresses, respectively. Nominal stress is determined
as N = PT.

Analysis of eigenmodes of the OGH substrate

Consider the OGH substrate with the strain energy density
function given in Eq. 21.
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k N
Woan = () — 3)+— Z {exp[kEZ] — 1}
2

m=1

E,=x(, -3+ =3, — 1)

2y

where the invariant /., = L,,.(CL,,), L., is the unit direc-
tion of the fiber family m th, C = FTF is the right Cauchy
Green tensor.

With the same approach as in Sect. 1.1, the first
Piola—Kirchhoff stress can be determined by taking the
derivative of the energy with respect to the deformation
gradient.

ow,
p. — —9oGH

v oF;

- iji (22)

or from the second Piola—Kirchhoff stress S:

ow,
P=FS—pF T =2Fp9H

>C -pF" (23)

where the second Piola—Kirchhoff stress is:

Woch oI,
=2 =2y, —
S oC SPYs
2
k, OE,
+ k—zé {2sz exp |k, E2 e }
2
S =2uJ + 2k ) Epexp|kE2|
m=1
oI, ol, @4
1 — 3x) —mm
(e ra-am%e}

S=2ul+ Z 2k kEexp|kE2 |1

m=1

2
+ )" 2k (1 = 36)Epexp kB2 | Ly, ® Ly,

m=1
Thus, the first Piola—Kirchhoff stress becomes:

2
P=—PF" +2uF + ) 2k kEnexp[kEL|F
m=1

, 25)

+ ) 2k, (1 = 3K)Epexp [k, B2 | F (L ® Ly, )

m=1

With the given deformation gradient in Eq. (9), compo-
nents of the first Piola—Kirchhoff stress corresponding to the
OGH layer are specified in Eq. 25. Hence, from the zeroth-
order solution with the boundary condition sz =0, pyis
determined.

Substituting these stresses into the two equilibrium
equations (in Eq. 19) and applying the same solution

method as in Sect. 1.1, a fourth-order equation in terms of
a is again obtained. Hence, 4 pairs of solutions (ai,pi) are
determined. However, for the substrate, as the undulation
dies down as Y — —oo, only 2 solutions with positive val-
ues of & are used to construct eigenmodes for the substrate.
Specifically, from Eq. (9), (uy;, vy),i = 1.2 are obtained
for the deformation where u = x — /1 X,v=y-Y/ /1 . From
Eq. (25), tangential and normal tractions N; ,N; . =1,2
are obtained from the nominal stresses, respectlvely Nom-
inal stress is determined as N = PT.

Note that for a neo-Hookean layer, the 4 eigenvalues a
are all real values. However, solving the fourth-order equa-
tion of eigenvalues « for the OGH substrate can result in
complex solutions. If the eigenvalues a for the OGH sub-
strate are complex, the four eigenvalues will correspond
to two pairs of complex conjugate. As the undulation
must vanish when ¥ — —oo, the pair of complex conju-
gate with the positive real part is chosen for construct-
ing the eigenmodes for the substrate. Actually, as this is a
pair of conjugate eigenvalues @, only one is needed. With
this eigenvalue, it is straightforward to compute (ugl, vql)
and N ,N; which are the corresponding deformation
and stresses. As a is a complex value, these deformation
and stress fields are also complex. The real parts and the
complex parts of the fields are used now to construct the
2 eigenmodes of the OGH substrate.

Due to the cumbersome formulae, all the calculations
for the stresses, equilibrium equations, and eigenvalue
problems are implemented in Matlab.

Linear combination of eigenmodes for the bilayer
system

Recall: (ug,v;),i = 1,4 and Ny Ny ,i= 1,4 as the defor-
mation and stresses, respectively, associated with 4 eigen-
modes of the neo-Hookean layer. (i, v,;),i = 1,2 and
Ni;, N, ,i = 1,2 as the deformation and nominal stresses,
respectively, associated with 2 eigenmodes of the OGH
layer.

For a bilayer composed of a neo-Hookean film attached
to an OGH substrate subjected to the perturbation in Eq. 9,
the deformation in each layer is a linear combination of its
eigenmodes. In other words, the deformation in the neo-
Hookean film can be written as:

up = Aqug) + Ajutyy + Azligy + Ayugy

Ve =A vy A AV + Ay
Np, = ANy, +ANg, +AsNg, + ANy (26)
Ni, =A Ny, + ANy + AN, +AyNyy,,

The deformation in the OGH substrate can be written as:

@ Springer



N. Nguyen et al.

ug = Asugy + Aglig
vy = Asvg +AgV
N‘ | ZASNSIZI +A6N522]

S2

N, =AsNy_ +AgNg,

522

@7

where A|,A,,A;3,A,, As, Ag are constant parameters.

Continuity and boundary conditions—eigenvalue
problem for critical strain

At the interface between the film and the substrate, Y = 0,
continuity in displacements and tractions are enforced which
can be written as follows:
u(Y =0)=u (Y =0)
(¥ =0)=v (Y =0)
NfZI(Y =0)= NSZI(Y =0)
Nfzz(Y =0)= NSZQ(Y =0)

(28)

At the stress-free face Y = h of the neo-Hookean film, two
boundary conditions for tractions are obtained:

N, (Y =h)=0

Np, (Y =h) =0 (29)

Critical wrinkling strain determination

By substituting the linear combinations in Eqs. 26, 27 into
the system of continuity and boundary conditions in Egs. 28
and 29, a system of the following forms is obtained:

F (2, kh) =0 (30

The critical wrinkling strain, which is minimized over all kh
is determined from the nonlinear equations det(F) = 0. This
is solved numerically in Matlab.

Appendix 2: Linearization of OGH model
for material properties

Figure 16 plots the prediction of (kgi)z ratio for bilayers of a

neo-Hookean film bonded to an OGWH substrate.

When the fiber stiffness k; = 0, the substrate becomes
neo-Hookean. The ratio approaches the value of 4 for
Mg >> pg, which is demonstrated in Fig. 16 for the
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— -neo-Hookean bilayer: ky/us =0, s/ ps = 1000
21|~ -neo-Hookean bilayer: ki/ps = 0, pus/ps = 100
—— Analytical analysis: ki /ps = 10

w Abaqus built-in: ki /ps = 10
| |— Analytical analysis: ki/pus =5

O Abaqus built-in: ki /ps =5
— Analytical analysis: kq/us = 2

m Abaqus built-in: ky/ps; =2

‘
0 10 20 30 40 50 60 70 80 90
Fiber angle: 0

Fig. 16 Ratio(kei)2 versus fiber angle 0 for the case of fiber dispersion
Kk = 0in (x-y) fiber plane

mismatch modulus ragio ue/ ps = 1000. At lower mismatch
ratio, the value of ¥ js slightly less than 4. Specifically,

€,

w

with a mismatch modulus ratio y/ u, of 100 as considered
I :
in this paper, &h" . 37. When fiber stiffness is nonzero,

€y

the renormaliza;ion of the substrate stiffness must change
the effective value of the substrate stiffness and lead to
deviations of this ratio from the constant value. At low
fiber stiffness k, /u, = 2, k; /u, = 5, the ratio remains con-
stant around the value of the corresponding neo-Hookean
bilayer with the same modulus mismatch y;/p, = 100. For
higher fiber stiffness k;/u, = 10, the ratio shows some
deviations from this constant trend, especially at high val-
ues of fiber angle 6. Note that as angle 6 increases, the
transverse direction y also has higher stiffness. The devia-
tion, therefore, might be attributed to the effect of ortho-
tropic material properties associated with OGH model
which become more significant as fibers are stiffer and
oriented in the transverse (y) direction. These properties
are derived through linearization as follows.

Ogden—Gasser—Holzapfel substrate with strain energy
density function:

k N
Woan = u(l, —3) + j > {exp[kE2| - 1}
2 =1

E;=x(;=3)+ 0 =3)Uy; = 1
Ly = LiTCLi

€29

where C = F'F is the right Cauchy—Green tensor, F is the
deformation gradient, L; is the unit vector of the orientation
of the ith fiber family. Here, N = 2 corresponds to two fiber
families.
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The second Piola—Kirchhoff stress:

IWocn
oC

S=2

: OE;
k—l z; {2k2Eiexp kB = }

S =2ul + 2k, ) Ejexp|kE;]
i=1
o, (1-3K) all 2
*oc

2
S=2ul + Z 2k, kE;exp [sziz]I
i=1

+ Y 2k, (1 = 36)E;exp B L, ® L,
i=1

Cauchy stress for incompressible case:

2
o =FSF' = —pl +2uB+ ) 2k ;xEjexp|k,E}| B
) = (33)
+ ) 2k,(1 = 3x)E;exp |k, EZ| FL, ® FL,

i=1

where B = FFT is the left Cauchy Green tensor.

For two family fibers lying in x—y plane:
L, =[c,s, 017, L, =[c,—s, 01T, ¢ = cos(8), s = sin(@) where
0 is the fiber angle with respect to x-axis.

Determine longitudinal moduli and Poisson’s ratios

Consider a block made of OGH material being subjected to
tension in one direction and free to expand in the other two
directions. The deformation gradient F, left Cauchy—Green
tensor B, right Cauchy—Green tensor C are described as
follows:

A 0 0 20 0
F=|0 4 0|, B=C=|0 4 0 (34)
0 0 i 0o 0 2

where the three stretch ratios are related by incompressibil-
ity restriction: 4;4,4; = 1. Other quantities in Eq. (33) for
computing Cauchy stresses become:

(4, 0 0][c] [e4,
FL, =10 A O[]s|=]|s4],
0 Allo 0
(4, 0 0]c cA (35)
FL,=10 A, O||=s|=[-54,
0 0 Aflo 0

20 0
Ly=[c s 00 2 o0]|s
o o 2|0 (36)
= A7+ 5743
A% 0 O] ¢
142—[c —s 0] 0 /15 0 []—s

o o 2|lo &)
=02/1?+s2/l§

+(1 =36+ 5745 - 1) (38)
[c4,
FL, @ FL, =[sA,|[cA; si, 0]
0
- 39
czzﬁ csAd, O (39)
=|csAd, szﬂg 0
| 0 0 0
[ ¢4,
FL2 ® FL2 = —Sﬂz [C/{] —SA2 0]
0
- 40
czﬂf —csiAy, O (40)
=|—csi 4, szﬂg 0
| O 0 0

Substituting Egs. (34—40) into Eq. (33), three components of
Cauchy stresses for the block being pulled in one direction:
011 = —p + 2uA; + 4k E exp [k, E7] A7
+ 4(1 = 3Kk, E exp[kET| 2 A7
0y = —p + 2uA; + 4k, E exp [k, ET] 43 1)
+ 4(1 = 3k)k, E exp [k, E7|s* 45
033 = —p + 2uA3 + 4k, E exp [k, E7] 43

Stretching along the x direction to determine £,, v, V,,

Note that the block is pulled in x direction and is free to expand
in y and z directions, therefore:

o1 #0,00,=0,053=0 42)

thus, using 43 = they can be written:
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1
o1 =0y _633=2ﬂ{/ﬁ_ﬁ}
M4

1
+ 4xk E explk,ET] [Af -~ T]

+ 4(1 = 3k)k, E explk,ET1c* AT

1
0y = 0 — 033 =2M{/1§— ﬁ}
M4

1
+ 4xk E exp[k,ET] l,@ - W]
1772

+ 4(1 = 3k)k,E explk,E}1s* 4

43)

Consider small deformation regime, the strains are small and
their high order terms can be neglected. Thus, the follow-
ing approximations can be used to approximate the stresses:

M=l+e,dy=146,4=142¢,4 =1+2¢,

1 1 1
—=1-2¢,—=1-2¢y), — =1-2¢, — 2¢
2 [LPY) 22 9292 1 2
Ay 4 142
2 2 2
L= +A+4=3 (44)

Iy, =1, = czﬂf + szlg =1 +2c%, +25%,
E, =E, =(1-3k)(2c%, +25°¢,)
exp [szﬂ =1
Substituting the approximations in Eq. (44) into Eq. (43),
the stresses become:
= 20 .4 2.2
o1 = 2u(4e; + 2e,) + 8k (1 — 3k)°(c"e; + ¢"57€y)

45
0y = 2p(dey + 2¢,) + 8k, (1 — 3K)2(c*s%e; + s*e,) )

since 0,, = 0, so we have:

4p + 8k (1 — 3K)2c2s?

= = 4
Yo T TR 8k, (1 = 32t (46)

€
€

Note that we are pulling in the x direction, so this ratio
between the two strains gives the Poisson’s ratio v,,. It can
be seen that for the case of isotropic material, i.e., k’] =0or
k = 1/3, this ratio is equal to 0.5 which is the Poisson’s ratio
of isotropic incompressible material.

By substituting €, in terms of €, into o, ;, we have:

642 + 8k pu(1 — 3x)*(1 — 3¢%5?)
u+ k(1= 3k)2s*

oy = € 47
The longitudinal modulus in the x-direction, thus, can be
obtained:

_on _ 642 + 8k, pu(1 — 3k)*(1 — 3¢%5?)

€11 p+ k(1 =3k)%s*

(48)

@ Springer

Again, for k; =0 or x = 1/3, this modulus reduces to
E,. = 6y which is the Young modulus value of isotropic,
incompressible material.

Note that:
1 1
ST (U+ep(+e) ‘174 €3
+ — 1+2=_3
€ +6 =—¢ —_ =
1T & 3 p o (49)
€5 4+ 8k (1 —3K)%s%(s* — %)
— VXZ = —— = 2
€ 8y + 8k (1 —3k)%s

Stretching along the y direction to determine £, v, v,

With the same approach, the modulus E, in y-direction and
Poisson’s ratio v, can be derived by subjecting the block to
the tension in y-direction. Specifically,

011 =0,05 #0,053=0 (50)
Thus:

0|| =0 — 033 = {S,u + 8k, (1 — 31()204}61
+ {4y + 8k (1 -3k’ c*s* }e, =0

0y = 0y — 033 = {4u + 8k (1 — 3k)°c*s” e,
+ {8u+ 8k (1 -3k) s }e,

619

The Poisson’s ratio v, is therefore,

€ _ Ap+ 8k (1 - 3k)c?s?

e " T 8+ 8k, (1 - 3kt ©2)

And the modulus Ey:

(4p + 8k (1 — 3Kk)*c?s?)?
Y ey 8u+ 8k (1 - 3k)2ct
+  (8u + 8k, (1 —3k)*s™ (53)
E - 64 + 8k u(1 — 3x)*(1 — 3c%s%)
4 u+ k(1 —=3K)2c*

02
E — —

The Poisson’s ratio v, is:
yz

€ €
€1+€2:_€3=>1+_:__
€ €

5 du+8k(1 -3 - OY

— = —_——=
T 8 + 8k, (1 — 3x)2c*

Pulling in the z direction to determine £, v,,, v,,

When the block is subjected to tension in z direction and is
free to expand in x, y directions, the stress state becomes:
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o1 =0,00 =0,033 #0 (55)
Using 4, = ﬁ, Eq. (33) becomes:

011 = —p +2uA} + 4kk E explk,ET1A7
+ 41 - 3x)k,E explk,ET]c* AT =0

1 2, 1
0y = =P+ 2u—— +4kk E\explE|] ——
4143 45 (56)
s
+ 41 - 3K)k1E1exp[k2Ef]W =0
13
033 = —p + 2uA3 + 4kk E explk,ET]1A3
033 =033 — 0y =2l /12_L
33 =033 = 0n 3 /ﬁ/@
1
+ 4Kk1E1€Xp[k2E]2 l/lg - ﬁ]
13
2, 8
— 4k E((1 = 3x)explb By ] —=—
13
(57)
011 =011 — 0y =2U /12—L
11 11 22 1 ﬂ?ig

1
+ 4ick,E explk,E; lﬁ - ﬁ]
173

2
+ 4k E((1 = 3x)expl, 7] lcz'ﬁ - ,1; ,12]
173

Using small deformation approximations:

1
/11=1+€1,/1%=1+261,F=1—2€1
1
/13=1+e3,,1§=1+2e3,i2=1—ze3
/13
1 1
—— =1-2¢ —26;, 42 — —
292 1 3% LY
2A2 222
=4el+2€3,/1§—%12=2€1+4€3
1773 (58)
S 21— 2¢, - 2¢y)
T ST TG
)”1)”3
A - s = — 57 +2¢, + 25%¢,
1 2492
}”1)’3

2
E = (1-3x)(222 + # -1
1773
=(1-3k) [2(c2 - s2)€1 - 2s2€3]

Substituting Eq. (58) into Eq. (57):

033 = 2u(des + 2€;) — 4k (1 — 3k)*s*

[2(6‘2 - s2)€1 - 2s2€3]

59
oy = 2u(de; + 2e3) + 4k (1 = 3k)%(c? = 5%) (59)
[2(c2 - s2)€1 - 2s2€3] =0
Therefore, the Poisson’s ratio v,, is:
€ _ Au — 8k, (1 — 3x)*(c?s® — 5% 60
e & 8u 48k (1 —3K)2(c2 —52)? (60)
The modulus E, is:
_ 6% + 8k, (1 — 3x)*(1 — 3¢%s?) 61
T pH k(1= 3K)2(2 — 52)? 61
Poisson’s ratio Vy
4p + 8k (1 — 3K)3(c? — s)c?
_ K 1 )( ) (62)

T 8+ 8k, (1 - 3K — 22

Apply simple shear stress o,, to determine shear
modulus G,,

The deformation gradient and all related quantities to compute
stress state in this loading case are:

1 ¢y O 1+y2 y O
F=(0 1 0|, B=| vy 1 0],

0 1 0 0 1

o , 0 (63)
C=|y 1+y*> 0

0 0 1

Other quantities in Eq. (50) for computing Cauchy stresses.

1 y O0fflc c+sy
FL, =10 1 Of|s|=| s |,
0 0 1|0 0
- e - (64)
1 y Off c c—sy
FL,={0 1 OJ]=s|=]| -s
0 0 1])0 0 |
y 0]
Li=lc s 0]y 1+ 0f]s
o=l ]0 o 1flo (65)
=14 2csy
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1 y 0f] ¢

142=[c—s0] y 1+y*> Off-s
0 1][ o (66)

=1-2csy

E, = (1 - 3x)(2csy),

E, = —3k)(—2csy) (67)

[c + Sy
FL,QFL, =| s [c +sy s O]
0
- 68
(c+sy)? sc+sy) O (68)
=|s(c+ sy) 52 0
| 0 0 0
[c — sy
FL,®FL,=| -s [c —-sy =S 0]
0
- 69
(c=sy* —=s(c—sy) O ©9)
=|-s(c —sy) 52 0
| 0 0 0

Neglecting high order term of y, the shear stress o, in Eq.
(33) becomes:

Oy = [2;1 + 8k (1 — 31()26252]7/ (70)
Thus, the shear stress ny becomes:

Oy
G,, = 7> = 2u + 8k, (1 = 3k)*c2s? (71)

x10*

12 b —F,: kifpus =2 ]
VB kn/ps =5
10 —Ey: ky/ps =2 1
-©-E,: ki/ps =5

—_
~
o

Longitudinal and transverse moduli (Pa

2+ 4

A4
10 20 30 40
Fiber angle: 6

50 60 70 8090

Fig. 17 Equivalent longitudinal and transverse moduli E,, E, versus

fiber angle 6 for the case of fiber dispersion k¥ = 0 in (x—y) fiber plane
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With similar approach, the shear moduli G, GyZ can also

be determined. For fiber plane (x—y), these shear moduli are
equal to the value of isotropic case G, = G,, = 2u.

Figure 17 illustrates how the longitudinal (E,) and trans-
verse (E,) stiffnesses vary with respect to the fiber angle 6 at
two values of fiber stiffness k, /u, = Sand k; /u, = 2.
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