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Abstract
Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial 
health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling 
incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear 
isotropic material relationships. Nevertheless, wrinkling associated with anisotropic constitutive models such as Ogden–
Gasser–Holzapfel (OGH), which is suitable for soft biological tissues, and in particular arteries, still requires investigation. 
Here, the effects of OGH parameters such as fibers’ orientation, stiffness, and dispersion on the onset of wrinkling, wrinkle 
wavelength and amplitude are elucidated through analysis of a bilayer system composed of a thin, stiff neo-Hookean mem-
brane and a soft OGH substrate subjected to compression. Critical contractile strain at which wrinkles occur is predicted 
using both finite element analysis and analytical linear perturbation approach. Results suggest that besides stiffness mis-
match, anisotropic features associated with fiber stiffness and distribution might be used in natural layered systems to adjust 
wrinkling and subsequent folding behaviors. Further analysis of a bilayer system with fibers in the (x–y) plane subjected to 
compression in the x direction shows a complex dependence of wrinkling strain and wavelength on fiber angle, stiffness, and 
dispersion. This behavior is captured by an approximation utilizing the linearized anisotropic properties derived from OGH 
model. Such understanding of wrinkling in this artery wall-like system will help identify the role of wrinkling mechanisms 
in biological artery in addition to the design of its synthetic counterparts.
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1  Introduction

Motivated by surface instabilities in natural systems such 
as arterial wall, skin, brain (Pocivavsek et al. 2018; Gen-
zer and Groenewold 2006; Hohlfeld and Mahadevan 2011), 
a large amount of research has been performed to under-
stand various modes of surface instabilities such as wrin-
kling, creasing, and folding in layered materials. Wrinkling 
is characterized by a smooth surface amplitude undulation 
(Biot 1963; Allen 1969; Bowden et al. 1998; Pocivavsek 
et al. 2008; Damman 2015) and is commonly observed on 
the inner (luminal) surface of arteries (see Fig. 1) (Liu et al. 
2014; Svendsen and Tindall 1988; Greensmith and Duling 
1984; Pocivavsek et al. 2009). Furthermore, this natural sur-
face pattern often changes as a function of driving forces in 
the environment, such as the wrinkling and un-wrinkling 
of arteries with arterial distension due to changes in pres-
sure (see Fig. 1). Recent work of Pocivavsek et al. (2018) 
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proposed that arterial luminal wrinkling may be used as a 
mechanical anti-fouling mechanism in arteries. This topog-
raphy-driven surface renewal (Pocivavsek et al. 2018) is 
the first model to propose an anti-fouling role for arterial 
wrinkles.

Various factors that affect the emergence of wrinkling 
and its transition into folds have been studied for bilayer 
film-substrate systems subjected to compression. The 
majority of published literature on buckling of such a sys-
tem is for isotropic, homogeneous, and linear or weakly 
nonlinear elastic constitutive models (Sun et al. 2012; 
Cao and Hutchinson 2012; Brau et al. 2011; Stewart et al. 
2016). For a bilayer made from isotropic, elastic materi-
als, such as a neo-Hookean film adhered to a neo-Hookean 
substrate, the stiffness mismatch of the two layers criti-
cally influences the onset of wrinkling and subsequent 
instability modes at higher compression (Allen 1969; 
Bowden et al. 1998; Sun et al. 2012; Cao and Hutchin-
son 2012). Other factors such as pre-stretch (Cao and 

Hutchinson 2012; Cardamone et al. 2009) and adhesion 
energy (Rahmawan et al. 2014) also play a significant role 
in how wrinkles, creases, and folds emerge and grow. For 
most biological tissues, surface wrinkling occurs in the 
presence of highly nonlinear constitutive responses (Poci-
vavsek et al. 2018; Stewart et al. 2016). Anisotropy adds 
more complexity to the situation, and wrinkling under 
this biologically relevant condition is poorly understood. 
Stewart et al. (2016) examined wrinkling in a bilayer sys-
tem composed of a neo-Hookean film and an anisotropic 
substrate described by a compressible constitutive model 
suitable for brain tissues. For our own goal of modeling 
wrinkling of arterial wall or skin, however, it is impor-
tant to consider incompressible materials and examine the 
effects of fiber oriented in different planes, and dispersion 
in fiber orientation. From a constitutive perspective, the 
OGH model (Holzapfel et al. 2000; Gasser et al. 2006), 
which is a structure-based constitutive law incorporat-
ing histology knowledge of collagen fiber distribution in 
the arterial wall, provides appealing features for arterial 
modeling. Moreover, the OGH model has been estab-
lished as the most well-developed and realistic constitu-
tive laws for arterial tissues (Holzapfel et al. 2000; Gasser 
et al. 2006; Holzapfel and Ogden 2017; de Rooij and Kuhl 
2016). Therefore, it is essential to understand how surface 
instabilities correlate with different characteristics of this 
widely used model, especially in light of the appreciation 
for the role of arterial wrinkling in cardio-vascular health 
(Pocivavsek et al. 2018; Svendsen and Tindall 1988; Poci-
vavsek et al. 2019).

This study focuses on wrinkling in a bilayer system com-
posed of a neo-Hookean thin film attached to an OGH sub-
strate. Following the Introduction, Sect. 2 presents experi-
mental data for undulation patterns in pig carotid arteries. 
The measured wrinkle/fold amplitudes, which follow the 
square root dependence on strain at high pressures and 
change to a more linear relationship at low pressures, reveal 
the need to analyze luminal undulations as interfacial insta-
bilities occurred at different strain levels in arterial wall. 
Section 3 discusses aspects of the OGH constitutive model 
that can affect the wrinkling phenomenon. Two solution 
methods are developed, the analytical perturbation approach 
and FE analysis, for determining the emergence of wrinkles. 
Subsequently, the effects of fibers’ orientation planes are 
presented in Sect. 4. Further details on the influence of fiber 
stiffness and dispersion on the wrinkling strain, wavelength, 
and amplitude are studied in Sect. 5 by examining a bilayer 
system under plane strain condition in z direction with fibers 
lying in the x–y plane, which is parallel to the compression 
direction (x-axis). An approximation utilizing the linearized 
orthotropic properties derived from OGH model is also con-
structed and used to explain the non-monotonic dependence 

A

B

Fig. 1   Examples of arterial wrinkling and the actuation of wrin-
kle amplitude with radial expansion, adapted from Pocivavsek et al. 
(2018). a i. and b i. show luminal wrinkling and folding at low lumi-
nal pressure P1 . The wrinkle-like topography is sensitive to overall 
arterial expansion (see a ii.), as seen by the smooth inner surface at 
higher luminal pressures. b ii. is an FE simulation of the histology 
derived low-pressure arterial geometry, showing that the pattern can 
be actuated with expansion
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of the wrinkling strain on fiber orientation. Discussions and 
suggestions for further work are included in the final section.

2 � Arterial wrinkles

As mentioned in the Introduction, many biologic surfaces 
and in particular arteries show wrinkle-like patterns. How-
ever, no biologic study to date has quantitatively shown 
that these surface patterns indeed follow the well estab-
lished scalings for amplitude and wavelength for wrinkled 
bilayers. In general, a bilayer comprising a thin stiff mem-
brane attached to a much thicker, softer substrate under 
an applied compressive strain � wrinkles with two charac-
teristic length scales: wavelength � ∼ h × (Em∕Es)

1∕3 and 
amplitude A ∼ �

√
� , where Em is the membrane modulus, 

h is membrane thickness, and Es the substrate modulus 
(Allen 1969; Bowden et al. 1998; Sun et al. 2012; Cao and 
Hutchinson 2012). The amplitude scaling follows from the 
well known inextensibility condition (Genzer and Groene-
wold 2006; Pocivavsek et al. 2008; Cerda and Mahadevan 
2003), i.e., from treating the thin stiff membrane as a layer 
that can bend but cannot change surface area. Post-wrinkle 
instabilities, like folding and creasing, are less well under-
stood; however, it has been shown that when bilayers fold, 
the amplitude scaling changes to a more linear dependence 
on strain A ∼ � (Pocivavsek et al. 2008).

To explicitly study the amplitude scaling of arter-
ies, pig carotid arteries were harvested from a Pitt Core 
Animal Facility as per IACUC approved animal pro-
tocols. A segment of carotid artery composed of a thin 
inner elastic lamina ( ∼ 10 μm ) and a thicker aterial wall 
( ∼ 500–600 μm ) was then immediately placed on a closed 
pressurized system prior to any exposure to fixation solu-
tion. A saline bag was connected using short tubing to a 
segment of artery affixed to a catheter tip. The other end of 
the artery was connected to closed end tubing. Bags were 
pressurized to a set pressure using a blood pressure cuff. 
After pressurization, arteries were immediately placed in 
2% paraformaldehyde (PFA, Sigma-Aldrich, MO) fixative 
solution for further processing and imaging. Segments of 
arteries were pressurized to 40, 60, 80, 100, 120, 140, 
and 160 mmHg, subsequently fixed, sectioned and imaged 
under confocal microscopy. Confocal images reveal a con-
tinuous undulating internal elastic lamina in a segment 
of carotid artery that was not distended (see Fig. 2). As 
the applied pressure increases, the wrinkled topography 
becomes more flattened across the endothelium. While a 
nondistended artery has a regular wrinkled appearance, 
an analogous segment pressurized to 160 mmHg appears 
flattened without wrinkles. In a non-distended artery, the 

mean amplitude of wrinkles was 20.58 ± 0.56 μm . An 
artery exposed to 40 mmHg had a similar mean ampli-
tude of 20.52 ± 0.65 μm . Amplitude continued to decrease 
as pressure increased. In a segment pressurized to 160 
mmHg, the mean amplitude was 5.32 ± 0.23 μm , a reduc-
tion of 74%. Mean wavelength of wrinkles at 160 mmHg 
was 34.36 ± 1.60 μm . Wrinkle wavelength remained con-
stant until post-wrinkling folds began to appear with a 
mean inter-fold distance of 17.32 ± 0.77 μm.

Figure 2 plots the wrinkle/fold amplitudes as a function of 
effective azimuthal compressive strain ��� ∼ −(P − 160)∕P . 
The left-hand data points correspond to arteries at high-
pressure while the right-hand data to arteries at low pres-
sure. Least-squares fits to the data show that at high-pressure, 
where the luminal topography appears wrinkled, the surface 
amplitude scales as Aw ∼ �

√
��� , the well known canonical 

scaling for bilayer wrinkles (Genzer and Groenewold 2006; 
Allen 1969; Bowden et al. 1998; Pocivavsek et al. 2008; Cerda 
and Mahadevan 2003). At lower pressures, higher azimuthal 
strains, the square root dependence on strain changes to a lin-
ear one, which is seen in fold instabilities (Pocivavsek et al. 
2008), though precise scaling laws in this post-buckling regime 
are lacking. These data strongly support the notion that the 
luminal patterns in arteries are based on a surface instability of 
a bilayer and may be analyzed accordingly. The second part of 
this paper focuses on a detailed analysis of wrinkling utilizing 
a realistic strain energy for the arterial media, the OGH model.

Fig. 2   Experimental data with rat arteries measuring wrinkle ampli-
tude A and wavelength � as a function of intra-luminal pressure P. 
Each data point represents the average amplitude of the arterial wrin-
kles at a given pressure. The fits show that at high pressure (low 
amplitude wrinkles) A scales linearly with � and follows a square 
root dependence on azimuthal compressive strain 

√
���  , the canonical 

wrinkle scaling. At higher compression, lower P, the amplitude scal-
ing becomes linear with strain, a hallmark of post-wrinkle behavior
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3 � Methods

3.1 � Constitutive models

A bilayer composed of a thin, stiff, incompressible neo-
Hookean film attached to a soft, incompressible OGH sub-
strate is subjected to compression as shown in Fig. 3.

The stiff, incompressible film is described by a neo-
Hookean strain energy:

where 2μf is the shear modulus, Kf is the bulk modulus, 
Df =

2

Kf

 is used in numerical implementation to impose 
(quasi) incompressibility constraint to the film.

For the incompressible substrate, OGH strain energy 
has the following form (Holzapfel et al. 2000; Gasser et al. 
2006):

Here, 2μs is the shear modulus of the substrate matrix 
which is described by a neo-Hookean model. Ks is the bulk 
modulus and Ds =

2

Ks

 is used in the numerical implementa-
tion to impose (quasi) incompressibility constraint to the 
substrate. k1 is a stress-like parameter associated with fiber 
stiffness. k2 is a non-dimensional parameter controlling the 
nonlinear elasticity of the fibers. N is the number of fiber 
families with distinct orientations. The invariant 
Ī4𝛼𝛼 = L𝛼 .(C̄L𝛼) is a pseudo-invariant of the distortion part 
of the right Cauchy–Green tensor C̄ = F̄TF̄ and unit vectors 
L� in the direction of the �th fiber family. In other words, Ī4𝛼𝛼 
represents the square of the stretch in the fiber direction � . 

(1)WNH = 𝜇f(Ī1 − 3) +
1

Df

(J − 1)2,

(2)

Wmatrix = 𝜇s(Ī1 − 3) +
1

Ds

(
J2 − 1

2
− ln(J)

)

Wfiber =
k1

2k2

N∑
𝛼=1

{
exp

[
k2Ē

2
𝛼

]
− 1

}

WOGH = Wmatrix +Wfiber

Ē𝛼 = 𝜅(Ī1 − 3) + (1 − 3𝜅)(Ī4𝛼𝛼 − 1)

So, Ī4𝛼𝛼 and Ē𝛼 are dependent on the fiber orientations. � is 
the degree of fiber angular dispersion and takes the value 
between � = 0 (for perfectly aligned fibers) to � =

1

3
 for ran-

domly oriented fibers (or isotropic response). Experimental 
methods to measure these material properties have been pre-
sented in detail in Holzapfel and Ogden (2017), Annaidh 
et al. (2012) and Hill et al. (2012).

The film/substrate modulus mismatch is the primary con-
trol parameter for wrinkle onset in isotropic, elastic bilayers 
(Allen 1969; Bowden et al. 1998; Sun et al. 2012; Cao and 
Hutchinson 2012; Brau et al. 2011). When the film is much 
stiffer than the substrate, the wrinkling strain �w scales with 
the modulus mismatch as the power law: �w ≈

(
�s

�f

)2∕3

 . 
When the isotropic substrate is replaced by an anisotropic 
OGH layer, the presence of fibers lead to the effect of addi-
tional factors on wrinkling phenomena. In the following sec-
tions, three cases of fiber plane orientations (x–y), (x–z), 
(y–z) as shown in Fig. 4 are considered to explore the effects 
of fiber stiffness k1 , fiber orientation � , and fiber dispersion 
� . A plane strain condition in the z direction is assumed, and 
two solution approaches (linear perturbation and FE) are 
developed to analyze the wrinkling phenomena. Three limit-
ing cases (fibers oriented in either x, y or z direction) are also 
presented and discussed in detail.

3.2 � Linear perturbation approach

Linear perturbation has proved to be an efficient technique 
in determining the onset of wrinkling in isotropic systems 
(Biot 1963; Sun et al. 2012; Cao and Hutchinson 2012). A 
recent work (Stewart et al. 2016) extended the technique 
to analyze the wrinkling onset for a bilayer composed of a 
compressible fiber-reinforced substrate and a neo-Hookean 
thin film. Here, the technique is applied to analyze the neo-
Hookean film/OGH substrate bilayer in Figs. 3 and 4 with 
the incompressibility consideration for the materials in both 
layers. In particular, starting with the uniform, plane strain 
deformation state described in Eq. 3, a perturbation of this 
homogeneous deformation with the generic forms of per-
turbation shown in Eq. 4 for the case of incompressibility 
(Sun et al. 2012) is applied to both the film and the substrate.

Homogeneous deformation state is specified as:

where (X, Y) are coordinates in the undeformed configura-
tion and (x, y) are the corresponding coordinates in the cur-
rent configuration. �x is the lateral stretch in the x direction.

A perturbation is applied with incompressibility 
constraint:

(3)
x = �xX

y =
1

�x
Y

Fig. 3   Thin, stiff, incompressible neo-Hookean film attached to a 
soft, incompressible OGH substrate with two symmetric families of 
fibers
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where 𝛿 << 1 is the perturbation amplitude parameter. 
k =

2�

�
 is the wrinkle wave number, � is the undeformed-

configurational wavelength of the perturbation. � is a param-
eter to be determined from the equilibrium condition. p is 
the hydrostatic pressure for incompressible solids. p0, p1 are 
to be determined from boundary conditions.

For each layer, substituting the prescribed constitutive 
models in Sect. 3.1 and the perturbed deformation state in 
Eq. 4 into the equilibrium equations, a fourth-order equation 
for � is obtained. Four solutions of � are used to construct 
four eigenmodes for the film. While for the substrate, the 
undulation must disappear as Y → −∞ . Here, Y = 0 corre-
sponds to the interface between the film and the substrate. 
Due to this requirement, two solutions of � with the negative 
values for the real part can be neglected. Thus, only two 
solutions of � and correspondingly two eigenmodes for the 
substrate are considered.

In the bilayer system, the deformation state of each layer 
due to the above perturbation is a linear combination of its 
corresponding eigenmodes. A total of 6 parameters (4 for 
the film and 2 for the substrate), therefore, are needed in the 
linear combinations for the film and substrate. They are then 
substituted into a total of 6 continuity and boundary con-
ditions (normal, tangential displacement continuities, and 
normal, tangential traction continuities at the interface; free 
normal and tangential tractions on the top of the film). This 
results in an eigenvalue problem of the form f (�x, kh) = 0 to 
determine the wrinkling strain �w . Here, f is the determinant 
of the system of 6 equations constructed from continuity and 
boundary conditions and is a nonlinear function in terms of 
the applied stretch �x and the product of wave number k and 

(4)

x = �xX − ���2
x
� sin(kX)e�kY

y =
1

�x
Y + �� cos(kX)e�kY

p = p0 + �p1 cos(kX)e
�kY

film thickness h. The eigenvalue problem is solved numeri-
cally and the critical stretch is the one that minimizes overall 
kh values. Detailed derivations for this linear perturbation 
procedure are provided in “Appendix 1.”

3.3 � Finite element (FE) analysis

The wrinkling strain, wavelength, and amplitude are also 
determined using FE analysis. FE simulations are imple-
mented using the commercial software package Abaqus v6 
.18 (Dassault-Systemes Simulia Inc., Providence, RI 2018) 
with the dynamic explicit solver. For fiber plane (x–y), two-
dimensional plane strain elements (CPE4R, 4-node bilin-
ear, reduced integration with hourglass control) are used to 
model both the film and the substrate. For the (x–z) and (y–z) 
planes, three-dimensional elements (C3D8R, 8-node linear 
brick, reduced integration, with hourglass control) are used 
as the 2D settings were not able to capture the effects of the 
fibers in the z-directions. However, an effective plane strain 
condition is still imposed by applying the displacement con-
straints in the z direction.

With the assumption that fibers bear no compressive load, 
the built-in OGH model in Abaqus deactivates the contri-
bution of fibers, which are under compression, to the strain 
energy. Here, an Abaqus material subroutine VUMAT for 
the OGH substrate without this assumption is also imple-
mented in order to test the effect of this deactivation on 
wrinkling phenomenon.

For both analytical and FE methods, the following sets 
of material and geometric parameters are utilized. The ratio 
H/h between the depth of the substrate and the thickness of 
the film is taken to be more than 50 to ensure that the sub-
strate is sufficiently deep to be treated as a half-space. The 
original length of the bilayer L is also set to be much larger 
than the thickness h of the film: L ≈ 200h . The shear modu-
lus �s and the fiber nonlinearity parameter k2 for the OGH 
substrate are adopted from a calibrated example for arterial 

Fig. 4   Two fiber families lying in three planes (x–y), (x–z), (y–z) in 
the OGH substrate. Compression is in the x direction and plane strain 
condition in z direction are assumed. The fiber angle � is defined with 
respect to different axes depending on the fiber plane. Three limiting 

cases are: fibers aligned in x direction (i.e, � = 0◦ in (x–y) and (x–z) 
planes), fibers aligned in y direction (i.e, � = 90◦ in (x–y) plane and 
� = 0◦ in (y–z) plane), fibers aligned in z direction (i.e, � = 90◦ in (y–
z) and (x–z) planes)
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wall in Holzapfel and Ogden (2017), specifically, �s = 3000 
Pa, k2 = 0.8393 . The parameter Ds = 1.6 × 10−5 Pa−1 is 
selected to ensure quasi-incomressibility in FE analysis as 
suggested in ABAQUS (2018). Other parameters k1 (fiber 
stiffness), � (fiber dispersion), � (fiber orientation) are varied 
to study how they influence �w . For the neo-Hookean film, 
a shear modulus value of �f = 307,500 Pa, and correspond-
ingly Df = 1.626 × 10−7 Pa−1 , is selected which is approxi-
mately 100 times stiffer than the shear modulus �s of the 
substrate matrix. It is noted here that the analysis presented 
in this paper is also applicable to other cases of �f∕�s ratio, 
but a specific ratio is considered here in order to reduce the 
parameter space and have a more detailed analysis of the 
contribution of fibers on wrinkling and folding phenomena.

4 � Effects of fiber plane on �
w

 of bilayer 
system composed of a thin, stiff 
neo‑Hookean layer on an OGH substrate

In the absence of the fibers, the situation corresponds to a 
neo-Hookean film bonded to a neo-Hookean substrate with 
a modulus mismatch of 100. For this case, FE and analytical 
perturbation analyses predict the wrinkle strain of 0.023, 
which is designated as �NH . In the presence of fibers, con-
sider three cases of fiber plane orientations (x–y), (x–z), (y–z) 
with the assumption of a plane strain condition in the z direc-
tion as shown in Fig. 4. Two families of fibers are assumed 
to be perfectly aligned along directions ±� , i.e., � = 0 . The 
effects of fiber dispersion will be discussed in Sect. 5. �w is 
determined by the two approaches which are outlined in the 
method section. Figures 5, 6 and 7 show the critical strain for 

wrinkling �w with varying fiber stiffness and orientations as 
fibers lie in (x–y), (x–z) and (y–z) planes, respectively. The 
small schematics under each graph in Figs. 5, 6 and 7 show 
how the fiber alignment varies as � changes from 0◦ to 90◦ . 
All three figures show that when fiber stiffness k1 = 0 , the 
response expected from a neo-Hookean bilayer is obtained 
in three fiber planes.

Fig. 5   �w for the case in which fibers are lying in (x–y) plane. The 
markers indicate predictions by the built-in OGH in Abaqus. Note 
that the triangles, squares, and circles overlap at small angles

Fig. 6   �w for the case in which fibers are lying in (x–z) plane. The 
markers indicate predictions by the built-in OGH in Abaqus. �w for 
� = 0◦ in (x–z) plane here are in agreement with �w for � = 0◦ in (x–y) 
plane presented in Fig. 5, which are for the limiting case where fibers 
are perfectly aligned in x-direction

Fig. 7   �w for the case in which fibers are lying in (y–z) plane. The 
markers indicate predictions by the built-in OGH in Abaqus. �w for 
� = 0◦ and � = 90◦ in (y–z) plane here are in agreement with �w for 
� = 90◦ in (x–y) plane and � = 90◦ in (x–z) presented in Figs. 5 and 6, 
which are for the limiting cases where fibers are perfectly aligned in 
y-direction and z-direction, respectively
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�w predicted from FE analysis using the built-in OGH 
model in Abaqus are in good agreement with the predictions 
of linear perturbation analysis for the case of (y–z) fiber 
plane (see Fig. 7). For fibers oriented in (x–y) plane (Fig. 5), 
similarly good agreement is obtained for high fiber angles 
( � ≥ 45◦ ). However, for angles below 45◦ in Fig. 5, the built-
in OGH model predicts �w = 0.023 = �NH , independent of 
the orientation or fiber modulus. This indicates that fibers 
do not alter wrinkling onset in these cases. On the other 
hand, the linear perturbation analysis at these low fiber 
angles shows a non-monotonic dependence of �w on fiber 
angle � . Figure 6 also demonstrates such a deviation between 
the built-in OGH in Abaqus and our analytical analysis when 
fibers are oriented close to compression direction ( � → 0◦ ). 
The reason for these discrepancies is that fibers are subjected 
to compression under these situations and the built-in OGH 
model in Abaqus deactivates their contribution to the strain 
energy (Gasser et al. 2006; ABAQUS 2018), while our ana-
lytical analysis allows for anisotropic fiber-reinforcement in 
compression (Brangwynne et al. 2006; Fraldi et al. 2019; 
Ciarletta et al. 2011). To further verify this, in Sect. 5, the 
results for a VUMAT subroutine for OGH model, but relax-
ing this assumption, show good agreements with the analyti-
cal approach even at low fiber angles. It is also noted that 
when the fiber stiffness becomes very large, some differ-
ences in the predicted �w of these two approaches are 
observed such as at k1

�s

= 10, � = 75◦ in Fig. 5. However, even 
for these extreme cases, the trend of �w with respect to the 
fiber orientation and fiber stiffness is consistent between FE 
and linear perturbation analyses. 

The orientation planes of the fibers strongly affect �w . 
For fibers in (x–y) and (x–z) planes, if the fibers are oriented 
closer to the axis of compression, meaning � ≈ 0◦ , increas-
ing fiber stiffness can lead to either an increase or decrease 
in �w . For example, in the (x–z) fiber plane, when � = 0◦ 
(i.e, fibers aligned in x-direction), �w increases when k1 
increases from 6000 to 15,000 Pa, but reduces at k1 = 30,000 
Pa. The results also correspond to the case of � = 0◦ in the 
(x–y) plane (again, fibers aligned in x-direction) as shown 
in Fig. 5. However, for fibers in (y–z) plane, a monotonic 
increase in �w is observed when the fiber stiffness increases. 
Furthermore, �w shows a non-monotonic behavior with 
respect to the fiber inclination in the (x–y) plane. The non-
monotonic dependence on fiber angle for (x–y) fiber plane 
was also reported by Stewart et al. (2016) but unlike the 
non-monotonic shape that they found (see Fig. 4 in Stewart 
et al. 2016), here two local maxima of �w for a specific level 
of fiber stiffness k1 were obtained (Fig. 5). On the other hand, 
for fibers lying in (y–z), the behavior is monotonic (Fig. 7).

Figures 6 and 7 also indicate that if fibers are oriented 
close to the z-axis (i.e, � → 90◦ ), they have insignificant 
effect and �w approaches �NH . However, as fibers are oriented 

away from z-axis, �w increases, indicating that wrinkling 
becomes more difficult. Among the three planes investigated 
here, the (x–z) plane response shows less significant effect on 
�w . This might be due to the assumption of plane strain in the 
z-direction. For (x–z) and (y–z) configurations, a coupling in 
the z-direction departs the analysis from a 2D analysis which 
is also observed in the FE analysis using 2D and 3D settings. 
In addition, for these two configurations, plane strain in the 
z-direction means that a compressive stress develops to 
maintain zero strain in the z direction. Thus, very stiff fibers 
could promote buckling in that direction. Therefore, it would 
be interesting to extend the analysis here to investigate these 
configurations with a general 3D setting.

5 � The influence of fiber stiffness, orientation 
and dispersion on wrinkling

In order to further investigate the effects of fibers’ stiffness, 
orientation, dispersion on wrinkling, we analyze the (x–y) 
fiber orientation in more detail.

5.1 � Wrinkling strain �
w

5.1.1 � Fiber dispersion �

�w for � = 0 (i.e., perfectly aligned fibers) is already pre-
sented in Fig. 5 of Sect. 4. For more dispersed fiber distri-
butions, the dependence of �w on fiber angle � at different 
values of fiber stiffness k1 is presented in Fig. 8 for � = 0.133 
and � = 0.226.

All cases show reasonable agreements between FE 
and analytical analyses. Again, �w is found to change non-
monotonically with fiber angle. �w values at � = 45◦ and 
� = 90◦ are less than the values for � = 60◦ and � = 75◦ . As 
� approaches 1/3, which corresponds to a more isotropic 
distribution of fibers, the discrepancy between different fiber 
angles and stiffness values becomes smaller. As expected, 
Fig. 8 shows that �w → �NH as � →

1

3
.

5.1.2 � Fiber reinforcement in compression

As pointed in Sect. 4, at low fiber angles � with respect to 
the compression direction (x-axis), the built-in OGH model 
deviates from the linear analysis due to the assumption 
that fiber bears no compressive load. Here, a comparison 
between FE approach using a VUMAT material subroutine 
that relaxes this assumption in ABAQUS and linear pertur-
bation analysis is shown in Fig. 9. Good agreement between 
VUMAT predictions and analytical predictions indicates that 
permitting the fiber to bear compressive stress leads to a 
significant increase in �w for certain values of fiber angles 
such as 30◦ , 15◦ . Specifically, an increase from 0.0233 (fiber 
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bears no compressive stress) to 0.06 (fiber bears compressive 
stress) is found for �w at k1 = 30,000 Pa and � = 30◦.

5.1.3 � Fiber stiffness k1

The effects of fiber stiffness on �w at certain values of fiber 
angle � are shown in Fig. 10. We focus this parameter sweep 
to three angles � = 45◦, 60◦ , and 90◦ degrees. A monotonic 
increase in �w with respect to fiber stiffness k1 is observed.

5.2 � Wavelength and amplitude

Besides the onset of wrinkling, wavelength, and amplitude 
are important features of the wrinkling pattern. Here, the 
normalized wavelength �∕h , where h is the film thickness, 
is plotted in Fig. 11. This normalized wavelength is related 
to the dimensionless wavenumber k as: �

h
=

2�

kh
.

The wavelength also exhibits a non-monotonic behav-
ior with respect to the fiber angle � . The change in the 

Fig. 8   �w for different fiber dispersion � values in (x–y) fiber plane. 
The schematics at the bottom show the mean fiber orientation at 
� = 0◦ and � = 90◦

Fig. 9   �w for the case of fiber dispersion � = 0 in (x–y) fiber plane. 
Abaqus VUMAT in which fiber compression is not deactivated shows 
good agreement with analytical approach even at low fiber angles �

Fig. 10   �w versus fiber stiffness k1 for the case of fiber dispersion 
� = 0 in (x–y) fiber plane

Fig. 11   Wrinkling wavelength versus fiber angle � for the case of 
fiber dispersion � = 0 in (x–y) fiber plane
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wavelength is not as significant as for �w , though for certain 
fiber angle and stiffness combination, a decrease factor of 2 
in the wavelength can be observed as compared to the neo-
Hookean bilayer.

After wrinkles emerge, wrinkle amplitude grows with the 
increasing applied strains as shown in Fig. 12. Here, wrinkle 
amplitude is calculated as the deviation from the mean sur-
face height at each strain level by tracking back the evolu-
tions of two folds and the nearest and global maxima 
between them. The data also clearly show that in the wrinkle 
regime, amplitude follows the canonical square root 

dependence on the strain beyond �w : A ≈ �
√

�−�w

�w
 as shown 

in Fig. 13.

6 � Discussion

Geometry and geometric instabilities are ubiquitous at natu-
ral interfaces (Genzer and Groenewold 2006; Hohlfeld and 
Mahadevan 2011; Pocivavsek et al. 2008, 2019; Cerda and 
Mahadevan 2003). Often the mechanisms that lead to the 
beautiful array of surface buckling, wrinkling, folding, and 
creasing can be understood from the vantage of elasticity 
involving little if any biology; indeed, this approach has led 
to scaling laws predicting the onset and dominant lengths 
scales in arterial wrinkling (Pocivavsek et al. 2009), brain 
sulcus formation (Hohlfeld and Mahadevan 2011), and skin 
wrinkles (Cerda and Mahadevan 2003; Puntel et al. 2011; 
Cerda 2005). This literature has focused on the universality 
of the wrinkle instabilities and as such the elasticity prob-
lem is often solved in a reduced form where the nonlineari-
ties appear from the geometry alone, and the constitutive 
response is limited to linear elasticity (Pocivavsek et al. 
2009). This approach correctly captures the general wrin-
kling instability for composite bilayer systems. However, 
the need for a more detailed and tissue specific analysis 
has arisen in the last several years (Stewart et al. 2016), 
particularly driven by the growing appreciation that these 
patterns influence the functional biology of the given tissue 
(Pocivavsek et al. 2018, 2019; Shivapooja et al. 2013; Shyer 
et al. 2013; Ciarletta et al. 2014) and the desire to build this 
bio-functionality into medical devices (Pocivavsek et al. 
2018, 2019; Yang et al. 2010; Epstein et al. 2013; Hasan 
and Chatterjee 2015; Levering et al. 2014; Chen et al. 2011; 
Mao et al. 2009). Our work has focused on arterial wrinkling 
and folding, and we have hypothesized that these patterns 
could be used by native arteries as a biomechanical strat-
egy to prevent unwanted platelet adhesion (Pocivavsek et al. 
2009, 2018, 2019). In the first part of this paper, we show 
that arterial wrinkling is a dynamic instability that follows 
the canonical (Genzer and Groenewold 2006; Hohlfeld and 
Mahadevan 2011; Pocivavsek et al. 2008, 2019; Cerda and 
Mahadevan 2003) scalings of wrinkle mechanics; in par-
ticular, the amplitude at low compressive strain scales lin-
early with wavelength and as the square root of the strain. 
This point has not been shown in the literature thus far and 
is an important experimental validation of the elasticity 
approaches often used to describe these biologic patterns. 
Furthermore, the change in surface amplitude with luminal 
pressure demonstrates that arterial topography is sensitive 
to intra-arterial pressure making plausible that topography 
actuation is a biologically relevant surface renewal strategy 
as hypothesized previously (Pocivavsek et al. 2018, 2019).

Fig. 12   Wrinkle and transition to period doubling and folding in (x–
y) fiber plane, fiber angle � = 90◦ , fiber stiffness k1∕�s = 2
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The second part of this paper focuses on a detailed com-
putational and analytical analysis of the wrinkle instability 
in a model bilayer where the substrate material response is 
modeled using the well validated OGH arterial constitutive 
law. Our work presents a detailed study of the influences of 
several features in the OGH model on the wrinkling behav-
ior. We study the response utilizing both the built-in OGH 
function in Abaqus, a more general implementation via a 
VUMAT that allows for fiber bearing compressive loads, 
and a purely analytical approach using linear perturbation 
analysis. The three approaches overall give similar results 
for �w , validating that the correct physics has been captured. 
In all three cases, we chose to model only the substrate using 
OGH. The substrate anatomically corresponds to the thick 
arterial media which is rich in collagen, elastin, and smooth 
muscle cells (Holzapfel et al. 2000; Gasser et al. 2006). The 
arterial media is also most prone to disease formation such 
as atherosclerosis or thickening due to years of high cho-
lesterol and high blood pressure (Sidawy and Perler 2018). 
As such, we elected to focus the increase in complexity in 
material response onto the media. The thinner stiffer part of 
the artery that acts as the film or membrane in the wrinkling 
bilayer is often taken to be composed of both the endothe-
lium and internal elastic lamina (IEL) (Pocivavsek et al. 
2009). In this paper, we utilize a neo-Hookean constitutive 
response for the IEL/endothelium layer in order to reduce 
the already large parameter space of the problem; further-
more, while this condition could be relaxed, prior work on 
wrinkling has shown that the membrane undergoes primar-
ily bending dominated deformations and is often treated as 
inextensible and linearly elastic with little loss of generality 
(Allen 1969; Pocivavsek et al. 2008; Cerda and Mahadevan 
2003).

6.1 � Impact of fiber angle and orientation on �
w

The fibers in the OGH model represent collagen, which in a 
straight segment of artery is thought to wrap around the long 
axis of the artery in helical fashion (Holzapfel et al. 2000; 
Gasser et al. 2006). However, collagen orientation becomes 
distorted in many disease states and is poorly understood 
at bifurcations and along curved arterial segments, corre-
sponding to areas of the arterial tree most prone to disease. 
The approach in this paper was to study the effect of fiber 
orientation ( � ) in all three planes independently, as shown 
in Fig. 4. Our main results in Figs. 5, 6 and 7 show that �w 
is highly sensitive to � and the fiber orientation plane. Fib-
ers oriented in the x–y plane show the greatest impact on 
�w as a function of � and fiber stiffness, followed by fibers 
oriented in the y–z plane. The least impact is exerted by fib-
ers in the x–z plane. One way to interpret the impact of fiber 
orientation on wrinkling is to analyze the relative orientation 

Fig. 13   Wrinkle amplitude for three fiber angles � = 90◦, 60◦, 45◦ 
with respect to x-axis in (x–y) fiber plane for the case of fiber stiffness 
k1∕�s = 2 . Red line is a fit to A∕� = c

√
�−�w

�w
 where c is a fitting 

parameter. The fittings indicate that wrinkle amplitude grows with the 
square root of the normalized applied strain
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of the fibers with respect to the two primary directions of 
displacement in the problem: direction of compression (x) 
and direction of amplitude growth (y).

Case 1 is fibers oriented purely along z and thus orthogo-
nal to both direction of compression and amplitude growth, 
which is achieved for � = 90 in Figs. 6 and 7. In this case, 
the fibers are effectively removed from the elastic response 
of the substrate as it concerns wrinkling, which is shown in 
our data by �w ⇒ �NH . The other two limiting cases represent 
fibers oriented in either the direction of compression (case 
two) or amplitude growth (case three).

Case 2 is achievable for fibers oriented in the x–y and x–z 
planes for � = 0 (note the same �w for this angle in Figs. 5 
and 6). Case 3 is achievable for fibers oriented in the x–y 
plane at � = 90 and fibers in the y–z plane for � = 0 (again, 
�w is identical at these angles in Figs. 5 and 7).

Case 3 is simplest to understand physically. The fibers 
behave as extra springs in the direction of amplitude growth, 
effectively stiffening the substrate response along this direc-
tion, which is seen in the increasing �w with increasing fiber 
stiffness. Case 2 shows that fibers oriented purely along the 
direction of compression perturb the onset of wrinkling far 
more weakly compared to case 3. These results show that 
the substrate elastic response in the two limiting cases of 
fiber orientation, irrespective of fiber plane, is most sensitive 
to perturbations along the direction of amplitude growth. 
This is consistent with well known elasticity approaches for 
wrinkling in bilayer systems, where the substrate is often 
treated as a simple potential acting normal to the interface 
(Pocivavsek et al. 2008) or spring-like Winkler foundation 
(Damman 2015; Cerda and Mahadevan 2003).

6.2 � Approximation based on linearized orthotropic 
properties—case study of fibers in the x–y 
plane

For plane strain, isotropic, and incompressible bilayers with 
high modulus mismatch �f∕�s , and in the absence of pre-
strain, the wrinkling strain and wavelength are approximated 
as follows (Sun et al. 2012; Cao and Hutchinson 2012; Brau 
et al. 2011):

Thus, (kh)
2

�w
 is approximately equal to 4. This ratio for bilayers 

of a neo-Hookean film bonded to an orthotropic OGH sub-
strate, however, shows deviations from this constant trend 
(Fig. 16, “Appendix 2”).

Equivalent relationships have also been derived in the lit-
erature for wrinkling in sandwich panels. Vonach and Ram-
merstorfer (2000) provides the following approximation in 

(5)�w ≈
1

4

(
3�s

�f

)2∕3

, kh ≈

(
3�s

�f

)1∕3

which �w depends on the core’s transverse stiffness Ec
y
 and 

shear modulus Gc
xy

.

A further analysis in Vonach and Rammerstorfer (2000) 
indicates that the orthotropic core’s longitudinal stiffness 
Ex might also influence �w.

For the OGH model, the stiffnesses Ex,Ey,Ez , shear mod-
uli Gxy,Gyz,Gxz , and Poisson’s ratios �xy, �yx, �xz , �zx, �yz, �zy 
can be derived through linearization (see “Appendix 2”). 
They are complex functions of fiber stiffness k1 and angle � . 
Specifically, Ex and Ey depend nonlinearly and non-mono-
tonically on � with a local minimum at the “magic angle” 
(Goriely 2017) � ≈ 55◦ and � ≈ 35◦ , respectively (Fig. 17, 
“Appendix 2”). Here, a similar combination of these quanti-
ties as in Eq. 6 is constructed with an attempt to explain and 
correlate with the observed non-monotonic behavior in �w:

where the film’s effective modulus under the condition of 
plane strain and incompressibility is Ef(eff) =

Ef

1−�2
f

=
Ef

0.75
 . The 

substrate’s effective modulus Es
eff

 is assumed to depend on 
both the longitudinal and transverse stiffnesses Ex,Ey as sug-
gested in Vonach and Rammerstorfer (2000).

The good agreement in Fig. 14 between the linear per-
turbation analysis and the derived approximation for various 
fiber dispersion values suggests that �w may be predicted 
from the longitudinal, transverse, and shear moduli and 
Poisson’s ratio in certain directions of the OGH substrate. 
Nevertheless, refinements are needed to obtain a universal 
effective stiffness for the substrate that can be applicable to 
different fiber planes and stiffness mismatch ratios and, pos-
sibly, in the presence of pre-strain. The limit 𝜇f >> k1 >> 𝜇s 
can be further explored to gain better insight into the new 
scaling law that is similar to Eqs. 5 and 6. Studying an 
isotropic film on top of an orthotropic substrate with the 
constitutive relations obtained in “Appendix 2” is another 
approach to understand this limit.

6.3 � Folding

Our primary focus in this paper was to analyze the impact 
of fiber on wrinkling. However, Figs. 12 and 13 show a 
limited FE analysis of post-wrinkling instabilities for fibers 
oriented in the x–y plane. For k1∕�s = 2 , the strain required 
for the wrinkle-to-fold transition increases in the sequence 
� = 90◦, 60◦, 45◦ , which suggests that this transition can 

(6)�w ≈ 0.85

(
Ec
y
Gc

xy

E2
f

)1∕3

(7)�w ≈ 0.85

�
Es
eff
Gs

xy

E2
f(eff)

�1∕3

,Es
eff

≈

√
ExEy

1 − �xz�zx
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either be promoted or inhibited by fiber orientation. Fold-
ing occurs once a given wrinkle begins to deviate from the 
square root law and develops a more linear scaling with � , as 
predicted in our prior work (Pocivavsek et al. 2008). Future 
work will focus on a more detailed study of folding on OGH 
substrates, since folds are also clearly seen in native arteries 
as demonstrated by our experiments.

7 � Conclusion

We show experimentally that native arteries wrinkle and 
fold as a function of intra-luminal pressure or azimuthal 
compression, that the wrinkling observed in arteries fol-
lows scaling laws derived for stiffness mismatched bilay-
ers, and that arteries also undergo post-wrinkling instabili-
ties such as folds, which again follow scalings expected 
from the past literature. Furthermore, we perform a 
detailed computational and analytical analysis of wrin-
kling in a bilayer system where the substrate is modeled 

using the fiber-reinforced OGH energy functional. We 
conclude that global fiber orientation has strong impact 
on the critical strain of wrinkle onset. In general, the addi-
tion of fibers with even marginally larger moduli than the 
surrounding matrix tends to increase the wrinkling strain. 
Fibers oriented in the x–z plane have the weakest pertur-
bation, while fibers in the x–y plane the strongest. Fibers 
oriented primarily along the z-axis (long arterial axis) play 
little role in surface wrinkling; thus, it is not surprising 
that fibers oriented in the x–y plane should have the strong-
est impact on wrinkling. Critical strain scaling with fiber 
angles in y–z and x–z planes are easily understood from the 
limiting cases. In the x–y plane, the strong non-monotonic 
behavior is reproduced by taking into account the aniso-
tropic effect generated by fibers.
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Appendix 1: Perturbation analysis 
for wrinkling in neo‑Hookean/Ogden–
Gasser–Holzapfel Bilayer

Summary of notations

Symbols Notation meaning

L Length of the bilayer
H, h Substrate and film thicknesses
�
x
= �1, �2, �3 Applied stretch in x, y, z directions, respectively

� Perturbation amplitude
� Parameter determined in the eigenvalue analysis
�, k Wavelength and wave number: k = 2�

�

� The applied strain: � = ΔL

L

�w Critical wrinkling strain
k1 , k2 Fiber stiffness, fiber nonlinearity parameter
� , � Fiber dispersion, orientation
L
i

Unit vector of the direction of the ith fiber 
family

Fig. 14   Approximation based on linearized orthotropic moduli pre-
dicts the behavior of �w for two different � values in (x–y) fiber plane
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Symbols Notation meaning

�,P, S,N Cauchy, first and second Piola–Kirchhoff, 
nominal stresses

F, C, B Deformation gradient, right and left Cauchy–
Green tensor

I1, I4ii = L
T

i
CL

i
Invariants of the Cauchy–Green tensor

�f,�s Shear modulus of film and substrate matrix
uf, vf, us, vs Displacement in the film and substrate

Bifurcation of a thin, stiff neo‑Hookean layer 
on an OGH substrate

A bilayer composed of a thin, stiff incompressible neo-
Hookean film attached to a soft, incompressible OGH sub-
strate is subjected to compression as shown in Fig. 15.

Assume that the deformation is plane strain and uniform 
with the deformation state described in Eq. 8.

where (X, Y) are coordinates in the undeformed configura-
tion and (x, y) are the corresponding coordinates in the cur-
rent configuration. �x is the lateral stretch in the x direction.

Consider the perturbation of this homogeneous deformation 
state with the generic forms of perturbation shown in Eq. 9 for 
the case of incompressibility (Sun et al. 2012):

(8)
x = �xX

y =
1

�x
Y

(9)

x = �xX − ���2
x
� sin(kX)e�kY

y =
1

�x
Y + �� cos(kX)e�kY

p = p0 + �p1 cos(kX)e
�kY

where 𝛿 << 1 is the perturbation amplitude parameter. 
k =

2�

�
 is the wrinkle wave number, � is the undeformed-

configurational wavelength of the perturbation. � is a param-
eter to be determined from the equilibrium condition. p is 
the hydrostatic pressure for incompressible solids. p0, p1 are 
to be determined from boundary conditions.

The deformation state of each layer in the bilayer due to 
the above perturbation is a linear combination of each layer 
’s eigenmodes when each layer is considered separately and 
is subjected to the same perturbation. Therefore, in the fol-
lowings, we first will consider the perturbation of each layer 
individually. A linear combination of the obtained eigen-
modes will then be used to construct the deformation state of 
each layer in the bilayer system. Continuity conditions at the 
interface between the two layers and boundary conditions 
at the free surface are used next to construct an eigenvalue 
problem to determine the critical onset of wrinkling. Finally, 
the critical wrinkling strain is determined by numerically 
solving the resulting eigenvalue problem.

Analysis of eigenmodes of the neo‑Hookean film

The analysis of eigenmodes of a neo-Hookean layer has been 
carried out in Sun et al. (2012), Cao and Hutchinson (2012), 
Stewart et al. (2016). Specifically, consider the neo-Hookean 
strain energy density function given in Eq. 10:

First Piola–Kirchhoff stress can be determined from this 
strain energy function by taking the derivative with respect 
to the deformation gradients F and taking into account the 
hydrostatic pressure due to incompressibility, specifically:

Note that the deformation gradient can be determined from 
Eq. (9) for the perturbation state. Specifically,

Note that this prescribed deformation gradient already satis-
fies the incompressibility constraint det(F) = 1 + O(�2).

The first invariant I1 is the trace of the left Cauchy–Green 
tensor B = FTF , which is:

(10)WNH = �f(I1 − 3)

(11)Pij =
�WNH

�Fij

− pF−1
ji

(12)

F11 =
�x

�X
= �x − ���2

x
�k

[
cos(kX)e�kY

]

F12 =
�x

�Y
= −�2��2

x
�k

[
sin(kX)e�kY

]

F21 =
�y

�X
= −��k

[
sin(kX)e�kY

]

F22 =
�y

�Y
=

1

�x
+ ���k

[
cos(kX)e�kY

]

F13 = F31 = F23 = F32 = 0, F33 = 1

Fig. 15   Thin stiff incompressible neo-Hookean film attached to a 
soft, incompressible OGH substrate with two symmetric families of 
fibers
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and

With the consideration of incompressibility det(F) = 1 or 
F11F22 − F12F21 = 1 , the inverse of the deformation gradi-
ent F−1 becomes:

Hence,

Note that for a more compact form, Eq. 16 can be written in 
the matrix form which can be easily derived from the second 
Piola Kirchhoff stress S = 2

�WNH

�C
 . Specifically,

which are consistent with the stresses using index notations 
in Eq. 16.

Substituting Eq. 12 into Eq. 16, the calculations result 
in the following formulae for first Piola–Kirchhoff stress:

(13)

B =

⎡
⎢⎢⎣

F11 F12 0

F21 F22 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

F11 F21 0

F12 F22 0

0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

F2
11
+ F2

12
F11F21 + F12F22 0

F21F11 + F22F12 F2
21
+ F2

22
0

0 0 1

⎤
⎥⎥⎦

(14)I1 = trace(B) = F2
11
+ F2

12
+ F2

21
+ F2

22
+ 1

(15)

F−1 =
1

F11F22 − F12F21

⎡
⎢⎢⎣

F22 − F12 0

−F21 F11 0

0 0 1

⎤
⎥⎥⎦

=

⎡⎢⎢⎣

F22 − F12 0

−F21 F11 0

0 0 1

⎤⎥⎥⎦

(16)

P11 =
�WNH

�F11

− pF−1
11

= �f

�I1

�F11

− pF−1
11

= 2�fF11 −
[
p0 + �p1 cos(kX)e

�kY
]
F22

P12 =
�WNH

�F12

− pF−1
21

= �f

�I1

�F12

− pF−1
21

= 2�fF12 +
[
p0 + �p1 cos(kX)e

�kY
]
F21

P21 =
�WNH

�F21

− pF−1
12

= �f

�I1

�F21

− pF−1
12

= 2�fF21 +
[
p0 + �p1 cos(kX)e

�kY
]
F12

P22 =
�WNH

�F22

− pF−1
22

= �f

�I1

�F22

− pF−1
22

= 2�fF22 −
[
p0 + �p1 cos(kX)e

�kY
]
F11

(17)
S = 2�f

�I1

�C
= 2�fI

P = FS − pF−T = 2�fF − pF−T

The zeroth order ( � = 0 ) solution is obtained from Eq. 18, 
and from the boundary condition for the single layer P0

22
= 0 , 

it is shown that p0 =
2�f

�2
x

Substituting the stresses into the two following equi-
librium equations, the following 2 equations are obtained:

which leads to:

From the first part of Eq.  20, p1 = −4��f��
3
x
(1 − �2) . 

Substituting this p1 into the second part of Eq. 20 yields 
a fourth-order equation of � : 4��f(�

4
x
�2 − 1)(1 − �2) = 0 . 

Solving this equation gives four solutions of � and hence 
4 pairs of solutions 

(
�i, pi

)
 corresponding with 4 eigen-

values: � = 1, � = −1, � = 1∕�2
x
, � = −1∕�2

x
 . Substituting 

each pair of solutions into Eqs. (9) and (18) provides an 
eigenmode and its stress state for the single neo-Hookean 
layer subjected to perturbation. Specifically, from Eq. (9), (
ufi, vfi

)
, i = 1, 4 are obtained for the deformation where 

u = x − �xX, v = y − Y∕�x . From Eq. (18), tangential and 
normal tractions Nfi21

,Nfi22
, i = 1, 4 are obtained from the 

nominal stresses, respectively. Nominal stress is determined 
as N = PT.

Analysis of eigenmodes of the OGH substrate

Consider the OGH substrate with the strain energy density 
function given in Eq. 21.

(18)

P11 =

(
2�f�x − p0

1

�x

)

− �

{
2�fk��

2
x
� + p0k�� +

p1

�x

}
cos(kX)e�kY

+ O(�2)

P12 = −�
(
2�fk�

2�2
x
� + p0k�

)
sin(kX)e�kY + O(�2)

P21 = −�
(
2�fk� + p0k�

2�2
x
�
)
sin(kX)e�kY + O(�2)

P22 =

(
2�f

�x
− p0�x

)

+ �
(
2�fk�� + p0k��

2
x
� − �xp1

)
cos(kX)e�kY

+ O(�2)

(19)

P11,X + P12,Y =

{
4��f��

2
x

(
1 − �2

)
+

p1

�x

}

�k sin(kX)e�kY + O(�2) = 0

P12,X + P22,Y =
(
−4��f + 4��f�

2 − �x�p1
)

�k cos(kX)e�kY + O(�2) = 0

(20)
4��f��

2
x

(
1 − �2

)
+

p1

�x
= 0

− 4��f + 4��f�
2 − �x�p1 = 0
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where the invariant I4mm = Lm.(CLm) , Lm is the unit direc-
tion of the fiber family m th, C = FTF is the right Cauchy 
Green tensor.

With the same approach as in Sect.  1.1, the first 
Piola–Kirchhoff stress can be determined by taking the 
derivative of the energy with respect to the deformation 
gradient.

or from the second Piola–Kirchhoff stress S:

where the second Piola–Kirchhoff stress is:

Thus, the first Piola–Kirchhoff stress becomes:

With the given deformation gradient in Eq. (9), compo-
nents of the first Piola–Kirchhoff stress corresponding to the 
OGH layer are specified in Eq. 25. Hence, from the zeroth-
order solution with the boundary condition P0

22
= 0 , p0 is 

determined.
Substituting these stresses into the two equilibrium 

equations (in Eq.  19) and applying the same solution 

(21)
WOGH = �s(I1 − 3) +

k1

2k2

N∑
m=1

{
exp

[
k2E

2
m

]
− 1

}

Em = �(I1 − 3) + (1 − 3�)(I4mm − 1)

(22)Pij =
�WOGH

�Fij

− pF−1
ji

(23)P = FS − pF−T = 2F
�WOGH

�C
− pF−T

(24)

S = 2
𝜕WOGH

𝜕C
= 2𝜇s

𝜕I1

𝜕C

+
k1

k2

2∑
m=1

{
2k2Emexp

[
k2E

2
m

]𝜕Ei

𝜕C

}

S = 2𝜇sI + 2k1

2∑
m=1

Emexp
[
k2E

2
m

]

{
𝜅
𝜕I1

𝜕C
+ (1 − 3𝜅)

𝜕I4mm

𝜕C

}

S = 2𝜇sI +

2∑
m=1

2k1𝜅Emexp
[
k2E

2
m

]
I

+

2∑
m=1

2k1(1 − 3𝜅)Emexp
[
k2E

2
m

]
Lm ⊗ Lm

(25)

P = −PF−T + 2𝜇sF +

2∑
m=1

2k1𝜅Emexp
[
k2E

2
m

]
F

+

2∑
m=1

2k1(1 − 3𝜅)Emexp
[
k2E

2
m

]
F
(
Lm ⊗ Lm

)

method as in Sect. 1.1, a fourth-order equation in terms of 
� is again obtained. Hence, 4 pairs of solutions 

(
�i, pi

)
 are 

determined. However, for the substrate, as the undulation 
dies down as Y → −∞ , only 2 solutions with positive val-
ues of � are used to construct eigenmodes for the substrate. 
Specifically, from Eq. (9), 

(
usi, vsi

)
, i = 1, 2 are obtained 

for the deformation where u = x − �xX, v = y − Y∕�x . From 
Eq. (25), tangential and normal tractions Nsi21

,Nsi22
, i = 1, 2 

are obtained from the nominal stresses, respectively. Nom-
inal stress is determined as N = PT.

Note that for a neo-Hookean layer, the 4 eigenvalues � 
are all real values. However, solving the fourth-order equa-
tion of eigenvalues � for the OGH substrate can result in 
complex solutions. If the eigenvalues � for the OGH sub-
strate are complex, the four eigenvalues will correspond 
to two pairs of complex conjugate. As the undulation 
must vanish when Y → −∞ , the pair of complex conju-
gate with the positive real part is chosen for construct-
ing the eigenmodes for the substrate. Actually, as this is a 
pair of conjugate eigenvalues � , only one is needed. With 
this eigenvalue, it is straightforward to compute 

(
usi, vsi

)
 

and Nsi21
,Nsi22

 which are the corresponding deformation 
and stresses. As � is a complex value, these deformation 
and stress fields are also complex. The real parts and the 
complex parts of the fields are used now to construct the 
2 eigenmodes of the OGH substrate.

Due to the cumbersome formulae, all the calculations 
for the stresses, equilibrium equations, and eigenvalue 
problems are implemented in Matlab.

Linear combination of eigenmodes for the bilayer 
system

Recall: 
(
ufi, vfi

)
, i = 1, 4 and Nfi21

,Nfi22
, i = 1, 4 as the defor-

mation and stresses, respectively, associated with 4 eigen-
modes of the neo-Hookean layer. 

(
usi, vsi

)
, i = 1, 2 and 

Nsi21
,Nsi22

, i = 1, 2 as the deformation and nominal stresses, 
respectively, associated with 2 eigenmodes of the OGH 
layer.

For a bilayer composed of a neo-Hookean film attached 
to an OGH substrate subjected to the perturbation in Eq. 9, 
the deformation in each layer is a linear combination of its 
eigenmodes. In other words, the deformation in the neo-
Hookean film can be written as:

The deformation in the OGH substrate can be written as:

(26)

uf = A1uf1 + A2uf2 + A3uf3 + A4uf4

vf = A1vf1 + A2vf2 + A3vf3 + A4vf4

Nf21
= A1Nf121

+ A2Nf221
+ A3Nf321

+ A4Nf421

Nf22
= A1Nf122

+ A2Nf222
+ A3Nf322

+ A4Nf422
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where A1,A2,A3,A4,A5,A6 are constant parameters.

Continuity and boundary conditions—eigenvalue 
problem for critical strain

At the interface between the film and the substrate, Y = 0 , 
continuity in displacements and tractions are enforced which 
can be written as follows:

At the stress-free face Y = h of the neo-Hookean film, two 
boundary conditions for tractions are obtained:

Critical wrinkling strain determination

By substituting the linear combinations in Eqs. 26, 27 into 
the system of continuity and boundary conditions in Eqs. 28 
and 29, a system of the following forms is obtained:

The critical wrinkling strain, which is minimized over all kh 
is determined from the nonlinear equations det(F) = 0 . This 
is solved numerically in Matlab.

Appendix 2: Linearization of OGH model 
for material properties

Figure 16 plots the prediction of (kh)
2

�w
 ratio for bilayers of a 

neo-Hookean film bonded to an OGH substrate.
When the fiber stiffness k1 = 0 , the substrate becomes 

neo-Hookean. The ratio approaches the value of 4 for 
𝜇f >> 𝜇s , which is demonstrated in Fig.  16 for the 

(27)

us = A5us1 + A6us2

vs = A5vs1 + A6vs2

Ns21
= A5Ns121

+ A6Ns221

Ns22
= A5Ns122

+ A6Ns222

(28)

uf(Y = 0) = us(Y = 0)

vf(Y = 0) = vs(Y = 0)

Nf21
(Y = 0) = Ns21

(Y = 0)

Nf22
(Y = 0) = Ns22

(Y = 0)

(29)
Nf21

(Y = h) = 0

Nf22
(Y = h) = 0

(30)F
�
�x, kh

�
⎡⎢⎢⎢⎢⎢⎢⎣

A1

A2

A3

A4

A5

A6

⎤⎥⎥⎥⎥⎥⎥⎦

= 0

mismatch modulus ratio �f∕�s = 1000 . At lower mismatch 
ratio, the value of (kh)

2

�w
 is slightly less than 4. Specifically, 

with a mismatch modulus ratio �f∕�s of 100 as considered 
in this paper, (kh)

2

�w
∼ 3.7 . When fiber stiffness is nonzero, 

the renormalization of the substrate stiffness must change 
the effective value of the substrate stiffness and lead to 
deviations of this ratio from the constant value. At low 
fiber stiffness k1∕�s = 2, k1∕�s = 5 , the ratio remains con-
stant around the value of the corresponding neo-Hookean 
bilayer with the same modulus mismatch �f∕�s = 100 . For 
higher fiber stiffness k1∕�s = 10 , the ratio shows some 
deviations from this constant trend, especially at high val-
ues of fiber angle � . Note that as angle � increases, the 
transverse direction y also has higher stiffness. The devia-
tion, therefore, might be attributed to the effect of ortho-
tropic material properties associated with OGH model 
which become more significant as fibers are stiffer and 
oriented in the transverse (y) direction. These properties 
are derived through linearization as follows.

Ogden–Gasser–Holzapfel substrate with strain energy 
density function:

where C = FTF is the right Cauchy–Green tensor, F is the 
deformation gradient, Li is the unit vector of the orientation 
of the ith fiber family. Here, N = 2 corresponds to two fiber 
families.

(31)

WOGH = �(I1 − 3) +
k1

2k2

N∑
i=1

{
exp

[
k2E

2
i

]
− 1

}

Ei = �(I1 − 3) + (1 − 3�)(I4ii − 1)

I4ii = LT
i
CLi

0 10 20 30 40 50 60 70 80 90

Fiber angle: 

0

1

2

3

4

5

Fig. 16   Ratio(kh)2

�w
 versus fiber angle � for the case of fiber dispersion 

� = 0 in (x–y) fiber plane
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The second Piola–Kirchhoff stress:

Cauchy stress for incompressible case:

where B = FFT is the left Cauchy Green tensor.
For two family f ibers lying in x–y  plane: 

L1 = [c, s, 0]T, L2 = [c,−s, 0]T, c = cos(�), s = sin(�) where 
� is the fiber angle with respect to x-axis.

Determine longitudinal moduli and Poisson’s ratios

Consider a block made of OGH material being subjected to 
tension in one direction and free to expand in the other two 
directions. The deformation gradient F, left Cauchy–Green 
tensor B, right Cauchy–Green tensor C are described as 
follows:

where the three stretch ratios are related by incompressibil-
ity restriction: �1�2�3 = 1 . Other quantities in Eq. (33) for 
computing Cauchy stresses become:

(32)

S = 2
𝜕WOGH

𝜕C

= 2𝜇
𝜕I1

𝜕C
+

k1

k2

2∑
i=1

{
2k2Eiexp

[
k2E

2
i

]𝜕Ei

𝜕C

}

S = 2𝜇I + 2k1

2∑
i=1

Eiexp
[
k2E

2
i

]

{
𝜅
𝜕I1

𝜕C
+ (1 − 3𝜅)

𝜕I4i

𝜕C

}

S = 2𝜇I +

2∑
i=1

2k1𝜅Eiexp
[
k2E

2
i

]
I

+

2∑
i=1

2k1(1 − 3𝜅)Eiexp
[
k2E

2
i

]
Li ⊗ Li

(33)

𝜎 = FSFT = −pI + 2𝜇B +

2∑
i=1

2k1𝜅Eiexp
[
k2E

2
i

]
B

+

2∑
i=1

2k1(1 − 3𝜅)Eiexp
[
k2E

2
i

]
FLi ⊗ FLi

(34)F =

⎡⎢⎢⎣

�1 0 0

0 �2 0

0 0 �3

⎤⎥⎥⎦
, B = C =

⎡⎢⎢⎣

�2
1

0 0

0 �2
2

0

0 0 �2
3

⎤⎥⎥⎦

(35)

FL1 =

⎡
⎢⎢⎣

�1 0 0

0 �2 0

0 0 �3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c

s

0

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

c�1
s�2
0

⎤
⎥⎥⎦
,

FL2 =

⎡⎢⎢⎣

�1 0 0

0 �2 0

0 0 �3

⎤⎥⎥⎦

⎡⎢⎢⎣

c

−s

0

⎤⎥⎥⎦
=

⎡⎢⎢⎣

c�1
−s�2
0

⎤⎥⎥⎦

Substituting Eqs. (34–40) into Eq. (33), three components of 
Cauchy stresses for the block being pulled in one direction:

Stretching along the x direction to determine Ex , �xy , �xz

Note that the block is pulled in x direction and is free to expand 
in y and z directions, therefore:

thus, using �3 =
1

�1�2
 , they can be written:

(36)
I41 =

�
c s 0

� ⎡⎢⎢⎣

�2
1

0 0

0 �2
2

0

0 0 �2
3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c

s

0

⎤
⎥⎥⎦

= c2�2
1
+ s2�2

2

(37)
I42 =

�
c −s 0

� ⎡⎢⎢⎣

�2
1

0 0

0 �2
2

0

0 0 �2
3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c

−s

0

⎤
⎥⎥⎦

= c2�2
1
+ s2�2

2

(38)
E1 = E2 = �(I1 − 3)

+ (1 − 3�)(c2�2
1
+ s2�2

2
− 1)

(39)

FL1 ⊗ FL1 =

⎡
⎢⎢⎣

c𝜆1
s𝜆2
0

⎤
⎥⎥⎦
�
c𝜆1 s𝜆2 0

�

=

⎡⎢⎢⎣

c2𝜆2
1

cs𝜆1𝜆2 0

cs𝜆1𝜆2 s2𝜆2
2

0

0 0 0

⎤⎥⎥⎦

(40)

FL2 ⊗ FL2 =

⎡
⎢⎢⎣

c𝜆1
−s𝜆2
0

⎤
⎥⎥⎦
�
c𝜆1 −s𝜆2 0

�

=

⎡⎢⎢⎣

c2𝜆2
1

− cs𝜆1𝜆2 0

−cs𝜆1𝜆2 s2𝜆2
2

0

0 0 0

⎤⎥⎥⎦

(41)

�11 = −p + 2��2
1
+ 4�k1E1exp

[
k2E

2
1

]
�2
1

+ 4(1 − 3�)k1E1exp
[
k2E

2
1

]
c2�2

1

�22 = −p + 2��2
2
+ 4�k1E1exp

[
k2E

2
1

]
�2
2

+ 4(1 − 3�)k1E1exp
[
k2E

2
1

]
s2�2

2

�33 = −p + 2��2
3
+ 4�k1E1exp

[
k2E

2
1

]
�2
3

(42)�11 ≠ 0, �22 = 0, �33 = 0
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Consider small deformation regime, the strains are small and 
their high order terms can be neglected. Thus, the follow-
ing approximations can be used to approximate the stresses:

Substituting the approximations in Eq. (44) into Eq. (43), 
the stresses become:

since �22 = 0 , so we have:

Note that we are pulling in the x direction, so this ratio 
between the two strains gives the Poisson’s ratio �xy . It can 
be seen that for the case of isotropic material, i.e., k1 = 0 or 
� = 1∕3 , this ratio is equal to 0.5 which is the Poisson’s ratio 
of isotropic incompressible material.

By substituting �2 in terms of �1 into �11 , we have:

The longitudinal modulus in the x-direction, thus, can be 
obtained:

(43)

�11 = �11 − �33 = 2�

{
�2
1
−

1

�2
1
�2
2

}

+ 4�k1E1exp[k2E
2
1
]

[
�2
1
−

1

�2
1
�2
2

]

+ 4(1 − 3�)k1E1exp[k2E
2
1
]c2�2

1

�22 = �22 − �33 = 2�

{
�2
2
−

1

�2
1
�2
2

}

+ 4�k1E1exp[k2E
2
1
]

[
�2
2
−

1

�2
1
�2
2

]

+ 4(1 − 3�)k1E1exp[k2E
2
1
]s2�2

2

(44)

�1 = 1 + �1, �2 = 1 + �2, �
2
1
= 1 + 2�1, �

2
2
= 1 + 2�2

1

�2
1

= 1 − 2�1,
1

�2
2

= 1 − 2�2,
1

�2
1
�2
2

= 1 − 2�1 − 2�2

I1 = �2
1
+ �2

2
+ �2

3
= 3

I41 = I42 = c2�2
1
+ s2�2

2
= 1 + 2c2�1 + 2s2�2

E1 = E2 = (1 − 3�)
(
2c2�1 + 2s2�2

)

exp
[
k2E

2
1

]
= 1

(45)
�11 = 2�(4�1 + 2�2) + 8k1(1 − 3�)2(c4�1 + c2s2�2)

�22 = 2�(4�2 + 2�1) + 8k1(1 − 3�)2(c2s2�1 + s4�2)

(46)
�2

�1
= −�xy = −

4� + 8k1(1 − 3�)2c2s2

8� + 8k1(1 − 3�)2s4

(47)�11 =
6�2 + 8k1�(1 − 3�)2(1 − 3c2s2)

� + k1(1 − 3�)2s4
�1

(48)Ex =
�11

�11
=

6�2 + 8k1�(1 − 3�)2(1 − 3c2s2)

� + k1(1 − 3�)2s4

Again, for k1 = 0 or � = 1∕3 , this modulus reduces to 
Ex = 6� which is the Young modulus value of isotropic, 
incompressible material.

Note that:

Stretching along the y direction to determine Ey , �yx , �yz

With the same approach, the modulus Ey in y-direction and 
Poisson’s ratio �yx can be derived by subjecting the block to 
the tension in y-direction. Specifically,

Thus:

The Poisson’s ratio �yx is therefore,

And the modulus Ey:

The Poisson’s ratio �yz is:

Pulling in the z direction to determine Ez , �zx , �zy

When the block is subjected to tension in z direction and is 
free to expand in x, y directions, the stress state becomes:

(49)

�3 =
1

�1�2
=

1

(1 + �1)(1 + �2)
= 1 − �1 − �2 = 1 + �3

�1 + �2 = −�3 ⟹ 1 +
�2

�1
= −

�3

�1

⟹ �xz = −
�3

�1
=

4� + 8k1(1 − 3�)2s2(s2 − c2)

8� + 8k1(1 − 3�)2s4

(50)�11 = 0, �22 ≠ 0, �33 = 0

(51)

�11 = �11 − �33 =
{
8� + 8k1(1 − 3�)2c4

}
�1

+
{
4� + 8k1(1 − 3�)2c2s2

}
�2 = 0

�22 = �22 − �33 =
{
4� + 8k1(1 − 3�)2c2s2

}
�1

+
{
8� + 8k1(1 − 3�)2s4

}
�2

(52)
�1

�2
= −�yx = −

4� + 8k1(1 − 3�)2c2s2

8� + 8k1(1 − 3�)2c4

(53)

Ey =
�22

�22
= −

(4� + 8k1(1 − 3�)2c2s2)2

8� + 8k1(1 − 3�)2c4

+ (8� + 8k1(1 − 3�)2s4)

Ey =
6�2 + 8k1�(1 − 3�)2(1 − 3c2s2)

� + k1(1 − 3�)2c4

(54)

�1 + �2 = −�3 ⟹ 1 +
�1

�2
= −

�3

�2

⟹ �yz = −
�3

�2
=

4� + 8k1(1 − 3�)2c2(c2 − s2)

8� + 8k1(1 − 3�)2c4
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Using �2 =
1

�1�3
 , Eq. (33) becomes:

Using small deformation approximations:

Substituting Eq. (58) into Eq. (57):

(55)�11 = 0, �22 = 0, �33 ≠ 0

(56)

�11 = −p + 2��2
1
+ 4�k1E1exp[k2E

2
1
]�2

1

+ 4(1 − 3�)k1E1exp[k2E
2
1
]c2�2

1
= 0

�22 = −p + 2�
1

�2
1
�2
3

+ 4�k1E1exp[k2E
2
1
]

1

�2
1
�2
3

+ 4(1 − 3�)k1E1exp[k2E
2
1
]
s2

�2
1
�2
3

= 0

�33 = −p + 2��2
3
+ 4�k1E1exp[k2E

2
1
]�2

3

(57)

�33 = �33 − �22 = 2�

[
�2
3
−

1

�2
1
�2
3

]

+ 4�k1E1exp[k2E
2
1

[
�2
3
−

1

�2
1
�2
3

]

− 4k1E1(1 − 3�)exp[k2E
2
1
]
s2

�2
1
�2
3

�11 = �11 − �22 = 2�

[
�2
1
−

1

�2
1
�2
3

]

+ 4�k1E1exp[k2E
2
1

[
�2
1
−

1

�2
1
�2
3

]

+ 4k1E1(1 − 3�)exp[k2E
2
1
]

[
c2�2

1
−

s2

�2
1
�2
3

]

(58)

�1 = 1 + �1, �
2
1
= 1 + 2�1,

1

�2
1

= 1 − 2�1

�3 = 1 + �3, �
2
3
= 1 + 2�3,

1

�2
3

= 1 − 2�3

1

�2
1
�2
3

= 1 − 2�1 − 2�3, �
2
1
−

1

�2
1
�2
3

= 4�1 + 2�3, �
2
3
−

1

�2
1
�2
3

= 2�1 + 4�3

s2

�2
1
�2
3

= s2(1 − 2�1 − 2�3)

c2�2
1
−

s2

�2
1
�2
3

= c2 − s2 + 2�1 + 2s2�3

E1 = (1 − 3�)(c2�2
1
+

s2

�2
1
�2
3

− 1)

= (1 − 3�)
[
2(c2 − s2)�1 − 2s2�3

]

Therefore, the Poisson’s ratio �zx is:

The modulus Ez is:

Poisson’s ratio �zy

Apply simple shear stress �xy to determine shear 
modulus Gxy

The deformation gradient and all related quantities to compute 
stress state in this loading case are:

Other quantities in Eq. (50) for computing Cauchy stresses.

(59)

�33 = 2�(4�3 + 2�1) − 4k1(1 − 3�)2s2[
2(c2 − s2)�1 − 2s2�3

]

�11 = 2�(4�1 + 2�3) + 4k1(1 − 3�)2(c2 − s2)[
2(c2 − s2)�1 − 2s2�3

]
= 0

(60)
�1

�3
= −�zx = −

4� − 8k1(1 − 3�)2(c2s2 − s4)

8� + 8k1(1 − 3�)2(c2 − s2)2

(61)Ez =
6�2 + 8�k1(1 − 3�)2(1 − 3c2s2)

� + k1(1 − 3�)2(c2 − s2)2

(62)�zy =
4� + 8k1(1 − 3�)2(c2 − s2)c2

8� + 8k1(1 − 3�)2(c2 − s2)2

(63)

F =

⎡
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⎤
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⎡
⎢⎢⎣

1 + �2 � 0
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⎤
⎥⎥⎦
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(64)
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s

0

⎤
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,
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(65)
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⎤
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c

s
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Neglecting high order term of � , the shear stress �xy in Eq. 
(33) becomes:

Thus, the shear stress Gxy becomes:

(66)
I42 =

�
c −s 0

� ⎡⎢⎢⎣

1 � 0

� 1 + �2 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c

−s

0

⎤
⎥⎥⎦

= 1 − 2cs�

(67)
E1 = (1 − 3�)(2cs�),

E2 = (1 − 3�)(−2cs�)

(68)

FL1 ⊗ FL1 =

⎡
⎢⎢⎣

c + s𝛾

s

0

⎤
⎥⎥⎦
�
c + s𝛾 s 0

�

=

⎡
⎢⎢⎣

(c + s𝛾)2 s(c + s𝛾) 0

s(c + s𝛾) s2 0

0 0 0

⎤
⎥⎥⎦

(69)

FL2 ⊗ FL2 =

⎡
⎢⎢⎣

c − s𝛾

−s

0

⎤
⎥⎥⎦
�
c − s𝛾 −s 0

�

=

⎡⎢⎢⎣

(c − s𝛾)2 − s(c − s𝛾) 0

−s(c − s𝛾) s2 0

0 0 0

⎤⎥⎥⎦

(70)�xy =
[
2� + 8k1(1 − 3�)2c2s2

]
�

(71)Gxy =
�xy

�
= 2� + 8k1(1 − 3�)2c2s2

With similar approach, the shear moduli Gxz , Gyz can also 
be determined. For fiber plane (x–y), these shear moduli are 
equal to the value of isotropic case Gyz = Gxz = 2�.

Figure 17 illustrates how the longitudinal ( Ex ) and trans-
verse ( Ey ) stiffnesses vary with respect to the fiber angle � at 
two values of fiber stiffness k1∕�s = 5 and k1∕�s = 2.
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