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ABSTRACT

We develop a dynamic system identification model to iden-
tify relationships among simultaneously recorded electroen-
cephalography (EEG), electromyography (EMG) and force
signals measured from 12 participants performing haptic in-
teractions with 3D printed surfaces having different textures.
In the first stage, we solve for the maximum likelihood (ML)
parameter vector of a parsimonious integrated vector autore-
gression model (VAR) to estimate the latency between en-
dogenous time variables, utilizing a grid search over the log
likelihood scores. In the second stage, we explore the modal-
ity dependencies between synchronized EEG, EMG and hap-
tic interactions by training parsimonious VAR models of the
same structure. We use our knowledge of signal latency, lag
orders and modality dependencies to predict EEG and hap-
tic forces from any provided different combination of EEG,
EMG and force measurements. In our future work, this model
will guide external stimulation parameters for haptic interac-
tion simulation in scenarios, including teleoperations and vir-
tual environments.

Index Terms— haptic feedback, BCI, EEG, linear dy-
namic system identification, auto-regressive endogenous non-
stationary sequence modeling.

1. INTRODUCTION

Haptic devices are commonly used to present limited sense
of touch (vibration, motion, force or temperature), in order
to improve spatial cognition and presence in simulated envi-
ronments. [1, 2, 3]. The sense of touch isn’t only critical to
improve psychomotor performance in virtual object manipu-
lation tasks, such as minimally invasive surgery training [4],
laparoscopy [5], interventional radiology procedures [6], tra-
jectory tracking and spatial navigation [7, 8, 9], but also it
conveys information about emotions such as fear [10] and
mood changes [11, 12].

Despite the presence of different measurement methods
of spatial presence, and their utilization in evaluating the sen-
sory feedback [13], these measures haven’t been employed
as design metrics to achieve specific levels of spatial pres-

ence. That is, there is currently no closed-loop control of
sensory stimulations that couple the spatial presence mea-
sures to adaptive adjustment of haptic stimulation levels. Our
goal is to develop a brain computer interface (BCI) based
on closed-loop haptic stimulation framework guided by the
changes in the brain activity measured through EEG. EEG
has been shown to successfully and reliably measure the spa-
tial presence of a user in an immersive VR (virtual reality)
environment [13]. To achieve this goal our initial step is
to identify a relationship/model among simultaneously mea-
sured contact forces (measured through force transducer),
muscle activity (measured through EMG) and brain activity
(measured through EEG). This paper presents our prelimi-
nary results on our system identification approach to identify
the above mentioned relationship among the three modalities.

More specifically, we utilize an integrated vector autore-
gressive model for linear dynamic system identification with
multiple endogenous time series. For the analysis of mul-
tivariate time series, it is one of the easy to use and flexible
models and extends the univariate autoregressive model to dy-
namic multivariate time series. It regards the values that a
particular variable has assumed in a specific period as realiza-
tions of all random variables generates the time series data for
each variable through an underlying stochastic process [14].

In practice, latency between haptic force interactions,
EEG, and EMG stand as the key challenge in modeling sys-
tem identification for BCI in a simulated environment. Hence,
before proceeding with the design and implementation of a
linear system identification model, we explore the parame-
ters of latency by utilizing a grid search among the Bayesian
Information Criterion (BIC) scores of VAR models over a re-
gion linearly spaced for different latency parameters between
haptic force interactions-EMG and EMG-EEG. The under-
lying presumption in this search is that there is a time delay
between haptic interactions, stimulation of touch and pres-
sure receptors in the skin, and brain’s response to the sensory
information. Besides, there is latency added to that by the
data acquisition hardware. Then, we search for the lag order
that provides the lowest BIC score to employ a parsimonious
model that predicts the future samples of the multivariate
time data and explore the modality dependencies.
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Fig. 1: Experimental Setup. The participant is tapping the
texture mounted on the force transducer.

2. EXPERIMENTAL SETUP

In this experiment, we have a total of 18 conditions: a com-
bination of surface texture (flat, medium rough and rough),
speed level (0.5, 1, and 2 Hz) and movement type (rub and
tap). Within a condition, the participant is instructed to rub or
tap the chosen surface multiple times at a specific speed. Each
complete rub or tap movement is considered a trial. These tri-
als are segmented using the normal contact force component.

The experimental setup is shown in Fig.1. In order to
avoid any visual or auditory distracting factors, the subjects
were asked to look at a black screen presented on the com-
puter, while sitting in a quiet room and rest their right arm on
the table as shown in Fig.1. Three surfaces with different lev-
els of roughness were securely attached to a force transducer,
which was fixed on a table. The measured contact forces and
EEG were recorded synchronously, while the participant was
rubbing or tapping each surface for one minute. The 18 con-
ditions were randomized for each participant and there was
one minute of rest after each condition.

A set of three textures with different levels of roughness
(flat, medium rough, and rough surfaces) have been generated
using MATLAB and fabricated with 3D printing. The power
spectral density of each surface is given by :

φ(|k|) =

⎧⎪⎨
⎪⎩
C, if kl <= |k| <= kr.

C( |k|kr
)−2(1+H), if kr <= |k| <= ks.

0, otherwise.
(1)

where C is the roughness amplitude, kl, kr, ks are the lower
roll-off and upper cutoff wave numbers and H is the Hurst
roughness exponent. Fig.2 shows both the medium rough (H
= 0.5, C = 10 ∗ 1010, kl = kr = 16, ks = 64) and rough ( H =
0.5, C = 10 ∗ 1010, kl = kr = 32, ks = 256) surfaces used in
this study.

2.1. Data Acquisition

EEG was recorded from 12 right-handed healthy participants
according to the 10-20 system from 14-channels, using elec-
trodes placed over the frontal and somatosensory cortex fo-
cusing around the sensorimotor integration regions, respec-
tively (F3, F4, FC3, FC4, C1, C3, C5, CZ, C2, C4, C6, CP1,

Fig. 2: The power spectral density of the medium rough and
rough 3D printed surfaces respectively.

CPZ and CP2). IRBs approved by the authors’ institutions are
used for recruitment and obtaining written consents from the
participants. The left mastoid was used as a reference. In this
study, two g.USBamp (from g-tec) amplifiers were used, one
for EEG data acquisition and one for force data. Recorded
EEG data were digitized with 1200 Hz sampling rate. EEG
signals were filtered using a 4th order notch filter with corner
frequencies of 58 and 62 Hz, and an 8th order bandpass filter
with corner frequencies of 2 and 62 Hz.

A force and torque transducer (NANO17 F/T transducer,
ATI Industrial Automation, USA) was used to record the force
data. The force data was then transferred to the analog inputs
of the g.USBamp amplifier, and sampled at 1200 Hz. Two
amplifiers are connected to each other to enable synchroniza-
tion across EEG and force data. Besides, both EEG and force
data were synchronized to each condition through a digital
trigger. The presentation software (Psychtoolbox) is used in
MATLAB to send triggers to the two amplifiers to mark the
"go" cue for each condition. Then, the time stamp for each
trigger is saved along with the acquired data. These triggers
are then used to segment both the EEG and force data per
condition.

3. PROPOSED METHOD

Given y as the multivariate time signal with K endogeneous
variables (signals from 14 EEG and 4 EMG channels and
force measurements from x, y and z dimensions) and a sam-
ple size of T (observations from more than 10 thousand trials)
for each of the K variables, v as the intercept terms, Ai as
the coefficient matrices for i = 1, . . . , p, and ut as the inde-
pendent and identically distributed fundamental innovation, a
VAR model of order p is denoted as,

yt = v +A1yt−1 + · · ·+Apyt−p + ut

yt ∈ R
K×1, v ∈ R

K×1, Ai ∈ R
K×K ∀i, ut ∈ R

K×1

E(ut) = 0, E(utu
′
τ ) =

{
Ω t = τ

0 t �= τ

Ω ∈ R
K×K denotes the covariance matrix and it is positive

semidefinite.
(1)
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A VAR(p) model can be written more compactly as,

Y = BZ + U, where:

Y := (y1, . . . , yT ) ∈ R
K×T

B := (v,A1 . . . , Ap) ∈ R
K×(Kp+1)

Zt := (1, yt−1, . . . , yt−p) ∈ R
(Kp+1)×1

Z := (Z0, . . . , ZT−1) ∈ R
(Kp+1)×T

U := (u1, . . . , uT ) ∈ R
K×T

(2)

Given the observed random variables yt and unobserved
Gaussian noise U∼N (0, IT ⊗ Ω), VAR model employs
system identification using T total number of observations,
conditioned on the first p observations [14]. The samples
of the endogenous multivariate time data are drawn from a
Gaussian distribution at each time index,

fYt|Yt−1,...,Yt−p(yt|yt−1,...,yt−p
; θ) =

N (v +A1yt−1 + · · ·+Apyt−p,Ω) =

(2π)−
K
2 |Ω−1| 12 exp(−1

2
(yt −BZt)

′
Ω−1(yt −BZt)),

for a likelihood parameter vector defined as,

θ = (v
′
, vec(A1)

′
, vec(A2)

′
, . . . , vec(Ap)

′
, vech(Ω)

′
)
′
.

(3)

Recursively, conditional on the y0, . . . , yt−p, the product of
the single conditional densities returns the likelihood function
for the full sample,

fYT ,...,Y1|Y0,...,Yt−p
=

T∏
t=1

fYt|Yt−1,...,Yt−p
(yt|yt−1, . . . , yt−p; θ)

=
T∏

t=1

(2π)−K/2

|Ω|1/2 exp

(
− (yt −BZt)

′
Ω−1(yt −BZt)

2

)

(4)

Hence, the log likelihood function is,

�(θ|yt) = −KT

2
ln(2π) +

T

2
ln |Ω−1|

− 1

2

T∑
t=1

(yt −BZt)
′
Ω−1(yt −BZt)

(5)

In order to minimize the negative of the concentrated log like-
lihood function and determine the ML estimates of v,Ai and
Ω, the system of first order partial derivatives is needed.

Lemma 1 If w does not depend on A and A is symmetric,

∂wTAw

∂w
= 2Aw (6)

To take the derivative w.r.t. B and equate to zero we make use

of Lemma 1,

∂

∂B
l(θ|yt) =

T∑
t=1

Ω−1(BZt − yt) = 0

Since Ω is positive semidefinite, TBZt −
T∑

t=1

yt = 0

B̂ML =
1

T

T∑
t=1

ytZ
+
t , Z+

t : Moore-Penrose inverse of Zt.

(7)
Deriving the ML estimate for the covariance matrix, requires
the following trick in Lemma 2.

Lemma 2

∂

∂A
x

′
Ax =

∂

∂A
Tr[x

′
xA] = [xx

′
]
′
= x

′′
x

′
= xx

′
(8)

We rewrite log likelihood function to compute the derivative
w.r.t. Ω−1,

l(θ|yt) = C +
T

2
log |Ω−1|

− 1

2

T∑
t=1

Tr[(yt −BZt)(yt −BZT )
′
Ω−1]

∂

∂Ω−1
l(θ|yt) = T

2
Ω− 1

2

T∑
t=1

(yt −BZt)(yt −BZt)
′

(9)
Equating this to 0 and solving for Ω yields,

TΩ−
T∑

t=1

(yt −BZt)(yt −BZt)
′
= 0

Ω̂ML =
1

T

T∑
t=1

(yt − B̂MLZt)(yt − B̂MLZt)
′

(10)

We use the data from 6 participants for all 18 conditions
across all channels of EEG, EMG and force to learn the ML
parameters of a VAR model and data from other 6 participants
to test how well the trained model fits on the observations. In
training a VAR model, it is important to ensure stationarity
of all time variables and avoid choosing a high lag order (p),
since the number of parameters grow very fast with high lag
order. First, we transform nonstationary variables to station-
ary ones before their VAR involvement by differencing the
series, which is called integration process [14, 15]. Then,
we select the lag order, based on BIC scores of the fitted
models. The other methods that are commonly used to de-
termine the lag order and can be applied to this domain are:
i) plotting the autocorrelation and crosscorrelation functions
for the individual residual series to see if there is any obvious
autocorrelation left in the residuals and ii) starting with a
sufficiently large lag order and successively testing lower lag
orders until observing a significant performance decay [16].
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Fig. 3: BIC scores for model orders ranging between 1-20,
provided EEG, EMG, and haptic force interactions as system
input, assuming there is no latency between driving series.

In conjunction with latency minimization routine, we
make inferences about the modality dependency on different
input feature sets, hence in the experiments K was tested for
all different combinations of 14 EEG, 4 EMG and 3 force
measurements. For instance, we train our VAR model to pre-
dict current EEG from: only past EEG (K = 14), both EEG
and force (K = 17), both EEG and EMG (K = 18) and all
(K = 21), to investigate which features are more informative.

4. RESULTS AND DISCUSSION

Since choosing lag order unnecessarily large is extremely
memory consuming, increases the computational overhead
and reduces the forecast precision of the model [17], we be-
gin with finding the exact order of data generation process
under the assumption that all endogenous variables are pro-
vided and data from all these variables are time aligned, as
demonstrated in Fig.3. BIC suggests to select the VAR order
choice that acquires the lowest one step ahead mean squared
error (MSE) with optimal number of ML estimators. The
lowest BIC score is achieved at p = 17.

The method we employ for the elimination of latency be-
tween endogenous time series that are shifted in time is ex-
haustively searching through a manually specified subset of
a hyperparameter space. We utilize grid search over a hy-
perparameter space of 400 EMG samples recorded after hap-
tic force stimuli and 400 EEG samples recorded after EMG
measurements, both linearly spaced by 50 samples to reduce
the cost of computation, as illustrated in the first heatmap
of Fig.5. In this search, the lowest BIC score, which also
corresponds to the highest log likelihood, is acquired when
the latency between haptic force-EMG is 200 samples, and
EMG-EEG is 400 samples. We zoom in this search space
centered at (425, 225), 25 samples backward and forward in
time across both axis and reduce the linear spacing to 10 sam-
ples, as illustrated in the second heatmap of Fig.5. Based on
our analytical investigation of exact latency synchronization,
we find the optimum latency between haptic force stimuli-
EMG: 200 samples (167 ms), and EMG-EEG: 400 samples
(400 ms). Although latency times vary among users and data

Fig. 4: Model order selection stage for each different combi-
nation of system input series based on BIC scores, after syn-
chronizing input series through the latency responses evalu-
ated.

acquisition hardware, knowledge of the approximate latency
is of considerable practical importance before modeling sys-
tem identification. Following the time alignment process, we
repeat the lag order selection for different modalities as shown
in Fig.4.

After latency elimination, we observe lower BIC scores
and hence higher log likelihood, provided all integrated model
variables, yet model converges at the same lag order. Addi-
tionally, we see EEG is highly nondeterministic and highly
correlated with the EEG at the one previous time sample that
increasing the lag order doesn’t have a significant impact on
its forecast precision. This is also proven in the first box plot
of Fig.6, which we see the percentage error distributions of
EEG predictions realize a marginal increase, when EMG and
force data become available. On the contrary, percentage er-
ror distributions of force improve, when EEG and EMG time
data are passed in, as illustrated in the second box plot of
Fig.6. We translate our knowledge of latency, optimum lag
orders and modality dependencies into future data genera-
tion objective. In Fig.7, provided stationarized and synchro-
nized EEG, EMG, and haptic interactions, we demonstrate
actual measurements and one-step-ahead predictions modeled
by VAR(p=17) for all of the EEG channels and force measure-
ments from z-dimension in a time window of 300 ms (360
samples).

Our model exhibits good performance in one-step-ahead
prediction tasks. To attain a longer prediction horizon, a
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Fig. 5: Heatmaps for BIC scores at different haptic force-EMG and EMG-EEG latencies reveal which number of lags
between the input series has potentially the most significant effect on the performance of the system identification. We utilize
grid search to estimate the latency responses that minimize BIC, consequently maximize log likelihood.

Fig. 6: Goodness-of-fit. Percentage error distributions of the
predicted EEG and haptic force interactions for each differ-
ent combination of system input series averaged across all the
channels and all the participants in the test set.

procedure known as multi-step-ahead prediction, we feed the
model’s output back to the input regressor for a fixed but finite
number of time steps [18]. As the prediction horizon tends to
infinity, system identification becomes a dynamic modeling
task, in which the VAR model acts autonomously, recursively
emulating the dynamic behavior of the system that generated
the time series. Since the reverse characteristic polynomial
of VAR process has all roots outside the complex unit circle,
it is stable and multi-step-ahead predictions never diverge to
infinity.

The major drawback of the proposed linear model is that
the mean, variance, and autocorrelations of the original se-
ries aren’t constant in time, even after detrending. Increasing
the number of integration steps helps with stationarizing the
time data, but at the cost of losing long term temporal depen-
dencies. We also conjecture that using a fixed lag order is
a bottleneck in improving the precision of predictions. In fu-
ture, we will develop a nonlinear model, capable of exploiting
long term temporal dependencies and adaptively extracting
relevant endogenous variables such that bidirectional EEG-
to-force and force-to-EEG translations can be generated.

Fig. 7: Actual measurements and one-step-ahead predictions
for all of the EEG (μV) channels and force (V) measurements
from z-dimension in a time window of 300 ms (360 samples).
Samples before the dotted line, marked at time 0, are the first
17 samples observed and there is no prediction within this
time frame.
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5. CONCLUSION

We implement a maximum likelihood approach for fitting a
multivariate VAR model to different combination of EEG,
EMG, and force signals simultaneously recorded during hap-
tic stimulation. Specifically, we estimate the lag order of the
model and the latency between data from different modali-
ties by optimizing the BIC score of the fitted model. Then: (i)
we employ the proposed method to quantify the dependencies
among the different modalities, and (ii) test the capability of
the proposed method in one-step-ahead prediction.

Guidance of stimulation parameters in haptic interac-
tion simulations has the potential of playing a critical role
in VR/AR platforms by offering an extra dimension to a 3D
environment and allowing a feeling of true immersion in
those environments. Integrated VAR approach we presented
estimate the latency between endogenous variables, explore
modality dependencies and yield a data prediction process.
The proposed linear dynamic system identification model can
be deployed to BCI based VR/AR systems where the role of
BCI is to record EEG signals, process them to extract relevant
features, and classify mental states in order to generate com-
mands, and the role of VR/AR system is to render a virtual
environment and provide a meaningful haptic feedback to
user.
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