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ABSTRACT

The high irregularity of multiple sclerosis (MS) lesions in
sizes and numbers often proves difficult for automated sys-
tems on the task of MS lesion segmentation. Current State-
of-the-art MS segmentation algorithms employ either only
global perspective or just patch-based local perspective seg-
mentation approaches. Although global image segmentation
can obtain good segmentation for medium to large lesions,
its performance on smaller lesions lags behind. On the other
hand, patch-based local segmentation disregards spatial in-
formation of the brain. In this work, we propose Synergy-
Net, a network segmenting MS lesions by fusing data from
both global and local perspectives to improve segmentation
across different lesion sizes. We achieve global segmenta-
tion by leveraging the U-Net architecture and implement the
local segmentation by augmenting U-Net with the Mask R-
CNN framework. The sharing of lower layers between these
two branches benefits end-to-end training and proves advan-
tages over simple ensemble of the two frameworks. We eval-
uated our method on two separate datasets containing 765 and
21 volumes respectively. Our proposed method can improve
2.55% and 5.0% for Dice score and lesion true positive rates
respectively while reducing over 20% in false positive rates
in the first dataset, and improve in average 10% and 32% for
Dice score and lesion true positive rates in the second dataset.
Results suggest that our framework for fusing local and global
perspectives is beneficial for segmentation of lesions with het-
erogeneous sizes.

Index Terms— Multiple Sclerosis, Deep Learning, MRI

1. INTRODUCTION

Multiple Sclerosis (MS) is a prevalent chronic autoimmune
disease affecting the central nervous system (CNS), charac-
terized by white matter or gray matter lesions formed dur-
ing inflammation and demyelination process of the brain and

? equal contribution

spinal cord [1]. MS lesions can be detected using magnetic
resonance imaging (MRI). Most lesions display hyper-intense
appearance under T2-w and fluid attenuated inversion recov-
ery (FLAIR) MR images, which makes MRI a standard diag-
nostic tool of MS [2]. Previous studies show that determina-
tion of volume and spatial location of lesions is important for
diagnosing and tracking of the disease. Although being con-
sidered as the gold standard for lesion segmentation, manual
delineation of 3D medical images is time-consuming, labor-
intensive and subjective sometimes [3, 4]. To this end, many
automated segmentation methods have also been developed
[5, 6, 7, 8] with deep learning-based methods heavily favored
among the state-of-the-art systems [9, 10, 11, 12, 13, 14, 15].

In [10], a cascading, 3D patch-based CNN architecture is
proposed with the first network generating initial probabilis-
tic prediction and second network performing false positive
reduction. In [9], a fully convolutional neural network is pro-
posed using multi-channel 2D patches as input and outputs
are concatenated feature maps producing lesion segmenta-
tion. While obtaining good segmentation performances, these
patch-based local approaches never utilize the inherent spatial
information from the entire brain. In constrast, in [11], con-
volutional restricted Boltzmann machines is used to pre-train
the encoder branch of a U-Net style network. However, they
do not take advantage of the middle layers which have been
shown significant to segmentation performance [16]. In [12],
a U-Net style network is used with three encoding branches
corresponding to three different modality inputs followed by
multi-scale feature upsampling and concatenation along the
decoding patch. These global view approaches constitute the
state-of-the-art systems, however they lack explicit mecha-
nism to deal with problematic, smaller lesions.

In this paper, we propose a new model to tackle the prob-
lem of MS lesion segmentation in 3D FLAIR MRIs. We
use U-Net as the global perspective segmentator. For smaller
lesions, we augment the U-Net network with the Mask R-
CNN framework as a mechanism for localized attention. We
then fuse the global image segmentation outputted from U-
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Net branch and the local patch segmentation outputted from
Mask R-CNN branch via weighted averaging to achieve a fi-
nal whole MR image segmentation. Fusing the two models
under our framework is beneficial as both branches are jointly
trained in an end-to-end fashion which is shown to be advan-
tageous over simple ensemble of the two separate models.

Our main contributions are three folds. First, we proposed
a novel method, which we call SynergyNet, tackling MS le-
sion irregularity in automated segmentation tasks, especially
for small lessons where previous global segmentation meth-
ods are problematic. Second, we show how to achieve global
and local data fusion by fusing U-Net and Mask R-CNN un-
der a unified framework for end-to-end learning and achieve
the state-of-the-art result for MS lesion segmentation. Third,
this is the first relatively large scale MS segmentation study
consisting of several hundred volumes for use in comparing
deep learning frameworks.

2. PROPOSED METHOD

We propose a fusion network we call SynergyNet as a frame-
work for 3D MS MRI lesion segmentation that maintains the
good performance of U-Net for medium to large-size lesions
and augments it with Mask R-CNN to improve the segmenta-
tion performance on small lesions.

2.1. SynergyNet

For global image segmentation, we choose U-Net style net-
work as the backbone. Standard vanilla U-Net model per-
forms well when segmenting medium-size to large, contigu-
ous MS lesions, however they struggle with small lesions
given the class imbalance, see Figure 2. Specifically with MS
pathology, lesions can be as small as 10 voxels in a MRI con-
taining as few as a handful or as many as 100s of such small
lesions in addition to possibly containing much larger lesions.
We replace the standard convolutional layer to residual blocks
that has been proven effective [17].

To improve the segmentation performance of small le-
sions, we propose augmenting the U-Net backbone with an
auxiliary network that focuses on detecting small lesions by
using the Mask R-CNN framework as the auxiliary network.
This framework works as a specialized detector and segmen-
tator of specifically-sized lesions. Mask R-CNN have demon-
strated good performance detecting and segmenting objects
with various sizes provided these objects have more standard-
ized shapes and aspect ratios such as in the natural image
setting [18]. In contrast, MS lesions demonstrates a high
degree of irregularity that makes it ill-posed for segmenta-
tion by Mask R-CNN. By restricting our focus to small le-
sions, we can effectively reduce the degree of irregularity in
the subset of MS lesions we are interested in which mini-
mizes Mask R-CNN’s main draw back due to its use of a
fixed set of rectangular-shaped anchor boxes. Here we define

Fig. 1: Illustration of our SynergyNet framework. U-Net is
employed as the global image segmentation backbone and
Mask R-CNN is used to augment U-Net to provide localized
attention for improved detection and segmentation of small
lesions. The entire network is trained in an end-to-end fash-
ion using a sequential additive training procedure.

small lesions as those with ground truth bounding box vol-
ume less than 1500 voxels. This specialized, local-focused
branch works by running the RPN sub-network over the (d1)
feature map of the decoding branch of U-Net and proposes lo-
cal patches with lesions. Positive predicted proposals are then
passed to the R-CNN sub-network to refine bounding boxes
estimations. Finally the refined proposals are used to obtained
multi-scale versions of these local patches from the d1, d2,
and d3 feature map layers for multi-scale data fusion and seg-
mentation of these local patches in the Mask sub-network.
See Figure 1 for reference to these feature maps layers.

2.2. Global-Local Data Fusion

We extract their corresponding patches from multiple scales
of the U-Net decoder branch before upsizing and combine
them to leverage information from different receptive field
sizes. We fuse the predictions from the global and local per-
spective branches by ensembling the local patch predictions
with their corresponding location in the global image via
weighted averaging. Concretely, given local output Ym(i)
from the Mask sub-network and the corresponding patch
Yu(i) in the U-Net global logit map, we ensemble and update
the Yu(i) patch as follows:

Yu(i) = γ ∗ Ym(i) + (1− γ) ∗ Yu(i) (1)

where γ is a hyperparameter weighing each predictors. For
our experiment, we set γ=0.3 based on the validation set re-
sults. SynergyNet’s loss function is a multi-tasks loss function
consisting of losses from each of the individual sub-networks:

Ltotal = LRPN + LR-CNN + LMASK + LU -Net (2)
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where losses of the individual sub-networks are defined as:

LRPN = α1
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where zk =

{
0.5(ek − êk)2, if |ek − êk|< 1

|ek − êk|−0.5, otherwise
is the smooth

L1 loss for k = j or d. LRPN consists of the focal loss [19]
for binary classification and smooth L1 regression losses of
the RPN network where ri and r̂i are the true and predicted
probability of proposal i containing a lesion respectively, and
ej and êj are the true and predicted delta coordinates of the
bounding box for those proposals j predicted to contain le-
sions. β was set to 2 as in the original paper for focal loss
[19]. LR−CNN consists of the binary cross-entropy loss and
smooth L1 regression losses of the class-conditional R-CNN
sub-network where sc and ŝc are the true and predicted proba-
bility of proposal c outputted from RPN containing lesion re-
spectively, and ed and êd are the true and predicted delta coor-
dinates of the bounding volume for those proposals predicted
to contain lesions. LMASK consists of the 1-Dice loss of the
Mask sub-network where a and t are the ground truth and
predicted segmentation volume of the patch m respectively.
LU−Net consists of the 1-Dice loss of the post-ensembled
SynergyNet output where O and T are the ground truth and
predicted segmentation of the entire MR volume respectively.
For this experiment, the following hyperparameters are used:
α1 = α2 = α4 = α5 = 1, α3 = 1.3, and α6 = 5.

2.3. Training Procedure

During training, each sub-network is trained in a sequen-
tially additive fashion until the entire SynergyNet is trained.
More specifically, the RPN sub-network is train alone with
the feature extraction network for the first 30 epochs, follow
by the R-CNN sub-network in addition to the first two sub-
networks for the next 30 epochs, then by including the Mask
sub-network training for the following 40 epochs, and finally
the remaining layers of the decoding branch of the U-Net
sub-network added for the last 100 epochs. This is necessary
to avoid the computational cost that would otherwise be re-
quired by the entire model during the first few training epochs
where a large set of false positive proposals is made until they
are learned to be rejected.

Fig. 2: Private test set dice score plotted as a function of the
logarithm of total lesion volume per MRI. Trendlines are fit-
ted to the scatter plot of each algorithms.

3. EXPERIMENTS AND RESULTS

Two separate datasets are used to evaluate our proposed
model. The private dataset was obtained at Charité - Univer-
sitätsmedizin Berlin, Germany, from ongoing observational
cohort studies of patients with autoimmune neuroinflamma-
tory disorders. After cleansing for patients lack of ground
truth mask, we are left with 765 longitudinal data points be-
longing to 261 patients with full 182x218x182 3D FLAIR and
T2-w MR images along with their ground truth lesion mask.
We randomly partition the patient set into 60%-20%-20%
training-validation-test resulting in 444 volumes for train-
ing, 166 volumes for validation, and 155 volumes for test.
Original FLAIR MRIs are skull-stripped, bias corrected and
standardized with z-score standardization. The public dataset
consists of 21 longitudinal volumes from 5 unique patients as
part of the 2015 ISBI longitudinal MS lesion segmentation
challenge [4].

Five metrics are used to evaluate the segmentation perfor-
mance of these five algorithms. Dice Score Coefficient: DSC

Fig. 3: Comparison of segmentation results from the test set.
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Table 1: Performance results for public ISBI-2015 Dataset

Models DSC AP LTPR LFPR Sn
U-Net .5452 .3618 .3435 .1091 .4138
Mask R-CNN .4596 .3145 .4156 .4565 .4368
Ensemble .5381 .3541 .3632 .1581 .4042
SynergyNet .6018 .4256 .4547 .2204 .5067

Table 2: Performance results for Private MS Dataset

Models DSC AP LTPR LFPR Sn
LST (LPA) .3324 .1758 .3742 .5700 .2762
U-Net .5999 .4107 .6418 .2334 .5603
Mask R-CNN .4748 .2802 .5546 .3637 .4043
Ensemble .5998 .4122 .6378 .2098 .5523
SynergyNet .6152 .4227 .6739 .1864 .5911

= 2(O ∩ T)/(| O | + | T | ); Average Precision: AP summa-
rizes the precision-recall curve and is defined as the weighted
mean of precision achieved at each threshold; Lesion True
Positive Rate: LTPR = TPL

TPL+FNL , where TPL and FNL are
true positive lesion and false negative lesion respectively; Le-
sion False Positive Rate: LFPR = FPL

TPL+FPL , where FPL is
false positive lesion; and Sensitivity, Sn = TP

TP+FN , where TP
and FN are voxel true positive and false negative respectively.

We compare our proposed SynergyNet against the lesion
prediction algorithm (LPA) [7] as implemented in the LST
toolbox version 2.0.15, vanilla U-Net model, vanilla Mask R-
CNN model, and the ensemble of these two separately trained
models. Images are cropped to a size of 128x160x128 around
the image center with random jittering during training. The
cropped image is randomly rotated between ±15 degrees
along the sagittal coordinate axis. The Adam optimizer was
used with a learning rate of 0.001. The baseline U-Net is
trained for 100 epochs and results are reported for the model
with the lowest validation loss. We train SynergyNet in the
sequential additive manner as previously mentioned.

All the models are tested on the 155 volume held out test
set and results are shown in Table 2. Our proposed model
score best in all five metrics. The LST algorithm is not com-
petitive against the deep learning methods. With Synergy-
Net, we see a 2.55%, 2.92%, and 5.00% improvement in Dice
score, sensitivity, and LTPR respectively over the baseline
vanilla U-Net. Against the ensemble model, the result sug-
gests our fusion approach is advantageous over simply en-
sembling two separately trained models. This is most likely
attributed to the ability of the two specialized branches to in-
form each other of errors via the shared layers as opposed to
no knowledge distillation in the Ensemble approach.

In Figure 2, we see the dice score plotted against the log-
arithm of the total MRI lesion volumes. SynergyNet’s trend-
line resides above all other trendlines and exhibits the largest
gap above the next best trendline on the far left side of the

curve. Stratifying the MRIs into lesion volume less than and
greater than 2048 voxels, we calculate the mean dice scores
for small and large lesion volumes as .5362 and .6954 respec-
tively for U-Net. Similarly for SynergyNet, these dice scores
are .5532 and .7052 for small and large lesions respectively.
The stratified improvements for these two groups are 3.17%
and 1.83% respectively. Coupled with the 5.00% increases in
LTPR, this suggests SynergyNet’s performance gains are pre-
dominantly due to its improved detection and segmentation of
small lesions. The performances difference over U-Net tapers
off as total lesion volumes approaches 4096 voxels.

Figure 3 shows examples of segmentation outputs from
five models. SynergyNet makes fewer and less false positive
prediction than U-Net and Ensemble. Where U-Net missed
detecting some very small lesions, SynergyNet was able to
detect and localize them. LST made many more false positive
predictions and sometimes predicts lesion in spurious loca-
tions such as inside the cerebrospinal fluid (CSF) area. This
is likely due to LST being trained on raw, non-skull stripped
FLAIR MRI where the skull and surrounding structure can
also be very high in intensity value as well.

For the ISBI public dataset, we were not able to run the
LST as the provided FLAIR MRIs were skull-stripped. We
ran the remaining four algorithms and show their results in
Table 1. SynergyNet scores highest in all but LFPR. We
see an improvement of 9.08%-11.81% for the dice score and
35.23%-29.19% for LTPR over vanilla U-Net. U-Net scored
highest on LFPR. This is likely due to the data mismatch be-
tween the private and public dataset. Lesions in the public
dataset are much larger and more confluent, leading to a re-
duction in the average number of lesions per MRI.

4. CONCLUSIONS

In this paper, we proposed SynergyNet for detection and
segmentation of MS lesions in 3D FLAIR MRIs. While
U-Net with its global perspective has been favored in many
previous studies on MS segmentation, it suffers from poor
performance on small lesions. To address this issue, we aug-
ment U-Net with a specialized local-focused Mask R-CNN
to more reliably detect and segment small lesions. The two
network shares many lower layers thus making the entire
fusion network memory efficient and able to be trained in an
end-to-end fashion. We show our proposed fusion model can
improve Dice score and LTPR by 2.55% and 5.0% respec-
tively with reducing LFPR by 20% in a private dataset, and
improve Dice score and LTPR by 10% and 32% respectively
in the ISBI-2015 public dataset over U-Net. Although our
network was designed with MS segmentation in mind, the
proposed global-local fusion network is general and can be
readily applied to other segmentation tasks.
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