
Bryan J. Stringham
Department of Mechanical Engineering,

Brigham Young University,
Provo, UT 84602

e-mail: bryan.stringham@byu.edu

Daniel O. Smith
Department of Mechanical Engineering,

Brigham Young University,
Provo, UT 84602

e-mail: dannyosmith@byu.net

Christopher A. Mattson
Professor

Department of Mechanical Engineering,
Brigham Young University,

Provo, UT 84602
e-mail: mattson@byu.edu

Eric C. Dahlin
Associate Professor

Department of Sociology,
Brigham Young University,

Provo, UT 84602
e-mail: eric.dahlin@byu.edu

Combining Direct and Indirect
User Data for Calculating Social
Impact Indicators of Products in
Developing Countries
Evaluating the social impacts of engineered products is critical to ensuring that products
are having their intended positive impacts and learning how to improve product designs
for a more positive social impact. Quantitative evaluation of product social impacts is
made possible through the use of social impact indicators, which combine the user data
in a meaningful way to give insight into the current social condition of an individual or pop-
ulation. Most existing methods for collecting these user data for social impact indicators
require direct human interaction with users of a product (e.g., interviews, surveys, and
observational studies). These interactions produce high-fidelity data that help indicate
the product impact but only at a single snapshot in time and are typically infrequently col-
lected due to the large human resources and cost associated with obtaining them. In this
article, a framework is proposed that outlines how low-fidelity data often obtainable
using remote sensors, satellites, or digital technology can be collected and correlated
with high-fidelity, infrequently collected data to enable continuous, remote monitoring of
engineered products via the user data. These user data are critical to determining
current social impact indicators that can be used in a posteriori social impact evaluation.
We illustrate an application of this framework by demonstrating how it can be used to
collect data for calculating several social impact indicators related to water hand pumps
in Uganda. Key to this example is the use of a deep learning model to correlate user
type (man, woman, or child statured) with the raw hand pump data obtained via an inte-
grated motion unit sensor for 1200 hand pump users. [DOI: 10.1115/1.4047433]

Keywords: design for humans, machine learning, product development, sustainable design

1 Introduction
Approximately 4 billion people live on less than $8 per day and

comprise what is often referred to as the base of the pyramid (BOP)
[1]. Designing and producing products that meet the wants and
needs of these income-poor individuals have the potential to
improve their quality of life while also representing a significant
market opportunity for companies of all sizes [2]. However, many
who undertake such pursuits often fail to design products that
have the intended impact on individuals in the developing world
that comprise the BOP [3].
Evaluating a product’s social impact is critical to ensuring that

mechanical design results in positive impacts and avoids unin-
tended negative impacts on people [2,4]. The social impact of a
product refers to the effects that a product has on a person’s daily
quality of life [5]. Many different approaches are used for modeling
the social impact of products or programs including a logic model
[6,7], theory of change model [8], product impact metric [9],
product social impact model [10], or social sustainability indicator
model [11].
To at least some extent, each social impact model requires com-

bining user data into social impact indicators, which are “what is
measured or predicted in each impact category to understand a prod-
uct’s social impact” [10]. The change in these social impact indica-
tors over time as calculated from the user data can capture the social
impact of a product or a program as defined by Stevenson et al. and
illustrated in Fig. 1 [10]. Collecting the user data to calculate social

impact indicators is fundamental to quantifying the social impact of
a product resulting from the mechanical design.

1.1 Direct Data. Several different types of and methods for
collecting the user data exist. The user data collected through
direct interaction with or observation of users, termed direct data
in the context of this article, is rich in information and has histori-
cally been the primary type of data that most organizations focus
on obtaining when trying to understand social impacts [12].
Common methods used to collect the direct data include surveys,
focus groups, interviews, observational studies, and ethnography
studies [13,14]. The challenge with obtaining the direct data is
that it can only realistically be collected once or at low-frequency
intervals due to the high cost and extensive human facilitation
required to collect such data [15,16]. This is often the case for
those designing for global development who are frequently geo-
graphically removed from their customers [17]. Even short-term
data collection efforts may require travel and cost thousands of
dollars. Therefore, each snapshot of direct data has high value but
also a large cost per data point for only a single point in time.

Fig. 1 Relationship among user data, social impact indicators,
and social impact evaluation
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1.2 Indirect Data. User data collected without direct interac-
tion with or observation of users, termed indirect data in the
context of this article, can also be obtained to determine the
social impact indicators of a product. Advances in technology
have enabled the collection of digital data that can be used to
enhance and assist the use of direct data to determine the effects
of products on individuals. Common methods for collecting these
indirect data include sensors, social media platforms, satellites,
and other Internet and digital technologies. The ability to rapidly
collect and transmit vast amounts of these data has led to it also
being referred to as big data [18]. The advantages of using indirect
data are that it can be collected remotely, continuously, and often
with a lower cost per data point than manual collection by individ-
uals. For a large quantity of continuously collected data, it is gener-
ally less expensive to let a sensor collect data than to collect it
manually. The challenge of using indirect data is that it can have
little value without some way to interpret its meaning.

1.3 Proposed Framework. In this article, we propose a frame-
work that demonstrates how direct and indirect data can be used
together to enable the remote, continuous, and real-time collection
of user data for calculating product-related social impact indicators
through an approach that can be less expensive than manual data
collection. These social impact indicators may then be used
within one of the social impact models mentioned previously to
identify the social impact of a product, or they may be used alone
to simply understand the current social condition of an individual
or population. The framework takes advantage of both types of
user data, which complement each other well as presented in
Table 1.
While the current typical approach to calculating social impact

indicators is to manually collect direct data as shown in Fig. 2(a),
the proposed approach shown in Fig. 2(b) is inspired by machine
learning and includes special considerations for remotely and
more easily collecting user data fundamental to calculating
product-related social impact indicators. In machine learning, data
is used to train a model that can then be used to make predictions
about future data. Similarly, this framework shows how indirect
data can be used to train a deep learning model, which can
predict information-rich direct data for determining the social
impact indicators related to products. The trained deep learning
model can then be used to continuously predict direct data using
indirect data without the need for frequent human facilitation.
This approach is especially useful for products in the developing
world where the costs and difficulty of simply collecting direct
data can be prohibitive.

1.4 Deep Learning. We specifically advise the use of deep
learning, a subset of machine learning, to provide the critical corre-
lation between direct and indirect data because of the ability of deep
learning to approximate complex functions or relationships more
accurately than other machine learning approaches, especially
when more than 10,000 data points are used in the model [19].
Deep learning is promising here due to the success it has had in
many other applications. Existing successful applications of deep
learning include both supervised and unsupervised data and vary
widely from classification to generative tasks including image-

based cancer detection [20], human and computer conversation
[21,22], and image caption generation [23]. In another example,
Bosco et al. enhanced geographically sparse survey data (direct
data) with geospatial satellite data (indirect data) to predict physical
growth stunting. They found that geospatial satellite data success-
fully corresponded to an impressive 60% of the variance in their
model predicting the physical growth stunting of females across
Nigeria [24]. Additional examples of effectively correlating direct
and indirect data in other areas include improving efficiency of res-
taurant health code inspections in Boston using Yelp reviews [25],

Table 1 Data types for evaluating social impact of engineered products

Amount of human effort
to obtain each data point

Cost per
data point

Independent or
inherent value

Collection method or
representation period Example data sources

Direct
data

Higher Higher Higher Single snapshot in time Surveys, focus groups, interviews, observational
studies, ethnography studies

Indirect
data

Lower Lower Lower Continuous (in practice) Online and social media activity data, remote
sensor data, satellite data, digital purchase
transaction data

(b)

(a)

Fig. 2 (a) Current approach for calculating social impact indica-
tors and (b) the proposed framework for calculating social
impact indicators that uses deep learning and continuously col-
lected indirect data
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tracking human activity using accelerometers in smart watches [26],
creating individual health trends from monitoring human waste in
toilets [27], aiding refugee settlement mapping with satellite
imaging [28], tying farm production records to satellite imagery
to help farmers conduct crop forecasting [29], and predicting
regions of poverty using satellite imagery and census data [30].
Following the description and the process for using the proposed

framework, we demonstrate the application of the framework in an
example. In this example, a convolutional neural network deep
learning algorithm is used to correlate direct and indirect user
data that can be used to calculate several social impact indicators
of using water hand pumps in Uganda (see Sec. 3).

2 Proposed Framework: Effective Collection of User
Data for Social Impact Indicators
The purpose of the proposed framework is to describe how social

impact indicators can be calculated from continuously and inexpen-
sively collected user data. These social impact indicators may then
provide the basis from which social impacts of products are evalu-
ated. With social impact indicators calculated and monitored over
time, designers may then use these data in the design process in
at least three ways: (1) redesigning of existing products, (2) design-
ing novel accessories for existing products that adapt or improve the
functionality of a product relative to the product’s original function-
ality, and (3) designing entirely new products, each based on
insights provided by the data. For example, if location-specific
social impact indicators for a water hand pump indicated that a sig-
nificant portion of water pumping is completed by adolescents,
these data would help designers possibly (1) redesign the pump to
be more ergonomically efficient for adolescents to use, (2) design
a handle accessory adapter that adds an additional pump handle at
a more comfortable position for adolescents, or (3) design a
completely new pump head and housing or design a new solar-
powered pump that would run automatically so that the adolescents
could spend time in school who previously spent in pumping.
Figure 2(b) illustrates each step of the proposed framework,

which is shown in two parts–above and below the dashed line.
Above the dashed line, a simultaneously but infrequently collected
sample of direct and indirect data is used to train a deep learning
model. Below the dashed line, the trained deep learning model pre-
dicts direct data given continuously collected indirect data. The pre-
dicted direct data and indirect data in some instances are then used
to calculate social impact indicators to continuously monitor the
effects of a product’s use on the daily lives of individuals. The
process for using the framework is presented in Secs. 2.1–2.6.

2.1 Step 1: Identify Use Context, Relevant Social Impact
Categories, and Social Impact Modeling Approach for the
Product. First, identify the context of the product’s use and poten-
tial social impact categories relevant to the product. Ulrich and
Eppinger provide some guidance for and suggest that those manag-
ing the development of a product must identify the use environment,
or context, of the product [31].
As the context of a product’s use is considered, potential impacts

of the product will also become more apparent. Eleven possible
social impact categories to consider, as outlined by Rainock et al.,
include health and safety, education, paid work, conflict and
crime, family, gender, human rights, stratification, population
change, social networks and communication, and cultural identity
and heritage [32].
A review of industry practices shows that product designers and

engineers of technology companies focus primarily on health and
safety and generally do not consider other social impact categories
nearly as much [33]; yet, it is important to consider the other ten cat-
egories because the likelihood of impact in more than one category
can be high [34]. Less-apparent impact categories can be identified
by utilizing the joint probability of a product having impact on more
than one category, as presented by Ottosson et al. [34].

In addition, it is useful in the early stages of this process to iden-
tify the approach to social impact modeling that will be used to eval-
uate the social impacts of the product. Selecting the social impact
modeling approach helps provide the structure for which indicators
and hence user data will be needed to evaluate the social impact. A
thorough consideration of which approach is best for a given appli-
cation is deferred to the respective authors of the different
approaches [6–11]. However, for product-related social impact
modeling, we recommend the use of Stevenson et al.’s product
social impact model approach due to its product focus [10].

2.2 Step 2: Identify Social Impact Indicators, Direct Data,
and Indirect Data to Be Collected. The goal of this step is to iden-
tify the data to be gathered that will inform social impact assess-
ment. As shown in Fig. 3, a correlation will be made between the
indirect and direct data that will be used to calculate social impact
indicators and inform social impact.
The activities of choosing social impact indicators, the direct data

required to calculate those indicators, and indirect data sources
required to predict the direct data are generally done in parallel
based largely on the constraints of what information is feasible to
collect.
Identify the social impact indicators that inform social impact

evaluation. Stevenson et al. [10] describe a process for identifying
appropriate social impact indicators. Their work focuses on calcu-
lating indicators from existing databases, such as the World Bank,
while this work focuses on calculating pertinent indicators from
user data collected from individuals relevant to the product. We
choose to do this because (i) existing databases do not always
have all of the important data relevant to an engineering design
project, (ii) existing databases are often aggregated at a national
level, which causes data about communities, families, or individuals
within a country to be inaccessible to engineering teams, and
(iii) existing databases typically include data collected once or
only a few times a year. When selecting social impact indicators,
at least one indicator is needed for each social impact category of
interest, although as many indicators as are useful may be used.
Identify direct data that are used to calculate social impact indi-

cators. The direct data are identified such that the change in the
direct data indicates the effects of a product’s use on an individual.
The direct data are used to calculate the social impact indicators in
one or more of the selected social impact categories. The choice of
which direct data to collect is guided by the social impact category
chosen and by the ability to correlate the direct data with the indirect
data. Possible sources of the direct data include surveys, focus
groups, interviews, observational studies, and ethnographic studies.
While the identification and collection of the direct data are suf-

ficient to calculate the social impact indicators, the framework pre-
sented in this article proposes the collection of the indirect data that
can be correlated with and used to predict the direct data. These pre-
dicted direct data can then be used to continuously, remotely, and
inexpensively calculate social impact indicators.
Identify sources of indirect data related to direct data. Useful

indirect data have inherent relationships to each of the direct data
of interest such that the direct data can be predicted given the

Fig. 3 Relationship among indirect data, direct data, social
impact indicators, and social impact evaluation
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indirect data. Some potential sources of the indirect data are sensor
data (motion, vibration, temperature, flow, pressure, strain, among
others), online and social media activity data (product reviews,
Likes, Tweets and Retweets, Comments, etc.), satellite data
(imaging, thermal imaging, geographic, precipitation, etc.), and
transaction data (online and offline purchase data).
The relationship between the direct and indirect data will be

established with a correlation model as discussed in Step 4. One
potential issue to be aware of when selecting direct and indirect
data sources is that the original correlation may be so specific to
the initial data that they do not generalize well with the future
data [35]. Therefore, when considering possible sources of the indi-
rect data for predicting the direct data, it is important to consider the
following:

(1) Is there reasonable evidence of a relationship between the
direct and the indirect data?

(2) Does the relationship between the indirect and the direct data
remain relatively constant with time?

(3) Is it possible to perform periodic resampling of the direct data
to maintain an accurate correlation?

(4) Can the direct data be accurately predicted using only the
indirect data?

If the answers to these questions are “yes,” the source of the indi-
rect data is likely to be well suited for predicting the direct data
through a correlation model. If the answer is “no” to any of these
questions, the relationship between the selected direct and indirect
data may require more frequent validation, or different indirect
data may be a better choice.
To illustrate this step, an example is provided. SweetSense Incor-

porated has deployed a cellular enabled data collection system for
latrines that reports (a) each use of the latrine, (b) the approximate
fill level of the waste receptacle, and (c) the GPS location of the
latrine [36]. If the sensor was installed at a school, the recorded
uses of the latrine could act as the indirect data and could be corre-
lated with the number of students attending the school (direct data)
as determined through survey or observation. The correlation model
could then be used to predict number of students attending the
school given uses of the latrine. If the predicted number of students
attending the school were compared to the census of school-age
children, the percentage of school-age children attending school
could be calculated as a social impact indicator. These data could
be collected remotely and continuously before and after a project
or product introduction to assess the educational social impact.

2.3 Step 3: Collect Data and Construct Correlation Model.
Step 3 is composed of substeps 3a and 3b described in Secs. 2.3.1
and 2.3.2, respectively, because of the interdependent relationship
between data collection and correlation model creation.

2.3.1 Step 3a: Collect Direct and Indirect Training Data. After
identifying the data needed to calculate the social impact indicators
of interest, simultaneously collect an initial set of direct and indirect
data (referred to as training data) that will be used to construct the
correlation model for predicting the direct data given the indirect
data.
One potential issue when collecting the data is class imbalance:

when one or more of the classes being classified has a dramatically
lower number of samples than the other class or classes. Class
imbalance is important to be aware of during the data collection
step because it can potentially lower the classification accuracy of
the lower frequency class, which is especially important when it
is critical to classify each class with similar accuracy. To avoid
class imbalance, an approximately equal number of samples from
each class should be collected when possible. If the sample class
cannot be selected when collecting data, class imbalance can be
addressed during the creation of the correlation model.
Also, in collecting the training data, it is important to consider the

long-term indirect data collection process. It is beneficial to create a

data collection process that will not only work for collecting train-
ing data but also enable the continuous, remote, and inexpensive
collection of future indirect data, which will be used to predict
the direct data in real time. Important considerations for long-term
data collection are discussed in Sec. 2.5.

2.3.2 Step 3b: Construct Correlation Model Between Direct
and Indirect Data. Select and construct a correlation model that
effectively captures the relationship between the direct and the indi-
rect data. The intent of the correlation model is to predict the direct
data given future indirect data. As a note, the correlation model is
different than the social impact model mentioned previously. The
relationship between the direct and indirect data is often nonlinear;
thus, a machine learning tool, such as deep learning, is a promising
candidate to model the relationship and recognize complex relation-
ships between the direct and indirect data of interest [37]. However,
any type of correlation model could be considered here. Some
potential modeling approaches include logistic regression, support
vector machines, regression trees, and supervised deep learning
classification models (such as a convolutional neural network). It
is also beneficial to consider multiple different correlation modeling
approaches for comparison, exploring the fastest to implement
options first to determine whether a simple logistic regression
model, for example, will produce the needed performance. The
number of models created and compared will likely be constrained
by the minimum accuracy required for the correlation to be useful
and the time and resources available to create such models.
As this work focuses on the use of deep learning to produce cor-

relation models, an outline of the recommended process for creating
a deep learning model is provided here. This process describes what
can be done to achieve the theoretical maximum performance of a
given correlation model and can be stopped as soon as desired
model performance is reached with subsequent steps then being
unnecessary. This process applies to most deep learning models
generally and includes specific details for applying deep learning
models to developing world applications. Every issue or detail of
creating a desirable deep learning model is not addressed, but the
process is described in further detail by Goodfellow et al. [38]
and other researchers as specified in the relevant steps.
If completing the following steps do not result in the needed

model performance, there are two possible reasons. The first possi-
ble cause is that there is a fundamental disconnect in the relationship
between the direct and indirect data. One solution for this is to
collect an additional source of the indirect data that could help
explain the direct data of interest and repeat the entire process
while including the new data source. The second possible cause
is that the learning algorithm being used is not well suited to
approximate the relationship of interest. This may be solved by
using another existing algorithm or developing a new deep learning
algorithm.
After acceptable accuracy has been achieved, the constructed

model can then be used to predict the direct data given the future
indirect data.
The recommended process for creating the model is as follows:

(1) Identify appropriate error metrics and goal performance
values for those error metrics. Classification accuracy is
the most common performance metric although precision,
recall, F-score, or others may be more useful for a given
application [38,39].

(2) Create baseline model and end-to-end data processing
method including initial performance values. Hyperpara-
meter tuning can be used to obtain the best initial model pos-
sible [38].

(3) Consider the effects of class imbalance on model perfor-
mance as indicated by a lower classification accuracy for
the class(es) for which there are a lower number of data
samples. A confusion matrix of the predicted classifications
can be used to identify the accuracy of each class prediction.
Class imbalance may need to be dealt with when there is an
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underrepresented class that critically needs to be classified
accurately (as in the case of cancer cell detection in
medical imaging). However, class imbalance is not always
a problem if there is a class that does not occur as frequently
as others and that class does not need to be classified with
greater accuracy than is currently being attained. It may be
best to accept a lower classification accuracy of the lower fre-
quency class to preserve the overall accuracy because tech-
niques for handling class imbalance can improve the
accuracy of the lower frequency class at the expense of the
overall accuracy. When it is determined that class imbalance
is adversely affecting the model’s performance, techniques
for resolving class imbalance include oversampling [39],
undersampling [39], SMOTE [39], focal loss [40], and
ClusBUS [41].

(4) Check quality of data. If the data are noisy, corrupt, or has
other avoidable issues based on the domain, better data
should be collected instead of just collecting more data.
Often it is tempting to use a new algorithm or change mod-
eling approach if performance does not meet requirements.
However, it is typically more important to collect better
data than to try to improve the deep learning algorithm [38].

(5) Determine whether to collect more data. This can be done by
plotting the test error versus log scale training set size for
models created from all data and smaller subsets of data
within the existing dataset. Because there is commonly a
trend between test error and training set size, the trend can
indicate if a larger training set would be beneficial. Collect-
ing more data will be beneficial if the test error is trending
downward with the increasing training set size [42].

During the process of creating the models from the
reduced datasets, model layer sizes and hyperparameters
will need to be adjusted to avoid overfitting and maintain
an accurate representation of the true model performance.

In most deep learning modeling processes, it is often more
beneficial and thus recommended to collect more data rather
than trying to use a different learning algorithm once it is
determined that more data will reduce test error for the
current algorithm. However, due to the typically high cost
of collecting additional training data in developing world sit-
uations, it may be more time effective to explore additional
learning algorithms.

(6) If collecting more data is projected to reduce the test error,
simultaneously collect the additional data and check/refine
model performance until required performance or theoreti-
cal max accuracy is achieved. Collecting a small amount
of additional samples is not likely to improve the model,
so it is recommended to double the number of collected
samples between experiments. The number of parameters
in the model and the hyperparameters will need to be
refined when creating new models after adding more data.
Including additional data to reduce test error will become
unproductive as it asymptotes.

2.4 Step 4: Calculate Social Impact Indicators From
Training Data. With the initial set of direct data collected, the
initial social impact indicators can be calculated. Calculating indica-
tor values from the initial data will help ensure that all data neces-
sary for calculating indicators has been collected and that there are
no issues with the social impact indicator equations before moving
into long-term data collection efforts.

2.5 Step 5: Continuously Collect Indirect Data to Predict
Direct Data and Calculate Social Impact Indicators. The
benefit of using this framework is the increased frequency of
direct data predictions that offer near real-time insight into the
social impact and enable quantification of a product’s usage. The
predicted direct data can act as a surrogate for direct data during
the time between collecting direct data samples.

When preparing for continuous remote monitoring, consider the
following:

• Collection and storage method for indirect data
• Power source and recharging of data collection system (if

applicable)
• Data pipeline configuration including telecommunication

technology
• Frequency of indirect data processing appropriate to the

application
• User rights and data privacy

For example, if the indirect data source is a sensor, the indirect
data could be transmitted remotely using the cellular network and
stored using web servers. Then, the raw sensor data would be con-
figured for use with the correlation model. Finally, the model would
predict the direct data as the indirect data are fed into the correlation
model at a frequency appropriate for the application.
Utilize the constructed correlation model to predict the direct data

given the continuously collected indirect data. The indirect and
thereby predicted direct data should be collected for a sufficient
amount of time to be representative of the impacts to be identified.
The predicted direct data can then be used to nearly continuously
calculate social impact indicators and fed into the social impact
model chosen in Step 1 to identify the social impacts of the
product as shown in Fig. 3.

2.6 Step 6: Maintain Accuracy of Direct and Indirect Data
Correlation. It is possible that the relationship between the direct
and indirect data will change over time as human behavior and other
social, political, environmental, and economic factors change.
Therefore, it is important to periodically and as often as needed to
collect samples of simultaneously collected direct and indirect
data. The new batch of data can then be used to update the correla-
tion model and maintain or improve the accuracy of the correlation
between the direct and the indirect data. Data collection partner-
ships with individuals or organizations that live near the population
of interest can further reduce the cost of maintaining the accuracy of
the correlation.

2.7 Framework Summary. The proposed framework is an
approach to enhancing information-rich, manually collected direct
data with the predicted direct data for calculating social impact indi-
cators. The predicted direct data are made possible through a corre-
lation model that is trained using simultaneously collected direct
and indirect data. The framework’s effectiveness is realized in situ-
ations where manually collecting direct data is especially costly, yet
where indirect data can be collected remotely and continuously,
such as in developing countries. This framework provides a rela-
tively inexpensive approach to remotely gather continuous, detailed
data regarding the effects of a product’s use on the lives of individ-
uals in situations located remotely from the researcher. The follow-
ing section illustrates one detailed example of how this framework
was employed.

3 Example: Water Hand Pumps in Uganda
The proposed framework is used to demonstrate how direct and

indirect data, correlated via a deep learning model, can be collected
to continuously calculate social impact indicators relevant to water
hand pump users. This example focuses on the application of only
steps 1–4 due to the long-term maintenance focus of steps 5 and 6.

3.1 Step 1: Use Context, Relevant Social Impact Categories,
and Social Impact Modeling Approach for Water Hand Pump.
Regarding the context of the product in this example, harmful safety
and gender-related impacts regarding water hand pump use can be
more effectively addressed with a more complete picture of those
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who are using water pumps and when the pumps are being accessed
[43].
The task of collecting clean water external from the home is a task

that affects men, women, and children differently. In developing
countries, it is reported that as many as 80% of women and girls
are primarily responsible for drawing and transporting water for
household consumption [44–46]. However, accurately measuring
the water collection burden placed on women and children as it
changes over time and over a widespread area is difficult and
impractical.
Water pump usage practices have important gender implications

by limiting female involvement in other activities or threatening the
physical well-being of women and girls. When women and girls are
tasked with obtaining water and other household chores, their
involvement in other activities such as generating income, spending
time with community or family members, childcare, leisure, or
schooling can suffer. With respect to schooling, domestic responsi-
bilities are more likely to prevent girls than boys from being on
time or attending school altogether. One study in Morocco
showed that projects designed to reduce girls’ responsibility for col-
lecting water increased girls’ school attendance 21% over a 4-year
period [47]. Another study by Assaad et al. examines the relation-
ship between work (including paid work and domestic chores like
collecting water) and schooling for a sample of 2,442 girls in Egypt
ages 6 through 14 years. Assaad et al. found that an increased
probability of working is negatively associated with attending
school [48].
The implications for everyday female experiences related to

retrieving water extend beyond school-related activities. Other con-
sequences of fetching water, especially over long distances, may
include physical strain, threats to physical safety, and animal
attacks [49]. Pommells et al. discuss the threats to women’s well-
being associated with getting water in communities in East African
countries. One informant who describes the risks of sexual assault
states, “It is a good time to take advantage of women who are
going to water sources to carry water home, especially peak hours,
early in the morning…and late in the evening…on their way, these
guys are waiting for them, and since it is generally accepted practice
of the community, theywill be raped” [50]. Because water collection
may constitute such a large portion of the day, gendered water
retrieval practices leaves women and girls more vulnerable to the
threat of sexual violence. By gaining a more complete picture of
those who are using water pumps and when the pumps are being
accessed, communities can address these issues and begin to imple-
ment new practices that will help to ameliorate harmful and gendered
outcomes.
Based on this context, the five relevant social impact categories

from Rainock et al. [32] related to water hand pump usage are
gender, health and safety, conflict and crime, education, and paid
work.
We chose to follow the product social impact modeling approach

as presented by Stevenson et al. [10]. In short, the product social
impact model consists of identifying social impact indicators for
each relevant category and using the direct data to calculate those
social impact indicators. The example presented here includes the
selection of social impact indicators and initial calculations, but
does not extend through time.

3.2 Step 2: Identify Social Impact Indicators, Direct Data,
and Indirect Data. The indicators chosen for the Gender social
impact category were total number of hours and fraction of daily
pump usage by each of the user groups (men, women, and children
statured). These two indicators were selected because they reflect
how the water collection burden varies by gender and age groups.
The indicator chosen for the Health and Safety social impact cat-

egory was average individual fraction of daily energy intake (from
food consumption) expended by users of each group. This was
chosen as it indicates the potential health and nutritional challenge
of each user group caused by lost calories due to pumping water.

The indicators chosen for the Conflict and Crime social impact
category were total and fraction of hours spent pumping water by
each of the user groups during the 2 h before sunrise and 2 h after
sunset. These were chosen because the 2 h before sunrise and 2 h
after sunset are the pump usage times during which individuals
are more susceptible to the physical attack.
The indicator chosen for the Education social impact category

was the fraction of total pump usage by child-statured individuals
during school hours (8 a.m.–5 p.m.). This was chosen as it indicates
the fraction of time during the day that children were using the
pump instead of being in school.
Finally, the indicator chosen for the Paid Work social impact cat-

egory was the potential wages lost for men and women due to using
the pump as this indicates the financial implications that using the
pump instead of working had on men versus women.

3.2.1 Social Impact Indicators. The social impact indicators
identified for each of the relevant categories identified are shown
in Eqs. (1)–(10). For the Gender social impact category, the imbal-
ance in water collection roles across genders was considered.
For the Gender social impact category:

TU,i =
∑Ni

j=1

tU,ij (1)

where TU,i is the total pump usage time for the ith group, i= 1, 2,
and 3 for men, women, and children, respectively, tU,ij is the
pump usage time for the jth user of the ith group, and Ni is the
number of individuals in the ith group.

FTU,i =
TU,i∑3
i=1 TU,i

(2)

where FTU,i is the fraction of time of total pump usage by the ith
group and Tu,i is the total pump usage time for the ith group.
For the Health and Safety social impact category:

FEU,i =

∑Ni
j=1 eU,ij

Ni · eS,i (3)

where FEU,i is the average individual fraction of energy expended by
a user of the ith group, eU,ij is the energy expended by the jth user of
the ith group while pumping, Ni is the number of users of the ith
group, and eS,i is the average individual energy obtained through
sustenance of the ith group.

eU,ij = V · ρ · g · d
2
·
∑NPi

k=1 A j,k

Amax
(4)

where Npi is the number of pump strokes of the jth user in the ith
group, Aj,k is the pump amplitude of the kth pump stroke of the
jth user, and Amax is the maximum possible pump stroke amplitude
for the water hand pump being used.
For the Conflict and Crime social impact category:

TUH ,i =
∑Ni

j=1

tUH ,ij (5)

where TUH ,i is the total pump usage time spent by individuals of the
ith group during the high risk hours 2 h after sunset and 2 h before
sunrise, tUH ,ij is the pump usage time during high risk hours for the
jth user of the ith group, and Ni is the number of individuals in the
ith group that used the pump during high risk hours.

FTUH ,i =
TUH ,i

TH
(6)

where FTUH ,i is the fraction of total pump usage time during high risk
hours by the ith group and TH is the total time during the high risk
hours.
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The indicator values for groups 2 and 3 (women and children) are
particularly important for this category since women and children
are at a higher risk of being victims of crime or attack.
For the Education social impact category:

TUD ,3 =
∑N3

j=1

tUD,3j (7)

where TUD ,3 is the total pump usage time spent by individuals in
group 3 (children) during the typical education period as specified
by the Ugandan government of 8 a.m. to 5 p.m. on weekdays,
tUD ,3j is the pump usage time during the typical education period
for the jth user of group 3 (children), and N3 is the number of
users in group 3 (children) that used the pump during the typical
education period [51].

FTUD ,3 =
TUD ,3

TD
(8)

where FTUD ,3 is the fraction of total pump usage time during which
the pump was being used by group 3 users (children) during typical
education period and TD is the total time during the typical educa-
tion period.
For the Paid Work social impact category:

WU,i = TU,i · Ri (9)

whereWU,i is the potential wages lost due to time of pump usage of
the ith group and Ri is the average rate of pay for the ith group,
which is the pay rate that the user could be earning if not
pumping water [52].

FWU,i =
WU,i∑3
i=1 WU,i

(10)

where FWU,i is the fraction of potential wages lost by the ith group
due to pump usage.

3.2.2 Direct Data. The primary source of the direct data
required to calculate the social indicators identified is given by
the usage of the water hand pump by user type (man, woman, or
child) throughout the day as it indicates their relative water collect-
ing responsibilities. User types were classified as man, woman, or
child statured by an observational researcher familiar with dress
and cultural norms that indicated the user type. The stature distinc-
tion was used due to the occasional difficulty of distinguishing
between small-statured adults and/or large-statured children. The
genders of children were not distinguished.

3.2.3 Indirect Data. The indirect data used here to predict the
direct data were data from an inertial measurement unit that mea-
sured pump handle angle over time (see Fig. 4). At the outset of
this study, it was observed that the speed of pumping and the mag-
nitude of pump strokes differed between individuals, and we theo-
rized it was distinct among men, women, and children. Therefore,
this pair of direct and indirect data was chosen for this experiment.

3.3 Step 3a: Collect Direct and Indirect Training Data.
Observation of pump users at a distance of 10–15 m from the
pump was our approach to direct data collection to avoid biasing
the normal use of the pump by speaking to pump users. Interacting
with pump users and asking them their age and gender may have
resulted in a slightly more accurate classification but would have
been obtrusive and could have affected normal pump usage.
The indirect data were obtained using an Arduino microcontroller

setup equipped with a Bosch BNO055 9-axis (accelerometer, gyro,
magnetometer) absolute orientation sensor that was mounted on the
pump handle. This measured and stored the handle angle on an
onboard microSD card at a frequency of 12–25 Hz. The variable
collection frequency was due to an unexpected reduction in data
writing speed that occurred as file size increased. To account for

variable collection frequency, a second channel of time between
data points (in milliseconds) was used along with the handle
angle as an input channel to the deep learning model. Figure 5
shows the sensor mounted on the pump handle, and Fig. 4 shows
a more detailed photo of the hardware. Figure 6 shows a represen-
tative 5-s segment of handle angle versus time data. To identify
when one user would stop and the next begin, a remote control
sensor connected to the handle sensor via Bluetooth allowed the
data collector to increment the user number.
These data were collected from 1181 users including 115,000

pump strokes and 2.67 million data points obtained over a total of
4 full days at four pump sites in two different cities located at dif-
ferent ends of the country in Uganda. Table 2 presents a
summary of the demographics of the data collected.
Because the users of the pump could not be chosen, class imbal-

ance could not be treated at this stage of the process.

3.4 Step 3b: Construct Correlation Model Between Direct
and Indirect Data. The initial desired classification accuracy of
the model chosen for this application by the practitioners is 75%.
This was chosen based on the initial accuracy of deep learning

Fig. 4 Microcontroller setup composed of a custom PCB and
sensors that tracked motion of the handle while researchers
incremented users with a remote control

Fig. 5 Pump site in northern Uganda with the sensor mounted
to the pump handle
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classification of other similar applications [53,54] The performance
measure of accuracy was chosen over precision, recall, and F-score
because we are primarily interested in overall classification accu-
racy without any particular interest in improving the classification
accuracy of the least represented class, which was men in this
example.
Three potential correlation models were considered to provide

the correlation between the direct data of user type and the indirect
data of pump handle angle versus time: logistic regression, convo-
lutional neural network, and recurrent neural network. The convo-
lutional neural network is given primary focus as it is the most
accurate and useful model.

3.4.1 Data Preparation. Inherent in the training of a super-
vised classification or correlation model is the often manual classi-
fication of the dataset to generate the training data. To classify each
user type, we worked with local assistants to establish visual indica-
tors of gender based primarily on culturally indicative clothing.
Each segment of sensor data was paired with its user type by
observing pump users and classifying each user as man, woman,
or child statured. To reduce classification bias between pump
sites, the same researcher classified the data from all locations
and pumping periods.
As customary in model creation, the data were prepared prior to

use in the models. Approximately 5% of the original users whose
data were severely corrupted by sensor drift were removed.
Dormant time during which the pump handle was not being
moved was also removed from the dataset.

3.4.2 Logistic Regression. A multinomial logistic regression
model was created using JMP 14 statistical software because it pro-
vided a simple proof of concept and was straightforward to imple-
ment [55]. This model used the stroke level inputs of pump stroke
period and amplitude to predict user type. A 70/30 train/predict split
was used for this model and resulted in a classification accuracy
of 51.5%. While the classification accuracy obtained by this logis-
tic regression model is much better than random (33%), it is

nevertheless significantly lower than that resulting from the convo-
lutional neural network as shown next and justifies the use of deep
learning in creating the correlation. This lower accuracy indicates
that the information contained when using isolated strokes as
used by the logistic regression model to predict user type is not
as indicative of user type as when analyzing the raw data of multiple
strokes together as done by the deep learning model. Therefore, the
need for deep learning in this case is validated.

3.4.3 Convolutional Neural Network. The ability of deep
learning models to identify the characteristic pumping features of
the different user types more effectively than the traditional statisti-
cal approach of logistic regression made it well suited for use as the
correlation model in this application. The specific deep learning
model used for this application is a convolutional neural network
with a one or more 1D convolutional layers followed by a final
fully connected layer. This was selected due to its ability to
extract data features more effectively than a basic fully connected
deep neural network. One-dimensional convolutions were used to
extract features from the 1D time series data similar to how 2D con-
volutions extract features from an image.
Two data channels of handle angle and sampling period were

used as the inputs for the convolutional neural network. The data
were normalized and adjusted to have a mean of zero before
being fed into the deep learning model.
To use a convolutional neural network, a fixed size array input

was required. This was achieved by selecting sequential and
random chunks of a fixed number of sequential data points from
the entire segment of a user’s data. At the sampling frequencies
stated, each chunk of data points represents approximately 4–8 s
of pumping motion. In practice, this means that a man who
pumped for 100 s was effectively represented in the data set by
12–25 unique chunks.
The PYTORCH open-source deep learning platform was used in

conjunction with Colab, Google’s cloud–based Jupyter notebook
environment to provide the computational ability to create the
model [56,57]. A randomized 70/30 train/test split at the user
level was used to designate which user data were used to train
versus validate the model. The loss function used was cross
entropy loss as shown in Eq. (11) because, in practice, it typically
provides more accurate results in deep learning classification
models than other loss functions. The Adam optimizer algorithm
with β values of 0.9 and 0.99 for β1 and β2, respectively, was
used for all models due to its historically high performance on con-
volutional neural networks [58]. All models were run for 30 epochs,
which was sufficient to allow the model sufficient time to learn.

loss = −
1
N

∑N
i=1

log (ŷi)

( )
(11)

where N is the total number of chunks and ŷi is the resulting softmax
probability of the true class for each chunk [59].
Preliminary hyperparameter exploration was used to identify

acceptable and reasonable baseline model hyperparameters. The
hyperparameters that were considered include number, size, and
shape of convolutional and fully connected layers, dropout (y/n;
dropout percentage), chunk size, batch size, learning rate, and acti-
vation function. Systematic hyperparameter exploration was then
completed to identify the values of these hyperparameters that
resulted in the highest model accuracy. This process first involved
holding other baseline hyperparameters constant while adding con-
volutional layers (stride= 1) with double the output channels as the
previous layer until overfitting occurred. This was followed by the
addition of regularization efforts in the form of adding dropout
layers in various places of the model. Several different approaches
of adding dropout were considered including having one dropout
layer (p= 0.25) after the first convolutional layer, dropout layers
(p= 0.15) after every convolutional layer, and dropout layers (p=
0.25) after every convolutional layer. Figure 7 shows the resultant
average of the fourfold cross-validation classification accuracy of

Fig. 6 Representative 5-s chunk of angle versus time data col-
lected using the sensor system

Table 2 Demographics for data collected for this example

Men Women Children Total

Number of users 98 321 762 1181
Number of hours using pump 7.4 19.4 20.0 46.8
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the models. Based on this process, the models with approximately
10,000 parameters provided the highest accuracy without signifi-
cant overfitting.
The effect of other hyperparameters including chunk size (50,

100, 150, and 200), batch size (25, 40, and 55), learning rate
(0.01, 0.001, and 0.0001), and activation function (ReLU, SELU,
and LeakyReLU (negative slope= 0.01)) were also considered for
the baseline 10,000 parameter model using threefold cross-
validation to find the average accuracy. The results of this analysis
indicated that the only changes that improved the accuracy were
increasing the chunk size from 100 to 150 (67% accurate) and
reducing the batch size from 40 to 25 (66% accurate).
The most accurate and best generalizing model identified as a

result of this process discerned among men-, women-, and children-
statured users with 67% test accuracy (where 33% is random) and
between men and women/children statured combined with 84%
test accuracy (where 50% is random). The model used three convo-
lutional layers and one fully connected layer with the ReLU activa-
tion function and dropout (p= 0.15) after every convolutional layer
with a chunk size of 150. This resulted in a model with 16,043
parameters. The topology of the network used is as follows:

• Input array: 100 × 2 (100 samples × 2 channels for current
angle and time between sampling)

• 1D convolutional layer (input channels: 2, output channels: 8,
kernel size: 3, stride: 1, padding: 0)

• ReLU
• Dropout (percent removed: 15%)
• 1D convolutional layer (input channels: 8, output channels: 16,

kernel size: 3, stride: 1, padding: 0)
• ReLU
• Dropout (percent removed: 15%)
• 1D convolutional layer (input channels: 16, output channels:

32, kernel size: 3, stride: 1, padding: 1)
• ReLU
• Dropout (percent removed: 15%)
• Fully connected layer (input size: 4672, output size: 3 or 2 (for

fully or reduced class model cases, respectively)

Due to the class imbalance of having a larger number of women
and children for which data were collected, the classification accu-
racy of the model was 50%, 76%, and 65% for men, women, and
children, respectively (34% and 92% for the men and combined
women–children, respectively, for the combined model). Since
women and children typically use the pump more than men, no
efforts are necessary to implement class imbalance techniques to
improve the classification accuracy of men at the expense of
overall accuracy.
While 67% accuracy is a decent starting classification accuracy,

this application would benefit by an improved classification model.
This warrants completing the process to determine whether the
model could be improved through further data collection. The
first step to this process is examining the current data to determine
whether it is noisy or corrupt. On inspection of the data, it was clear
that approximately 5% of the data were unusable due to major drift;
thus, it was removed. The remainder of the data were usable but also
suffered with noise artifacts caused by sensor drift that seem likely
to introduce error and reduce model accuracy. Therefore, the most
beneficial next step to improve the model is to recollect the data
using an improved sensor system void of drift artifacts. We plan
to use a different sensing mechanism to treat the drift problem for
future data collection.

3.4.4 Recurrent Neural Network. Another potential way to
improve model accuracy is through the use of a recurrent neural
network to provide the classification ability due to the ability of
recurrent neural networks to capture long-term behavior compared

Table 3 Calculated current social impact indicators for two locations in Uganda

Category Description Indicator Jinja average Gulu average

Gender Time men pumped (hours/day) TU,1 2.7 1.0
Gender Time women pumped (hours/day) TU,2 2.6 7.1
Gender Time children pumped (hours/day) TU,3 7.4 2.6
Gender Fraction of pump usage time (men (%)) FTU,1 21 9
Gender Fraction of pump usage time (women (%)) FTU,2 20 66
Gender Fraction of pump usage time (children (%)) FTU,3 59 24
Education Time children pumped during school hours (hours/day) TUD ,3 4.6 1.9
Education Fraction of pump usage time during school hours (children (%)) FTUD ,3 55 23
Conflict and crime Time men pumped during high risk hours (hours/day) TUH ,1 0.64 0.12
Conflict and crime Time women pumped during high risk hours (hours/day) TUH ,2 0.62 0.87
Conflict and crime Time children pumped during high risk hours (hours/day) TUH ,3 1.8 0.32
Health and Safety Fraction of individual daily energy expended pumping (men (%)) FEU,1 0.84 0.43
Health and safety Fraction of individual daily energy expended pumping (women (%)) FEU,2 0.62 0.80
Health and safety Fraction of individual daily energy expended pumping (children (%)) FEU,3 0.17 0.46
Paid work Potential wages lost due to time pumping (men (USD/day)) WU,1 0.78 0.29
Paid work Potential wages lost due to time pumping (women (USD/day)) WU,2 0.26 0.71
Paid work Potential wages lost due to time pumping (children (USD/day)) WU,3 N/A N/A
Paid work Fraction of potential wages lost (men (%)) FWU,1 75 29
Paid work Fraction of potential wages lost (women (%)) FWU,2 25 71
Paid work Fraction of potential wages lost (children (%)) FWU,3 N/A N/A

Fig. 7 Classification accuracy versus number of model param-
eters for models with the increasing number of convolutional
layers and dropout

Journal of Mechanical Design DECEMBER 2020, Vol. 142 / 121401-9



to a purely convolutional neural network approach [38]. However,
the use of a recurrent neural network in this case would be more dif-
ficult to deploy than the convolutional neural network because,
unlike the convolutional neural network, a recurrent neural
network would require prior identification of when one user stops
and another begins. Therefore, the development of a recurrent
neural network model for this application is the subject of future
work.

3.5 Step 4: Calculate Social Impact Indicators From
Training Data. The calculations of social impact indicators were
completed using the direct data that were collected during the 2
days at pump sites in Jinja and 2 days at pump sites in Gulu.
Table 3 presents the calculated social impact indicators by location
as averages over the 2 days of data collected at each location. The
following approaches were used in calculating the indicators:

Health and safety: The maximum possible pump stroke ampli-
tude (Amax) on the pumps observed was approximately
52 deg. The pump parameters (V and d) were specific to
the India Mark II hand pump and found in Ref. [60].
Values for average individual energy obtained through suste-
nance for each group (eS,i) were approximated using values
from the Dietary Reference Intakes [61].

Conflict and crime. Our researchers were collecting data approx-
imately 30 min before sunrise and 1 h after sunset, but the
user type was not recorded during the dark hours, so the frac-
tion of users of each type was assumed to be the same for
light and dark hours of the day.

Paid work. The average hourly wage (Ri) was approximated for
men using the “compensation of employees” in Uganda pub-
lished by the World Bank [52]. The “compensation of
employees” was divided by the number of working days (6
days per week × 52 weeks = 312 days) and working hours
per day (8 h per day). According to this approximation,
Ugandan men make $0.29 USD per hour. According to the
study by Campos et. al., Ugandan women salaries are
approximately one-third of a typical Ugandan man’s salary
[62]; thus, the women’s hourly wage is estimated to be
$0.10 USD per hour.

Education. The typical education period as specified by the
Ugandan government is 8 a.m. to 5 p.m. on weekdays [51].

3.6 Steps 5 and 6: Continuously Collect Indirect Data to
Predict Direct Data and Calculate Social Impact Indicators/
Maintain Accuracy of Direct and Indirect Data Correlation.
These steps were not completed for this experiment due to the long-
term maintenance focus of these steps. Long-term data collection
will involve the deployment of a sensor that will transmit data via
cellular networks. The device will be powered using an energy har-
vester that converts mechanical power during pumping into electri-
cal energy. Additional training sets will be gathered during field
studies or by employing local individuals.

3.7 Discussion of Example. The example included provides a
number of insights regarding the social impacts of water hand
pumps in Uganda as well as the application of the framework pro-
posed in this article.
Observing local Ugandans using the water hand pumps for 4 days

showed some patterns. First, the water collection burden indeed
falls primarily on the shoulders of women and children at least at
these pump locations in Uganda. As presented in Table 3, men rep-
resented approximately 21% and 9% of pump users in Jinja and
Gulu, respectively, where the women and children represented the
remaining 79% and 91%, respectively. Men operated the pumps
for a much lower percentage of time but were frequently present
while women or children operated the pump.
Also, the Conflict and crime rows of Table 3 show that women

and children continue to shoulder the water collection burden,

even during higher risk hours, thus placing them in potential
dangers discussed in Sec. 3.1.
Although women and children primarily carry the water collec-

tion burden in these areas of Uganda, the potential wages lost due
to time pumping (see Paid Work rows of Table 3) is not as straight-
forward. Because men are on average paid three times more than
women in Uganda, women have to put in more time pumping
water to match men’s wages lost due to pumping. After accounting
for this difference in hourly wage and the total pumping time by
men and women, the potential wages lost by men and women
varied greatly by location. In Jinja, men lost three times the poten-
tial wages as women, and in Gulu, women lost 2.4 times the poten-
tial wages as men.
Regarding energy lost by individuals in the different user groups,

results varied by location. In Jinja, men typically expended the
greatest proportion of their individual daily energy pumping
(0.84%), whereas in Gulu, women typically expended the greatest
proportion of individual daily energy (0.80%) as shown in the
Health and safety rows of Table 3.
Regarding the Education social impact indicators, the fraction of

pump users that were children during normal school hours was 55%
in Jinja and 23% in Gulu. If this information was collected contin-
uously, patterns could be observed over time that may suggest
causes for children missing school. Perhaps more children miss
school during harvest time, or more children help fetch water
during breaks from school. The remote and continuous collection
of these data could offer valuable insights.
Finally, although not captured quantitatively, the pump was a

place of community. Groups of women or children would converse
or play near the pump as they waited their turn to retrieve water. In
terms of the social impact categories [32], the pump was a place of
social network and communication for these local Ugandans. Com-
pared to gathering water at the closest natural water source, individ-
uals may choose to travel farther to fetch clean water at the
community pump, thus connecting them to neighbors with whom
they would not otherwise have had frequent contact.

3.8 Future Improvements. Regarding the application of the
proposed framework, this example showed that a correlation
model can be created that predicts the direct data given the indirect
data. The indirect data can be remotely collected and used to predict
the direct data continuously. To improve the predictive power of the
correlation model, our next steps would be to:

• Recollect the original data to eliminate the noise and drift chal-
lenges experienced with the original dataset

• Collect additional data (if needed)
• Reconstruct the deep learning model using a recurrent neural

network learning algorithm (if needed)
• Collect indirect data from an additional source to supplement

or replace inertial measurement unit data (if needed)

Individually, each of these steps have potential to improve the
accuracy of the correlation model, so it may be only necessary to
perform one, such as recollecting the inertial measurement unit
data and attenuating noise. The order in which the steps are per-
formed is driven by the resources necessary and available to
perform each step.

4 Concluding Remarks
It is beneficial to evaluate a product’s social impact, or how a

product affects an individual’s daily quality of life, to ensure the
effects of mechanical design are positive and to identify design
changes that could be made to new or existing products. Under-
standing a product’s social impact is made possible through calcu-
lating social impact indicators from the collected user data.
The framework presented herein provides a method for predict-

ing the direct data–used to calculate social impact indicators–
given the related indirect data. This framework employs correlation
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models, particularly deep learning models, to correlate information-
rich but expensive and infrequently collected user data with raw,
inexpensive, and continuously collected user data. The intent of
this approach is that the correlation model predicts the direct data
given indirect data, thus increasing the quantity and the frequency
of the direct data for social impact indicator calculations.
An example is provided that illustrates how this framework can

be used in a developing world setting to gather user data related
to the social impact indicators of water hand pumps on individuals
in Uganda. The example shows how data from an inertial measure-
ment unit connected to the handle of the pump is used to train a deep
learning model to predict if the user of the pump is man, woman, or
child statured. This predicted direct data can then be used to calcu-
late social impact indicators relevant to gender, conflict and crime,
health and safety, paid work, and education social impact catego-
ries. The data collected for this example can be found online.1

A vital part of deciding how a design should be changed to
improve its social impact is to first identify the product’s current
social impact, which is the focus of this framework. While it can
be difficult to determine whether the calculated social impacts of a
product are due to its design and not other factors, social impact indi-
cators can nevertheless help designers identify beneficial design
changes to the product. Furthermore, the potential for design
changes are not limited to that product for which social impact indi-
cator data are collected. For example, in the water pump application
discussed in this article, the data collected indicate that much of the
time spent using the pump was done by children. This points to at
least two possible design changes: (1) a pump handle or handle
adapter to make pumping easier for children (related to the product
for which the data were measured) and (2) a better method for chil-
dren to transport the heavy water containers (related to a different
product). Other possible design changes indicated by the data col-
lected include redesigning the pump for better ergonomics for
pumping by women and designing a self-protection device for indi-
viduals who use the pump during high risk hours.
While the application of the proposed framework is only demon-

strated for one application in this paper, it could nevertheless be
applied to a wide range of situations to assist in the more effective
collection of data for calculating the social impact indicators of
products. Some potential developing world applications of this
framework include the following:

• Measuring social impact indicators related to high-efficiency
bee hives for honey farmers in Kenya. In this situation, raw
audio data from the hive could be correlated with honey pro-
duction as reported by farmers in surveys to continuously
predict and track honey output and subsequent revenue gener-
ated as well as to test various design changes that could
improve hive efficiency.

• Measuring social impact indicators related to road quality in
India. In this case, GPS and accelerometer data could be cor-
related with the reported number of vehicle repairs reported
by taxi drivers through interviews to identify the economic
impact of poor road quality on taxi drivers as well as to
assess vehicle suspension design changes that could make
them more reliable.

• Measuring social impact indicators related to an electric
cassava peeler on rural farmers in Brazil. Accelerometer and
power usage data from the peeler could be paired with
number of pounds of cassava peeled and subsequent revenue
to determine the effectiveness of the peeler compared to
manual peeling and to evaluate the effectiveness of various
peeler designs.

Another objective of the framework presented in this article is to
provide the basis fromwhich additional social impact research ques-
tions may be answered including (1) when the validity of the link
between the direct and indirect social impact data expires, (2) how

frequently the direct data need to be collected to ensure its represen-
tation by the indirect data is valid, and (3)which social impacts can be
effectively modeled using this approach. These and other follow-on
research questionswill provide the basis for the future critical work in
the area and will benefit from the application of this framework to
provide experimental validation.
One challenge of using the framework is that the estimate as to

whether the indirect data source(s) will be an accurate predictor of
the direct data cannot be determined until after Step 4 of the frame-
work. This challenge should be considered because Steps 1–4 are
costly. In addition, the cost of using the framework goes up as the
number of indirect data sources increase.
Importantly, we are not suggesting that the indirect data and pre-

dicted direct data should completely replace the periodic collection
of the direct data. There are invaluable insights gained from the data
collected through direct interaction with or observation of users.
The predicted direct data are intended to act as supplements to
the direct data that are collected at appropriate intervals.
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Nomenclature
d = maximum distance of one pump stroke
g = acceleration due to gravity
R = average rate of pay
V = maximum volume of water in a single pump stroke

e[ ] = energy gained or lost during activity [ ] by an individual
user

t[ ] = time spent performing activity [ ] by an individual user
Ak,l = pump stroke amplitude for individual k and stroke l
F[ ] = fraction of [ ]
N[ ] = number of [ ], used in the upper limit of summations
T[ ] = total time spent performing activity [ ] for the specified

user group
W[ ] = potential wages lost while doing activity [ ]
[ ]D = subscript for education hours (from 8 a.m. to 5 p.m. on

weekdays)
[ ]H = subscript for high risk pumping hours (2 h after sunset and

2 h before sunrise)
[ ]P = subscript for pump strokes
[ ]S = subscript for sustenance
[ ]U = subscript for pump usage activity

i, j, k = counter indices
ρ = density of water
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