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1. Introduction

1.1. Let S be a smooth variety over a field of characteristic zero or greater than dimS

and let X and Y be smooth subvarieties of S. We shall assume that X and Y intersect 
cleanly (meaning that their scheme theoretic intersection W = X×SY is smooth) but not 
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necessarily transversely. Derived algebraic geometry associates to this data a geometric 
object, the derived intersection of X and Y ,

W ′ = X ×R
S Y.

It is a differential graded (dg) scheme whose structure complex is constructed by taking 
the derived tensor product of the structure sheaves of X and Y . This structure sheaf 
is understood to be defined only up to quasi-isomorphism of commutative dg-algebras. 
(The reader unfamiliar with the subject of dg schemes is referred to Section 2.) The 
underived intersection W naturally sits inside W ′ as a closed subscheme.

We organize these spaces and the maps between them in the diagram

W ′

π

q′

p′

W

ϕ

p

q

X

i

Y
j

S.

The purpose of this note is to understand when W ′ is as simple as possible. Our main 
result (Theorem 1.8) makes this precise in two ways. In algebraic terms it describes when 
W ′ is formal in the sense of [7]. In geometric terms it gives a necessary and sufficient 
condition for the existence of a map π : W ′ → W exhibiting W ′ as the total space of a 
(shift of a) vector bundle over W . When this holds we gain a geometric understanding 
of the structure of the maps ϕ, p′ and q′: ϕ is the inclusion of the zero section of the 
bundle, and p′ and q′ factor through the bundle map π.

1.2. The problem we study originates in classical intersection theory. While the scheme-
theoretic intersection W is determined algebraically by the underived tensor product

OW = OX ⊗OS
OY ,

Serre [11] argued that in order to obtain a theory with good formal properties we need 
to use instead the derived tensor product

OW ′ = OX ⊗L
OS

OY .

Since OW ′ is naturally a commutative dg algebra we can regard it as the structure 
complex of a dg scheme W ′.

1.3. For classical applications it suffices to work with the class of OW ′ in K-theory. Put 
differently, we only need to know the sheaves
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H −∗(OW ′) = TorS∗ (OX ,OY ).

A local calculation as in [5, Proposition A.3] shows that these sheaves are the exterior 
powers ∧∗E∨ of the excess bundle E, the vector bundle on W defined by

E = TS

TX + TY
.

(We omit writing the restrictions from X, Y , S to W in formulas like the one above. So 
when we write TX we mean TX |W , the restriction of the tangent bundle of X to W .) 
The excess bundle E is a vector bundle on W of rank dimS + dimW − dimX − dimY

which measures the failure of the intersection to be transversal.

1.4. For certain problems it is not enough to know just the Tor sheaves H k(OW ′); we 
need to understand the full dg algebra OW ′ . For example there is considerable interest 
in computing Ext∗S(i∗F, j∗G) for vector bundles F and G on X and on Y . These groups 
can be computed using the spectral sequence

2Epq = Hp(W,F∨ ⊗G⊗ ωW/Y ⊗ ∧q−mE) ⇒ Extp+q
S (i∗F, j∗G),

from [5, Theorem A.1], where ωW/Y denotes the relative dualizing sheaf of the embedding 
W → Y and m denotes the codimension of W inside Y . (Again, we omit the restrictions 
of F and G to W .) The differentials in this spectral sequence arise as obstructions to 
splitting the canonical filtration on OW ′ , that is, they vanish if there is an isomorphism

OW ′ ∼=
⊕
k

H k(OW ′)[−k].

1.5. In the above discussion we have skated over an important detail. The splitting of 
OW ′ is not an intrinsic property of the dg scheme W ′; rather, the concept only makes 
sense for a morphism from W ′ to a base scheme. We discuss its relation to a more general 
notion, that of formality.

Consider a dg scheme Z ′ which is affine over an ordinary scheme Z, i.e., the dg 
scheme Z ′ is endowed with a structure morphism s : Z ′ → Z such that s is affine. We 
shall consider two related dg algebras over OZ . One is s∗OZ′ ; the other is its associated 
graded counterpart

OẐ′ =
⊕
k

H k(s∗OZ′)[−k].

Note that the right hand side inherits an associative commutative product structure from 
that of OZ′ , so it can be regarded as the structure complex of a dg scheme Ẑ ′ over Z.

We shall say that Z ′ is formal over Z if there exists an isomorphism Z ′ ∼= Ẑ ′ in 
the category of derived dg schemes over Z. (See Section 2 for further details.) This is 
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equivalent to saying that the dg algebra s∗OZ′ is a formal OZ-dg algebra, that is, there 
exists an isomorphism of dg algebras over OZ

s∗OZ′ ∼= OẐ′ .

(The terminology is inspired by the work [7] of Deligne, Griffiths, Morgan, and Sullivan, 
where the authors define a smooth manifold to be formal if its de Rham dg algebra is 
formal in the above sense.)

Note that in particular Z ′ being formal over Z implies that the complex s∗OZ′ is split 
in D(Z) (it is isomorphic, as an OZ-module, to the sum of its cohomology sheaves). In 
our context this is a non-trivial condition, unlike the situation in [7].

1.6. The derived intersection W ′ = X ×R
S Y can be viewed as a dg scheme over several 

base schemes: either one of X, Y , S, or X × Y can naturally serve as an underlying 
scheme for W ′. (However, note that in general we can not present W ′ as a dg scheme 
over W .) Our primary motivation for studying derived intersections comes from our 
desire to understand the degeneration of the spectral sequence in (1.4). For this purpose 
it is most useful to regard W ′ as a dg scheme over X × Y . Indeed, in this approach the 
structure sheaf OW ′ of W ′ is the kernel of the functor j∗i∗ : D(X) → D(Y ) between dg 
enhancements D(X), D(Y ) of the derived categories of X and Y . (We omit the R’s and 
L’s in front of derived functors for simplicity.)

1.7. Formality of W ′/X×Y turns out to be closely related to properties of the inclusion 
W ↪→ W ′. We shall say that a map of spaces W → W ′ splits if it admits a left inverse. 
(The term “splitting” may be misleading: it might help the reader to think of split 
embeddings as algebro-geometric analogues of deformation retractions in topology.) If 
W → W ′ is a closed embedding we shall say that it splits to first order if the induced map 
W → W ′(1) splits, where W ′(1) is the first infinitesimal neighborhood of W inside W ′.

The above concepts also make perfect sense for spaces (schemes, dg schemes) over a 
fixed base scheme, in which case we require the inverse map to be a map over the base 
scheme.

We are now ready to state the main theorem of the paper.1

1.8. Theorem. The following statements are equivalent.

(1) There exists an isomorphism of dg functors D(X) → D(Y )

j∗i∗(− ) ∼= q∗(p∗(− ) ⊗ Sym(E∨[1])).

1 While working on the final draft of this paper the authors became aware that a closely related result 
was obtained independently and at about the same time by Grivaux [9].
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(2) There exists an isomorphism W ′ ∼= E[−1] of dg schemes over X × Y .
(3) W ′ is formal as a dg scheme over X × Y .
(4) The inclusion W → W ′ splits over X × Y .
(5) The inclusion W → W ′ splits to first order over X × Y .
(6) The short exact sequence

0 → TX + TY → TS → E → 0

of vector bundles on W splits.

1.9. The above theorem can be seen as a generalization of several classical results: 
base change for flat morphisms or, more generally, for Tor-independent morphisms; the 
Hochschild-Kostant-Rosenberg isomorphism for schemes [12]; and the formality theorem 
for derived self-intersections of the first two authors [1]. A slightly modified version of 
this theorem was used in a twisted context in [2] to prove a theorem on the formality of 
the twisted de Rham complex.

1.10. However, the main application we have in mind for Theorem 1.8 is in the study of 
derived fixed loci. Let ϕ be a finite-order automorphism of a smooth variety Z. We are 
interested in the fixed locus W of ϕ,

W = Zϕ = {z ∈ Z | ϕ(z) = z}.

This fixed locus can be studied using intersection theory, as we can view W as the 
intersection (inside Z × Z) of the diagonal Δ and the graph Δϕ of ϕ,

W = Δ ×Z×Z Δϕ.

1.11. This description makes it clear that the expected dimension of the fixed locus is 
zero. Whenever W is positive dimensional the cause is a failure of transversality of Δ
and Δϕ. It then makes sense to study the derived fixed locus of ϕ, W ′, which we define 
as the derived intersection

W ′ = Δ ×R
Z×Z Δϕ.

The excess intersection bundle E for this problem is easily seen to be precisely TW , the 
tangent bundle of the underived fixed locus W .

In this setup Theorem 1.8 allows us to get the following geometric characterization of 
the derived fixed locus W ′.

1.12. Corollary. The derived fixed locus W ′ is isomorphic, as a dg scheme over Z × Z, 
to the total space over W of the dg vector bundle TW [−1],
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W ′ ∼= TW [−1].

1.13. We apply the above result to the study of loop spaces of orbifolds. Recall that for 
a space X one defines the free loop space of X as

LX = X ×R
X×X X.

It is naturally a formal derived group scheme over X.
When X is a smooth scheme, the relative Lie algebra of LX/X can be identified 

with TX [−1], the total space of the shifted tangent bundle TX [−1]. In this case the 
exponential map is an isomorphism (commonly called the Hochschild-Kostant-Rosenberg 
isomorphism, or HKR)

exp : TX [−1] ∼−→ LX.

The non-trivial part of the above statement is the fact that the exponential map is an 
isomorphism not only in a formal neighborhood of the origin, but in fact extends to the 
whole group. (This follows from the fact that the loop space LX is a nilpotent extension 
of X.)

1.14. The above statement is known to fail for Artin stacks. See for example Ben-Zvi 
and Nadler [4], where the authors prove that in this case only the formal version of the 
HKR isomorphism holds.

By contrast, as an application of the formality of derived fixed loci, we prove that 
the HKR isomorphism theorem still holds for global quotient orbifolds (global quotient 
Deligne-Mumford stacks). The setting we will work with is as follows. Let G be a finite 
group acting on a smooth variety Z, and let Z be the quotient stack [Z/G]. Denote by 
IZ the (underived) inertia stack

IZ = Z ×Z ×Z Z ,

by TIZ [−1] its shifted tangent bundle, and by LZ the free loop space of Z

LZ = Z ×R
Z ×Z Z .

1.15. Theorem (Orbifold HKR isomorphism). Let Z be a smooth global quotient orbifold 
Z = [Z/G] where Z is a smooth scheme over a field k, G is a finite group, and char k is 
either zero or greater than max(dimZ, |G|). Then there exists a canonical isomorphism

exp : TIZ [−1] ∼−→ LZ

between the shifted tangent bundle TIZ [−1] of its inertia orbifold and its free loop space 
LZ .
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1.16. As in the case of the usual HKR isomorphism for smooth schemes, the above 
theorem allows us to give a decomposition of the Hochschild (co)homology of the orbifold 
Z . In order to state this decomposition in more concrete terms we need the following 
notations for g ∈ G:

– Zg is the (underived) fixed locus of g in Z;
– ig is the closed embedding of Zg in Z;
– cg is the codimension of Zg in Z;
– ωg is the relative dualizing bundle of the embedding ig, that is, the top exterior 

power of the normal bundle NZg/Z of Zg in Z,

ωg = ∧cgNZg/Z ;

– Tg is the vector bundle on Zg obtained by taking coinvariants of TZ |Zg with respect 
to the action of g;

– Ωj
g is the dual, along Zg, of ∧jTg;

– Sym(Ω1
g[1]) is the symmetric algebra of Ω1

g[1]), i.e., the object of D(Zg)

Sym(Ω1
g[1]) = ⊕Ωj

g[j].

With these notations we can phrase the following consequence of Theorem 1.15.

1.17. Corollary. The two projections p′, q′ : LZ → Z ′ are homotopic (and hence equal 
in the derived category of dg stacks). There are natural isomorphisms of dg functors 
D(Z ) → D(Z )

Δ∗Δ∗(− ) ∼= q′∗p
′∗(− ) ∼= − ⊗ q′∗OLZ .

The object q′∗OLZ ∈ D(Z ) is represented by the G-equivariant object of D(Z)

⊕
g∈G

ig,∗ Sym(Ω1
g[1]).

Therefore

(1) Δ∗Δ∗OZ =
⊕

g∈G ig,∗Sym(Ωg
Z [1]).

(2) HH∗(Z ) =
(⊕

g∈G

⊕
q−p=∗ H

p(Zg,Ωq
g)
)G

.

(3) HH∗(Z ) =
(⊕

g∈G

⊕
p+q=∗ H

p−cg (Zg,∧qTg ⊗ ωg)
)
G
.

This result generalizes known Hochschild-Kostant-Rosenberg isomorphisms for orb-
ifolds, for example those of Baranovsky [3] and Ganter [8].
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1.18. The paper is organized as follows. In Section 2 we collect some general results 
about dg schemes in the sense of Ciocan-Fontanine and Kapranov. In particular we 
discuss the concept of dg schemes relative to a base scheme and the concept of formality. 
We construct presentations of the derived intersection W ′ over X, Y , X × Y , and S. 
In Section 3 we present the proof of Theorem 1.8. In the final section of the paper we 
discuss applications to orbifolds, and present proofs of Corollary 1.12, Theorem 1.15, 
and Corollary 1.17.

1.19. Conventions. We work over a field of characteristic zero. The same results also hold 
when the characteristic of the ground field is sufficiently large; we shall make it explicit 
in the statement of each theorem how large the characteristic needs to be for the results 
to hold. All schemes are assumed to be smooth, quasi-projective over this field.

1.20. Acknowledgments. The present project originates in an old discussion the second 
author had around 1996 with Dan Abramovich. We have benefited from stimulating 
conversations with Tony Pantev. The authors are supported by the National Science 
Foundation under Grants No. DMS-0901224, DMS-1101558, and DMS-1200721.

2. Background on dg schemes

In this section we review some facts from the basic theory of differential graded 
schemes, following the work of Ciocan-Fontanine and Kapranov [6]. We emphasize the 
point of view that a dg scheme Z ′ = (Z, OZ′) should be thought of as a dg scheme over
Z, and explain how the derived intersection W ′ = X ×R

S Y can be viewed in a natural 
way as a dg scheme over X, Y , X × Y , or S.

2.1. Following Ciocan-Fontanine and Kapranov [6], a differential graded scheme Z ′ is a 
pair (Z, OZ′) consisting of an ordinary scheme Z, the base scheme of Z ′, and a complex 
of quasi-coherent sheaves O ·

Z′ on Z, the structure complex of Z′. The complex OZ′ is 
assumed to be endowed with the structure of a commutative dg algebra over OZ, and 
must satisfy

1. Oi
Z′ = 0 for i > 0;

2. O0
Z′ = OZ .

Maps between dg schemes are obtained by a localization procedure similar to the one 
that leads to the construction of derived categories. In a first stage morphisms of dg 
schemes are considered as maps of ringed spaces. For dg schemes Z ′ = (Z, OZ′) and 
W ′ = (W, OW ′) a morphism Z ′ → W ′ consists of a map of schemes f : Z → W along 
with a map of dg algebras f# : f∗OW ′ → OZ′ . In the resulting category we have a natural 
notion of quasi-isomorphisms of dg schemes – those morphisms (f, f#) for which f# is a 
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quasi-isomorphism of complexes of sheaves. Formally inverting those quasi-isomorphisms 
produces a category DSch, the right derived category of schemes.

2.2. Because quasi-isomorphisms become isomorphisms in DSch, isomorphic dg schemes 
can be presented over different base schemes. Thus the base scheme is not an intrinsic 
part of a dg scheme in DSch. For certain purposes, however, it is useful to be able to 
refer to the base scheme of a dg scheme. Instead of carrying over this additional data, 
we give an alternative way of looking at the relationship between a dg scheme Z ′ and 
its supporting scheme Z.

The definition of dg schemes implies that the structure complex OZ′ of a dg scheme 
Z ′ = (Z, OZ′) admits a natural morphism of dg algebras OZ → OZ′ (where OZ is 
regarded as a complex concentrated in degree zero). This shows that a dg scheme Z ′

presented over a base scheme Z comes with a canonical morphism Z ′ → Z.

2.3. This observation motivates us to study dg schemes over a fixed scheme Z instead 
of arbitrary dg schemes. These are dg schemes Z ′ endowed with a morphism Z ′ → Z. 
(We shall mostly be concerned with the situation when this morphism is affine – this 
is the case when the dg scheme Z ′ is presented over Z. But the concept makes sense in 
general.) As in the theory of schemes, morphisms of dg schemes over Z are morphisms 
between dg schemes which commute with the structure morphisms.

2.4. We now turn to discussing the construction of derived intersections over various 
bases. We place ourselves in the context described in the introduction, with X and Y
subschemes of S. The structure complex of the derived intersection W ′ = X ×R

S Y is 
obtained by taking the derived tensor product OW ′ = OX ⊗L

OS
OY .

The main question we want to address is over what base scheme should the complex 
OW ′ be considered. If the schemes were affine, this would be equivalent to deciding 
whether to consider this tensor product as an algebra over OX , OY , OS , etc. Likewise, in 
the general case there is no canonical choice of base scheme for the dg scheme W ′, and 
either one of X, Y , S, or X×Y can serve for this purpose. For example, it is easy to see 
W ′ as a dg scheme over X by resolving OY by a flat commutative dg algebra over S and 
pulling back the resolution to X. Similarly, in order to obtain a model over S resolve 
both OX and OY over S and tensor them over OS.

It is essential to emphasize that in general it is not possible to present W ′ as a dg 
scheme over W , the underived intersection.

2.5. For the purpose of this article we are most interested in a model of W ′ whose base 
scheme is X × Y . To obtain such a presentation define

OW ′ = OΓi
◦ OΓj

= πXY,∗(π∗
XSOΓi

⊗X×S×Y π∗
SY OΓj

),

the convolution of the kernels OΓi
∈ D(X × S) and OΓj

∈ D(S × Y ). Here Γi ⊂ X × S, 
Γj ⊂ S × Y are the graphs of the inclusions i : X ↪→ S, j : Y ↪→ S, and πXS , πSY and 
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πXY are the projections from X ×S×Y to X ×S, S×Y , and X ×Y , respectively. (We 
omit the R’s and L’s in front of derived functors for simplicity.) The reader can easily 
supply the required equality of tensor products of rings which shows that this definition 
of W ′ is quasi-isomorphic to the previous ones.

Note that the kernels OΓi
and OΓj

induce the functors i∗ : D(X) → D(S) and 
j∗ : D(S) → D(Y ). Since OW ′ is the convolution of these kernels, we conclude that OW ′

is the kernel of the dg functor j∗i∗ : D(X) → D(Y ).
This fact allows us to connect with our earlier discussion in (1.4). Indeed, in order to 

guarantee the degeneration of the spectral sequence computing Ext∗S(i∗F, j∗G) we need 
to understand the functor j∗i∗. Since this functor is controlled by W ′ as presented over 
X ×Y , this explains why we want to understand formality properties of W ′/X ×Y and 
not over other bases.

2.6. There is another description of OW ′ as an object in D(X×Y ) which is useful in the 
proof of Theorem 1.8. The original problem of studying the intersection of X and Y into 
S can be reformulated to study the intersection of X × Y with the diagonal in S × S. 
Let ı̄ and j̄ be the embeddings of S and X × Y into S × S.

The derived and underived intersections in the new problem are the same as in the old 
one. The excess bundle is also the same. However, by replacing the original problem with 
the new one we have simplified the initial situation in two ways. First, the embedding 
ı̄ : S ↪→ S × S is now split. Second, since the object j̄∗ı̄∗OS realizes OW ′ as an object 
of D(X × Y ), the problem of understanding the functor j∗i∗ is replaced by the problem 
of understanding the single object j̄∗ ı̄∗OS . We have replaced the functor j∗i∗ by the 
more complicated functor j̄∗ı̄∗, but we only apply it to a single object OS which is well 
behaved.

2.7. We now turn to questions of formality. Given a dg scheme Z ′ over a scheme Z, with 
structure morphism f : Z ′ → Z being affine, we shall say that Z ′ is formal over Z if 
f∗OZ′ is a formal OZ-dg algebra, that is, if there exists an isomorphism

f∗OZ′ ∼=
⊕
j

H j(f∗OZ′)[−j]

of OZ-dg algebras. This is equivalent to the dg schemes Z ′ and Ẑ ′ being isomorphic in 
the derived category of dg schemes over Z. (Here Ẑ ′ is the dg scheme whose structure 
complex is 

⊕
j H j(f∗OZ′)[−j].)

Note in particular that this implies that the complex f∗OZ′ splits in the derived 
category D(Z) (it is isomorphic to the sum of its cohomology sheaves).

2.8. The notion of formality of a dg scheme depends on the scheme over which we are 
working. Indeed, consider a smooth subvariety X of a smooth space S, and let X ′ =
X ×R

S X be the derived self-intersection of X inside S. Then X ′ is a dg scheme over X
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in two distinct ways (using the two projections), and hence it is also a dg scheme over 
X ×X. In [1] the first two authors introduced two classes,

αHKR ∈ H2(X,N ⊗N∨ ⊗N∨)

and

η ∈ H1(X,TX ⊗N∨).

The results of [1] and the present paper show that

– X ′ is formal over X if and only if the HKR class αHKR vanishes;
– X ′ is formal over X ×X if and only if the class η, vanishes.

It is known ([1]) that η = 0 implies αHKR = 0, but not vice-versa. Thus X ′ being formal 
over X ×X implies it is formal over X, but the converse can fail.

3. The proof of the main theorem

In this section we shall prove our main result, Theorem 1.8, which we restate below. 
Throughout this section we shall drop the index “R” in the notation of derived fiber 
products, and write X ×S Y for the derived fiber product X ×R

S Y . If F is any vector 
bundle on a space X we shall let F [−1] denote the total space of the shifted vector bundle 
F [−1], i.e., the dg scheme whose structure complex is Sym(F∨[1]). We assume that the 
characteristic of the ground field k is either zero or larger than dimS for the remainder 
of this section.

3.1. Lemma. Let i : X → S be a closed embedding of smooth varieties with normal bundle 
NX/S. A choice of splitting of i (if one exists) determines an isomorphism

X ×S X ∼= NX/S [−1]

in the derived category of dg schemes over X×X, commuting with the embeddings of X.

Proof. Let π1 and π2 denote the two projections from X×S X to X. We regard X×S X

as a space over X ×X via the map (π1, π2). Note that by the very construction of the 
fiber product the compositions i ◦ π1 and i ◦ π2 are homotopic in the (∞, 1)-category of 
dg schemes (before deriving it).

Fix a splitting p of the embedding i. Composing a homotopy between i ◦π1 and i ◦π2
with p we conclude that the maps π1 and π2 are themselves homotopic. Thus in the 
derived category of dg schemes, where homotopic maps become equal, we have π1 = π2. 
In other words the original map
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(π1, π2) : X ×S X → X ×X

is equal to the map

(π1, π1) : X ×S X → X ×X

and the latter obviously factors through the diagonal map: (π1, π1) = Δ ◦ π1. Thus the 
structure map (π1, π2) of X ×S X factors through Δ.

The splitting of the map i implies that we are in a situation where we can apply the 
main theorem of [1]. Thus (choosing one side) there exists an isomorphism of spaces 
over X

ϕ : X ×S X
∼−→ NX/S [−1],

where X×SX is regarded as a space over X via π1. Since we have seen that the structure 
maps from X ×S X and NX/S [−1] to X ×X factor through the diagonal map, it follows 
that ϕ, which originally was an isomorphism over X, can be regarded as an isomorphism 
over X×X. The compatibility with the embeddings of X is obvious from the construction 
of ϕ in [1]. �
3.2. We now place ourselves in the context of (1.1), with X and Y smooth subschemes 
of S, and with W ′ and W being their derived and underived intersections, respectively. 
The maps between these spaces are listed in the diagram below

W ′

π

q′

p′

W

ϕ

p

q

X

i

Y
j

S.

The excess intersection bundle E on W is defined as

E = TS

TX + TY

where all the bundles above are assumed to have been restricted to W . As usual we shall 
denote by E[−1] the total space of the shift of E.

We begin by studying a special case of the main theorem, where the map i is split.

3.3. Proposition. Assume that the map i is split, and fix a splitting of i. Then a choice 
of splitting of the short exact sequence
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0 → NW/Y → NX/S |W → E → 0 (∗)

gives rise to an isomorphism of spaces over X × Y

E[−1] ∼−→ X ×S Y.

Conversely, existence of an isomorphism in D(Y )

j∗i∗OX
∼= q∗(Sym(E∨[1])

implies that the short exact sequence (∗) splits.

Proof. A splitting E → NX/S |W of the short exact sequence (∗) gives rise to a map 
E[−1] → NX/S [−1]|W . We have fixed a splitting of i; by Lemma 3.1 this gives rise to an 
isomorphism over X ×X

NX/S [−1] ∼−→ X ×S X,

compatible with the inclusion of X. Using this isomorphism we obtain a morphism over 
X × Y

E[−1] → NX/S [−1]|W ∼= (X ×S X) ×X W ∼= X ×S W → X ×S Y

where the last map comes from the inclusion W ↪→ Y . Checking that this morphism is 
an isomorphism is a local computation which can be checked using Koszul resolutions.

In the other direction assume that there exists an isomorphism in D(Y )

ϕ : j∗i∗OX
∼−→ q∗(Sym(E∨[1]).

Without loss of generality we can assume that ϕ commutes with the natural maps of 
the two sides to q∗OW . To see this consider the map ϕ0 induced by ϕ on H 0 of the 
two complexes. It is an automorphism of the OY -module q∗OW . As q∗OW is a quotient 
algebra of OY , ϕ0 is in fact an automorphism of the ring OW , given by multiplication 
by an invertible element s of OW . Since Sym(E∨[1]) is an OW -algebra, multiplication by 
s−1 gives an automorphism ψ of it. The composition q∗ψ ◦ ϕ is a new isomorphism

j∗i∗OX
∼= q∗(Sym(E∨[1]))

which commutes with the maps to q∗OW , as desired. We shall call this new map ϕ.
The map ϕ induces an isomorphism

p∗i∗i∗OX
∼= q∗j∗i∗OX

∼= q∗q∗(Sym(E∨[1])).

Applying H −1 to both sides gives an isomorphism
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N∨
X/S |W ∼= N∨

W/Y ⊕ E∨

where the component N∨
W/Y comes from H −1 of the summand q∗q∗OW of

q∗q∗(Sym(E∨[1])). The fact that ϕ is compatible with the map to q∗OW shows that 
the map

N∨
X/S → N∨

W/Y

in the above decomposition is the same as the map obtained by applying H −1 to the 
morphism

p∗i∗i∗OX
∼= q∗j∗i∗OX → q∗q∗OW .

A straightforward calculation with the Koszul complex shows that this map is precisely 
the dual of the inclusion map

NW/Y → NX/S |W

from the short exact sequence (∗). Thus the direct sum decomposition above is compat-
ible with the maps in (∗), and hence this short exact sequence must split. �
3.4. Theorem. The following statements are equivalent.

(1) There exists an isomorphism of dg functors D(X) → D(Y )

j∗i∗(− ) ∼= q∗(p∗(− ) ⊗ Sym(E∨[1]))

(2) There exists an isomorphism W ′ ∼= E[−1] of dg schemes over X × Y .
(3) W ′ is formal as a dg scheme over X × Y .
(4) The inclusion W → W ′ splits over X × Y .
(5) The inclusion W → W ′ splits to first order over X × Y .
(6) The short exact sequence

0 → TX + TY → TS → E → 0

of vector bundles on W splits.

Proof. We shall prove the following chains of implications and equivalences

(2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (2),

and

(1) ⇒ (6) ⇒ (2) ⇒ (1).
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The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) are obvious. The implication (5) ⇒ (6) is a dg 
version of [10, 20.5.12 (iv)] (which we restate as Lemma 3.5 below), once one notes that 
the derived relative tangent bundles involved are

TW/W ′ = E[−2]

TW/X×Y = (TX + TY )[−1]

TW ′/X×Y = TS [−1].

The implication (2) ⇒ (1) follows from the considerations in (2.5). Indeed, the kernel giv-
ing the functor j∗i∗ is O ′

W , while the kernel giving the functor q∗(p∗( − ) ⊗Sym(E∨[1])) is 
OE[−1], and an isomorphism between these objects gives rise to an isomorphism between 
the corresponding functors.

In the other direction there is a subtle point. Work of Toën [13] does imply that the 
equivalence of functors in (1) guarantees an isomorphism of OX×Y -modules

OW ′ ∼= OE[−1];

while condition (2) is the strongest requirement that the two be isomorphic as algebras. 
Hence the implication (1) ⇒ (2) is not automatic and will only follow indirectly from 
the rest of the proof.

The implications that we still need to prove are (6) ⇒ (2) and (1) ⇒ (6). We replace 
the initial intersection problem with the problem of intersecting X×Y with the diagonal 
in S×S, as in (2.6). We keep denoting the new spaces and embeddings by X, Y , and S, 
i, j, etc. Thus the new S is the old S × S, the new X is the diagonal in the old S × S, 
and the new Y is the old X × Y . Note that now i is split (it is the old diagonal map, 
hence it is split by either projection).

We reformulate (1), (2), and (6) of the theorem in the new setting. Statements (1)
and (2) become the statements that there exist isomorphisms

j∗i∗OX
∼= q∗Sym(E∨[1])

as objects of D(Y ) and as commutative dg algebra objects in D(Y ), respectively. The 
short exact sequence of (6) becomes the sequence

0 → NW/Y → NX/S |W → E → 0.

We are now in the situation of Proposition 3.3: indeed, the main property we need 
is that the map i splits, and this is true because now i is the old diagonal map. The 
conclusions of this proposition are exactly the implications (6) ⇒ (2) and (1) ⇒ (6) that 
we still needed to prove. �
3.5. Lemma. Let i : X ↪→ Y be a closed embedding of dg schemes over a fixed scheme S. 
Then i is split to first order over S if and only if the natural map
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TX/Y → TX/S

is the zero map, where T denotes the tangent complex of the corresponding morphism.

Proof. The proof is nothing but a restating in dg language of [10, 20.5.12 (iv)]. �
4. Applications to orbifolds

In this section we discuss how Theorem 1.8 can be used to understand the structure 
of derived fixed loci. In turn this allows us to understand the structure of the free loop 
spaces of orbifolds.

4.1. We review the setup in (1.10). Let Z be a smooth variety over a field k, and let 
ϕ be an automorphism of Z of finite order n. Since ϕ is of finite order its fixed locus, 
which we shall denote by W , is scheme-theoretically smooth. We shall assume that the 
characteristic of k is either zero or greater than max(n, dimZ).

Note that the ordinary fixed locus W can be understood as the intersection

W = Δ ×Z×Z Δϕ,

where Δ and Δϕ denote the diagonal in Z×Z and the graph of ϕ, respectively. As such 
the expected dimension of W is zero. Whenever dimW > 0 it is important to understand 
the failure of the spaces in this intersection problem to meet transversally, by studying 
the derived intersection space

W ′ = Δ ×R
Z×Z Δϕ.

We shall sometimes call this space the derived fixed locus of ϕ.

4.2. Theorem 1.8 shows that in order to understand the structure of W ′ we need to study 
the short exact sequence

0 → TΔ + TΔϕ → TZ×Z → E → 0

where E is the excess bundle for this intersection problem. We shall prove that this 
sequence is always split, under the assumptions we made for the characteristic of k. We 
begin with a lemma.

4.3. Lemma. In the setup of Theorem 1.8, assume that the map X → S is split to first 
order. Then the short exact sequence

0 → NW/Y → NX/S |W → E → 0

splits if and only if the six equivalent statements of Theorem 1.8 are all true.
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Proof. It is easy to see that the two conditions of the lemma imply that the short exact 
sequence of (6) of Theorem 1.8 splits. Equivalently, these two conditions are what was 
used in the proof of Theorem 1.8 after changing the problem to an intersection of the 
diagonal with X × Y . �
4.4. Theorem. Assume we are in the setup of (4.1). Then the derived fixed locus W ′ is 
isomorphic, as a dg scheme over Z×Z, to the total space over W of the dg vector bundle 
TW [−1],

W ′ ∼= TW [−1].

Proof. It is easy to see that the excess intersection bundle E for this intersection problem 
is (TZ)ϕ, the bundle on W of coinvariants of the action of ϕ on TZ ,

(TZ)ϕ = TZ

〈v − ϕ(v)〉 .

We now apply Lemma 4.3. The embedding Z → Z×Z is split to first order (it is actually 
split). The map NZ/Z×Z → E is given by the natural projection

TZ → TZ

〈v − ϕ(v)〉 .

If the characteristic of k is 0 or prime to n, the averaging map (TZ)ϕ → TZ given by

t �→ 1
n

n∑
i=1

ϕi(t)

splits the projection above. Finally, with the same assumptions on the characteristic of 
k, the bundles of invariants and coinvariants are naturally isomorphic: (TZ)ϕ ∼= (TZ)ϕ
and the latter is precisely TW . �
4.5. We apply the above theorem to the study of orbifolds. Let G be a finite group acting 
on a smooth variety Z, and denote the quotient stack [Z/G] by Z . We are interested in 
understanding the relationship between the inertia stack of Z ,

IZ = Z ×Z ×Z Z ,

and the free loop space of the corresponding derived intersection,

LZ = Z ×R
Z ×Z Z .

We organize these spaces and the maps between them in the diagram below:
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LZ

π

q′

p′

IZ

ϕ

p

q

Z

Δ

Z
Δ

Z × Z .

4.6. We wish to realize the above diagram of (dg) stacks as the global quotient by the 
fixed group G × G of a similar diagram of (dg) schemes. This allows us to reduce the 
problem of understanding the dg stack LZ and its maps to IZ and Z to the parallel 
problem of understanding the corresponding dg schemes and maps.

As originally formulated the diagonal map Δ is a map between the global quotient 
stacks Z = [Z/G] and Z ×Z = [(Z×Z)/(G ×G)]. We wish to replace the presentation 
[Z/G] of Z by a different presentation of the same stack, but where the group we quotient 
by is G ×G. Consider the action of G ×G on Z ×G given by

(h, k).(z, g) �→ (h.z, kgh−1).

Note that the second copy of G acts freely on Z ×G, thus yielding an isomorphism

[(Z ×G)/(G×G)] ∼= [Z/G].

With this presentation the diagonal map Z → Z × Z becomes the quotient by G ×G

of the equivariant map of spaces

Δ̄ : Z ×G → Z × Z

(z, g) �→ (z, g.z).

Summarizing the above discussion, the main diagram in (4.5) is obtained by taking the 
quotient by G ×G of the spaces and maps in the diagram below:

LZ

π̄

q̄′

p̄′

IZ

ϕ̄

p̄

q̄

Z ×G

Δ̄

Z ×G
Δ̄

Z × Z.

Here we have denoted by LZ and IZ the corresponding derived and underived fiber 
products, respectively.
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4.7. For g ∈ G denote by Δg the subvariety of Z ×Z which is the graph of the action of 
g on Z,

Δg = {(z, g.z) | z ∈ Z}.

The space IZ decomposes as the disjoint union

IZ =
∐

g,h∈G

Δg ∩ Δh,

and similarly for LZ (where the intersection is replaced by the derived intersection). 
Since the second copy of G acts freely on X ×G it follows that it also acts freely on IZ
and LZ (which can be thought of as subvarieties of X × G). This allows us to further 
simplify the calculation of IZ and LZ by first taking the quotient of IZ and LZ by the 
second copy of G (which still yields a space), leaving the first copy of G to quotient by 
later. This amounts to replacing in the above calculation of a (derived) intersection the 
horizontal map Δ̄ by just the map Δ : Z → Z × Z, while the vertical map Δ̄ stays the 
same. We shall abuse notation and denote the new derived and underived intersection 
spaces by the old names of LZ and IZ. They fit in the diagram

LZ

π̄

q̄′

p̄′

IZ

ϕ̄

p̄

q̄

Z ×G

Δ̄

Z
Δ

Z × Z.

4.8. Observe that after this reduction the space IZ is just the disjoint union

IZ =
∐
g∈G

Zg,

while LZ has the same decomposition as a disjoint union, but the fixed loci Zg are 
replaced by their derived analogues (Zg)′. The action of h ∈ G shuffles these fixed loci 
by sending Zg to Zhgh−1 .

Applying Theorem 4.4 immediately yields Theorem 1.15, which we restate below.

4.9. Theorem. Let Z be a smooth global quotient orbifold Z = [Z/G] where Z is a 
smooth scheme over a field k, G is a finite group, and char k is either zero or greater 
than max(dimZ, |G|). Then there exists a canonical isomorphism

exp : TIZ [−1] ∼−→ LZ
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between the shifted tangent bundle TIZ [−1] of its inertia orbifold and its free loop space 
LZ .

Proof. Theorem 4.4 implies that the derived fixed loci (Zg)′ are isomorphic to the to-
tal spaces (TZ)g[−1], and it is immediate to see that (TZ)g ∼= TZg . Thus we have an 
isomorphism

TIZ [−1] ∼−→ LZ;

the isomorphism in the statement of the theorem is nothing but the quotient of this 
isomorphism by the action of G. �
4.10. Corollary 1.17 follows easily from the above theorem once one remembers that

HH∗(Z ) = RΓ(Z ,Δ∗Δ∗OZ ) = RΓ(Z, q̄′∗OLZ)G

and

HH∗(Z ) = RHom∗
Z ×Z (Δ∗OZ ,Δ∗OZ ) = RΓ(Z ,Δ!Δ∗OZ )

= RΓ(Z, (q̄′∗OLZ)∨)G.

Here q̄′ is the map LZ → Z from (4.7).

4.11. Theorem 4.9 also highlights a somewhat striking difference between the behavior 
of disconnected Lie groups in derived algebraic geometry versus classical geometry.

We think of the free loop space LZ of an orbifold Z as a family of (homotopy) 
groups ΩzZ parametrized by z ∈ Z . These groups are not in general connected, having 
components indexed by the inertia group of z. Our theorem shows that the exponential 
map we have defined is an isomorphism between an appropriate number of copies of the 
Lie algebra of the group ΩzZ and the group itself.

This situation is different when one studies disconnected Lie groups in the classical 
setting. Let H be a disconnected Lie group, let H0 be the connected component of the 
identity (a normal subgroup of H), let h denote the Lie algebra of H (i.e., the Lie algebra 
of H0), and let G = H/H0 denote the group of components. Suppose the homomorphism 
H → H/H0 = G admits a right inverse. Once the inverse is fixed, we can view G as a 
subgroup of H, and H decomposes as a semi-direct product of H0 and G.

In this setting there is no natural exponential map that covers all of H (or at least 
a formal neighborhood of G in H). Indeed, one could translate the usual exponential 
map around the origin of H to the other components of H, but this involves a choice 
– whether to use left or right translation by elements of G. The only natural map to a 
neighborhood of g ∈ G is the restriction of the exponential map to (H0)g, which will 
map into the centralizer of g. This map will be far from surjective, unlike the derived 
case where it is an isomorphism.
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