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Dynamic competition of inflation and
delamination in the finite deformation
of thin membranes

Eduard Benet and Franck J. Vernerey (2 *

The mechanics of blister delamination and growth plays a major role in a diversity of areas including
medicine (skin pathology and mechanics of cell membranes), materials (adhesive and fracture) or soft
robotics (actuation and morphing). The behavior of a blister in this context is typically difficult to grasp
as it arises from the interplay of two highly nonlinear and time-dependent processes: membrane
attachment and decohesion from a substrate. In the present work, we device a simplified approach,
based on experimental systems, to predict the deformation path of a blister under various conditions.
For this, we consider the problem of a growing blister made of a rubber-like membrane adhered on a
rigid substrate, and develop a theoretical and experimental framework to study its stability and growth.
We start by constructing a theoretical model of viscoelastic blister growth which we later validate with
an experimental setup. We show that blister growth is controlled by the competition between two
instabilities: one inherent to the rubber, and a second one pertaining to the adhesion with the substrate.
Using these concepts, we show that a “targeted” stable blister shape can be achieved by controlling two

rsc.li/soft-matter-journal

1 Introduction

The study of blisters is often associated with pathologies of
multilayered materials where one layer loses the cohesion that
keeps it attached to its substrate. Indeed, blisters are a symp-
tom of skin diseases such as burns,' and of poorly adhered
industrial films such as paint® or paper.®> Consequently, blistering
and peeling tests are mostly used as methods for measuring the
adhesion between two materials,“> and have a high impact on the
packaging of food and medical industries.*” However, a variety of
systems take advantage of the morphology changes that blisters
provide and use them as an active mechanism. In nature, for
instance, the finite deformation of membranes in the form of
blisters is seen in the vocal sac of frogs® and in the skin papillae of
some species of arthropods.” While it does not involve the
delamination between two membranes, these skin morphing
mechanisms are indeed based on the finite inflation of a con-
strained membrane. At a different scale, cellular blebbing is a
process in which the outer lipid membrane of animal cells partially
detaches from the inner cortex'®"* and produces a blister that can
be used as a motion mechanism."” The same concept has been
studied and applied in the context of skin diseases,"® where
authors used a membrane inflation technique to induce the
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parameters: the thickness of the film and the inflation rate.

detachment and growth of new skin. Despite their disparity,
controlling and harvesting these behaviors require a deep
understanding of a common problem defined by the finite
inflation and delamination of a thin, viscoelastic membrane.
While the mechanics of blisters have been well-studied in
the elastic case, the role of viscous effects influencing these
processes is still poorly understood. Hence, the objective of
this paper is to develop a theoretical framework to study the
stability of blister growth and its impact on shape morphing
technologies.

From a theoretical viewpoint, modeling the adhesion
mechanics of viscoelastic blisters is a problem that requires
the combination of three topics: the mechanics of membranes
under finite strain, the mechanics of adhesion, and delamina-
tion dynamics. While only the second part is genuinely novel in
a viscoelastic system, the problem cannot be explained without
accounting for all three elements. First of all, understanding
the adhesion stability of a membrane requires precise know-
ledge of its internal stresses as they are ultimately responsible
for the pulling force that eventually breaks the adhesion.'*"
However, while membrane theory is well-known in finite
elasticity,"®'” viscoelastic models are scarce in the literature.
Furthermore, most common approaches, such as the Christensen
model,"®* " are phenomenological and thus provide little infor-
mation on the molecular mechanisms driving these behaviors.
To maintain a closer connection with the underlying physics,
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this paper follows the recent approach of Benet et al. where the
viscoelastic response of polymer membranes was modeled
from the perspective of transient network theory (TNT).***
Second, these stresses must be translated into quantifiable
adhesion energy, which determines the conditions for delami-
nation. In the case of stretchable membranes, the problem was
initially approached from a small strain perspective. Authors
such as Williams®* developed analytical expressions to compute
the energy released during membrane delamination. This
approach was later extended to finite elasticity, where authors
such as Nadler”® and Long”® stressed the importance of non-
linear terms. However, despite extensive follow-up work in
understanding®° and measuring®* the different aspects
of the adhesion of shells and membranes in finite strain, the
role of viscosity in this process remains poorly understood. To
the best of our knowledge, only the work of Srivastava®! has
discussed the viscous effects during the contact mechanics of
a membrane, but a deep study on how they affect the energy
release rate is still missing. Finally, this energy is used to
construct a model that explains the spreading dynamics.
In this paper, we build upon existing, well-accepted models*’
and implicitly incorporate the viscous effects through the
previous two areas of study.

Overall, the main contribution of this paper relies on
providing, for the first time, a combined model of a spreading
viscous membrane which we use to study how the viscoelasticity
affects the delamination of membranes. The results show that the
growth of an elastic blister is a problem driven by competition
between two known instabilities: one inherent to the rubber,
and a second one pertaining to the adhesion with the substrate.*”
Interestingly, the meeting of these two processes enables
obtaining a variety of stable blister profiles by only adjusting
the thickness of the film and the inflation rate. The paper is
organized as follows. In Section 2, we discuss the mechanics of
a viscoelastic, axisymmetric membrane. Section 3 derives an
expression for the energy release rate, which is used in Section 4 to
discuss the spreading of a blister. Finally, Section 5 shows an
experimental validation and provides a discussion of the results.

2 Model

2.1 Equilibrium of a blister under finite deformation

To construct a viscoelastic model of a blister, we begin with
a few notions in the theory of membranes used to derive its
governing equations. A membrane is defined as a three-
dimensional solid that has one dimension (its thickness #)
significantly smaller than the others. This entails the following
approximations: (a) stresses and strains are constant across the
membrane thickness, (b) the stresses normal to the thickness
can be neglected (plane stress assumption) and (c¢) bending
moments are negligible compared to in-plane stresses. Mathe-
matically, a membrane can therefore be described by its mid-plane
surface, parameterized with two coordinates &* (o = 1, 2) immersed
in a three-dimensional space. On this surface, internal forces
are represented by a two-dimensional stress tensor ¢ whose
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components ¢ represent the thickness average of the tangent
Cauchy stress.*® A similar thickness average of the balance of
linear momentum then leads to the well-known governing
equation of the mid-plane of a membrane'® (see Appendix A
for details):

g+ fr =0 oPrytfr=0 (1

where «,; is the curvature tensor and f* and f" correspond to
the external pressures applied tangent and normal to the
membrane, respectively. We here concentrate on the inflation
of an axisymmetric blister (Fig. 1a) whose reference state is an
unstretched circular membrane of radius R and thickness #,.
Under these axisymmetric conditions, the blister can first be
parameterized by the arc length s of its cross-section and the
revolution angle ¢ (details on Appendix B), such that only two
components of the stress tensor are non-zero: the longitudinal
stress ¢° and the hoop stress ¢ (Fig. 1a). The position of the
membrane at ¢ = 0 can, therefore, be described by the radius
r(s) and the height z(s) with respect to the center of the
reference circle, and the governing eqn (1) simplifies to:

(0°) +=(c* — o) + (P +22)f* =0 (22)

ki + 0P+ =0 (2b)

where the apostrophes indicate a derivative with respect to s,
and «j are the components of the mixed form of the curvature
tensor (see details in Appendix A). For an axisymmetric surface,
these curvatures relate to the mean curvature H by

1
H= z(k} + k3). Thus, eqn (2b) can be understood by making

an analogy to the Laplace law in fluid-fluid interfaces; i.e., both
equations use curvatures (k; and &3) to relate internal pressure
(f") and surface tension (¢° and ¢?). In other words, this
relationship represents the equilibrium of normal (f*) and
tangential forces ( f*) acting along the membrane.

2.2 Viscoelastic constitutive relation

The viscoelastic constitutive relation of a polymer is then intro-
duced by means of TNT,***° an approach where the macro-
scopic response is derived based on the statistical description
of the molecular chains and their degree of cross-linking. This
theory conceptualizes a polymer as the superposition of N
molecular networks, which are classified into two different
types: permanent and dynamic (Fig. 1c). Permanent networks
are characterized by permanent cross-links and thus display an
elastic macroscopic response. By contrast, dynamic networks
possess cross-links that constantly detach and reconnect at
rates k, and kq, respectively. Macroscopically, such networks
have the response of elastic fluids; i.e., they respond elastically
to fast loading, but relax and flow like a fluid at longer time
scales. For the time, let us consider a single network, whose
chain density is denoted by C. When the network is dynamic,
only a fraction of these chains is fully connected to the network
(and thus participate in the network’s mechanical response) at
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Fig. 1 (a) Scheme of the blister inflation problem. A polymer membrane is attached to a rigid substrate with a circular hole of radius Rq. The injection of a
liquid at a rate of V creates an internal pressure P, which not only inflates the blister, but also detaches it from the substrate increasing its neck radius R.
(b) To determine the variation in the energy release rate during a differential increment in radius dR, the membrane is divided into two zones. Zone |
corresponds to a new configuration of the previously detached membrane. Zone Il corresponds to the portion of the newly detached membrane, and it is
measured by the position vector dd'. (c) TNT-based schematic of a viscoelastic polymer membrane. The material is assumed to be made of two different
types of molecular entanglements. Permanent networks (left) have fixed cross-links, and dynamic networks (right) have transient links attaching and
detaching at rates k, and kq respectively. Macroscopically, the membrane is described by the statistical distribution of the direction and stretch of the

polymer chains which is encapsulated in the tensor .

any given time. If the chain dynamics follow first order kinetics,
the concentration ¢ of connected chains can be determined at
all time by the evolution equation:*°

¢ =ky(C — ¢) — kqc, (3)

While the concentration ¢ gives us an indication about the
stiffness of the polymer, additional information about the
deformation state (and elastic force) of each chain in the
network is needed to evaluate the stress state at a point. We
have shown in earlier work that this knowledge is encapsulated
in the chain distribution tensor pu (Fig. 1c), whose components
indicate the mean squared stretch experienced by the polymer
chains in different directions around a material point.*>*!
Thus, if r denotes the end-to-end vector of a chain and (-)
denotes the average operation over the chain configuration
space, u is defined by:

n=—ron @)

where ¢ is the mean chain length and b the Kuhn length. For a
membrane, this tensor can be decomposed into tangential (u°)
and normal (u") components such that g = u* + p". Using this
decomposition, the evolution of this tensor is captured by two
kinetic equations:

. C—-c
it =k, (T)I —degut + Lyt + p'u” (5a)
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n®n (5b)

= |k, (C — C) —kau" + 2ﬁ,u”

¢ h
where L is the surface gradient of the tangential velocities, n is
the unit normal vector to the mid-plane surface, and u" is the
normal component such that u™ = n-u-n. In these equations, the
first two terms describe the addition of new attached chains
(at rate k,) to the network in a stress-free configuration, and the
depletion of previously connected chains (at rate k4) in their
stretched configuration at the time of detachment. The remaining
terms describe the change in the chains’ average stretch arising
from the elastic distortion sustained by the network (under the
assumption of affine deformations). Since u characterizes the
amount of elastic deformation in the network, it can directly be
used to estimate the stored elastic energy density. Under the
assumption of Gaussian chain statistics, the elastic energy AV,
becomes:

AV, = CkgT[tr(u’ — ) + (W' = 1), (6)

where kgT is the thermal energy of a molecular chain, and g} is
the chain distribution tensor when the network is in its stress-
free (or natural) configuration. For isotropic materials, such as
the VHB tape considered in this paper, uh = I where I is the
identity tensor. The rate of dissipation & is then directly related
to the elastic energy release rate through chain detachment.
It can be shown that:

9= de lpe (7)

This journal is © The Royal Society of Chemistry 2019
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This form clearly shows that permanent networks (kq = 0)
cannot dissipate energy and thus remain purely elastic. The
tangent stress tensor ¢ can then be derived using classical
thermodynamics®® to obtain:

o = heky (" — T, (8)

where we assumed an incompressible polymer membrane.
Eqn (1), (3), (5), and (8) form a general system of equations
to describe the mechanical response of a membrane made of a
single polymer network whose behavior depends on the values
of k, and kq. If k, = kq = 0, the network is said to be permanent,
and the polymer behaves elastically as a Neo-Hookean rubber.
Otherwise, the network is dynamic, and the polymer exhibits a
purely viscous response. In the region of small deformations,
this purely viscous response is equivalent to the behavior
described by a single Maxwell element. However, the two
theories grow apart as the deformation increases, and the
Maxwell model loses its accuracy. Although this ‘“single net-
work model” captures the behavior of a viscoelastic material,
most polymers display a richer viscoelastic response which can
only be explained by the superposition of multiple networks
with different dynamic properties. In this situation, each net-
work is described by its distribution tensor g; and the number
of attached chain c;, whose variations are determined by their
attachment and detachment rates. For the sake of simplicity,
this paper considers a polymer made of two networks: a
permanent network with density of attached chains ¢y, and a
dynamic network with density ¢; and constant rates k, = kq.
These networks are characterized by the fact that the total
number ¢ of attached chains remains constant such that:

=0 = ka(cc_c):kd, ©)

and the tangent stress tensor becomes:

c=nh

1
cikp T (w; — 1), (10)

i=0

In this case, the behavior of the polymer is reminiscent of
the standard-linear solid model. The permanent network acts
as a purely elastic component with equivalent Young’s modulus
Eq = ¢okgT/3, and the dynamic network behaves similarly to a
Maxwell element connected in parallel but accounting for finite
strains. Hence, introducing the axisymmetric constraints, the
stress tensor is simplified to the following two components:

1 1
A3 =33 (). o

where E; = c;kgT/3. If we consider a time evolution where the
membrane moves at a velocity v with tangent component v* and
normal v", we can establish the evolution of the axisymmetric
distribution tensor as (see Appendix B for details):

1= ka(1 — 1) + 2p°(v%s + V") (12a)

"
i1 =kq(1—p?) +2u¢ (”fvs + K%V“) (12b)
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1= ka(l = ") + 25407 (12¢)

2.3 Delamination mechanics of a viscoelastic membrane

The adhesion energy between the blister and its substrate is
measured by the energy release rate G that characterizes the
energy dissipated during the detachment of a unit membrane
area. While an expression for G was previously derived for an
elastic blister undergoing finite deformation by Long et al.,*®
the case of a visco-elastic blister differs by the fact that
dissipation originates from (a) the viscous deformation of
the membrane and (b) the loss of adhesion energy. To quan-
tify these contributions, the energy release rate is first
expressed in terms of the adhesion energy I', and the delami-
nation area A as:
. or
G=-dmda (t2)

The adhesion energy is then assessed by considering the
energy balance during the detachment of a differential portion
of the membrane from its substrate under the action of the
blister’s internal pressure. During this process, the rate of
mechanical work done by the pressure is equal to the sum of
the viscous dissipation occurring in the initially detached
membrane (zone 1 in Fig. 1b) and the change in adhesion
energy I resulting from the detachment of a differential
portion dR (zone 2 in Fig. 1b). The latter can be expressed as
the difference between the external and internal energies as:

OI' = (83U, + 8Uq) — dW, (14)

where dW,, is the work done by the applied pressure on the
entire system, 6U, is the change in the membrane’s elastic
energy, and dUy is the viscous dissipation. Assuming then that
there is no slip in the contact region, this energy can be split
into zones I and II, ie. &' = I + &I'™, where each term
corresponds to their own contributions (8U¢ + dUq) — Wy
(o0 =1, IN).

Zone I. We can equate the internal energy (SU + 8U%) in
zone I to the work done by external forces, which include the
work done by the internal pressure W}, and the work 2nRG-dd'
done by the line tension ¢ to bring point d to d’ (Fig. 1b).

For a differential displacement in an axisymmetric blister,
we can write the line tension as a function of the contact angle 0
(Fig. 1b) and the longitudinal stress at the delamination point
& = —c%(é.cos0 + ksin0). Similarly, following the scheme of
Fig. 1b, the displacement vector can be written as dd’ = (dR')(é;
cos® + ksinf) — (dR)é, where dR’' corresponds to the new
detach material points after deformation; i.e., dR' = /R, /g
being the stretch at the onset of delamination. Thus, the
contribution of the total energy in zone I takes the form:

dI'" = 2nRa*(cos 0 — Ag)dR (15)

Zone II. First, because zone II has an infinitesimal surface
area, the change in volume in this region is of the order of
2nR3R|dd’| and scales with dR®. Consequently, since the work
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Fig. 2 Evolution of the nondimensional energy release rate G* with the
nondimensional blister volume V* at four different inflation speeds (W = 0,
5 x 10% 5 x 10% and o) and for a constant neck R* = 7. For quasistatic
inflation rates (W — 0), the blister has an elastic growth such that G*
exhibits an asymptotic behavior with upper limit Ge. The same behavior is
observed in extremely fast inflations (W — o), where the blister has an
elastic behavior governed by an instantaneous elastic modulus E; which
sets an upper limit G;.

of pressure 6W§,I is proportional to this change in volume, it can
be neglected due to the presence of a double differential.>®
Second, the dissipated energy in this zone is SU§ = 2dV'dt,
with volume dV"' = 2nRhAdR. Again, the presence of a double
differential (dRd¢) allows us to neglect this contribution to the
total energy. The stored elastic energy is, however, non-
negligible and can be derived using eqn (4) as SUY = dV'AYPY,
where APY is the stored elastic energy density at the delamina-
tion point. Hence, we can write the contribution of part II to the
total adhesion energy as:

8" = 2nRh)ARAWY. (16)

Energy release rate. The energy release rate G can then be
found by substituting the results of eqn (15) and (16) into
expression (13), where 8I" = 3I'" + 8I'™. We find:

R R £ AN d
G= ~IR dlgllo (ﬁ) = 0§(4s — cos0) — hi AP, (17)

There are two main differences between this result and the
expression provided by Long et al.>® for the elastic case. (i) The
value of the stresses and elastic energies are time-dependent,
and consequently, they must be integrated in time. (ii) The
second term is a function of the current thickness # and the
elastic energy density per current volume AY,, instead of being
a function of the initial reference state of the membrane. This
is a consequence of the fact that dynamic networks have no
shape memory and TNT is derived in the current frame of
reference.

6634 | Soft Matter, 2019, 15, 6630-6641
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3 Blister mechanics at constant neck
radius

To understand how blister inflation potentially affects delami-
nation, we first present results regarding the inflation of a
blister with constant neck radius. For generality, we first
nondimensionalized the problem by introducing the following
variables:

G v
- Eohy’ - ho’kq

R 14
R=2" ="
ho ho?

*

(18)

where R* is the nondimensional neck radius of the blister,
V* its nondimensional volume, G* is the nondimensional
energy release rate, and W the Weissenberg number that
captures the competition between the inflation rate and viscous
dissipation in the membrane.

3.1 Effect of the inflation rate on the energy release rate

Stresses in viscoelastic membranes are sensitive to their rate of
deformation; larger loading rates typically yield larger stresses.
This means that the energy release rate, which eventually
controls the onset of delamination, is likely to be sensitive to
the inflation rate of a blister. To explore this hypothesis, we
consider a blister, characterized by a constant neck radius
R* = 7 and determine the relation between G* and blister
volume V* for different volume inflation rates (Fig. 2). We observe
that, for quasistatic inflation (W — 0), the viscous forces vanish
and G* increases with inflation until it reaches an asymptotic
value G.*. This observation may be explained by the fact that G*
is proportional to the longitudinal stress ¢°, which has a similar
asymptotic behavior during the inflation of spherical
membranes.”” When the blister is inflated at very large rates
(W — o), the dynamic network does not have time to relax,
and the membrane is endowed with an elastic modulus
E; = (¢o + ¢1)ksT that consists of the combined permanent and
dynamic networks. As a result, we observe a behavior that is
very similar to that for slow inflation, but with a larger asymp-
totic energy release rate G;/*. In general, for a constant neck
radius R*, the energy release rate will always be bounded
between its lower and upper limits G.* and G*, respectively.
For intermediate inflation rates, however, the competition
between elasticity and dissipation leads to a nonlinear response
where G* exhibits a local maximum, after which the energy
release rate monotonically decreases with blister volume.
We note that this response is directly related to the nonlinear
pressure-volume relation and elastic instability observed in
soft spherical membranes,*® where the inflation pressure exhi-
bits a maximum as its radius increases 38% its initial value.
This response, previously discussed in ref. 43 and 44, has
important consequences when the membrane is allowed to
delaminate as shown in the following section. It is important to
note that none of the blisters modeled in this paper has a
perfectly spherical shape. In the case of purely neo-Hookean
rubbers, Long et al.>® demonstrated that these differences are
small enough such that theories based on purely spherical
geometries*> might lead to accurate and insightful results.

This journal is © The Royal Society of Chemistry 2019
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Despite the presence of a viscous component, the same behavior
was observed with our constitutive model where the blisters only
showed a noticeable deviation from a purely spherical shape when
0 < m/2. These comparisons might however lose their accuracy on
more complex behaviors (i.e., strain stiffening or nonlinear chain
dynamics).

3.2 A phase diagram for delamination

In order to study these concepts in a broader parameter space,
let us now consider the inflation of an initially flat blister at
a constant volume rate W and neck radius R*. Due to the
incompressibility of the filling liquid, the delamination of a
blister can be characterized by the variation of G* within the
V* — R* space (Fig. 3a). Indeed, each V* — R* pair defines a
unique blister profile (or shape) whose stability is inferred by
the relation between the energy release rate G* (also interpreted
as the driving force for delamination) and a critical value Gy*
(Go* = Go/Eyh) at which delamination occurs. Thus, if G* > Gy*,
delamination takes place and the adhesion is said to be
unstable; by contrast, if G* < Gy*, the blister neck remains
constant, and the adhesion is said to be stable. The intersection
between this surface and the plane G* = Go* defines a phase
diagram delimiting the stable and unstable regions (Fig. 3b).
We have previously found that the adhesion energy has an
upper bound G* for each value of R*. This implies that if Gy* is
high enough, the blister is permanently stable and unable to
delaminate regardless of the inflation speed. However, as the
value of Gy* decreases, the phase diagram shows a closed
unstable region. Considering the inflation of a blister with zero
initial volume, two main conclusions can be extracted from this
result. (i) For each value of Go* there is a minimum R* above
which the blister always remains stable independently of its
volume. (ii) If the neck radius is constrained, it is possible that

Unstable
Blister (U)

[o)}

{

Nondimensional
energy release rate, G*
L

View Article Online
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the adhesion energy might eventually drop below the adhesion
threshold, leaving the blister stable. In other words, the blister
is trapped (it does not spread) despite having a higher liquid
volume. This is not the case when Gy* < G.* since the blister
always remains unstable at higher volumes and will eventually
delaminate.

While the information provided by the phase diagram of
Fig. 3b is useful to understand the adhesive stability of a blister,
Go* is a fixed property depending on the affinity between
the membrane and the substrate, which is generally hard to
control. Instead, most systems are driven by the volume rate V,
or equivalently, the Weissenberg number W, and have a fixed
adhesion threshold. In terms of the phase diagram, varying the
Weissenberg number implies that our plane G* = Go* remains
fixed, and it is the entire surface that changes according to
the results shown in Fig. 2. Hence, we obtain a particular phase
diagram (Fig. 4) where each contour in the V* — R* space
defines two stability regions whose shape depends on the
inflation rate V. As discussed before, the adhesion energy
during an extremely fast inflation (W — o0) has an increasingly
asymptotic behavior acting as an upper bound of the system. In
this phase diagram, this particular case creates two main
regions (Fig. 4). (1) A permanently stable region which is
completely independent of the inflation rate; i.e., the blister
would never delaminate under those V* — R* conditions.
(2) A potentially unstable region where delamination depends
on the inflation rate. Indeed, as the inflation rate decreases,
we observe how the stability regions become a closed loop in
the phase diagram such that the blister would only delaminate
when its V* — R* state falls within the loop. Finally, in cases where
Go* > G.*, there is a lower threshold on W where the stresses
never increase enough to break the adhesive bonds, and the
blister remains stable during the entire inflation process.

Nondimensional neck radius, R*

Stable |
0 Blister (S) 2500
N
12 O
ondj &&“%\: Gi=s
i : \
Deck . m.enslonal 50 $00 6\@’\1 : ] * 2500
(a) adiyg, py O (b) Nondimensional volume, V

Fig. 3

(a) Nondimensional adhesion energy as a function of its neck radius and liquid volume for a blister inflated at a constant volume rate (W = 500).

The surface is cut by a flat plane (G* = Go*) dividing the surface into two main regions: stable blisters with no delamination (G* < Gg*) and unstable
blisters that delaminate (G* > Gg*). (b) Phase diagram built from (a) where the color shows the value of the adhesion energy as a function of the neck
radius R*, and the volume V*. The different lines show the limits of the stability regions (stable (S) and unstable (U)) resulting from having different values
of Go*. Note that as Go* — 0 the unstable region grows until it spans the entire space. On the other end of the spectrum, if Go* — oo the unstable region

shrinks until it vanishes at Go* > Gmax, and the blister is stable at every R* —

This journal is © The Royal Society of Chemistry 2019

V* configuration.
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Fig. 4 Stability phase diagram V* — R* obtained at a constant adhesion
threshold Go* but for different values of the Weissenberg number, namely
W =250, W =350, W = 500, and W — 0. The shaded region corresponds
to a permanently stable adhesion; i.e., the blister is stable regardless of the
inflation rate, and corresponds to the upper bound of the system obtained
at W — 0. The rest of the diagram corresponds to a potentially unstable
adhesion depending on the inflation rate. Each value of W defines a
different limit such that the blister configuration is unstable inside the
white region and stable in the gray region.

4 Dynamics of blister growth

Let us now concentrate on the case where the blister is allowed
to delaminate and spread during inflation. This necessitates
the introduction of a new time scale that governs the typical
delamination rate of a membrane on a substrate. Indeed, if the
spreading velocity is significantly larger than the inflation rate,
one may expect a flat blister that grows by spreading on its
substrate. By contrast, when the inflation rate is significantly
faster than the rate of delamination, the blister will mostly grow
in height.

4.1 A simple model of blister spreading

Delamination dynamics have been extensively studied in the
literature, and the evolution of the neck (R) is well-captured by
the following empirical relation:*°

0 if G<Gy

; (19)
v(Gg— 1) if G>Gy

0

R=

where v is the critical velocity at which the effect of viscous
dissipation at the crack tip becomes important, while 7 is the
adhesion exponent and depends on the properties of the
substrate/membrane pair. In this work, the latter value is taken
as n = 2 following the adhesion mechanics of PDMS.?”

In the above static analysis, we showed that the phase
diagrams of Fig. 4 allow for a stability classification of any
blister defined by a V* — R* pair. However, this information is
not sufficient to establish its inflation history. In fact, this
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question may be answered by rewriting (19) in a way that it
describes the path taken by an inflating blister in the R* — V*
plane. It is indeed straightforward to show that:

. { R* } _ { R (v, G*) }’ 20
v w

where R is given by eqn (19), and v* = v/kqh,. This system of
differential equations can be directly integrated in cases where
there is no inflation (V' = 0), or no delamination (G < G, = R =0).
Otherwise, one must use the relationship between the delamina-
tion velocity and the volume as R = VdR/dV where V = Whq’kq.
Substituting this result in eqn (20), one obtains a single differ-
ential equation that governs the dynamics of blister growth when
inflation and delamination coexist:

1

dRr* v (G n
Vol )" .
This equation can be numerically integrated given the initial
volume Vy*, neck Ry*, and Weissenberg number W to determine
the time evolution of blister growth. In summary, the solution
consists of two branches: when the blister is in the stable region
(G* < Gy*), there is no delamination and the blister grows at
constant R following a horizontal path in the phase diagram.
Alternatively, when a blister is in the unstable region (G* > G,*)
delamination occurs and the blister neck grows at a rate given by
(21).

4.2 Blister spreading dynamics and trapping

Before analyzing predictions for the model, we first note that
the problem is now driven by the interplay of three length-
scales: the relaxation time of the polymer, the inflation
(volume) rate, and the delamination time (captured by the
intrinsic speed v*). For clarity, we thus limit our analysis to
constant inflation rates W and introduce the spreading coeffi-
cient Z = W/v* to capture the competition between inflation and
delamination rates. Fig. 5 shows blister trajectories predicted
by the model for three values of Z (Z — 0, Z =2 x 10°, and
Z = — o). Initially, all blisters start in a stable domain, i.e., no
delamination takes place (V* = 0), and they follow a horizontal
path in the V* — R* space. Once the blisters reach the unstable
domain, however, delamination starts and the blister paths,
which depend on inflation rates, diverge. We discuss below the
characteristics of these paths in three situations.

Slow inflation (Z — 0). When the dynamics of delamination
are much faster than the inflation rate, blisters are unable to
penetrate the unstable domain and remain on its boundary
(Fig. 5a). In other words, the blister first follows a horizontal
path (no delamination) until it meets the boundary of the
unstable domain. At this point, its path follows this boundary,
since it maximizes neck spreading for all inflation volumes.
If the unstable domain is bounded, the blister eventually
reaches a maximum neck radius, after which it is unable to
delaminate further and retrieve a horizontal path. Depending
on the adhesion energy, the outcome will be a relatively flat
blister (§ < m/2) that maximizes its neck size. We finally note

This journal is © The Royal Society of Chemistry 2019
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Fig. 5 R* — V* path followed by three blisters with initial radii R* = 6, 8, and 10, which are inflated at a constant Weissenberg number (W = 500). The
three scenarios (a—c) show the effect of varying the spreading coefficient Z = W/v*, which corresponds to having blisters with different spreading
velocities. (a) A case where Z — 0 such that v* > W. In this scenario, blister delamination prevails over blister inflation. The blisters are unable to penetrate
the unstable regime, and the path follows the boundary between the two regions. (b) An intermediate case (Z = 2000) where the blisters penetrate the
unstable domain and progressively delaminate until G drops again below the threshold Go. Finally, (c) shows the case inflation prevailing over
delamination (Z — o0). Under these conditions, the blisters enter and exit the unstable regime fast enough such that their neck radius remains almost the
same. Indeed, despite the high volume and stresses in the system, the relaxation rate can lower the energy release rate below the threshold before the

blisters have time to delaminate significantly.

that if a blister initially starts within the unstable domain, it
will first follow a vertical path (i.e., it will delaminate before
growing). These paths are indicated with vector fields in Fig. 5.

Fast inflation (Z — o). When inflation is significantly faster
than the blister’s spreading dynamics, the rate of neck growth
becomes negligible compared to the rate of volume growth.
We thus observe growth in volume at quasi-constant neck size,
as depicted by the horizontal paths in Fig. 5c. Interestingly, this
condition allows a blister to cross-over the unstable domain
without spreading (as represented by the horizontal vector
fields) and eventually become stable once they are large enough.
The outcome will be a large and stable quasi-spherical blister with
a small neck radius.

Intermediate inflation rates. Blisters inflated at relatively
moderate rates are able to enter the unstable domain, in which
they experience a combination of inflation and delamination,
depending on the value of the spreading coefficient Z. Fig. 5b
shows three typical paths taken by blisters, with different initial
neck radii, subjected to Z =2 x 10°. Overall, a blister possesses
three stages of growth: (a) growth without delamination until it
reaches the unstable domain, (b) combined inflation and
spreading, whose ratio depends on the value of Z and (c) return
to a stable stage, where the blister grows without spreading.
In this case, the blister is trapped at a higher volume, i.e., it will
never delaminate again past this point. While our study only
considered constant inflation rates W, it is worth noting that
stopping the inflation in the unstable domain would force the
blister to follow vertical growth until it reaches the boundary
between stable and unstable zones. In this case, a blister would
not necessarily reach a maximum neck radius.

4.3 Experimental test

To observe these predictions in a simple experiment, we designed
a blister test using a hyperelastic adhesive tape (VHB 4905)

This journal is © The Royal Society of Chemistry 2019

adhered to an aluminum substrate and inflated at a constant
volume rate. Since the tape and its adhesion both exhibit
complex viscoelastic response,***” whose study is beyond the
scope of our work, our objective here is not to quantitatively
match modeling results, but rather to qualitatively demonstrate
the key concepts developed in this study (i.e. observe rate-
dependent blister growth, spreading and trapping).

Our experimental setup consists of an aluminum plate with
a circular hole of radius R, = 3.5 mm perfectly attached to a
3D-printed base. This piece enabled connecting the hole to a
NE-1000 syringe pump (NEWERA Pump Systems Inc.) using a
set of polyethylene tubes. In order to inflate a blister, we then
attached a piece of VHB 4905 (h, = 0.5 mm) on top of the
aluminum board and injected dyed water at a constant volume
rate V. Since the thickness (%) and the mechanical parameters
(k4, and ¢;) of the adhesive tape were set by the manufacturer,
we only had control over two of the four nondimensional
parameters: R* and W. Since the manufacturer sets the thickness
of the tape, the former parameter (R* = 7) is controlled by
modifying the radius of the circular hole in the aluminum plate.
The Weissenberg number W was controlled via the volume rate V.
Although the relaxation of VHB possesses multiple relaxation
times,** its chain dynamics is approximated by an average value
ka & 0.0028 1/s** which establishes an operational range of W
between 3 and 3 x 10" The rest of the nondimensional para-
meters, G* and v*, are unknowns which depend on the contact
properties between VHB and aluminum and which would need to
be calibrated. Furthermore, as described by the manufacturer, the
adhesion strength of the VHB tape is not reached instantaneously,
and it takes around 72 hours to reach its maximum potential.
At this stage, we observed that the pressure induced by the
inflation of a blister was not enough to delaminate the membrane;
ie, Go » G, To counter this effect, we performed all blister tests
exactly 5 minutes after the tape was attached to the aluminum plate.
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(a) (b)

Fig. 6 (a) Evolution of three blisters with an identical initial state (v*, R*), but which are inflated at three different volume rates (W = 3, 30, 3000) such that
the fastest inflation does not yield the fastest spreading. (b) Experimental observations of three different blisters inflated at different rates namely V = 0.1,
1, and 10 ml min™. Assuming a constant value of kg = 0.00281 s, these values correspond to effective Weissenberg numbers of the order of W = 3,

30 and 3000.

At this moment, we observed that the level of adhesion G, was on
the same scale as the energy release rate G induced by the
stresses on the membrane. Hence, this ensured to have a low
enough adhesion such that the blister would delaminate with the
incoming water and allowed us to investigate the different
scenarios previously described in this paper.

Using this experimental setup, Fig. 6b shows the results of the
resulting blister growth at three inflation rates: 0.001 ml min™*,
0.1 ml min~", and 10 ml min~", which would correspond to
Weissenberg numbers on the order of 3, 30, and 3000.
We observe that the blisters inflated at faster and slower rates
have similar profiles. In the slowly inflated blister, this pheno-
menon occurs due to the fact that the viscous forces are very
low and G < G,. If we stopped inflating, its radius would
remain the same. By contrast, for the quickly inflated blister, a
similar profile due to the blister has not had enough time to
delaminate, indicated by the higher values of Z. If we stopped
inflating, its radius would continue to grow. For the intermediate
case, however, we observe the highest spreading dynamics as the
blister is inflated at a rate where W and v* are comparable. This
results in a larger neck radius compared to the other two cases.

5 Conclusions

In this paper, we presented a new model combining the
transient network theory (TNT) and adhesion mechanics under

6638 | Soft Matter, 2019, 15, 6630-6641

finite deformation to study the mechanics of a viscoelastic
blister. We found that the combination of a hyperelastic rubber
with highly viscous properties yields a nonlinear behavior of
the adhesion energy with a new adhesive instability not present
with pure elasticity. For instance, we show that the blister
stability is not only determined by its geometry, but also by
its inflation rate. Our results suggest that this problem can be
well understood from the phase diagram where the adhesion
energy is plotted as a function of the neck radius and blister
volume. This approach was used to demonstrate that the final
shape of a blister can be highly controllable by tuning the
initial neck radius, membrane thickness, or inflation rate.
Nonetheless, there are still many parameters such as the pre-
stretch of the membrane,?” or the slippage during delamination*®
whose effect in combination with membrane viscosity remains
unknown. In addition, TNT not only allows for an easy adaptation
to other viscous materials, but it also opens the door to future
exploration on how specific material properties might affect the
behavior of blisters. For example, considering more realistic non-
constant values for the crosslink density or the attachment and
detachment rates will undoubtedly have profound implications
on the conclusions drawn in this manuscript.

Being able to control the morphology of a surface is a crucial
feature in many processes such as adhesion, friction, camou-
flage, or hydrophobicity of materials. For instance, blister-like
actuators made of hydrogels*® or dielectric materials®® rely on
the rubber instability in order to achieve extreme blister-like
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deformations. However, this instability, as well as the potential
delamination of the material, depends on its viscous properties,
which so far have not been studied. In addition, the combination
of the problem considered here with novel reversible adhesion
techniques®>* would provide an ideal framework to achieve a
controllable and reversible shape morphing material similar to
the one shown by arthropods. For this, one should also consider
the effect of damage in the network due to large deformation on
the mechanical response.>
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Appendix A: membrane mechanics

In order to derive the governing equations of a membrane,
we start by parametrizing its position in space. As discussed in
the main text, the slenderness of a membrane allows representing
it by a 2D surface, the mid-plane, embedded in a 3D space. This
surface can be parametrized as x = x(£',£%), where &* are the
parametric coordinates. Hence, we can define a local coordinate
system made of two tangent vectors a, = x, and a normal to the
mid-plane n = a; x a,/||la; X a,|. In this coordinate system, a
vector and a tensor are written respectively as:

v=v"a, +v'n (22)

c = a“ﬁaa@)a[g + c”a, ®n
—_———

o!

(23)
+6"n® ag+d'n®n
N————

o

In addition to this, we can define the metric tensor of the
surface in its covariant form as a,s = a,-ag, which provides
mapping between the parametric space and the actual repre-
sentation of the membrane. This tensor can alternatively be
represented in its contravariant form as a*” defined by a*’ay, = 57.
Finally, the representation of a membrane is closed by defining
the curvature tensor in both its covariant and mixed forms
respectively by:

KQC/; = aa,[;-n K% = w/K.y./g (24)

These local curvilinear coordinate systems are generally
characterized by the fact that they are not orthonormal. This
implies that one must redefine the variations in tensor by
taking into account the variation of both the components and
the basis. Hence, we can write the divergence and gradient of a
vector and a tensor respectively as:

Vo= () (25a)

Vo = ("] pa, (25b)

W = (v"|g)a, ® a) (25¢)
Vo = ("],)(a, ® ay ® @) (25d)
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where the vertical bar indicates a covariant derivative:
Vi =vi+ Ty (26a)
o?|, = " + 12,6 + I 6™ (26Db)
1 .
and I'} = 4 (apuy + ayup — ap,,) are the Christoffel symbols.
The equilibrium equations of a shell in this curvilinear basis
are determined by introducing these definitions into the

balance of linear and angular momentum such that one
obtains:

oy =0 (27)

P+ fM=0 28
s

Appendix B: axisymmetric details

In this appendix, we carry out the mathematical conditions to
obtain the axisymmetric form of the equations to finally obtain
the equations in an implementation-ready form. Let us start by
introducing the following polar parameterization on the mid-
plane:

o = [1(&") cos E3,r(EME sin E22(EY)] (29)

By simply applying the definitions of Appendix A, we can write
the metric tensor as:

’,/2+Z/2 0
Uop = { 0 2 (30)

where we used ' to indicate a derivative with respect to ¢'. In a
similar way, the only non-zero Christoffel symbols can be
written as:

r/r// + Z/ZN ) rr/ ) r/
— I'p=—- F21:§ (31)

1 _
ry, =
apy apn

and thus we can write the membrane equations as:
o + (2l + T3H)e" + 56 +f =0 (32a)
oMy + 0% K + =0 (32b)

Next, if we consider the real stress in the shell by taking into
account the magnitude of the basis, we can redefine the true
stresses on the membrane in its longitudinal and hoop direc-
tions respectively as:

*=o'lay, o® = cPay,, (33a)

and substituting both (31) and (33) into (32) we directly obtain
the simplified form of the balance of linear momentum shown
in eqn (2). Similarly, to obtain the simplified forms of the
distribution tensor, we start by expressing the velocity gradient
L = Vv in terms of local basis as:**

L = (va\ﬁ—v”xw (a, ®2¥) + (v"’tcy/; + v;;) (n®a’)
(34)

h ho,
+ %n X a3 — th(VxKalj =+ V’,'ﬁ)a/j ® a3.
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obtain the expression of eqn (12a)-(12c): 18 A. Derdouri, F. Erchiqui, A. Bendada, E. Verron and B. Peseux,

Proceedings of the International Congress on Rheology, 13th,

.S — _ S + S S + 1..n . , R
= k(1 = 40) + 2007 + 1) (352) Cambridge, United Kingdom, Aug. 20-25, 2000, 2000, vol. 3,
. v ) pp. 394-396.
i =ka(1— p®) +2u8 (= + 130" (35b) X i .
r 19 Y. Li, J. A. Nemes and A. A. Derdouri, Polym. Eng. Sci., 2001,

h 41, 1399-1412.
W= ka(1— ") + 2#4"- (35¢) 20 E.Verron, G. Marckmann and B. Peseux, Int. J. Numer. Meth.
Eng., 2001, 50, 1233-1251.
21 E. Verron and G. Marckmann, Int. J. Non Linear Mech., 2003,
38, 1221-1235.
Acknowledgements 22 F. Tanaka and S. F. Edwards, Macromolecules, 1992, 25(5),
1516-1523.
We acknowledge Tong Shen’s help in reviewing the manuscript. 23 F. J. Vernerey, J. Mech. Phys. Sol., 2018, 115, 230-247.
Research reported in this publication was supported by the 24 J. G. Williams, Int. J. Fract., 1997, 87, 265-288.
National Science Foundation under the award 1761918. The 25 B. Nadler and T. Tang, Int. J. Non Linear Mech., 2008, 43,
content is solely the responsibility of the authors and does not 716-721.
necessarily represent the official views of the National Science 26 R. Long, K. R. Shull and C. Y. Hui, J. Mech. Phys. Sol., 2010,
Foundation. 58, 1225-1242.
27 J. Shi, S. Miiftti and K. T. Wan, J. Adhes., 2011, 87, 579-594.
References 28 A. Srivastava and C. Y. Hui, Proc. R. Soc. A, 2013,
469, 20130424.
1 J. Nardi, T. Feder, R. Bruinsma and E. Sackmann, Europhys. 29 N. Kumar and A. Dasgupta, Int. J. Non Linear Mech., 2013,
Lett., 1997, 37, 371-376. 57, 130-139.
2 K. T. Wan and Y. W. Mali, Acta Metall. Mater., 1995, 43, 30 V. A. Eremeyev and K. Naumenko, Mech. Res. Commun.,
4109-4115. 2015, 69, 24-26.
3 Y. Aoyanagi, J. Hure, J. Bico and B. Roman, Soft Matter, 31 G. Li and K. T. Wan, J. Adhes., 2010, 86, 969-981.
2010, 6, 5720-5728. 32 C. Y. Hui and R. Long, J. Adhes., 2012, 88, 70-85.
4 N. G. Boddeti, S. P. Koenig, R. Long, J. Xiao, J. S. Bunch and 33 R. Long and C. Y. Hui, Int. J. Solids Struct., 2012, 49,

Published on 20 July 2019. Downloaded by University of Colorado at Boulder on 10/15/2019 2:26:02 PM.

M. L. Dunn, J. Appl. Mech., 2013, 80, 040909.

5 T. Zhu, G. Li, S. Miufti and K.-T. Wan, J. Appl. Mech., 2017,
84, 071005.

6 M. Nase, B. Langer and W. Grellmann, Polym. Test., 2008,
27, 1017-1025.

7 M. Nase, B. Langer, H. J. Baumann, W. Grellmann, G. Geif3ler
and M. Kaliske, J. Appl. Polym. Sci., 2019, 111, 363-370.

8 1. Starnberger, D. Preininger and W. Hdodl, Anim. Behav.,
2014, 97, 281-288.

9 J. J. Allen, G. R. Bell, A. M. Kuzirian, S. S. Velankar and
R. T. Hanlon, J. Morphol., 2014, 275, 371-390.

10 L. Foucard, X. Espinet, E. Benet and F. J. Vernerey, Multi-

scale Simulations and Mechanics of Biological Materials, 2013,
pp. 241-265.

11 F.J. Vernerey and M. Farsad, Comput. Meth. Biomech. Biomed.

Eng., 2011, 14, 433-445,

12 G.T. Charras, M. Coughlin, T. J. Mitchison and L. Mahadevan,

Biophys. J., 2008, 94, 1836-1853.

13 A. Srivastava, A. B. Tepole and C. Y. Hui, Extreme Mech. Lett.,

2016, 9, 175-187.

14 A. Patil and A. Dasgupta, European Journal of Mechanics, A:

Solids, 2013, 41, 28-36.

15 J. A. Rodriguez-Martinez, J. Fernandez-Saez and R. Zaera,

Int. J. Eng. Sci., 2015, 93, 31-45.

16 A. Libai and J. Simmonds, The nonlinear theory of elastic

shells, 1988, p. 428.

6640 | Soft Matter, 2019, 15, 6630-6641

34

35

36

37

38

39

40

41

42

43
44

45

46

672-683.

A. Srivastava and C. Y. Hui, Proc. R. Soc. A, 2014, 470,
20140528.

H. Chen, X. Feng, Y. Huang, Y. Huang and J. A. Rogers,
J. Mech. Phys. Solids, 2013, 61, 1737-1752.

R. Mangan and M. Destrade, Int. J. Non Linear Mech., 2015,
68, 52-58.

J. Y. Faou, G. Parry, S. Grachev and E. Barthel, Phys. Rev.
Lett., 2012, 108, 116102.

J. Simo and D. Fox, Comput. Methods Appl. Mech. Eng., 1989,
72, 267-304.

F.J]. Vernerey, R. Long and R. Brighenti, J. Mech. Phys. Solids,
2017, 107, 1-20.

S. L. Sridhar and F. J. Vernerey, Polymers, 2018, 10(8),
848.

T. Shen, R. Long and F. Vernerey, Comput. Mech., 2019, 63,
725-745.

G. Holzapfel, Nonlinear solid mechanics: a continuum
approach for engineering, 2000, 1st edn, p. 455.

A. Wineman, Comput. Math. Appl., 2007, 53, 168-181.

E. Benet, H. Zhu and F. J. Vernerey, Phys. Rev. E, 2019,
042502, 1-12.

A. L. Flory, D. A. Brass and K. R. Shull, J. Polym. Sci., Part B:
Polym. Phys., 2007, 45, 1390-1398.

M. Barquins and M. Ciccotti, Int. J. Adhes. Adhes., 1997, 17,
65-68.

This journal is © The Royal Society of Chemistry 2019


https://doi.org/10.1039/c9sm00988d

Published on 20 July 2019. Downloaded by University of Colorado at Boulder on 10/15/2019 2:26:02 PM.

Paper

47 M. Hossain, D. K. Vu and P. Steinmann, Comput. Mater. Sci.,
2012, 59, 65-74.

48 T. H. Lengyel, Y. Qi, P. Schiavone and R. Long, J. Mech. Phys.
Solids, 2016, 90, 142-159.

49 T. Shen, J. Kan, E. Benet and F. J. Vernerey, Soft Matter, 2019,
DOI: 10.1039/C9SM00911F.

This journal is © The Royal Society of Chemistry 2019

View Article Online

Soft Matter

50 C. Keplinger, T. Li, R. Baumgartner, Z. Suo and S. Bauer, Soft
Matter, 2012, 8, 285-288.

51 S. Song and M. Sitti, Adv. Mater., 2014, 26, 4901-4906.

52 Z.Ye,G.Z.Lum,S. Song, S. Rich and M. Sitti, Adv. Mater., 2016, 5087.

53 F. J. Vernerey, R. Brighenti, R. Long and T. Shen, Macro-
molecules, 2018, 51, 6609-6622.

Soft Matter, 2019, 15, 6630-6641 | 6641


https://doi.org/10.1039/c9sm00988d



