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a b s t r a c t 

Soft viscoelastic polymers and gels are commonly used a wide range of applications owing 

to their softness and the ability to accommodate large deformations. Their applicability is 

however often limited by their tendency to fracture in ways that are cannot be predicted 

by conventional elastic fracture mechanics. Our understanding of fracture in this class of 

solid has particularly been hindered by the incapacity of determining the competition vis- 

cous flow and fracture under finite strains. To tackle this problem, this paper presents a 

framework that quantitatively captures the interplay between energy dissipation and crack 

propagation in soft solids made of a single transient network. Using a combined analytical 

and numerical study, we investigate the dynamics of crack propagation at various loading 

rates and for networks that display different sensitivities to force. Our results point out to 

four different crack characteristic behaviors, for which we unveiled the respective mech- 

anisms, all involving a strong interplay between chain deformation, bond dynamics and 

rupture. 

© 2020 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Soft polymeric materials that are resistant to fracture are highly desirable in a wide range of existing and emerging

applications including adhesives ( Creton and Ciccotti, 2016 ), soft robotics ( Coyle et al., 2018 ), tissue engineering ( Akalp et al.,

2016; Bryant and Vernerey, 2018; Haque et al., 2012 ) and stretchable electronics ( Lin et al., 2016 ). In practice, macroscopic

fracture usually originates from the catastrophic growth of small defects that leads to the damage of surrounding material.

One general metric to characterize a material’s resistance to fracture is the fracture toughness G, defined as the energy

required to advance the crack by a unit area ( Long et al., 2014 ). To improve the applicability of soft polymeric materials

in applications, tremendous effort has been devoted in the past decade to enhancing G through a variety of strategies,

including particle-reinforcement ( Agrawal et al., 2013; Moutos et al., 2007 ), sacrificial bond breaking ( Gong et al., 2003;

Haque et al., 2012; Millereau et al., 2018 ), and inducing viscoelasticity by transient reversible networks ( Mayumi et al.,

2016; Sun et al., 2012; 2013; Wu et al., 2017 ). A thorough review of toughening strategies and mechanisms can be found in

Zhao (2014) . Despite differences in methodology, a common object of these works is to introduce a bulk energy dissipation

mechanism to shield the defects from the energy inflow by external loading ( Creton and Ciccotti, 2016; Zhao, 2014 ). Among

these strategies, the introduction of a transient network has been favored by many researchers due to the capability of bond

reformation ( Ihsan et al., 2013; Zhang et al., 2016 ). This leads to advantageous characteristics of recovering the mechanical
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strength after large deformation and self-healing after cutting ( Wu et al., 2017 ). In addition, with the increasing capacity of

controlling the bond structure at the molecular level, it is possible to tune the bond dynamics towards desired mechanical

behaviors. 

While many articles report the fabrication of novel transient networks with high fracture resistance, our theoretical un-

derstanding remains limited ( Long and Hui, 2016; Long et al., 2020 ). The main difficulty lies in an accurate description of

material’s viscoelastic behavior arising from bond dynamics at finite strain. Earlier theoretical studies can be dated back

to the 1960s’, starting from Williams (1968) , Knauss (1966, 1970, 2015) and Schapery (1975, 1984) . These works employed

the cohesive approach and assumed a linear-viscoelastic material behavior in the cohesive zone. In an alternative approach,

Christensen (1979) incorporated the role of viscous dissipation into a generalized Griffith’s energy-based criterion to predict

the crack propagation in a viscoelastic strip. Hui et al. (1992) later obtained a similar expression for the crack driving force

as Christensen at the limit of very large velocity via a rate-dependent cohesive zone analysis of crack propagation. At the

level of qualitative understanding, De Gennes (1996) employed scaling analysis and physical arguments and proposed a the-

oretical picture, the Viscoelastic Trumpet Model, describing the effect of viscous dissipation on the material behavior near

a propagating crack tip. Considering the interplay between material deformation and relaxation, de Gennes suggested that

a steadily moving crack tip in the viscoelastic medium is wrapped by an unrelaxed elastic zone and a viscous dissipation

zone ( Saulnier et al., 2004; Tabuteau et al., 2011 ). The crack takes a different profile in these two regimes and collectively

its shape is similar to a trumpet profile. 

While the above studies are based on linear, small deformation viscoelasticity, in practice, these materials usually ex-

perience large strains and exhibit highly nonlinear viscoelastic behaviors especially near the crack tip. Although several

nonlinear viscoelastic models have been proposed in the literature ( Bergström and Boyce, 1998; Long et al., 2014; Mao

et al., 2017; Vernerey and Long, 2017 ), there were no studies on the viscoelastic fracture at finite strain until the recent

serial work of Guo et al. (2019, 2018) ; Hui et al. (2019) , where the time-dependent stress fields near a static crack tip

were evaluated. This approach has however not been used to evaluate the bulk dissipation and the crack driving force.

One major barrier is that this model relies on the convolutional integration over the deformation history at each material

point, which is computationally challenging when solving for a full field problem with complicated geometry and loading.

This issue can be addressed by using the transient network theory (TNT) ( Tanaka and Edwards, 1992; Tobolsky and Eyring,

1943; Yamamoto, 1956 ) that derives the macroscopic mechanics based on the statistical description of chain configuration

and dynamics at the microscopic level. One advantage is that this theory is derived in a time-incremental format based on

evolution equations, which bypasses the need for convolutional integral when evaluating the elastic stored energy density

and dissipation. In a recent effort, Vernerey and Long (2017) ; Vernerey (2018) introduced new forms of this theory that

characterize the chain statistical distribution via an average measure, the conformation tensor. This largely simplifies the

framework and makes it convenient for computational implementation. In later efforts, this theory has been implemented

into a coupled Eulerian-Lagrange finite element framework that simulates the rate dependent response of soft synthetic

and biological materials at very large deformations ( Shen et al., 2019a; 2019b; Vernerey et al., 2018b ), which shows its po-

tential for the study on the fracture of soft viscoelastic materials. Supposing that the crack driving force is obtained, its

relationship to crack stability needs to be determined based on the mechanism of chain rupture at the tip. The conventional

model, the Lake-Thomas theory ( Lake and Thomas, 1967 ), proposes a rate-independent framework that relates the chain

rupture to a critical stretch level. However, this theory was contradicted by several experiments that indicates chain damage

is associated with the rate at which they are stretched ( Gent, 1996; Ghatak et al., 20 0 0 ). Alternatively, Chaudhury (1999) ;

Hui et al. (2004) proposed that this rate-dependent rupture is related to thermally activated kinetic process of the chains at

the tip, where bond dissociation is accelerated due to the local amplified chain stretch. Based on this consideration, a crack

driving force - velocity relationship was derived based on a rate equation of bond kinetic and has qualitatively explained

experimental measurements ( Ghatak et al., 20 0 0 ). However, since this model only focuses on microscopic events at the tip,

it needs to be incorporated with a continuum model to account for the effect of bulk dissipation. 

Our objective here is to develop a model that is the physically simplest possible of a transient network, that could in

time provide a stepping stone to explore more complex situations. The network is therefore assumed to have a uniform

mesh size, with a dynamic that is governed by a unique time scale: that of the bond association and dissociation. We

neglect additional toughening mechanisms occurring at the crack tip ( van der Kooij et al., 2018; Long et al., 2020 ), and thus

only concentrate on the so-called quasi-brittle transient networks ( Ligoure and Mora, 2013; Shabbir et al., 2016; Tabuteau

et al., 2011; 2009 ) where a crack only consumes energy by creating new surfaces. The following presentation could of course

include a variety of more complex processes including additional rate dependent processes arising from the polymer-solvent

interactions ( Dhote and Vernerey, 2014; Wang and Hong, 2012 ), chain reptation through entanglements ( De Gennes, 1976;

Lalitha Sridhar and Vernerey, 2018 ), multiple bond kinetics ( Sun et al., 2012 ) or chain stiffening ( Lavoie et al., 2016; Vernerey

et al., 2018a ), but all of these would be at great expense of the exposition. Instead, we focus here on exploring the non-

intuitive phenomena that would arise from this simple class of quasi-brittle dynamics networks. To achieve this, we employ

the transient network theory (TNT) at the macroscopic level to determine the crack driving force taking into account for

the viscous dissipation. At the crack tip, we employ the cohesive zone model that relates the crack driving force to crack

stability and velocity developed by Chaudhury (1999) . The structure of the paper is as follows. Section 2 investigates rate

dependent response of material made of transient networks and calculates the crack driving force based on the interplay

between external load and viscous dissipation. We also investigate the role of viscous dissipation in fracture through a

simplified fracture case. Section 3 then introduces a general numerical approach to examine the crack stability at large
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Fig. 1. (a) A schematic of fracture test of a material made of transient networks. (b) The change of bond association rate k a and dissociation rate k d as 

functions of force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deformation. This framework also relates the crack velocity to crack tip driving force based on the work of Chaudhury (1999) .

Section 4 finally explores the material behavior under pure shear fracture test at different loading conditions. 

2. Viscous dissipation and crack driving force 

The mechanical response of viscoelastic solids is usually more complicated than their elastic counterparts due to their

capacity of dissipating energy during loading and rate dependency. In this paper, we focus our study on solids made of

”transient” polymer networks, characterized by non-covalent crosslinks. In these networks, crosslinks can dissociate and

reassociate under external stimuli or thermal fluctuation, leading to network reorganization over time. Some example of

these solids are polymers with covalent adaptable bonds ( Kloxin and Bowman, 2013 ) or physical bonds such as hydrogen

bonds ( Li et al., 2007 ) and ionic interactions ( Sun et al., 2013 ). It is usually considered that an associated chain can dissociate

at any state, but a free chain can only reassociate at its stress free state ( Vernerey and Long, 2017 ). Therefore, the stored

elastic energy is dissipated through the dissociation process. In the following, we will explore the response of this network

first during uniform extension and then during fracture experiments. 

2.1. Flow and elasticity of transient networks 

The dynamics of bonds in a transient network is usually characterized by the rate of bond association k a and the rate of

dissociation k d , respectively ( Fig. 1 a). According to Erying’s theory ( Krausz, 1976; Tobolsky and Eyring, 1943 ), the magnitudes

of k a and k d depend on the standard energy barrier for association ( �G 

a ) and dissociation ( �G 

d ), and the force f carried

by the chain. Since a detailed analysis is already given in Krausz (1976) ; Yu et al. (2018) , we directly take the expression

of k a and k d as k a = νexp(−�G a + fλ
k B T 

) and k d = νexp(−�G d − fλ
k B T 

) where ν is the natural thermal vibration frequency, k B T is

the thermal energy and λ is a activation length for bond dynamics. To obtain a simpler form, let us further introduce the

force-free rates of bond dynamics k 0 a = νexp(−�G a 

kT 
) and k 0 

d 
= νexp(−�G d 

k B T 
) and obtain: 

k a = k 0 a exp 

(
− f 

f 0 

)
and k d = k 0 d exp 

(
f 

f 0 

)
(1)

where f 0 = k B T /λ measures the force sensitivity of k a and k d (i.e., a larger f 0 indicates a weak force sensitivity). Fig. 1 b

illustrates the changes of k a and k d as functions of force. For the convenience of analysis, it is usually assumed that k a , k d
are constant when the chain stretch is small compared to their contour length ( Sun et al., 2017 ). This assumption has been

validated in several experiments where the material’s relaxation time is almost invariant of stretch level in a certain range

( Mayumi et al., 2013; Narita et al., 2013; Pellens et al., 2004 ). When chains are highly stretched, i.e., near their contour

length, this assumption fails and force sensitivity must be considered. In the context of fracture, amplification of chain

stretch usually occurs in a small region near the crack tip. Therefore, in this work, we assume that k a , k d are constants in

the specimen except for a small region near the crack tip. 

Due to bond dynamics, only a fraction of chains are connected in the network and contribute to its elasticity. Considering

that chain dynamics follow first order kinetics, the concentration n of connected chains can be determined at any time by

solving the evolution equation ( Vernerey and Long, 2017 ): 

dn = k a (n t − n ) − k d n (2)

dt 
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where n t is the total concentration of chains in the network. At chemical equilibrium state ( d n/d t = 0 ), the concentration

of connected chains becomes a constant and can be found as n = n t k a / (k a + k d ) . The elastic deformation of the network

may then be connected to the stretch ratio λ of connected chains via the conformation tensor ( Vernerey and Long, 2017;

Vernerey, 2018 ): 

μ = 〈 λ � λ〉 (3) 

where the operator 〈 · 〉 represents the average operation over the chain configuration space ( Vernerey, 2018 ) and λ = r /r 0 
where r is a chain’s end-to-end vector and r 0 = 

√ 

N b the average length of a chain in its stress free configuration. With

this definition, the conformation tensor μ is equal to the identity tensor I when the network is stress-free. However, upon

deformation, μ changes in time due to a competition between chain stretch and bond dynamics. If we assume that k a 
and k d are constants, one can show taht the conformation tensor evolves according to Vernerey and Long (2017) (detailed

derivation is given in Appendix A): 

˙ μ = L μ + μT L T + k d (I − μ) (4) 

where L = 

˙ F F −1 is the velocity gradient experienced by the network ( F being the deformation gradient) and μ0 = 3 /tr( μ−1 ) I

is the state for reassociation. We note that the chemical equilibrium condition n = n t k a / (k a + k d ) and affined deformation
˙ λ = L λ were assumed to obtain the above equation. The first two terms on the right hand side describe the contribution

from macroscopic deformation while the latter two terms account for the dissociation of connected chains at the current

state ( μ) and the association of free chains in a uniformed state (3 /tr( μ−1 ) I ) . We note that this is a stressed state due to

the incompressibility of the network. For a purely elastic network (i.e. k a = k d = 0 ) Eq. (4) degenerates to the rate of the

Finger deformation tensor ˙ μ = L μ + μT L T ( Holzapfel, 20 0 0 ). Since μ characterizes the elastic deformation of the network,

it is directly connected to the elastic energy � and rate of energy dissipation D. Assuming Gaussian chain statistics (i.e., the

force-stretch relation of a chain is linear), these two quantities are defined as Vernerey and Long (2017) : 

� = 

nk B T 

2 

tr ( μ − I ) + p ( det ( F ) − 1 ) and D = k d � (5) 

where p is the hydrostatic pressure that enforces incompressibility. The expression for D shows that the detachment of

chains at their stress state leads to unrecoverable loss of elastic stored energy at rate k d . Since Eqs. (2) and (4) are formulated

in an incremental form, the variables μ, � and D already contain the information about deformation history and therefore

convolution integral is not needed. Finally, the Cauchy stress tensor σ is finally given by Vernerey and Long (2017) : 

σ = nk B T ( μ − I ) + pI (6) 

2.2. Competition between chain stretch and dynamics 

Eq. (4) shows that the chain conformation tensor μ results from a kinetic competition between the rate of network

deformation and bond dynamics. This competition is usually quantified by the Weissenberg number: 

W = 

˙ ε

k d 
(7) 

where ˙ ε is the true strain rate. To illustrate this, let us consider the pure shear extension of a specimen ( Fig. 2 a) whose

geometry is defined by its width L 0 , height H 0 and thickness b 0 with L 0 � H 0 � b 0 . Due to these geometrical constraints, the

horizontal deformation is negligible and the deformation gradient at any time t is F = diag{ 1 , λ, 1 /λ} with λ(t) = exp ( ̇ εt )
while the velocity gradient thus is L = diag{ 0 , ˙ ε, − ˙ ε} . During deformation, the evolution of chain conformation can be

determined from Eq. (4) as: 

˙ μ11 = k d 

(
3 

μ−1 
11 

+ μ−1 
22 

+ μ−1 
33 

− μ11 

)

˙ μ22 = k d 

(
2 W μ22 + 

3 

μ−1 
11 

+ μ−1 
22 

+ μ−1 
33 

− μ22 

)

˙ μ33 = k d 

(
−2 W μ33 + 

3 

μ−1 
11 

+ μ−1 
22 

+ μ−1 
33 

− μ33 

)
(8) 

The rate of change of elastic stored energy is therefore computed from Eq. (5) as: 

˙ � = 

nk B T 

2 

[ 2 W k d (μ22 − μ33 ) − k d (2 − μ22 − μ33 ) ] . (9) 

The first term on the right-hand side quantifies the rate of energy density gained from external work ( ˙ W ) since ˙ W = σ : L =
nk B TW k d (μ22 − μ33 ) while the second term k d 

nk B T 
2 [(μ22 + μ33 − 2)] = k d � = D accounts for the rate of energy dissipation

due to bond dynamics. Fig. 2 b plots ˙ � as a function of chain stretch λ for different values of W . Our results show that the

system can be found into two regimes: 
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Fig. 2. (a) Schematic of pure shear tensile experiment. The specimen’s dimension is L 0 � H 0 . (b) The rate of change in stored elastic energy density ˙ � as a function of stretch H / H 0 at different rates. (c) The 

stored elastic energy density at the steady state �s as a function of Weissenberg number W . 
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Fig. 3. Schematic of a pure shear sample (a) before and (b) after the crack propagates by a small increment δa . (c) A phase diagram that shows the stable 

and unstable regime for the case when the specimen’s stretch is fixed after the crack propagates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a . When W < 0.5, the rate of change of stored elastic energy density always asymptotes to zero in the long term. The

condition 

˙ � = 0 characterizes steady-state creep condition where the external work is balanced with viscous dissipation. As

a result, the chain conformation remains unchanged although λ continuously increases. The steady state values of μ can

therefore be obtained by considering ˙ μ22 = 0 and ˙ μ33 = 0 in Eq. (8) . Further using Eq. (5) , the steady state stored elastic

energy �s at steady state is found as Lalitha Sridhar and Vernerey (2018) : 

�s = 

E 

6 

[
3 − 4 W 

2 

(1 − 4 W 

2 ) 2 / 3 
− 3 

]
(10) 

This �s − W relation is plotted in Fig. 2 c along with schematics of chain conformations, where we see that �s diverges as

W approaches 0.5, indicating that chain elastic stretch becomes predominant. 

b . When W ≥ 0.5, the stored elastic energy increases monotonically with time. In this case, the rate of network defor-

mation is too large to be compensated by bond dynamics and a steady state cannot be obtained. 

2.3. Crack stability in transient networks: case study 

When a crack nucleates in a transient network, its stability depends on the interplay between four energetic quantities:

the incremental work δW done by external loading per unit area of crack, the elastic energy release rate G e , the work G 0 

required to create a unit area of crack surface and the viscous dissipation G v per unit crack extension. Crack propagation is

energetically favored if Zehnder (2012) : 

δW + G e ≥ G 0 + G v . (11) 

Physically, this equation states that the energy available for crack advance needs to be greater than the energy being dissi-

pated (by both viscoelasticity and crack advance). For the case of an elastic material ( G v = 0 ), it has been shown in experi-

ment that the crack propagates at steady state when external deformation is kept at a fixed level ( δW = 0 ) ( Qi et al., 2019 ).

In this case, the fracture criterion ( eq. (11) ) degenerates to G e ≥ G 0 , a condition that has been widely applied for steady

state elastic fracture ( Zehnder, 2012 ). For the case of a pure shear fracture test ( Fig. 2 a), the stability of an elastic crack is

typically explored by first subjecting the sample of height H 0 to a fixed level of stretch. If � f is the stored elastic energy at

the far field, it can be shown that the crack becomes unstable and propagates when � f H 0 ≥ G 0 . In this regime, the crack

propagates at steady-state with constant velocity ( Long and Hui, 2016 ). 

In the case of transient networks, this approach must be revisited since the elastic energy � f does not only depend on

stretch, but is also a function of the rate of loading ( Fig. 2 b & c). To examine this situation, consider a pure shear specimen

in steady-state creep conditions ( W < 0.5), that is suddenly cut with an edge crack of length a ( Fig. 3 a). To simplify the

analysis, we further make four assumptions: (a) the loading ceases as soon as the crack is introduced (i.e. δW = 0 in the

post-crack regime). (b) the deformation is small enough so that the crack does not blunt as it propagates and H ≈ H 0 . (c) the

crack velocity v is constant and independent of loading condition. (d) Finally, similar to the Griffith theorem ( Zehnder, 2012 ),

the elastic energy �s is assumed to be uniform in the material ahead of the tip (the green region in Fig. 3 a). We note that

these assumptions will be relaxed in the next section, so that general cases can be considered. In this case, the crack stability

criterion ( Eq. (11) ) becomes G e − G v ≥ G 0 . The elastic energy release rate is calculated as G e = δ�e /δa where δ�e = �H 0 δa

quantifies the elastic energy loss per area due to the addition of unloaded material (shown by the yellow region in Fig. 3 b).
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The viscous viscous dissipation is calculated as G v = δ�v /δa where δ�v = k d �Aδt represents the loss of elastic energy in

the bulk due to bond dynamics (green region of area A in Fig. 3 a) over time interval δt = δa/ v . Recalling that L > > H for

pure shear geometry, the area of the green region can be calculated as A = H(L − a ) + O(H 

2 ) . Neglecting the higher order

term, G e and G v are evaluated as: 

G e = �s H 0 and G v = 

k d 
v 

�s H 0 (L − a ) (12)

and the crack stability criterion becomes 

�s H 

[ 
1 − 1 

	 
(L − a ) 

] 
≥ G 0 (13)

where 	 = v /k d is a characteristic length that characterizes the competition between crack propagation and viscous dissi-

pation. According to De Gennes (1996) , this length represents a region around the crack tip within which crack propagates

in a quasi-elastic manner. Interestingly, when the ratio 	 ∗ = 	/ (L − a ) � 1 , Eq. (13) degenerates to the criterion for elas-

tic materials because the crack propagates fast enough so that the bulk dissipation becomes negligible. The criterion of

Eq. (13) can be visualized in a phase diagram for crack stability as a function of W and 	 ∗ ( Fig. 3 c)where we see that bulk

dissipation affects the crack stability in two ways. During the loading stage, it competes with external loading (measured

by W ) that determines the stored elastic energy density �s in the far field. After the cut is introduced, the bulk dissipation

also competes with the energy loss due to crack propagation. Eventually, we find that crack propagation is only favorable

when 	 ∗ > 1, i.e., the full specimen behaves elastically during the event of fracture ( De Gennes, 1996; Saulnier et al., 2004 ).

When 	 ∗ < 1, bulk dissipation plays a predominant role and the crack is stable regardless of W ; this is contrary to elastic

fracture where crack stability is directly related to a critical value of �s . This finding explains the enhanced flaw tolerance

of viscoelastic materials in adhesion applications ( Creton and Ciccotti, 2016 ) as the viscosity not only decreases the energy

in the bulk during the loading stage, but also shields the crack from propagation. Since fracture becomes less likely to occur,

bulk deformation (e.g., cavitation, fingers pattern formation) becomes a common mode of failure in applications. 

This result also indicates that in a viscoelastic fracture experiment, the protocol of fixing deformation during crack prop-

agation becomes inappropriate because bulk dissipation may prohibit the crack from propagating. To address this, we recall

from Fig. 2 b that the contribution of bulk dissipation can be balanced out by external work if the specimen is continuously

stretched with constant W . In this case, the crack stability criterion becomes �s H ≥ G 0 which only depends on W . Fur-

thermore, in analogy to the critical stretch ratio for elastic materials, the crack stability criterion can be converted into a

critical loading rate W which can be easily measured. However, we emphasize that this analysis is based on the assumption

of small deformation and uniform stress fields and the crack is introduced in a steady state creep condition. In practice, the

crack is usually introduced before the specimen is stretched and the stretch level is usually more than 30% ( Ghatak et al.,

20 0 0; Liu et al., 2019b; Luo et al., 2014 ), beyond which the material behaves nonlinearly. In addition, the fracture process

is also more complicated, wherein the crack velocity is not an intrinsic material property but a function of crack driving

force ( Ghatak et al., 20 0 0 ). It also does not necessarily take on an (elastic) parabolic profile since blunting may occur during

propagation ( De Gennes, 1996; Saulnier et al., 2004 ). Gaining a comprehensive understanding of the above features requires

a framework that incorporates nonlinear viscoelasticity and an accurate description of the stress fields, where an analytical

solution is difficult to obtain. As an alternative, we develop here a numerical framework that is based on our previous work

( Shen et al., 2019b ) to capture and unveil the mechanisms behind experimental observations. 

3. A general framework for viscoelastic fracture 

In this section, we introduce a general framework for viscoelastic fracture of transient networks at finite strain. This

framework is introduced on the basis of a finite element computational model developed previously that can accurately

describe the combined flow and elastic deformation in viscoelastic solids at large deformation. Notably, this computational

model is developed based on the Eulerian description of kinematics and therefore it can handle the arbitrary deforma-

tion levels of material without losing accuracy. Readers are referred to Appendix C for details on the solution strategy and

Foucard et al. (2015) ; Shen et al. (2019b) on the numerical scheme. In this section, using the stress field solution from the

finite element simulations, we focus on the crack stability criterion ( Eq. (11) ) and the relationship between rate-dependent

chain rupture and crack velocity. 

3.1. General framework for crack stability in transient networks 

To evaluate the fracture criterion ( Eq. (11) ), let us consider the extension of a cut specimen of height H as shown in

Fig. 6 a. During a small time increment δt , this specimen evolves to state b shown in Fig. 4 b, where the crack extends

by δa with velocity v . The quantities δW, G e and G v are evaluated between these two states. For this, the first step is to

numerically solve for the stress fields, stored elastic energy and the work of external load δW per unit crack length can be

computed as: 

δW = 

1 

bδa 

∫ δt ∫ 
σ : L dVdt . (14)
0 V 
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Fig. 4. The crack tip driving force is calculated based on the evolution from state (a) to (b) over a period of time δt . (c) Schematic of different regimes 

around the crack tip based on the role of bulk dissipation. The crack tip driving force G can be interpreted as the energy flow to the elastic solid regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where b is the specimen’s thickness and ∫ V ∗dV denotes the integration over the specimen’s volume. We note that the di-

vergence theorem was used in Eq. (14) in order to relate the traction on the boundary to the stress in the bulk. The elastic

energy release rate G e is by first computing the change of elastic stored energy at each material point δ� between state a

and b, and then integrating over the specimen’s volume as: 

G e = 

1 

bδa 

∫ 
V 

δ�dV. (15) 

Finally, the viscous dissipation G v is computed by integrating the rate of dissipation from state (a) to (b) as: 

G v = 

1 

bδa 

∫ δt 

0 

∫ 
V 

D dVdt . (16) 

We note that since δt = δa/ v and D = k d �, the above equation implies a scaling of G v ∝ 1/ 	 , where we again see the ap-

pearance of the trumpet length 	 = v /k d . According to De Gennes (1996) , dissipative term is responsible for different crack

profiles between the vicinity of the crack and the far field, yielding a ”trumpet” profile schematically depicted in Fig. 4 c.

This argument has been confirmed by several experimental studies ( Saulnier et al., 2004; Sun et al., 2017; Tabuteau et al.,

2011 ) based on the crack tip profile. One can finally define the crack driving force G as: 

G = δW + G e − G v . (17) 

The crack stability criterion is therefore expressed as the difference between the crack driving force G and the intrinsic

fracture toughness G 0 , i.e., the crack is unstable if G ≥ G 0 (as provided by Eq. (11) ). The variable G can be interpreted as the

energy flow to the elastic domain near the crack tip ( Fig. 4 c). To fully capture the fracture process, two quantities however

remain to be determined: the crack velocity v and the intrinsic fracture toughness G 0 . Both quantities are associated with

rupture of dynamic bonds occurring at the crack tip, whose characteristic length scale is beyond the resolution of continuum

framework. This is discussed in the following section. 

3.2. Kinetics of chain rupture and crack propagation 

At the molecular scale, the crack tip advances by progressively breaking the chains that bridge the interface. A conven-

tional model to describe this process is the Lake-Thomas (LK) theory ( Lake and Thomas, 1967 ) that considers each chain

as an elastic spring that only ruptures at a critical stretch. In this case, the fracture toughness is only related to the level

of deformation and considered rate-independent. This situation is however not applicable to the case of transient networks

because the concept of ”rupture length” cannot be defined. Due to the transient nature of the mechanical bonds, a chain can

indeed break at any state. An alternative consideration was first proposed by Chaudhury (1999) where fracture is caused by

the accelerated bond dissociation at the tip due to the fact that k d increases with force ( Eq. (1) ). Based on this physical pic-

ture, Chaudhury (1999) ; Ghatak et al. (20 0 0) and Hui et al. (2004) have thoroughly formulated the problem of chain damage

at the crack tip and have established a crack driving force ( G)-velocity ( v ) relationship. In what follows, the relationship and

the intrinsic fracture energy G 0 are determined based on their works. 

Let us first take a close look at the tip of a traveling crack shown in Fig. 5 a, where the chains bridging the interface,

with aerial density n̄ , are stretched progressively. According to Lake and Thomas (1967) , for a uniform network, n̄ = 

1 ξ0 n
2 
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Fig. 5. (a) Schematic of the progressive chain stretch at the tip as the crack propagates. (b) An example for the stress ( σ )- separation ( ξ ) relation for three 

different crack velocities obtained by numerically solving Eq. (18) . (c) The comparison between numerical solution of intrinsic fracture toughness G 0 from 

Eq. (21) and the analytical approximation using Eq. (22) . (d) Examples of crack velocity as a function of crack tip driving force G given by Eq. (23) . 

Fig. 6. An example of the finite element simulation and boundary condition. (a) the undeformed state and (b) deformed state of the specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ξ0 = 

√ 

N b is the average chain length at the stress-free configuration with N the Kuhn number and b the Kuhn length

( Lake and Thomas, 1967 ). At the continuum level, the chain dynamics k a and k d are assumed to be constant because the

stress level is usually relatively low compared to the tip. However, this assumption fails to hold at the tip, where stress is

highly concentrated and k a and k d are typically force-sensitive, as described by the Eyring’s theory ( Eq. (1) ). Consequently,

chains at the tip experience two concurring processes: localized stretch caused by crack opening and damage due to ac-

celerated dissociation. Considering a local coordinate whose origin moves together with the crack tip ( Fig. 5 a), the change

in chain density along the x coordinate satisfies the convection equation v ∂ ̄n /∂x = d ̄n /dt . Using Eq. (2) , this equation can

further be rewritten as : 

v α
∂ ̄n 

∂ξ
= k a ( ̄n t − n̄ ) − k d ̄n (18)

where we applied the chain rule v ∂ ̄n /∂x = d ̄n /dt and α = ∂ ξ/∂ x is a parameter that characterizes the crack profile. An

accurate solution of this quantity is not yet available since it requires a multi-scale analysis that couples chain damage at the

crack tip to the deformation of the bulk material. Since this is not the focus of this work, we here follow the approximation

of Chaudhury (1999) and Ghatak et al. (20 0 0) and idealize the crack profile as a wedge with slope α = 1 . The above equation

leads to a n̄ − ξ relationship for the chains bridging the crack. Further considering linear chains with stiffness k , a stress

( σ = n̄ kξ ) - separation ( ξ ) relation is then obtained, as plotted in Fig. 5 b for different values of crack speed v . The crack

driving force G is computed by the work done to break bridging chains per unit area of crack surface, which equals to the

area under the σ − ξ curve: 

G = 

∫ ∞ 

0 

σdξ . (19)

Generally, there is another contribution to G due to network damage (i.e., nonlocal chain rupture, void nucleation and

growth) within a region of length ξ d around the crack tip ( Long et al., 2020 ). For ductile materials, ξ d is large ( ~ mm )

and the crack tip damage becomes the major contribution to G. For brittle materials, which is the focus of this work, ξ d is

comparable to chain length and crack tip damage is negligible ( Long et al., 2020 ). As a result, Eq. (19) only describes the

energy consumed by the rupture of bridging chains. Although an analytical solution for Eqs. (18) and (19) is not available,

Chaudhury (1999) obtained a closed-form approximation by determining the average length for bond rupture ξ̄ . This was

done under two assumptions: (i) the bond association rate k a is negligible compared to the dissociation rate k ; (ii) the mag-
d 
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nitude of crack velocity satisfies v /k 0 
d 

� f 0 /k . In these conditions, the v − G relation was obtained as (detailed derivations in

Appendix B): 

v = 

f 0 k 
0 
d 

k 
exp 

( 

1 

f 0 

√ 

2 k G 
n 

) 

(20) 

The two assumptions made by Chaudhury are justified as follows. First, chains are highly stretched as the crack interface

opens. Since k d increases exponentially with force and k a decreases exponentially, k a � k d is satisfied ( Fig. 1 b). Second, the

trumpet length ( 	 = v /k 0 
d 

) is a macroscopic quantity while the term f 0 / k scales with the length of a chain. Therefore, the

assumption v /k 0 
d 

� f 0 /k is valid as long as crack propagation is macroscopically observable. In experiment, this ln (v ) − √ 

G 
relationship has been reported in several studies ( Chaudhury, 1999; Ghatak et al., 20 0 0 ). 

By contrast, the intrinsic fracture toughness G 0 was not determined in the work of Chaudhury. This quantity can be

defined as the energetic threshold for interface breakage and represents the energy required to break the chains via a

chemical equilibrium process ( d ̄n /dt = 0 ) ( Lavoie et al., 2016 ). In this scenario, the concentration of connected chains is

only a function of stretch through k a and k d as n̄ = n̄ t k a / (k a + k d ) . Plugging this relation into (19) , G 0 is calculated by the

following integral: 

G 0 = n̄ t k 

∫ ∞ 

0 

ξ

1 + 

k 0 
d 

k 0 a 
exp 

(
2 k 
f 0 
ξ
)dξ . (21) 

While this integral is difficult to evaluate analytically, a closed-form can be obtained by approximating the integrand

with an isosceles triangle as (details shown in Appendix B): 

G 0 = 

(
n t f 

2 
0 

k 

)
A 

2 

2 [ 1 + exp ( A ) ] 
(22) 

Here A = W 0 ( 
k 0 a 

k 0 
d 

1 
e ) + 1 with W 0 ( 

∗) the main branch of Lambert W function ( Lambert, 1758 ). Fig. 5 c compares the numerical

calculation (via Eq. (21) ) and analytical approximation ( Eq. (22) ) the of G 0 − f 0 relationship, where we see that a reasonable

match is obtained. In addition, we confirm that G 0 is an intrinsic material property that only depends on chain concen-

tration n̄ t and the force sensitivity f 0 of the bond. If the bonds are less sensitive to force (larger f 0 ), G 0 increases since

the accelerated chain damage occurs at a higher stretch level. In summary, the stability and velocity of a crack follows the

rule: 

v = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , G < G 0 

f 0 k 
0 
d 

k 
exp 

( 

1 

f 0 

√ 

2 k G 
n 

) 

, G ≥ G 0 

(23) 

The above rule suggests a minimum crack velocity v 0 at G = G 0 , which can be regarded as the characteristic fracture velocity

that solely depends on the intrinsic material properties f 0 and n̄ t . 

4. Dynamic regimes in pure shear fracture tests 

Using our general framework, we here study the various dynamic regimes one may encounter during the pure shear

fracture test of transient networks. For this, we focus on two parameters that control the rate-dependent fracture: (a) the

Weissenberg number W = ˙ ε/k 0 
d 

that measures the competition between external load and bulk dissipation and (b) the nor-

malized Trumpet length 	 ∗ = 	/ (L − a 0 ) that describes the interplay between crack propagation and bulk dissipation. In what

follows, all numerical simulations are performed using a customized program written in Matlab. Fig. 6 shows an example

of numerical simulation, where only the top half of a shear crack sample is included due to the symmetry of the problem

( Fig. 6 a). The bottom boundary at the bottom is divided into two parts, the traction free crack surface of length a 0 and a

”solid” section whose vertical motion is constrained. When the crack is unstable, these constraints are removed sequentially

to create new crack surfaces. To avoid boundary effects at the right edge, we consider a wide specimen whose width L , ini-

tial height H 0 and initial crack length a 0 follow H 0 = L/ 15 and a 0 = L/ 12 . In our study, we choose a network with intrinsic

fracture toughness G 0 = n̄ t f 
2 
0 
/ 3 k which, according to Eq. (22) , characterizes a material with k 0 a = k 0 

d 
. 

4.1. Characteristic fracture behaviors 

We perform our study by considering three loading rates measured by W = 0 . 07 , 0 . 3 and 0.7. For each loading rate, we

investigate the behavior of a slow crack ( 	 ∗ = 0 . 2 ) and a fast crack ( 	 ∗ = 1 . 3 ), respectively. In all cases, we explore the change

in crack velocity v and crack profile over time, and track the evolution of the crack driving force G. 

Slow loading ( W = 0 . 07 ) . In the case where the specimen is loaded slowly ( W = 0 . 07 ), our results show that the crack

remains stable regardless of 	 ∗. Fig. 7 a exhibits three simulation snapshots, where the contour plots the stored elastic energy
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Fig. 7. (a) Three snapshots for the crack blunting for W = 0 . 07 and 	 ∗ = 1 . 3 . (b) Evolution of crack tip driving force G as a function of stretch H / H 0 . The subfigure shows the evolution of δW − G v and G e . Both 

quantities are normalized by G 0 . 
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density � in the network, of a specimen with 	 ∗ = 1 . 3 . Vertical stripes are plotted on the specimen to visualize deformation

and track the crack position. To understand the energy flow in the material, Fig. 7 b further plots the change of G as a

function of stretch H / H 0 and the inset shows the contribution of each mechanism that are represented in Eq. (17) . In this

scenario, since viscous dissipation is predominant, the specimen reaches steady state creep as δW − G v → 0 and the level

of stored elastic energy density in the far field remains low ( Fig. 7 a). As a result, the crack driving force G is insufficient

to propagate the crack ( Fig. 7 b). Interestingly, our results show that further stretching the specimen leads to a decrease

in G. This is because the increase in stretch leads to crack blunting and a decrease in stress concentration, as exhibited

by the snapshots of Fig. 7 a. Eventually, the crack does not propagate for any level of stretch. This phenomenon has been

observed in the extensional fracture test of associative polymers. For instance, in the uniaxial extensional flow experiment

of a PRMO-Na ionomer filament ( Shabbir et al., 2016 ), the filament thins continuously without breaking as W → 0. 

Fast loading ( W > 0.1), fast crack ( 	 ∗ = 1 . 3 ) . As we maintain 	 ∗ = 1 . 3 and increase W continuously, we observe that

the crack becomes unstable and propagates in a steady state. Steady state propagation is characterized by a fast crack that

travels at constant velocity through the specimen at nearly constant external stretch H / H 0 . Fig. 8 a exhibits two examples

for W = 0 . 3 and 0.7, respectively, where we clearly see the effect of W from the crack profile. For W = 0 . 7 , elastic stretch is

predominant ahead of the crack and the unloaded chains retract to their undeformed state in the wake of the crack, leading

to a parabolic profile reminiscent of elastic fracture. For W = 0 . 3 , bulk dissipation becomes non-negligible, which leads

to two notable observations. First, fracture occurs at a much larger stretch than when W = 0 . 7 ( Fig. 8 a) because a larger

portion of energy is consumed by bulk dissipation. Second, the chains behind the crack tip are unloaded to a deformed

state, making the crack surface deviate from its original parabolic profile. In this case, the crack surface is characterized by

two parabolic shapes, a blunt one that belongs to the region of the initial cut and a sharp one for the new surface created

by the propagating crack. In experiment, this crack profile has recently been observed in the fracture of a dual crosslinked

hydrogel, where the initial cut blunts during loading and a sharp ”secondary” crack is initiated at the tip of the blunt region

( Liu et al., 2019b ). During propagation, the crack travels at a constant velocity for both values of W ( Fig. 8 b) and exhibit a

self-similar profile over time ( Fig. 8 c). Taking together, these results imply steady state crack propagation since both the far

field stress and deformation remain invariant with respect to the tip during propagation ( Long and Hui, 2016 ). We find that

this condition is satisfied when the crack speed is very fast ( 	 ∗ > 1) compared to the rates of bond dynamics and external

load. 

Furthermore, steady state propagation is examined when the crack tip driving force G is equal to the intrinsic fracture

energy G 0 . For an elastic solid in pure shear condition, G is computed as Long and Hui (2016) : 

G = H s � f . (24) 

where H s is the height of the specimen at the stress free state, which equals the undeformed height for the elastic specimen.

The quantity � f is the stored elastic energy density at the far field, which can also be determined from an uncut sample,

with identical geometry, that experiences the same loading history. However, this equation cannot be directly applied to

viscoelastic material at finite strain since the solid deforms permanently due to creep. As a result, H s is not equal to the

undeformed height and cannot be directly measured. To address this, previous work of Mayumi et al. (2016) suggests that

H s can be obtained from the uncut sample. At the onset of crack propagation, H s can be determined by rapidly unloading

the uncut sample to its stress-free state. While this can be done experimentally, the transient network theory provides

a convenient way to calculate H s through the conformation tensor μ which directly measures the mean squared stretch

of chains. First, for pure shear geometry, μ can be determined by solving Eq. (8) through the loading history. H s is then

related to the vertical component μ22 at propagation as H s = H/ 
√ 

μ22 where μ22 can be determined from Eq. (8) (derivation

provided in Appendix D). The crack driving force is then calculated as: 

G = 

H √ 

μ22 

� f . (25) 

To check the accuracy of Eq. (25) , we compare its prediction with simulation results for different values of W ( Fig. 8 d)

where we keep 	 ∗ = 1 . 3 to ensure steady propagation. A good agreement is achieved for different values of W , validating

the applicability of Eq. (25) for steady state propagation. 

Fast loading ( W > 0.1), slow crack ( 	 ∗ = 0 . 2 ) . When the crack velocity becomes slower, the role of external load and bulk

dissipation becomes more pronounced. Thus, when the specimen is loaded at W = 0 . 3 , we observe a peculiar behavior in

which the crack first propagates but eventually stops and blunts ( Fig. 9 a). We further see from Fig. 9 b that the crack first

accelerates then starts decelerating monotonically to a zero speed. This is accompanied by a sharpening-blunting evolution

of the crack profile depicted in the inset of Fig. 9 b. To explain this process, Fig. 9 c plots the evolution of energy flow as

functions of H / H 0 , where we see that in this case, the crack driving force G first increases as δW − G v > 0 , triggering crack

initiation. However, recalling that at the far field, viscous dissipation gradually reaches the steady state creep condition as

W < 0.5 ( Fig. 2 b), further stretching the specimen does not provide more energy to the crack for propagation. This occurs in

Fig. 9 c as δW − G v gradually decreases to zero. Instead, it causes crack blunting and a decrease in stress concentration. As a

result, the magnitude of G e decreases upon further stretching and G eventually becomes smaller than G 0 , at which time the

crack is arrested. 

When W is further increased to 0.7, we find that the crack propagates in an accelerated manner as shown in Fig. 10 a. As

it accelerates with elongation H / H , the crack tip sharpens (inset of Fig. 10 b) which subsequently leads to a higher level of
0 
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Fig. 8. (a) Four snaps of the crack propagation in the specimen for a fast crack 	 ∗ = 1 . 3 with loading rates W = 0 . 75 and W = 0 . 3 , respectively. (b) Evolution of crack velocity during the propagation. (c) The 

overlap of crack tip profiles when they are moved to a common tip. (d) Comparison of the crack tip driving force G computed by finite element framework and by Eq. 25 . 
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Fig. 9. (a) Four snaps for the crack propagation in the specimen for 	 = 0 . 2 and W = 0 . 3 . Three vertical lines are marked with symbols on the top plate to help visualize crack propagation. (b) Change of crack 

velocity v as a function of stretch H / H 0 . The subfigure shows the crack tip profile of each snapshot in (a) at a common coordinate. (c) Evolution of crack tip driving force G as a function of stretch H / H 0 . The 

subfigure shows the evolution δW − G v and G e . Both quantities are normalized by G 0 . 
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Fig. 10. (a) Four snapshots of the crack propagation in the specimen for 	 ∗ = 0 . 2 and W = 0 . 7 . (b) Change of crack velocity v as a function of stretch H / H 0 . 

The subfigure shows the crack tip profile of each snapshot in (a) at a common coordinate. (c) Evolution of crack tip driving force G as a function of stretch 

H / H 0 . The subfigure shows the evolution δW − G v and G e . Both quantities are normalized by G 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stress concentration ( Long and Hui, 2015 ), as shown by the contour plot in Fig. 10 a. To understand the mechanism behind

this observation, we plot in Fig. 10 c the evolution of G as a function of H / H 0 and the detailed contribution of each term in

Eq. (17) . Since W > 0.5, external work is predominant over the bulk dissipation (as shown by the increasing δW − G v ) which

causes a monotonic increase in the stored elastic energy and G e . The above mechanisms collectively increase the crack tip

driving force G and result in an accelerating crack. Based on this analysis, we postulate that an accelerating crack is always

expected when W > 0.5 since the external work keeps feeding an excess amount of energy to the material. 

4.2. A phase diagram for rate-dependent fracture 

To summarize the various dynamic behaviors of a crack in a transient network, we performed a parametric study for

range W ∈ [0.06, 0.8] with step size 0.06 and 	 ∗ ∈ [0.2, 1.6] with step size 0.05. Our results are summarized in a phase

diagram of Fig. 11 . We see that the critical value W c for unstable crack depends on the magnitude of 	 ∗. For larger 	 ∗, W c

is smaller because viscous dissipation plays a more negligible role during propagation. After crack initiation, the steadiness

of the crack is controlled by the critical crack velocity characterized by 	 ∗ ≈ 1. A fast crack ( 	 ∗ > 1) propagates at steady

state, in which case the crack driving force can be measured by Eq. (25) . A slow crack ( 	 ∗ < 1) is characterized by two

characteristic non-steady behaviors; one where the crack is eventually arrested due to blunting for ( W < 0.5), one where

the crack accelerates continuously ( W > 0.5). For both cases, G 0 cannot be determined from experiment without the use of

numerical simulations since the only measurable quantity, the crack tip driving force G, changes during the loading history

and is not equal to G 0 . 

To the authors’ knowledge, the case of crack arrest has not been systematically studied in the literature, probably due

to three major reasons. First, modeling-wise, crack arrest is due to crack blunting when the deformation is very large,

which cannot be captured by most existing models based on linear viscoelastic fracture. Second, experiment-wise, this phe-

nomenon requires the need for a material formed by a single transient network with slow crack propagation velocity (i.e.,

high force sensitivity for chain dynamics), which imposes a strict constraint on the material system. Lastly, this phenomenon

may not be observed if the specimen is not wide enough, in which case the boundary effect becomes non-negligible. As the

crack propagates, the boundary effect leads to the amplification of loading rate in the region along the crack interface and

increases the crack tip driving force G. This effect is non-negligible when the sample is narrow, for instance the filament

stretching experiments of complex fluids ( Ligoure and Mora, 2013 ). In this scenario, the crack may be accelerated instead

of being arrested ( Ligoure and Mora, 2013; Liu et al., 2019c; Luo et al., 2014 ). Crack arrest may however be important in

applications because fracture usually originates from very small defects. In this case, the boundary effect is negligible and
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Fig. 11. A map that summarizes the four different characteristic fracture behavior of the specimen depending on the Weissenberg number W = ˙ ε/k 0 
d 

and 

the normalized Trumpet length 	 ∗ = 	/ (L − a 0 ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

crack arrest may be an important intermediate process for material failure. One example is the debonding of an adhesive

from the substrate (the probe tack test). During decohesion, the debonding mechanism transits from the interfacial crack

propagation to bulk deformation ( Lindner et al., 20 05; Nase et al., 20 08 ), characterized by the crack propagation-arresting

process. 

5. Conclusion 

This work establishes a framework to study the fracture of viscoelastic materials made of transient networks. By per-

forming an analytical study on a simple fracture problem, we identified two competitions that govern the fracture process:

(a) the competition between bulk dissipation and chain deformation (measured by W ), and (b) the interplay between bulk

dissipation and crack propagation (measured by 	 ∗). To describe the role of bulk dissipation in fracture, we propose a loading

condition where the specimen is continuously stretched by a constant true strain rate, i.e., a constant Weissenberg number

W . Under this condition, our numerical experiments further determined four characteristic behaviors controlled by W and

	 ∗. For 	 ∗ > 1, the crack propagates in a steady state, for which an analytical formula was obtained to extract the intrinsic

fracture toughness G 0 . For 	 ∗ < 1, steady state cannot be obtained since neither external work nor bulk dissipation is neg-

ligible during propagation. In this situation, we observe an accelerating crack for W > 0.5 and the crack propagation-arrest

phenomenon for W < 0.5. We note the crack propagation-arrest is caused by the interplay between chain stretch, bulk

dissipation and crack blunting, which could not be studied using the linear viscoelastic fracture mechanics models. This in-

troduces a fracture resistance mechanism where a propagating crack can be stabilized by blunting. This is also reminiscent

of the interface fracture to bulk deformation transition of adhesives during the debonding process ( Nase et al., 2008 ). For

non-steady state propagation, G 0 cannot be readily calculated without performing finite element simulations because the

measurable quantity G does not equate the intrinsic fracture energy G 0 . Lastly, crack never propagates for W → 0 since bulk

dissipation becomes predominant and the elastic energy remains low. 

This work, for the first time, evaluates the effects of network dynamics and large deformation of material on the crack

driving force G. Leveraging on this capacity, we further perform a comprehensive study on the rate-dependent fracture of

viscoelastic materials at different loading conditions, and unveil the energetic mechanism behind each characteristic behav-

ior. Our analysis shows that the effect of large deformation cannot be neglected when evaluating the crack driving force

( Eq. (25) ) and the combined crack propagation and blunting. As an alternative to the energy-based crack stability criterion

proposed in this work, Liu et al. (2019a) recently proposed a criterion based on the local stress fields and bond damage at

the tip. To unify these two approaches, future studies will seek to relate the crack driving force to the time-dependent crack

tip fields near the crack. This model is developed based on brittle transient networks ( Shabbir et al., 2016; Tabuteau et al.,

2011; 2009 ) so that the network damage around the crack tip is neglected. For more general cases, the crack driving force

G computed by Eq. (19) will include the contribution of crack tip damage. With this consideration, a characteristic length 

scale associated with the size of the damage zone, will arise in the problem and regulate the crack propagation ( Ameli

et al., 2010; Long et al., 2020 ). In addition, we assume here viscoelasticity is only caused by bond dynamics, while more

complex rate-dependent mechanisms, e.g., chains reptation through entanglements ( De Gennes, 1976; Lalitha Sridhar and
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Vernerey, 2018 ), network-solvent interaction ( Bouklas et al., 2015; Wang and Hong, 2012 ) and chain stiffening ( Lavoie et al.,

2016 ) are not considered. Nevertheless, the proposed framework provides a stepping-stone on which to include the above

processes in future studies and generalize the model to other transient network systems including vitrimers ( Röttger et al.,

2017 ), covalent adaptable networks (CAN) ( Kloxin and Bowman, 2013 ) and ionic hydrogels ( Sun et al., 2013 ). More generally,

the transient network theory (TNT) can also be extended to describe the rate-dependent response of a broader range of

fracture resistant materials including dual-crosslink hydrogels ( Mayumi et al., 2016 ), double-network hydrogels ( Sun et al.,

2012 ), vulcanized rubbers ( Bhattacharya et al., 2011; Prabhu et al., 2013 ) and engineering materials such as VHB adhesive

tapes ( Benet et al., 2019 ). However, modeling the fracture of these materials requires further improvement of the model

because these solids usually made of the combination of a permanent a transient network ( Mayumi et al., 2013; Sun et al.,

2012; 2017; Zhang et al., 2016 ). This leads to two competitions: (a) the energy flow in the permanent network needs to be

treated separately from the transient component since it does not contribute to bulk dissipation; (b) the intrinsic fracture

energy G 0 is associated with the fraction of each network and the load sharing of chains at the tip. Long and Hui (2016) . A

quantitative understanding of the interplay between the two networks will need to be established. 
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Appendix A. Evolution of conformation tensor μ

As discussed in Section 2 , the conformation tensor μ is obtained from averaging of chain stretch ratio λ over the config-

uration space. Let us define φ( λ) as the distribution of chain stretch λ in the configuration space, its evolution is described

by the Fokker-Plank equation: 

Dφ

Dt 
= −∇ · (φ ˙ λ) + r( λ) (26)

where the first term on the Right-hand side represents the contribution of elastic deformation and the second term de-

scribes the effect of inelastic processes, governed by bond dynamics in this study. If we assume affine deformation, the

stretch in each chain follows the macroscopic deformation velocity gradient L , as ˙ λ = L λ. For bond dynamics, assuming that

associated chains dissociate at the current configuration ( φ( λ)) and the free chains associate in a stress free state ( φ0 ( λ)),

Eq. (26) can be rewritten as: 

Dφ

Dt 
= −L : ( ∇φ � λ) − k d φ( λ) + k a φ0 ( λ) (27)

To obtain Eq. (4) , we further multiply Eq. (27) by the dyadic λ�λ and apply the averaging operator < · > introduced

below Eq. (3) and obtain: 

˙ μ = L μ + μT L T + k a ( 
n t 

n 

− 1) μ0 − k d μ (28)

When k a and k d are both constants, chemical equilibrium is achieved, and the constant density of attached chains becomes

n = n t k a / (k a + k d ) . In this scenario, the above equation degenerates to Eq. (4) . 

Appendix B. Rate-dependent crack driving force and intrinsic fracture toughness 

During the separation, the average life time of the chains bridging the crack can be defined as: 

t̄ = 

∫ ∞ 

0 

n̄ 

n̄ t 
dt (29)

Using Eq. (2) and assuming that k a � k d , the above integral can be expressed as the following exponential integral form: 

t̄ = 

(
f 0 
k v 

)
exp 

(
f 0 k 

0 
d 

k v 

)∫ ∞ 

f 0 k 
0 
d 

η−1 exp(−η) dη (30)

k v 
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An analytical expression for the above exponential integral can be obtained when f 0 k 
0 
d 
/k v → 0 . In this case, the average

bond life time is found as: 

t̄ = 

(
f 0 
k v 

)
ln 

(
k v 

f 0 k 
0 
d 

)
(31) 

Further, since the crack profile is idealized as a wedge shape with slope 1, the average length for chain dissociation is found

as ξ̄ = v ̄t . The crack driving force G is then approximated as the energy needed for breaking all bridging chains at ξ̄ , i.e.,

G = 

1 
2 n k ξ

2 
. This finally leads to the expression in Eq. (23) . 

Approximation of G 0 : When bonds break at chemical equilibrium, the stress ( σ )-distance ( ξ ) relation can be found from

Eq. (18) as: 

σ = n̄ t kξ

[ 

1 

1 + 

k 0 
d 

k 0 a 
exp( 2 k 

f 0 
ξ ) 

] 

(32) 

This function is plotted in Fig. 12 a and G 0 is evaluated by the area under this curve. To obtain an analytical approximation,

this curve is approximated by an isosceles triangle characterized by the maximum stress σ m 

and the corresponding stretch

ξm 

. These two variables can be determined by considering ∂ σ/∂ ξ = 0 as: 

ξm 

= 

f 0 
2 k 

A and σm 

= n t f 0 

[
A 

1 + exp ( A ) 

]
(33) 

where A = W 0 ( 
k 0 a 

k 0 
d 

1 
e ) and W 0 ( 

∗) is the main branch of the Lambert W function ( Lambert, 1758 ). Eq. (22) is then calculated

as the area of the triangle G 0 = σm 

ξm 

. 

Appendix C. Finite element solution strategy 

The finite element numerical framework is developed in our previous work ( Shen et al., 2019b ). Here, we introduce the

solution strategy but do not detail the numerical schemes. Since the transient network theory (TNT) is developed in an

incremental form, the solution strategy also takes an incremental manner. To help with the discussion, let us define �s 

as the material domain and � as the boundary. At the initial state ( t = 0 ), the specimen is considered at the stress-free

configuration: 

σ(t = 0) = 0 in �s (0) . (34) 

At any time t during the simulation, the problem is solved by taking the following two steps: (i) based on the current

network conformation, determine the network evolution; (ii) update the network conformation and stress. 

Determine the network evolution 

The network evolution is characterized by two variables: the velocity of material points v and the change in hydro-

static pressure ˙ p , which characterizes the network evolution from kinematic and mechanical aspects, respectively. They are

determined by solving for the equilibrium and incompressibility conditions in the material domain ( Shen et al., 2019b ): 

∇ · ˙ σ = 0 , and ∇ · v = 0 , in �s (35) 
Fig. 12. (a) The σ − ξ relation when the chains are broken at a chemical equilibrium process. (b) The approximation of σ − ξ curve using a isosceles 

triangle. 
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the equilibrium condition is also recasted in the incremental form. The first equation can be further written as ∇ · ˙ σ =
G ∇ · ˙ μ + ∇ ˙ p = 0 , G being the shear modulus of material. In addition, the above equations are subjected to the velocity

boundary condition: 

v = v̄ , on �D 

where �D denotes the boundary whose velocity is imposed. 

Update network conformation and stress field 

After v and ˙ p are obtained, the next step is to update the network conformation to obtain the stress fields and stored

elastic energy density in the material. For this, we invoke Eq. (4) and apply an explicit time integration scheme as: 

μt+ dt = μt + 

˙ μdt 

= μt + 

[
k d 

(
μ0 − μt 

)
+ L μt + μt L T 

]
dt 

p t+ dt = p t + 

˙ p t dt 

(36)

where L = ∇ v is the velocity gradient at each material point and dt is the time increment. After this, the stress and stored

elastic energy density at each material point are calculated by Eqs. (6) and (5) . This completes the solution at one time step.

After this, the crack stability criterion is evaluated based on the stress field before proceeding to the next numerical time

step. 

Appendix D. Determining the stress-free height 

For a pure shear test, the conformation tensor is found as μ = diag{ 1 , μ22 , μ33 } where μ22 and μ33 represent the mean

squared stretch along the vertical and depth direction correspondingly. To obtain the stress-free configuration, we consider

that the current chain state is obtained by elastically deforming the network from the stress free state. Since the deformation

is elastic, it was shown in Vernerey and Long (2017) that μ = FF T where F is the elastic deformation gradient. Since there

is no shear deformation, one can find that F = diag{ 1 , √ 

μ22 , 
√ 

μ33 . Therefore the stress free height H s = H/F 22 = H/ 
√ 

μ22 . 
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