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however often limited by their tendency to fracture in ways that are cannot be predicted
by conventional elastic fracture mechanics. Our understanding of fracture in this class of
solid has particularly been hindered by the incapacity of determining the competition vis-
cous flow and fracture under finite strains. To tackle this problem, this paper presents a

I,:Z{:\fgred;éndem fracture framework that quantitatively captures the interplay between energy dissipation and crack

Viscoelasticity propagation in soft solids made of a single transient network. Using a combined analytical

Crack driving force and numerical study, we investigate the dynamics of crack propagation at various loading

Finite element analysis rates and for networks that display different sensitivities to force. Our results point out to

Transient networks four different crack characteristic behaviors, for which we unveiled the respective mech-
anisms, all involving a strong interplay between chain deformation, bond dynamics and
rupture.

© 2020 Published by Elsevier Ltd.

1. Introduction

Soft polymeric materials that are resistant to fracture are highly desirable in a wide range of existing and emerging
applications including adhesives (Creton and Ciccotti, 2016), soft robotics (Coyle et al., 2018), tissue engineering (Akalp et al.,
2016; Bryant and Vernerey, 2018; Haque et al., 2012) and stretchable electronics (Lin et al., 2016). In practice, macroscopic
fracture usually originates from the catastrophic growth of small defects that leads to the damage of surrounding material.
One general metric to characterize a material’s resistance to fracture is the fracture toughness G, defined as the energy
required to advance the crack by a unit area (Long et al., 2014). To improve the applicability of soft polymeric materials
in applications, tremendous effort has been devoted in the past decade to enhancing G through a variety of strategies,
including particle-reinforcement (Agrawal et al., 2013; Moutos et al., 2007), sacrificial bond breaking (Gong et al., 2003;
Haque et al., 2012; Millereau et al., 2018), and inducing viscoelasticity by transient reversible networks (Mayumi et al.,
2016; Sun et al., 2012; 2013; Wu et al., 2017). A thorough review of toughening strategies and mechanisms can be found in
Zhao (2014). Despite differences in methodology, a common object of these works is to introduce a bulk energy dissipation
mechanism to shield the defects from the energy inflow by external loading (Creton and Ciccotti, 2016; Zhao, 2014). Among
these strategies, the introduction of a transient network has been favored by many researchers due to the capability of bond
reformation (Ihsan et al., 2013; Zhang et al., 2016). This leads to advantageous characteristics of recovering the mechanical
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strength after large deformation and self-healing after cutting (Wu et al.,, 2017). In addition, with the increasing capacity of
controlling the bond structure at the molecular level, it is possible to tune the bond dynamics towards desired mechanical
behaviors.

While many articles report the fabrication of novel transient networks with high fracture resistance, our theoretical un-
derstanding remains limited (Long and Hui, 2016; Long et al., 2020). The main difficulty lies in an accurate description of
material’s viscoelastic behavior arising from bond dynamics at finite strain. Earlier theoretical studies can be dated back
to the 1960s’, starting from Williams (1968), Knauss (1966, 1970, 2015) and Schapery (1975, 1984). These works employed
the cohesive approach and assumed a linear-viscoelastic material behavior in the cohesive zone. In an alternative approach,
Christensen (1979) incorporated the role of viscous dissipation into a generalized Griffith’s energy-based criterion to predict
the crack propagation in a viscoelastic strip. Hui et al. (1992) later obtained a similar expression for the crack driving force
as Christensen at the limit of very large velocity via a rate-dependent cohesive zone analysis of crack propagation. At the
level of qualitative understanding, De Gennes (1996) employed scaling analysis and physical arguments and proposed a the-
oretical picture, the Viscoelastic Trumpet Model, describing the effect of viscous dissipation on the material behavior near
a propagating crack tip. Considering the interplay between material deformation and relaxation, de Gennes suggested that
a steadily moving crack tip in the viscoelastic medium is wrapped by an unrelaxed elastic zone and a viscous dissipation
zone (Saulnier et al., 2004; Tabuteau et al., 2011). The crack takes a different profile in these two regimes and collectively
its shape is similar to a trumpet profile.

While the above studies are based on linear, small deformation viscoelasticity, in practice, these materials usually ex-
perience large strains and exhibit highly nonlinear viscoelastic behaviors especially near the crack tip. Although several
nonlinear viscoelastic models have been proposed in the literature (Bergstrom and Boyce, 1998; Long et al., 2014; Mao
et al., 2017; Vernerey and Long, 2017), there were no studies on the viscoelastic fracture at finite strain until the recent
serial work of Guo et al. (2019, 2018); Hui et al. (2019), where the time-dependent stress fields near a static crack tip
were evaluated. This approach has however not been used to evaluate the bulk dissipation and the crack driving force.
One major barrier is that this model relies on the convolutional integration over the deformation history at each material
point, which is computationally challenging when solving for a full field problem with complicated geometry and loading.
This issue can be addressed by using the transient network theory (TNT) (Tanaka and Edwards, 1992; Tobolsky and Eyring,
1943; Yamamoto, 1956) that derives the macroscopic mechanics based on the statistical description of chain configuration
and dynamics at the microscopic level. One advantage is that this theory is derived in a time-incremental format based on
evolution equations, which bypasses the need for convolutional integral when evaluating the elastic stored energy density
and dissipation. In a recent effort, Vernerey and Long (2017); Vernerey (2018) introduced new forms of this theory that
characterize the chain statistical distribution via an average measure, the conformation tensor. This largely simplifies the
framework and makes it convenient for computational implementation. In later efforts, this theory has been implemented
into a coupled Eulerian-Lagrange finite element framework that simulates the rate dependent response of soft synthetic
and biological materials at very large deformations (Shen et al., 2019a; 2019b; Vernerey et al., 2018b), which shows its po-
tential for the study on the fracture of soft viscoelastic materials. Supposing that the crack driving force is obtained, its
relationship to crack stability needs to be determined based on the mechanism of chain rupture at the tip. The conventional
model, the Lake-Thomas theory (Lake and Thomas, 1967), proposes a rate-independent framework that relates the chain
rupture to a critical stretch level. However, this theory was contradicted by several experiments that indicates chain damage
is associated with the rate at which they are stretched (Gent, 1996; Ghatak et al., 2000). Alternatively, Chaudhury (1999);
Hui et al. (2004) proposed that this rate-dependent rupture is related to thermally activated kinetic process of the chains at
the tip, where bond dissociation is accelerated due to the local amplified chain stretch. Based on this consideration, a crack
driving force - velocity relationship was derived based on a rate equation of bond kinetic and has qualitatively explained
experimental measurements (Ghatak et al., 2000). However, since this model only focuses on microscopic events at the tip,
it needs to be incorporated with a continuum model to account for the effect of bulk dissipation.

Our objective here is to develop a model that is the physically simplest possible of a transient network, that could in
time provide a stepping stone to explore more complex situations. The network is therefore assumed to have a uniform
mesh size, with a dynamic that is governed by a unique time scale: that of the bond association and dissociation. We
neglect additional toughening mechanisms occurring at the crack tip (van der Kooij et al., 2018; Long et al., 2020), and thus
only concentrate on the so-called quasi-brittle transient networks (Ligoure and Mora, 2013; Shabbir et al., 2016; Tabuteau
et al.,, 2011; 2009) where a crack only consumes energy by creating new surfaces. The following presentation could of course
include a variety of more complex processes including additional rate dependent processes arising from the polymer-solvent
interactions (Dhote and Vernerey, 2014; Wang and Hong, 2012), chain reptation through entanglements (De Gennes, 1976;
Lalitha Sridhar and Vernerey, 2018), multiple bond kinetics (Sun et al., 2012) or chain stiffening (Lavoie et al., 2016; Vernerey
et al., 2018a), but all of these would be at great expense of the exposition. Instead, we focus here on exploring the non-
intuitive phenomena that would arise from this simple class of quasi-brittle dynamics networks. To achieve this, we employ
the transient network theory (TNT) at the macroscopic level to determine the crack driving force taking into account for
the viscous dissipation. At the crack tip, we employ the cohesive zone model that relates the crack driving force to crack
stability and velocity developed by Chaudhury (1999). The structure of the paper is as follows. Section 2 investigates rate
dependent response of material made of transient networks and calculates the crack driving force based on the interplay
between external load and viscous dissipation. We also investigate the role of viscous dissipation in fracture through a
simplified fracture case. Section 3 then introduces a general numerical approach to examine the crack stability at large
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Fig. 1. (a) A schematic of fracture test of a material made of transient networks. (b) The change of bond association rate k, and dissociation rate k; as
functions of force.

deformation. This framework also relates the crack velocity to crack tip driving force based on the work of Chaudhury (1999).
Section 4 finally explores the material behavior under pure shear fracture test at different loading conditions.

2. Viscous dissipation and crack driving force

The mechanical response of viscoelastic solids is usually more complicated than their elastic counterparts due to their
capacity of dissipating energy during loading and rate dependency. In this paper, we focus our study on solids made of
"transient” polymer networks, characterized by non-covalent crosslinks. In these networks, crosslinks can dissociate and
reassociate under external stimuli or thermal fluctuation, leading to network reorganization over time. Some example of
these solids are polymers with covalent adaptable bonds (Kloxin and Bowman, 2013) or physical bonds such as hydrogen
bonds (Li et al., 2007) and ionic interactions (Sun et al., 2013). It is usually considered that an associated chain can dissociate
at any state, but a free chain can only reassociate at its stress free state (Vernerey and Long, 2017). Therefore, the stored
elastic energy is dissipated through the dissociation process. In the following, we will explore the response of this network
first during uniform extension and then during fracture experiments.

2.1. Flow and elasticity of transient networks

The dynamics of bonds in a transient network is usually characterized by the rate of bond association k, and the rate of
dissociation kg, respectively (Fig. 1a). According to Erying’s theory (Krausz, 1976; Tobolsky and Eyring, 1943), the magnitudes
of kg and k; depend on the standard energy barrier for association (AG?) and dissociation (AGY), and the force f carried
by the chain. Since a detailed analysis is already given in Krausz (1976); Yu et al. (2018), we directly take the expression

of kg and k; as kg = vexp(—%) and k; = vexp(— AG,:;}”) where v is the natural thermal vibration frequency, kgT is
the thermal energy and X is a activation length for bond dynamics. To obtain a simpler form, let us further introduce the
force-free rates of bond dynamics k9 = vexp(—Ak—‘T;a) and kg = vexp(—ﬁTGTd) and obtain:

ko = kfl’exp(—ffo> and k; = kgexp<£)> (1

where fy = kgT/A measures the force sensitivity of k, and k; (i.e., a larger fy indicates a weak force sensitivity). Fig. 1b
illustrates the changes of k; and ky as functions of force. For the convenience of analysis, it is usually assumed that kg, k4
are constant when the chain stretch is small compared to their contour length (Sun et al., 2017). This assumption has been
validated in several experiments where the material’s relaxation time is almost invariant of stretch level in a certain range
(Mayumi et al., 2013; Narita et al., 2013; Pellens et al., 2004). When chains are highly stretched, i.e., near their contour
length, this assumption fails and force sensitivity must be considered. In the context of fracture, amplification of chain
stretch usually occurs in a small region near the crack tip. Therefore, in this work, we assume that kq, k; are constants in
the specimen except for a small region near the crack tip.

Due to bond dynamics, only a fraction of chains are connected in the network and contribute to its elasticity. Considering
that chain dynamics follow first order kinetics, the concentration n of connected chains can be determined at any time by
solving the evolution equation (Vernerey and Long, 2017):

dn
dt

= ko(ny — ) — kqn (2)
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where n; is the total concentration of chains in the network. At chemical equilibrium state (dn/dt = 0), the concentration
of connected chains becomes a constant and can be found as n = n¢kq/(kq + k4). The elastic deformation of the network
may then be connected to the stretch ratio A of connected chains via the conformation tensor (Vernerey and Long, 2017;
Vernerey, 2018):

p=RA®R%) 3)

where the operator ( - ) represents the average operation over the chain configuration space (Vernerey, 2018) and A =r/rg
where r is a chain’s end-to-end vector and ry = +/Nb the average length of a chain in its stress free configuration. With
this definition, the conformation tensor g is equal to the identity tensor I when the network is stress-free. However, upon
deformation, u changes in time due to a competition between chain stretch and bond dynamics. If we assume that kg
and k, are constants, one can show taht the conformation tensor evolves according to Vernerey and Long (2017) (detailed
derivation is given in Appendix A):

L=Lp+p'LT +k;0=p) (4)

where L = FF1 is the velocity gradient experienced by the network (F being the deformation gradient) and uy = 3/tr(u=1)I
is the state for reassociation. We note that the chemical equilibrium condition n = n¢kq/(ks + kq) and affined deformation
A =LA were assumed to obtain the above equation. The first two terms on the right hand side describe the contribution
from macroscopic deformation while the latter two terms account for the dissociation of connected chains at the current
state (u) and the association of free chains in a uniformed state (3/tr(u~1)I). We note that this is a stressed state due to
the incompressibility of the network. For a purely elastic network (i.e. ks = k; = 0) Eq. (4) degenerates to the rate of the
Finger deformation tensor gt = Ly + LT (Holzapfel, 2000). Since p characterizes the elastic deformation of the network,
it is directly connected to the elastic energy W and rate of energy dissipation D. Assuming Gaussian chain statistics (i.e., the
force-stretch relation of a chain is linear), these two quantities are defined as Vernerey and Long (2017):

nkgT
2
where p is the hydrostatic pressure that enforces incompressibility. The expression for D shows that the detachment of
chains at their stress state leads to unrecoverable loss of elastic stored energy at rate ky. Since Eqs. (2) and (4) are formulated
in an incremental form, the variables w, ¥ and D already contain the information about deformation history and therefore
convolution integral is not needed. Finally, the Cauchy stress tensor ¢ is finally given by Vernerey and Long (2017):

v = tr(w — 1) + p(det(F) — 1) and D =kyW¥ (5)

o =nkgT(u —1) + pl (6)
2.2. Competition between chain stretch and dynamics

Eq. (4) shows that the chain conformation tensor u results from a kinetic competition between the rate of network

deformation and bond dynamics. This competition is usually quantified by the Weissenberg number:

€

W=— 7

kd ( )
where € is the true strain rate. To illustrate this, let us consider the pure shear extension of a specimen (Fig. 2a) whose
geometry is defined by its width Ly, height Hy and thickness by with Ly 3> Hy > bg. Due to these geometrical constraints, the
horizontal deformation is negligible and the deformation gradient at any time t is F = diag{1, A, 1/A} with A(t) = exp(ét)
while the velocity gradient thus is L = diag{0, é, —€}. During deformation, the evolution of chain conformation can be
determined from Eq. (4) as:

. 3
pn =ki| ————— —Hn
Mg + My + Mg

oo = kg <2Wl/«22 e Mzz)
Mg+ My + M3z

. 3
3z = ky <_2W,U«33 L e wa— M33) (8)
My + My + 33
The rate of change of elastic stored energy is therefore computed from Eq. (5) as:
. nkgT
V= 23 [2Wkg (o2 — 433) — kg (2 — phoa — (433)]- 9)

The first term on the right-hand side quantifies the rate of energy density gained from external work (W) since W=¢:L=
nkgTWky (1422 — p33) while the second term kd"kTBT[(,uzz +133 — 2)] =ks ¥ = D accounts for the rate of energy dissipation

due to bond dynamics. Fig. 2b plots W as a function of chain stretch A for different values of W. Our results show that the
system can be found into two regimes:
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Fig. 3. Schematic of a pure shear sample (a) before and (b) after the crack propagates by a small increment &a. (c) A phase diagram that shows the stable
and unstable regime for the case when the specimen’s stretch is fixed after the crack propagates.

a. When W < 0.5, the rate of change of stored elastic energy density always asymptotes to zero in the long term. The
condition W = 0 characterizes steady-state creep condition where the external work is balanced with viscous dissipation. As
a result, the chain conformation remains unchanged although A continuously increases. The steady state values of u can
therefore be obtained by considering (i3, = 0 and fi33 = 0 in Eq. (8). Further using Eq. (5), the steady state stored elastic
energy W, at steady state is found as Lalitha Sridhar and Vernerey (2018):

E[ 3-4w?
Ys=5% [ (1—4w2)23 ~ 3} (10)

This Ws — W relation is plotted in Fig. 2c along with schematics of chain conformations, where we see that W diverges as
W approaches 0.5, indicating that chain elastic stretch becomes predominant.

b. When W > 0.5, the stored elastic energy increases monotonically with time. In this case, the rate of network defor-
mation is too large to be compensated by bond dynamics and a steady state cannot be obtained.

2.3. Crack stability in transient networks: case study

When a crack nucleates in a transient network, its stability depends on the interplay between four energetic quantities:
the incremental work 6V done by external loading per unit area of crack, the elastic energy release rate G, the work Gy
required to create a unit area of crack surface and the viscous dissipation G, per unit crack extension. Crack propagation is
energetically favored if Zehnder (2012):

SW + Ge > Gy + Gy. (11)

Physically, this equation states that the energy available for crack advance needs to be greater than the energy being dissi-
pated (by both viscoelasticity and crack advance). For the case of an elastic material (G, = 0), it has been shown in experi-
ment that the crack propagates at steady state when external deformation is kept at a fixed level (§W = 0) (Qi et al., 2019).
In this case, the fracture criterion (eq. (11)) degenerates to Ge > Gg, a condition that has been widely applied for steady
state elastic fracture (Zehnder, 2012). For the case of a pure shear fracture test (Fig. 2a), the stability of an elastic crack is
typically explored by first subjecting the sample of height Hy to a fixed level of stretch. If Wy is the stored elastic energy at
the far field, it can be shown that the crack becomes unstable and propagates when WHy > Go. In this regime, the crack
propagates at steady-state with constant velocity (Long and Hui, 2016).

In the case of transient networks, this approach must be revisited since the elastic energy Wy does not only depend on
stretch, but is also a function of the rate of loading (Fig. 2b & c). To examine this situation, consider a pure shear specimen
in steady-state creep conditions (W < 0.5), that is suddenly cut with an edge crack of length a (Fig. 3a). To simplify the
analysis, we further make four assumptions: (a) the loading ceases as soon as the crack is introduced (i.e. W =0 in the
post-crack regime). (b) the deformation is small enough so that the crack does not blunt as it propagates and H ~ Hy. (c) the
crack velocity v is constant and independent of loading condition. (d) Finally, similar to the Griffith theorem (Zehnder, 2012),
the elastic energy W is assumed to be uniform in the material ahead of the tip (the green region in Fig. 3a). We note that
these assumptions will be relaxed in the next section, so that general cases can be considered. In this case, the crack stability
criterion (Eq. (11)) becomes G. — G, > Gy. The elastic energy release rate is calculated as G, = §I1./8a where 811, = WHyda
quantifies the elastic energy loss per area due to the addition of unloaded material (shown by the yellow region in Fig. 3b).
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The viscous viscous dissipation is calculated as G, = §I1,/8, where 811, = k;WASt represents the loss of elastic energy in
the bulk due to bond dynamics (green region of area A in Fig. 3a) over time interval 6t = da/v. Recalling that L > > H for
pure shear geometry, the area of the green region can be calculated as A = H(L — a) + O(H?). Neglecting the higher order
term, Ge and G, are evaluated as:

Ge=VYHy and G, = l%d\IJSHO(L —a) (12)
and the crack stability criterion becomes
qst[1 _ %(L—a)] > Go (13)

where ¢ =v/k, is a characteristic length that characterizes the competition between crack propagation and viscous dissi-
pation. According to De Gennes (1996), this length represents a region around the crack tip within which crack propagates
in a quasi-elastic manner. Interestingly, when the ratio ¢* = ¢/(L —a) > 1, Eq. (13) degenerates to the criterion for elas-
tic materials because the crack propagates fast enough so that the bulk dissipation becomes negligible. The criterion of
Eq. (13) can be visualized in a phase diagram for crack stability as a function of W and ¢* (Fig. 3c)where we see that bulk
dissipation affects the crack stability in two ways. During the loading stage, it competes with external loading (measured
by W) that determines the stored elastic energy density W in the far field. After the cut is introduced, the bulk dissipation
also competes with the energy loss due to crack propagation. Eventually, we find that crack propagation is only favorable
when ¢* > 1, i.e, the full specimen behaves elastically during the event of fracture (De Gennes, 1996; Saulnier et al., 2004).
When ¢* < 1, bulk dissipation plays a predominant role and the crack is stable regardless of W; this is contrary to elastic
fracture where crack stability is directly related to a critical value of Ws. This finding explains the enhanced flaw tolerance
of viscoelastic materials in adhesion applications (Creton and Ciccotti, 2016) as the viscosity not only decreases the energy
in the bulk during the loading stage, but also shields the crack from propagation. Since fracture becomes less likely to occur,
bulk deformation (e.g., cavitation, fingers pattern formation) becomes a common mode of failure in applications.

This result also indicates that in a viscoelastic fracture experiment, the protocol of fixing deformation during crack prop-
agation becomes inappropriate because bulk dissipation may prohibit the crack from propagating. To address this, we recall
from Fig. 2b that the contribution of bulk dissipation can be balanced out by external work if the specimen is continuously
stretched with constant W. In this case, the crack stability criterion becomes WsH > Gy which only depends on W. Fur-
thermore, in analogy to the critical stretch ratio for elastic materials, the crack stability criterion can be converted into a
critical loading rate W which can be easily measured. However, we emphasize that this analysis is based on the assumption
of small deformation and uniform stress fields and the crack is introduced in a steady state creep condition. In practice, the
crack is usually introduced before the specimen is stretched and the stretch level is usually more than 30% (Ghatak et al.,
2000; Liu et al., 2019b; Luo et al., 2014), beyond which the material behaves nonlinearly. In addition, the fracture process
is also more complicated, wherein the crack velocity is not an intrinsic material property but a function of crack driving
force (Ghatak et al., 2000). It also does not necessarily take on an (elastic) parabolic profile since blunting may occur during
propagation (De Gennes, 1996; Saulnier et al., 2004). Gaining a comprehensive understanding of the above features requires
a framework that incorporates nonlinear viscoelasticity and an accurate description of the stress fields, where an analytical
solution is difficult to obtain. As an alternative, we develop here a numerical framework that is based on our previous work
(Shen et al., 2019b) to capture and unveil the mechanisms behind experimental observations.

3. A general framework for viscoelastic fracture

In this section, we introduce a general framework for viscoelastic fracture of transient networks at finite strain. This
framework is introduced on the basis of a finite element computational model developed previously that can accurately
describe the combined flow and elastic deformation in viscoelastic solids at large deformation. Notably, this computational
model is developed based on the Eulerian description of kinematics and therefore it can handle the arbitrary deforma-
tion levels of material without losing accuracy. Readers are referred to Appendix C for details on the solution strategy and
Foucard et al. (2015); Shen et al. (2019b) on the numerical scheme. In this section, using the stress field solution from the
finite element simulations, we focus on the crack stability criterion (Eq. (11)) and the relationship between rate-dependent
chain rupture and crack velocity.

3.1. General framework for crack stability in transient networks

To evaluate the fracture criterion (Eq. (11)), let us consider the extension of a cut specimen of height H as shown in
Fig. 6a. During a small time increment §t, this specimen evolves to state b shown in Fig. 4b, where the crack extends
by §a with velocity v. The quantities §W, G, and G, are evaluated between these two states. For this, the first step is to
numerically solve for the stress fields, stored elastic energy and the work of external load §W per unit crack length can be
computed as:

1 St
SW = W/o /Va.Ldth. (14)
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Fig. 4. The crack tip driving force is calculated based on the evolution from state (a) to (b) over a period of time &t. (c) Schematic of different regimes
around the crack tip based on the role of bulk dissipation. The crack tip driving force G can be interpreted as the energy flow to the elastic solid regime.

where b is the specimen’s thickness and f,*dV denotes the integration over the specimen’s volume. We note that the di-
vergence theorem was used in Eq. (14) in order to relate the traction on the boundary to the stress in the bulk. The elastic
energy release rate G, is by first computing the change of elastic stored energy at each material point ¥ between state a
and b, and then integrating over the specimen’s volume as:

1
Ge = —— | §Wav. 15
=55 /. (15)
Finally, the viscous dissipation G, is computed by integrating the rate of dissipation from state (a) to (b) as:
1 8t
Gy= Ddvdt. 16
=), |, (1)

We note that since §t = da/v and D = k;\W, the above equation implies a scaling of Gyx1/¢, where we again see the ap-
pearance of the trumpet length ¢ = v/ky. According to De Gennes (1996), dissipative term is responsible for different crack
profiles between the vicinity of the crack and the far field, yielding a "trumpet” profile schematically depicted in Fig. 4c.
This argument has been confirmed by several experimental studies (Saulnier et al., 2004; Sun et al., 2017; Tabuteau et al.,
2011) based on the crack tip profile. One can finally define the crack driving force G as:

G=8W+Ge—G,. (17)

The crack stability criterion is therefore expressed as the difference between the crack driving force ¢ and the intrinsic
fracture toughness Gy, i.e., the crack is unstable if G > Gy (as provided by Eq. (11)). The variable G can be interpreted as the
energy flow to the elastic domain near the crack tip (Fig. 4c). To fully capture the fracture process, two quantities however
remain to be determined: the crack velocity v and the intrinsic fracture toughness Gg. Both quantities are associated with
rupture of dynamic bonds occurring at the crack tip, whose characteristic length scale is beyond the resolution of continuum
framework. This is discussed in the following section.

3.2. Kinetics of chain rupture and crack propagation

At the molecular scale, the crack tip advances by progressively breaking the chains that bridge the interface. A conven-
tional model to describe this process is the Lake-Thomas (LK) theory (Lake and Thomas, 1967) that considers each chain
as an elastic spring that only ruptures at a critical stretch. In this case, the fracture toughness is only related to the level
of deformation and considered rate-independent. This situation is however not applicable to the case of transient networks
because the concept of "rupture length” cannot be defined. Due to the transient nature of the mechanical bonds, a chain can
indeed break at any state. An alternative consideration was first proposed by Chaudhury (1999) where fracture is caused by
the accelerated bond dissociation at the tip due to the fact that k; increases with force (Eq. (1)). Based on this physical pic-
ture, Chaudhury (1999); Ghatak et al. (2000) and Hui et al. (2004) have thoroughly formulated the problem of chain damage
at the crack tip and have established a crack driving force (G)-velocity (v) relationship. In what follows, the relationship and
the intrinsic fracture energy G, are determined based on their works.

Let us first take a close look at the tip of a traveling crack shown in Fig. 5a, where the chains bridging the interface,
with aerial density 11, are stretched progressively. According to Lake and Thomas (1967), for a uniform network, 1 = %50”
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Fig. 5. (a) Schematic of the progressive chain stretch at the tip as the crack propagates. (b) An example for the stress (o )- separation (&) relation for three
different crack velocities obtained by numerically solving Eq. (18). (c) The comparison between numerical solution of intrinsic fracture toughness Gy from
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Fig. 6. An example of the finite element simulation and boundary condition. (a) the undeformed state and (b) deformed state of the specimen.

where & = +/Nb is the average chain length at the stress-free configuration with N the Kuhn number and b the Kuhn length
(Lake and Thomas, 1967). At the continuum level, the chain dynamics k, and k; are assumed to be constant because the
stress level is usually relatively low compared to the tip. However, this assumption fails to hold at the tip, where stress is
highly concentrated and k, and k; are typically force-sensitive, as described by the Eyring’s theory (Eq. (1)). Consequently,
chains at the tip experience two concurring processes: localized stretch caused by crack opening and damage due to ac-
celerated dissociation. Considering a local coordinate whose origin moves together with the crack tip (Fig. 5a), the change
in chain density along the x coordinate satisfies the convection equation vdfi/dx = di/dt. Using Eq. (2), this equation can
further be rewritten as :

on
&
where we applied the chain rule vdn/dx = di/dt and o = 0£/0x is a parameter that characterizes the crack profile. An
accurate solution of this quantity is not yet available since it requires a multi-scale analysis that couples chain damage at the
crack tip to the deformation of the bulk material. Since this is not the focus of this work, we here follow the approximation
of Chaudhury (1999) and Ghatak et al. (2000) and idealize the crack profile as a wedge with slope o = 1. The above equation
leads to a 1 — & relationship for the chains bridging the crack. Further considering linear chains with stiffness k, a stress
(0 = nk&) - separation (£) relation is then obtained, as plotted in Fig. 5b for different values of crack speed v. The crack
driving force G is computed by the work done to break bridging chains per unit area of crack surface, which equals to the
area under the o — £ curve:

g:/oooodé. (19)

Generally, there is another contribution to ¢ due to network damage (i.e., nonlocal chain rupture, void nucleation and
growth) within a region of length &; around the crack tip (Long et al., 2020). For ductile materials, &4 is large ( ~ mm)
and the crack tip damage becomes the major contribution to G. For brittle materials, which is the focus of this work, &, is
comparable to chain length and crack tip damage is negligible (Long et al., 2020). As a result, Eq. (19) only describes the
energy consumed by the rupture of bridging chains. Although an analytical solution for Eqs. (18) and (19) is not available,
Chaudhury (1999) obtained a closed-form approximation by determining the average length for bond rupture £. This was
done under two assumptions: (i) the bond association rate k, is negligible compared to the dissociation rate ky; (ii)the mag-

Vo kq(ny — n) — kgnt (18)
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nitude of crack velocity satisfies v/kg > fo/k. In these conditions, the v — G relation was obtained as (detailed derivations in
Appendix B):

fokg 1 [2kG
v_Texp A (20)

The two assumptions made by Chaudhury are justified as follows. First, chains are highly stretched as the crack interface
opens. Since ky increases exponentially with force and k, decreases exponentially, k, < kg is satisfied (Fig. 1b). Second, the
trumpet length (¢ = v/kg) is a macroscopic quantity while the term fy/k scales with the length of a chain. Therefore, the
assumption v/kg > fo/k is valid as long as crack propagation is macroscopically observable. In experiment, this In(v) — /G
relationship has been reported in several studies (Chaudhury, 1999; Ghatak et al., 2000).

By contrast, the intrinsic fracture toughness Gy was not determined in the work of Chaudhury. This quantity can be
defined as the energetic threshold for interface breakage and represents the energy required to break the chains via a
chemical equilibrium process (di/dt = 0) (Lavoie et al., 2016). In this scenario, the concentration of connected chains is
only a function of stretch through k, and k; as 1 = fitka/(kq + kg). Plugging this relation into (19), Gg is calculated by the
following integral:

Go = ﬁ[k/ % (21)
0 1+ éexp(ﬁé)

While this integral is difficult to evaluate analytically, a closed-form can be obtained by approximating the integrand
with an isosceles triangle as (details shown in Appendix B):

a f2 A2
Go = <k0> ST+ exp ()] (22)

Here A = Wo(i—g%) + 1 with Wy(*) the main branch of Lambert W function (Lambert, 1758). Fig. 5¢ compares the numerical

calculation (via Eq. (21)) and analytical approximation (Eq. (22)) the of Gy — fy relationship, where we see that a reasonable
match is obtained. In addition, we confirm that Gy is an intrinsic material property that only depends on chain concen-
tration n; and the force sensitivity fy of the bond. If the bonds are less sensitive to force (larger fy), Go increases since
the accelerated chain damage occurs at a higher stretch level. In summary, the stability and velocity of a crack follows the
rule:

0, G < Gp

v=1 fokj 1 [2kg (23)
& P RV w ) 9=

The above rule suggests a minimum crack velocity vy at G = Gg, which can be regarded as the characteristic fracture velocity
that solely depends on the intrinsic material properties fo and ;.

4. Dynamic regimes in pure shear fracture tests

Using our general framework, we here study the various dynamic regimes one may encounter during the pure shear
fracture test of transient networks. For this, we focus on two parameters that control the rate-dependent fracture: (a) the
Weissenberg number W = e'/kg that measures the competition between external load and bulk dissipation and (b) the nor-
malized Trumpet length ¢* = ¢/(L — ag) that describes the interplay between crack propagation and bulk dissipation. In what
follows, all numerical simulations are performed using a customized program written in Matlab. Fig. 6 shows an example
of numerical simulation, where only the top half of a shear crack sample is included due to the symmetry of the problem
(Fig. 6a). The bottom boundary at the bottom is divided into two parts, the traction free crack surface of length ay and a
”solid” section whose vertical motion is constrained. When the crack is unstable, these constraints are removed sequentially
to create new crack surfaces. To avoid boundary effects at the right edge, we consider a wide specimen whose width L, ini-
tial height Hy and initial crack length ag follow Hy = L/15 and ag = L/12. In our study, we choose a network with intrinsic
fracture toughness Gy = 11 fg /3k which, according to Eq. (22), characterizes a material with k = kg.

4.1. Characteristic fracture behaviors

We perform our study by considering three loading rates measured by W = 0.07, 0.3 and 0.7. For each loading rate, we
investigate the behavior of a slow crack (¢* = 0.2) and a fast crack (¢* = 1.3), respectively. In all cases, we explore the change
in crack velocity v and crack profile over time, and track the evolution of the crack driving force G.

Slow loading (W = 0.07). In the case where the specimen is loaded slowly (W = 0.07), our results show that the crack
remains stable regardless of ¢*. Fig. 7a exhibits three simulation snapshots, where the contour plots the stored elastic energy



(a)
0.0 0.5 iii

B Tl v

=l

quantities are normalized by Go.

I-I 0.94
20.6—
Go
0.31
0.0
1

Fig. 7. (a) Three snapshots for the crack blunting for W = 0.07 and ¢* = 1.3. (b) Evolution of crack tip driving force G as a function of stretch H/Hp. The subfigure shows the evolution of §W — G, and G.. Both

(b)

1.2

0.4

SW — G,

3 5
H/Hy

820501 (020Z) €pL SpHoS Jo saishid pup sy ay3 Jo [puinof/Aa1auidA 4 pup uays ;|

48



12 T. Shen and FJ. Vernerey /Journal of the Mechanics and Physics of Solids 143 (2020) 104028

density W in the network, of a specimen with ¢* = 1.3. Vertical stripes are plotted on the specimen to visualize deformation
and track the crack position. To understand the energy flow in the material, Fig. 7b further plots the change of G as a
function of stretch H/Hy and the inset shows the contribution of each mechanism that are represented in Eq. (17). In this
scenario, since viscous dissipation is predominant, the specimen reaches steady state creep as 6 — G, — 0 and the level
of stored elastic energy density in the far field remains low (Fig. 7a). As a result, the crack driving force G is insufficient
to propagate the crack (Fig. 7b). Interestingly, our results show that further stretching the specimen leads to a decrease
in G. This is because the increase in stretch leads to crack blunting and a decrease in stress concentration, as exhibited
by the snapshots of Fig. 7a. Eventually, the crack does not propagate for any level of stretch. This phenomenon has been
observed in the extensional fracture test of associative polymers. For instance, in the uniaxial extensional flow experiment
of a PRMO-Na ionomer filament (Shabbir et al., 2016), the filament thins continuously without breaking as W — 0.

Fast loading (W > 0.1), fast crack (¢* =1.3). As we maintain ¢* = 1.3 and increase W continuously, we observe that
the crack becomes unstable and propagates in a steady state. Steady state propagation is characterized by a fast crack that
travels at constant velocity through the specimen at nearly constant external stretch H/H,. Fig. 8a exhibits two examples
for W = 0.3 and 0.7, respectively, where we clearly see the effect of W from the crack profile. For W = 0.7, elastic stretch is
predominant ahead of the crack and the unloaded chains retract to their undeformed state in the wake of the crack, leading
to a parabolic profile reminiscent of elastic fracture. For W = 0.3, bulk dissipation becomes non-negligible, which leads
to two notable observations. First, fracture occurs at a much larger stretch than when W = 0.7 (Fig. 8a) because a larger
portion of energy is consumed by bulk dissipation. Second, the chains behind the crack tip are unloaded to a deformed
state, making the crack surface deviate from its original parabolic profile. In this case, the crack surface is characterized by
two parabolic shapes, a blunt one that belongs to the region of the initial cut and a sharp one for the new surface created
by the propagating crack. In experiment, this crack profile has recently been observed in the fracture of a dual crosslinked
hydrogel, where the initial cut blunts during loading and a sharp "secondary” crack is initiated at the tip of the blunt region
(Liu et al., 2019b). During propagation, the crack travels at a constant velocity for both values of W (Fig. 8b) and exhibit a
self-similar profile over time (Fig. 8c). Taking together, these results imply steady state crack propagation since both the far
field stress and deformation remain invariant with respect to the tip during propagation (Long and Hui, 2016). We find that
this condition is satisfied when the crack speed is very fast (¢* > 1) compared to the rates of bond dynamics and external
load.

Furthermore, steady state propagation is examined when the crack tip driving force G is equal to the intrinsic fracture
energy Go. For an elastic solid in pure shear condition, G is computed as Long and Hui (2016):

g :Hsll"f- (24)

where H; is the height of the specimen at the stress free state, which equals the undeformed height for the elastic specimen.
The quantity Wy is the stored elastic energy density at the far field, which can also be determined from an uncut sample,
with identical geometry, that experiences the same loading history. However, this equation cannot be directly applied to
viscoelastic material at finite strain since the solid deforms permanently due to creep. As a result, Hs is not equal to the
undeformed height and cannot be directly measured. To address this, previous work of Mayumi et al. (2016) suggests that
Hs can be obtained from the uncut sample. At the onset of crack propagation, Hs can be determined by rapidly unloading
the uncut sample to its stress-free state. While this can be done experimentally, the transient network theory provides
a convenient way to calculate Hs through the conformation tensor g which directly measures the mean squared stretch
of chains. First, for pure shear geometry, i can be determined by solving Eq. (8) through the loading history. Hs is then
related to the vertical component u,, at propagation as Hs = H/ /1, where u,, can be determined from Eq. (8) (derivation
provided in Appendix D). The crack driving force is then calculated as:

G= (25)

H Wy,
Vv H22
To check the accuracy of Eq. (25), we compare its prediction with simulation results for different values of W (Fig. 8d)
where we keep ¢* = 1.3 to ensure steady propagation. A good agreement is achieved for different values of W, validating
the applicability of Eq. (25) for steady state propagation.

Fast loading (W > 0.1), slow crack (¢* = 0.2). When the crack velocity becomes slower, the role of external load and bulk
dissipation becomes more pronounced. Thus, when the specimen is loaded at W = 0.3, we observe a peculiar behavior in
which the crack first propagates but eventually stops and blunts (Fig. 9a). We further see from Fig. 9b that the crack first
accelerates then starts decelerating monotonically to a zero speed. This is accompanied by a sharpening-blunting evolution
of the crack profile depicted in the inset of Fig. 9b. To explain this process, Fig. 9c plots the evolution of energy flow as
functions of H/Hg, where we see that in this case, the crack driving force G first increases as §W — G, > 0, triggering crack
initiation. However, recalling that at the far field, viscous dissipation gradually reaches the steady state creep condition as
W < 0.5 (Fig. 2b), further stretching the specimen does not provide more energy to the crack for propagation. This occurs in
Fig. 9c as W — G, gradually decreases to zero. Instead, it causes crack blunting and a decrease in stress concentration. As a
result, the magnitude of G, decreases upon further stretching and G eventually becomes smaller than Gy, at which time the
crack is arrested.

When W is further increased to 0.7, we find that the crack propagates in an accelerated manner as shown in Fig. 10a. As
it accelerates with elongation H/Hg, the crack tip sharpens (inset of Fig. 10b) which subsequently leads to a higher level of
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stress concentration (Long and Hui, 2015), as shown by the contour plot in Fig. 10a. To understand the mechanism behind
this observation, we plot in Fig. 10c the evolution of G as a function of H/Hy and the detailed contribution of each term in
Eq. (17). Since W > 0.5, external work is predominant over the bulk dissipation (as shown by the increasing W — G,) which
causes a monotonic increase in the stored elastic energy and G.. The above mechanisms collectively increase the crack tip
driving force G and result in an accelerating crack. Based on this analysis, we postulate that an accelerating crack is always
expected when W > 0.5 since the external work keeps feeding an excess amount of energy to the material.

4.2. A phase diagram for rate-dependent fracture

To summarize the various dynamic behaviors of a crack in a transient network, we performed a parametric study for
range W e [0.06,0.8] with step size 0.06 and ¢* e [0.2,1.6] with step size 0.05. Our results are summarized in a phase
diagram of Fig. 11. We see that the critical value W, for unstable crack depends on the magnitude of ¢*. For larger ¢*, W,
is smaller because viscous dissipation plays a more negligible role during propagation. After crack initiation, the steadiness
of the crack is controlled by the critical crack velocity characterized by ¢* ~ 1. A fast crack (¢* > 1) propagates at steady
state, in which case the crack driving force can be measured by Eq. (25). A slow crack (¢* < 1) is characterized by two
characteristic non-steady behaviors; one where the crack is eventually arrested due to blunting for (W < 0.5), one where
the crack accelerates continuously (W > 0.5). For both cases, Gg cannot be determined from experiment without the use of
numerical simulations since the only measurable quantity, the crack tip driving force G, changes during the loading history
and is not equal to Gy.

To the authors’ knowledge, the case of crack arrest has not been systematically studied in the literature, probably due
to three major reasons. First, modeling-wise, crack arrest is due to crack blunting when the deformation is very large,
which cannot be captured by most existing models based on linear viscoelastic fracture. Second, experiment-wise, this phe-
nomenon requires the need for a material formed by a single transient network with slow crack propagation velocity (i.e.,
high force sensitivity for chain dynamics), which imposes a strict constraint on the material system. Lastly, this phenomenon
may not be observed if the specimen is not wide enough, in which case the boundary effect becomes non-negligible. As the
crack propagates, the boundary effect leads to the amplification of loading rate in the region along the crack interface and
increases the crack tip driving force G. This effect is non-negligible when the sample is narrow, for instance the filament
stretching experiments of complex fluids (Ligoure and Mora, 2013). In this scenario, the crack may be accelerated instead
of being arrested (Ligoure and Mora, 2013; Liu et al., 2019¢; Luo et al., 2014). Crack arrest may however be important in
applications because fracture usually originates from very small defects. In this case, the boundary effect is negligible and



16 T. Shen and FJ. Vernerey /Journal of the Mechanics and Physics of Solids 143 (2020) 104028

Blunting
. J ! J d Steady state propagation
1.5 4 e :: ::::::::'
71 %
® 4 i
Crack arrest 104 =« ¢ 0 00 o
x|6 ¢ ¢ ¢ o0 o Non-steady state
] xle ¢ ¢ ¢ o0 o | propagation
4 * ¢ ® o
1 x% o o . o ‘1-.'
x ¢ ¢ * o
X x\ ¢ ¢ * o —
i X x\e ¢ ¢ o :
T T : I T T
0.0 0.2 0.4 0.6 0.8
w

Fig. 11. A map that summarizes the four different characteristic fracture behavior of the specimen depending on the Weissenberg number W = e'/kg and
the normalized Trumpet length ¢* = ¢/(L — ao).

crack arrest may be an important intermediate process for material failure. One example is the debonding of an adhesive
from the substrate (the probe tack test). During decohesion, the debonding mechanism transits from the interfacial crack
propagation to bulk deformation (Lindner et al., 2005; Nase et al., 2008), characterized by the crack propagation-arresting
process.

5. Conclusion

This work establishes a framework to study the fracture of viscoelastic materials made of transient networks. By per-
forming an analytical study on a simple fracture problem, we identified two competitions that govern the fracture process:
(a) the competition between bulk dissipation and chain deformation (measured by W), and (b) the interplay between bulk
dissipation and crack propagation (measured by ¢*). To describe the role of bulk dissipation in fracture, we propose a loading
condition where the specimen is continuously stretched by a constant true strain rate, i.e., a constant Weissenberg number
W. Under this condition, our numerical experiments further determined four characteristic behaviors controlled by W and
¢*. For ¢* > 1, the crack propagates in a steady state, for which an analytical formula was obtained to extract the intrinsic
fracture toughness Ggy. For ¢* < 1, steady state cannot be obtained since neither external work nor bulk dissipation is neg-
ligible during propagation. In this situation, we observe an accelerating crack for W > 0.5 and the crack propagation-arrest
phenomenon for W < 0.5. We note the crack propagation-arrest is caused by the interplay between chain stretch, bulk
dissipation and crack blunting, which could not be studied using the linear viscoelastic fracture mechanics models. This in-
troduces a fracture resistance mechanism where a propagating crack can be stabilized by blunting. This is also reminiscent
of the interface fracture to bulk deformation transition of adhesives during the debonding process (Nase et al., 2008). For
non-steady state propagation, Gy cannot be readily calculated without performing finite element simulations because the
measurable quantity G does not equate the intrinsic fracture energy Gg. Lastly, crack never propagates for W — 0 since bulk
dissipation becomes predominant and the elastic energy remains low.

This work, for the first time, evaluates the effects of network dynamics and large deformation of material on the crack
driving force G. Leveraging on this capacity, we further perform a comprehensive study on the rate-dependent fracture of
viscoelastic materials at different loading conditions, and unveil the energetic mechanism behind each characteristic behav-
ior. Our analysis shows that the effect of large deformation cannot be neglected when evaluating the crack driving force
(Eg. (25)) and the combined crack propagation and blunting. As an alternative to the energy-based crack stability criterion
proposed in this work, Liu et al. (2019a) recently proposed a criterion based on the local stress fields and bond damage at
the tip. To unify these two approaches, future studies will seek to relate the crack driving force to the time-dependent crack
tip fields near the crack. This model is developed based on brittle transient networks (Shabbir et al., 2016; Tabuteau et al.,
2011; 2009) so that the network damage around the crack tip is neglected. For more general cases, the crack driving force
G computed by Eq. (19) will include the contribution of crack tip damage. With this consideration, a characteristic length
scale associated with the size of the damage zone, will arise in the problem and regulate the crack propagation (Ameli
et al,, 2010; Long et al., 2020). In addition, we assume here viscoelasticity is only caused by bond dynamics, while more
complex rate-dependent mechanisms, e.g., chains reptation through entanglements (De Gennes, 1976; Lalitha Sridhar and
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Vernerey, 2018), network-solvent interaction (Bouklas et al., 2015; Wang and Hong, 2012) and chain stiffening (Lavoie et al.,
2016) are not considered. Nevertheless, the proposed framework provides a stepping-stone on which to include the above
processes in future studies and generalize the model to other transient network systems including vitrimers (Rottger et al.,
2017), covalent adaptable networks (CAN) (Kloxin and Bowman, 2013) and ionic hydrogels (Sun et al., 2013). More generally,
the transient network theory (TNT) can also be extended to describe the rate-dependent response of a broader range of
fracture resistant materials including dual-crosslink hydrogels (Mayumi et al., 2016), double-network hydrogels (Sun et al.,
2012), vulcanized rubbers (Bhattacharya et al., 2011; Prabhu et al., 2013) and engineering materials such as VHB adhesive
tapes (Benet et al., 2019). However, modeling the fracture of these materials requires further improvement of the model
because these solids usually made of the combination of a permanent a transient network (Mayumi et al., 2013; Sun et al.,
2012; 2017; Zhang et al., 2016). This leads to two competitions: (a) the energy flow in the permanent network needs to be
treated separately from the transient component since it does not contribute to bulk dissipation; (b) the intrinsic fracture
energy Gy is associated with the fraction of each network and the load sharing of chains at the tip. Long and Hui (2016). A
quantitative understanding of the interplay between the two networks will need to be established.
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Appendix A. Evolution of conformation tensor u

As discussed in Section 2, the conformation tensor g is obtained from averaging of chain stretch ratio A over the config-
uration space. Let us define ¢(A) as the distribution of chain stretch A in the configuration space, its evolution is described
by the Fokker-Plank equation:

D .

% V@i (26)
where the first term on the Right-hand side represents the contribution of elastic deformation and the second term de-
scribes the effect of inelastic processes, governed by bond dynamics in this study. If we assume affine deformation, the
stretch in each chain follows the macroscopic deformation velocity gradient L, as A = LA. For bond dynamics, assuming that
associated chains dissociate at the current configuration (¢(A)) and the free chains associate in a stress free state (¢g(1)),
Eq. (26) can be rewritten as:

D

20— L (Vheh) kb ) + kao() (27)

To obtain Eq. (4), we further multiply Eq. (27) by the dyadic A®A and apply the averaging operator < - > introduced
below Eq. (3) and obtain:

. n
[L:LIL+[,LTLT+I<G(# — Dy — kg (28)

When k,; and k; are both constants, chemical equilibrium is achieved, and the constant density of attached chains becomes
n = n¢kq/(ka + kg). In this scenario, the above equation degenerates to Eq. (4).

Appendix B. Rate-dependent crack driving force and intrinsic fracture toughness

During the separation, the average life time of the chains bridging the crack can be defined as:

_ * n
t:/o e (29)

nt
Using Eq. (2) and assuming that kq <« kg, the above integral can be expressed as the following exponential integral form:
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An analytical expression for the above exponential integral can be obtained when fokg/kv» 0. In this case, the average
bond life time is found as:

e fo kv
= (&)(7) o

Further, since the crack profile is idealized as a wedge shape with slope 1, the average length for chain dissociation is found
as & = vt. The crack driving force G is then approximated as the energy needed for breaking all bridging chains at &, i.e.,

G= %ﬁk?z. This finally leads to the expression in Eq. (23).
Approximation of Go: When bonds break at chemical equilibrium, the stress (o )-distance (¢) relation can be found from
Eq. (18) as:

1

— (32)
0
1+ %exp(%‘é)

o = ﬁ[ké

This function is plotted in Fig. 12a and Gy is evaluated by the area under this curve. To obtain an analytical approximation,
this curve is approximated by an isosceles triangle characterized by the maximum stress o, and the corresponding stretch
&m. These two variables can be determined by considering do /0§ =0 as:

fo n -
fn=5pA and oy = ”ff0[1+exp(¢4)} N

where A = wo(%g) and Wy(*) is the main branch of the Lambert W function (Lambert, 1758). Eq. (22) is then calculated
d

as the area of the triangle Gy = omén.

Appendix C. Finite element solution strategy

The finite element numerical framework is developed in our previous work (Shen et al., 2019b). Here, we introduce the
solution strategy but do not detail the numerical schemes. Since the transient network theory (TNT) is developed in an
incremental form, the solution strategy also takes an incremental manner. To help with the discussion, let us define g
as the material domain and I' as the boundary. At the initial state (t = 0), the specimen is considered at the stress-free
configuration:

o(t=0)=0 in 4(0). (34)

At any time t during the simulation, the problem is solved by taking the following two steps: (i) based on the current
network conformation, determine the network evolution; (ii) update the network conformation and stress.

Determine the network evolution

The network evolution is characterized by two variables: the velocity of material points v and the change in hydro-
static pressure p, which characterizes the network evolution from kinematic and mechanical aspects, respectively. They are
determined by solving for the equilibrium and incompressibility conditions in the material domain (Shen et al., 2019b):

V.6=0  and V.v=0, in (35)

(a) (b)

1.2 N — 12 : , :
-_ . O-m — = =y O-m -
|
0.8 - i 0.8 1 I 1
] I ]
g g I
0.4 i 0.4 1 I .
— I -
|
0.0 4 . : . 0.0 —1 ."(m —
0 2 4 6 0

g : 3
Fig. 12. (a) The o — & relation when the chains are broken at a chemical equilibrium process. (b) The approximation of o — & curve using a isosceles
triangle.
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the equilibrium condition is also recasted in the incremental form. The first equation can be further written as V.o =
GV -+ Vp =0, G being the shear modulus of material. In addition, the above equations are subjected to the velocity
boundary condition:

v=v, on I)p

where I'p denotes the boundary whose velocity is imposed.

Update network conformation and stress field

After v and p are obtained, the next step is to update the network conformation to obtain the stress fields and stored
elastic energy density in the material. For this, we invoke Eq. (4) and apply an explicit time integration scheme as:

”'Hdt — lLt + [Ldl’
=+ [ka(po — 1) +Lp' + p'L" |dt (36)
pt+dt — pt +ptdt

where L = Vv is the velocity gradient at each material point and dt is the time increment. After this, the stress and stored
elastic energy density at each material point are calculated by Eqgs. (6) and (5). This completes the solution at one time step.
After this, the crack stability criterion is evaluated based on the stress field before proceeding to the next numerical time
step.

Appendix D. Determining the stress-free height

For a pure shear test, the conformation tensor is found as u = diag{1, >, 33} where w,, and p33 represent the mean
squared stretch along the vertical and depth direction correspondingly. To obtain the stress-free configuration, we consider
that the current chain state is obtained by elastically deforming the network from the stress free state. Since the deformation
is elastic, it was shown in Vernerey and Long (2017) that u = FFT where F is the elastic deformation gradient. Since there
is no shear deformation, one can find that F = diag{1, \/[t23, ./it33. Therefore the stress free height Hs = H/Fy = H/\/l123.
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