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A B S T R A C T

Accurate subject-specific vascular network reconstruction is a critical task for the hemodynamic analysis of
cerebroarterial circulation. Vascular skeletonization and computational mesh generation for large sections of
cerebrovascular trees from magnetic resonance angiography (MRA) is an error-prone, operator-dependent, and
very time-consuming task. Validation of reconstructed computational models is essential to ascertain their ac-
curacy and precision, which directly relates to the confidence of CFD computations performed on these meshes.
The aim of this study is to generate an imaging segmentation pipeline to validate and quantify the spatial
accuracy of computational models of subject-specific cerebral arterial trees. We used a recently introduced
parametric structured mesh (PSM) generation method to automatically reconstruct six subject-specific cerebral
arterial trees containing 1364 vessels and 571 bifurcations. By automatically extracting sampling frames for all
vascular segments and bifurcations, we quantify the spatial accuracy of PSM against the original MRA images.
Our comprehensive study correlates lumen area, pixel-based statistical analysis, area overlap and centerline
accuracy measurements. In addition, we propose a new metric, the pointwise offset surface distance metric (PSD),
to quantify the spatial alignment between dimensions of reconstructed arteries and bifurcations with in-vivo
data with the ability to quantify the over- and under-approximation of the reconstructed models. Accurate
reconstruction of vascular trees can a practical process tool for morphological analysis of large patient data
banks, such as medical record files in hospitals, or subject-specific hemodynamic simulations of the cerebral
arterial circulation.

1. Introduction

Thanks to advances in medical imaging technologies in the past
decade, the use of subject-specific models is becoming more practical
for diagnosis and treatment planning. Moreover, researchers and phy-
sicians have begun to perform cerebral hemodynamic simulations to
acquire more insights into the cause of cerebrovascular diseases (CVDs).
Especially, wall shear stress (WSS) components were implicated as
critical hemodynamic factors for predicting endovascular lesions such
as cerebral aneurysm [1–3], plaque formation [4,5], and atherosclerosis
[6]. Even small changes in vascular network configuration or geometry
can substantially alter WSS in arteries [7]. Therefore, surgical inter-
ventions inducing geometrical changes may inadvertently induce un-
desired wall shear stress, which can lead to further lesions both local
and distal to the site of intervention [8–11]. Hence, accurate

reconstruction of large-scale cerebral arterial trees topology can be of
significance to anticipate the endovascular lesion-prone sites.

Many image reconstruction and mesh generation tools (VMTK
[12,13], Mimics [14], ITK-SNAP [15].) are available for surface re-
construction of blood vessels, which needs to be performed by a skilled
technician. Antiga et al. also presented a conceptual network analysis
methodology for reconstructing dense microvascular networks [16].
Often these processes require hands-on repair of surface discontinuities,
holes and overlapping surfaces [17] which are highly operator-depen-
dent, tedious, time-consuming, and difficult to reproduce; making
manual operations impractical for large-scale cerebral arterial tree re-
construction. Thus, there is a need to generate fully-automatic high-
quality vascular tree meshes from angiographic images.

We have recently presented an anatomic image processing and
computational fluid dynamics (CFD) analysis pipeline based on
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parametric structured meshing (PSM) [18–20]. In this paper, we perform
comprehensive statistical analysis of the spatial fidelity of the subject-
specific PSM reconstruction. Specifically, we will use crisp statistical
image metrics to assess the accuracy of the centerline, diameters, and
connectivity of the reconstructed vascular networks. For this purpose,
we will compare raw MRA data as a reference with the automatically
reconstructed computational meshes using the Walk-In Brain virtual
reality software [21]. Due to the size of the datasets, we have auto-
mated the image validation protocol to effectively generate similarity
measures between the MRA voxel data and the 3D reconstructed vec-
torized data.

Validation segmentation and surface reconstruction are a critical
step in medical image analysis. It requires two elements: (i) ground
truth or gold standard against which the reconstructed surfaces can be
compared and (ii) a suitable metrics for quantifying spatial agreement.
In previous studies, vessel phantoms [22,23], manually segmented re-
ference [24,25], or postmortem vessel network [26] serves as ground
truth. Here, we chose in vivo angiographic data as a reference.

To quantify the area alignment between two graphical objects,
pixel-based statistical similarity measures, such as Dice or Jaccard
index or modified version [25,27–30] have been used. Oeltze et al. used
the similarity index to validate a vascular tree rendering with isosurface
visualization of liver vessel tree [31]. Auricchio et al. [32] implemented
a surface distance for validating mesh reconstructions of coronary bi-
furcations which their method is limited to planar bifurcations.

The Hausdorff distance (HD) is a suitable measure of boundary si-
milarity between two objects. The Hausdorff distance has been com-
monly used for video sequences matching [33], trajectory comparison
[34], and facial recognition [35] and for evaluating the performance of
medical segmentation and image registration [36–39]. HD suffers from
the so-called panhandle problem which occurs when one objects ex-
hibiting a sudden local shape deviation causes an unrealistically large
HD value. HD also cannot distinguish between under or over-estimation
in the spatial overlap between two objects, which is critical in diameter
estimation. To address these shortcomings, we will introduce the
pointwise surface distance (PSD) index based on a modified Hausdorff
distance metric. The paper is organized as follow. First, in-vivo data
from MRA image acquisition, segmentation, and registration of six
human subjects are presented. The automatic capture of sampling
frames from important topological regions of the vascular trees is in-
troduced. We quantify the accuracy of centerline approximation using
the original MR angiography images as reference. We also perform
pixel-based statistical analysis and calculate the similarity indices be-
tween PSM and MRA images. Moreover, we deploy a pointwise surface
distance (PSD) index to quantify the fidelity of diameter reconstruction.
Finally, two applications demonstrated the use of reconstructed PSM
meshes for morphological and CFD hemodynamic analysis.

2. Methods

A stepwise procedure for vascular mesh reconstruction validation
techniques for cerebral arterial trees is summarized in Fig. 1. The de-
tails for each step are introduced next.

2.1. Image acquisition and segmentation (step 1a)

Six healthy human subjects with no known cerebrovascular diseases
were recruited and underwent MR imaging on a General Electric 3T
Discovery MR750 scanner using a 32-channel phased-array coil (Nova
Medical, Inc., Wilmington, MA, USA) under Institute Review Board ap-
proval at the University of Illinois at Chicago. MRA images were ac-
quired using a three-dimensional (3D) time of flight (TOF) pulse se-
quence to capture major cerebral arterial tree branches. No motion
artifacts affecting the scan were observed in any of the six cases. The
key data acquisition parameters were: repetition time (TR)= 26ms,
echo time (TE)= 3.4 ms, flip angle= 18°, matrix

size= 512×512×408, voxel size= 0.39×0.39×0.3 mm3, acceleration
factor= 2, number of slab=4, magnetization transfer= on, and scan
time=30min.

To reconstruct even small branches of the cerebral arterial tree, we
enhanced the vessel contrast with our in-house multi-scale vesselness
filter [40,41]. Filtered images were processed to create logically con-
nected networks and morphological descriptors of the cerebral arterial
tree. A fast marching algorithm with the cutoff intensity of 0.01 was
used to generate a binary mask of the connected arterial tree [41,42].

On the MR imaging scanner where the MRA was performed, a rig-
orous quality assurance process was in place, which routinely checks
the magnetic field homogeneity within a spherical volume that is re-
levant to the brain. The typical field inhomogeneity is about 5 times
smaller than the manufacturer's specification, which ensures that the
image distortion is well within a voxel dimension. In addition, a
minimal TE of 3.4 ms was employed in the MRA sequence, which fur-
ther reduces geometric distortion arising from B0 magnetic field in-
homogeneity and bulk magnetic susceptibility differences. Therefore,
additional post-acquisition distortion correction was not necessary and
thus not applied to our data.

2.2. Skeletonization and mesh generation (step 1b)

We extract morphological descriptors for the vascular network using
the Vascular Modelling Toolkit (VMTK) [12,13]. It first deploys the
marching cubes algorithm to retrieve the surface envelope of the vessel
walls [43]. Then, the centerline trajectory as well as corresponding
vessel diameter are acquired by the maximal inscribed sphere method
[12,13,44]. VMTK outputs point coordinates and connectivity of the
centreline as well as corresponding vessel radius for the entire vascular
network. We then encoded these data using special matrices. The point
coordinate matrix contains the location of the nodes on the vessel cen-
terline as well as associated diameter information. Logical connections
between two points were encoded via a connectivity matrix. Centerline
points with connectivity of more than two edges were labelled as a
bifurcation. Terminals are characterized by a single connected edge.
Using point coordinate and connectivity matrices, the network was par-
titioned into segments and stored in a persistent network file (*.nwk file).
The spatial extent of vascular segments was encoded with cubic Bezier
splines. To eliminate the nonphysiological noisy variation of the dia-
meter information, raw diameter data were smoothed with a conven-
tional moving average filter. Noisy diameter information occurred
predominatly in vessels with high tortuosity, such as the internal car-
otid artery. Similar filtering methods have been implemented to smooth
the local diameter along the longitudinal direction of the vessels to
eliminate artificial narrowing/dilating in healthy vessels [31,45].

We used a full-hexahedral parametric structured mesh (PSM) gen-
eration method described previously [17,20,40]. In brief, hexahedral
meshes were parametrized along the vessels (Bezier splines) in radial,
cross-sectional and longitudinal directions to build an anisotropic mesh.
For each branch, the number of longitudinal subdivisions was chosen
based on the local curvature and vessel diameter. PSM meshes enjoy
geometric continuity over the entire surface.

2.3. Virtual exploration of superimposed MRA and PSM (step 2a)

Both the MRA image and the reconstructed vascular tree were re-
gistered in the Walk-in Brain virtual-reality software [21]. Fig. 2 depicts
a 3D rendering of the separated different anatomical compartment in
the virtual immersive environment of Walk-in Brain. This software
supports superimposition of the MRA and PRM in corresponding phy-
sical coordinate space, provides choices for surface transparency and
volume rendering to enable simultaneous 3D exploration of raw DICOM
images and 3D meshes. Semi-transparent visualization of the MRA
images and the reconstructed 3D PSM meshes for all six subjects are
depicted in Fig. 3. In addition, it has tools to recolor substructures using
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various RGB color palettes. Immersive viewing in full 3D volume ren-
dering mode is critical for visual inspection of the raw MRI data, and
surpasses conventional views that offer only slice-by-slice viewing or
maximum intensity projections. Moreover, the 3D spatial operations in
Walk-in Brain were essential for sample frame acquition needed for
automating image analysis by sample frame acquisition.

2.4. Automatic sample framing acquisition (step 2b)

We implemented a procedure to automatically capture 2D image
snapshots to assess vascular cross-sections (CRSs) and bifurcations (BIFs)
that were captured in a body fitted coordinate system which was
aligned with the anatomical centreline orientation. This physiological
reference coordinates enables statistical image analysis that is more
accurate than image reconstruction based on horizontal image stacks,
whose orientation depends on the random position of the human sub-
ject inside the imaging scanner. Examples for a cross-section (CRS) and
a bifurcation (BIF) are shown in Fig. 4A. For CRS, multiple two-di-
mensional snapshots were generated along the centreline perpendicular
to the velocity of the Bezier spline representation of a segment as shown
in Fig. 4B. Typically between 10 and 120 snapshots were taken de-
pending on the length of the Bezier spline.

For bifurcations, we first established the separation region. The se-
paration region is defined by the bifurcation point B, three separation
points, S, and two control points, C. The three branches of each bi-
furcation were indexed as a, b, and c (Fig. 4B). Bifurcation sampling
frames were generated as 2D snapshots of the separation planes spanned
by the separation points. Separation points, Sab, Sbc, Sac, were calculated
between the branches of a-b, b-c, and a-c, for establishing the separation
planes, using Eqs. (1) and (2). To complete the separation region geo-
metry, the normal vector of the separation plane, →n , was extended by a
magnitude equal to the mean radius to find control points, C1 and C2

using Eqs. (3)–(5), as shown in Fig. 4B. Bifurcation sampling frames
were then capture on above and below the separation planes.
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Fig. 1. Information flow for the spatial validation of the parametric structured meshes (PSM) against original MRA images as a reference. (Step 1) Cerebrovascular
trees are reconstructed from MRA using PSM method. (Step 2) MRA and PSM reconstruction are superimposed in a virtual reality environment Walk-in Brain.
Vascular segments and bifurcations are scanned and 2D sampling frames are automatically acquired. (Step 3) Spatial accuracy evaluation between PSM with original
MRA images by correlating lumen area, pixel-based statistical analysis, area overlap measurements and centerline accuracy measurements. (Step 4) Applications of
PSM meshes; examples include cerebrovascular morphometric analysis of image databases of patients and subject-specific hemodynamic simulation of the entire
arterial circulation.
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Where ⎯ →⎯⎯ ⎯ →⎯⎯ ⎯ →⎯⎯e e e, ,v v va b c are the unit tangent vectors at the bifurcation
point are equal to the derivative of the Bezier curve at t=0 on a, b, c
branches, respectively. ||.|| denotes the Euclidean norm. α is the angle
between two unit vectors of ⎯ →⎯⎯eva and ⎯ →⎯⎯evb. Ra, Rb, and Rc are the radii
corresponding to the branches of a, b, and c, respectively. C ,1 and C2 are
control points located on the above and below of the separation plane.

By scanning the entire vascular networks on average 19,956 CRSs
for the vascular segments, and 95 BIFs snapshots were created for each
subject as listed in Table 1. We used MATLAB R2017a (MathWorks Inc.)
for all image filtration and statistical analysis using a PC with a single-
core 2.4 GHz Xenon CPU processor.

Vessel geometry in MRA angiograms was distinguished from the
reconstructed meshes and segmentation using RGB (red-green-blue)
channel separation. Then, a binary mask (silhouette) of the filtered
images was generated. A Canny edge-detection algorithm was applied on
all sequentially acquired images to extract the border of the vascular
cross-section and bifurcations for statistical analysis, as shown in
Fig. 4C.

2.5. Statistical metrics for PSM evaluation (step 3)

We performed pixel-by-pixel analysis to compare the reconstructed
PSM to the MRA images by calculating the true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) as summarized
in the confusion matrix of Table 2. Here, TP is the total number of vessel
pixels inside the vascular lumen in the MRA as well as in the re-
constructed PSM, while TN counts the number of pixels that lie outside
the vascular lumen in the MRA (=background pixel) as well as in the
PSM. False positives FP sums background pixels in the MRA, which are
erroneously allocated inside the PSM. Finally, FN is the total number of
the pixels of the vascular lumen in the MRA, which were considered
background in the PSM.

In addition, several statistical metrics including sensitivity (SE),
specificity (SP), positive/negative predictive value, PPV, NPV, total ac-
curacy, ACC, and Dice similarity coefficient, DSC, were computed using

Eqs. (6)–(11) to quantify the PRM vascular reconstruction quality.
The sensitivity, SE, represents the ratio of the correctly meshed

pixels in all the vessel pixels. Specificity, SP, is the ratio of correctly not
meshed pixels in all the background pixels. PPV and NPV are the prob-
ability that a pixel in the PRM reconstruction is truly inside the vessel
lumen in the raw image and a pixel outside the vessel lumen in PRM is a
background pixel outside the vessel lumen, respectively. ACC is a global
validation metric providing the ratio of correctly assigned pixels to the
total pixels. Finally, DSC is a similarity metric to evaluate area spatial
overlap.
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We also evaluate sensitivity and specificity of mesh reconstructions
using the receiver operating characteristic (ROC) curves. ROC curve
shows the tradeoff between the sensitivity and specificity, since any
increase in sensitivity may result in a decrease in the specificity across
all different sample frames. The area under the ROC curve is another
measure of test performance to show how well negative and positive
pixels are distinguished and separated. All results of the pixel-based
comparison are summarized in Fig. 5.

These pixel-based statistical parameters are suitable for overall as-
sessment. However, they do not supply a metric for the reconstruction
error, such as under- or over-approximation of the enclosed vessel
surfaces (vascular lumen).

2.6. Pointwise surface distance (step 3)

We propose a new pointwise surface distance (PSD) index to assess the
quality of boundary reconstruction. The binary mask of “A” is defined
as non-zero intensity pixels of the MRA reference image, shown as the
white convex region in Fig. 4C. Equally, the binary mask of “B” stands
for pixels that delineate the vascular lumen in the PSM reconstruction.
The boundary (edge) is defined as the subset, = …S A a a a( ) { , , , }n1 2 that
embodies pixels on the border of the binary mask A. Similarly,

= …S B b b b( ) { , , , }m1 2 delineates the set of m pixels on the boundary of
B. The mathematical notations are summarized in Table 3.

The one-sided Hausdorff distance, h S A S B( ( ), ( )), is defined as the
maximum of all distances from points ∈a S A( ) to their nearest points
in ∈b S B( ), Eq. (12). Similarly, h S B S A( ( ), ( )) is another one-sided
Hausdorff distance from S B( ) to S A( ) as shown in Eq. (13). Finally, the
two-sided Hausdorff distance, H S A S B( ( ), ( )), is the maximum of the two
one-sided Hausdorff distances, Eq. (14).
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where . is the Euclidean distance operator. Note that the one-sided HD
is an asymmetric function, ≠h S A S B h S B S A( ( ), ( )) ( ( ), ( )). Since the

Fig. 2. Virtual reality rendering of the raw data as well as the reconstructed
meshes in Walk-in Brain. Back row shows 3D rendering of the raw data (voxel
matrices) for CSF spaces (purple), cortical surface (red), and the arterial tree
(light red). The labelled voxel point clouds were shown as an explosion diagram
for better visibility. Front row depicts the reconstructed volumetric meshes: CSF
surface mesh (gray), cortical surface (light gray), arterial tress (red). The
comparison of raw data (discrete point clouds) and meshes (vectorized data) in
virtual reality space coordinates forms the basis of the statistical analysis for
validation of the reconstructed arterial trees. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of
this article.)

M. Ghaffari et al. Computers in Biology and Medicine 100 (2018) 209–220

212



Hausdorff distances only detect for extreme deviations, which could be
caused by a single noisy point, it is not a robust metric for tracking
entire boundaries.

Therefore, we propose a new metric, which we call the pointwise
surface distance (PSD). It uses the traditional HD for all surface point to
obtain a compact measurement for the degree of alignment of the entire
boundary. We first calculate amodified Hausdorff distance from the point

∈a S A( ) to the closest point of S B( ) as shown in Eq. (15). Then, we
multiply the modified HD with the scalar parameter, α ,i which is either
1 or -1 depending on the position of the select point with respect to
other binary mask. For example, if the point ∈a S A( ) lies inside

∈a B, then parameter is set to unity, α =1, which indicates that the
PSM reconstruction overestimates the dimensions. Conversely, if the
point a is outside the PSM binary mask ( ∉a B), then =α 1 indicates
that PSM reconstruction underestimates as shown in Fig. 6A. The one-
sided pointwise surface distance, g S A S B( ( ), ( )) was calculated using Eqs.
(16) and (17).

We also defined g S B S A( ( ), ( )), the one-sided PDS from S B( ) to S A( ),
as in Eqs. (18)–(20). Similarly, when a point ∈b S B( ) lies inside the
MRA binary mask ( ∈b A), then PSM underestimates dimensions as

shown in Fig. 6A.
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Finally, we defined PSD S A S B( ( ), ( )), the two-sided pointwise sur-
face distance (PSD) between S A( ), and S B( ), as the average of the two
one-sided PSD as in Eq. (21). The pseudo-code to calculate PSD is given

Fig. 3. Global superposition of six cerebral arterial trees in virtual reality space. The first column shows the original gray-scale MRA images. The second column is the
reconstructed vascular skeleton (red) of the arterial tree which includes diameter, centerline, and network connectivity information. Three-dimensional parametric
structured meshes (blue) are shown in the third column. The last column is the global superposition with MRA (white), vascular skeleton (red) and parametric mesh
(blue). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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in Table 4.

= +PSD S A S B g S A S B g S B S A( ( ), ( )) 1
2

{ ( ( ), ( )) ( ( ), ( ))} (21)

Fig. 6B shows three vascular segments: the first overestimates the
cross-sectional diameter, the second underestimates, the third example
correctly approximate the diameter. The reconstructed PSM meshes
were evaluated as acceptable, over- or underestimated based on the

PSD index, where, if PSD is positive, there are more positive pointwise
surface distance than negative ones so the PSM reconstructed was
globally overestimated. PSD value close to zero indicates perfectly
aligned diameter overlap.

Despite these qualitative differences, all three examples of Fig. 6B
have identical two-sided HD, which shows the limitation of the HD
metrics to assess over and underestimation analysis. Fortunately, the
PSD, correctly detect the global geometric trends as desired. Therefore,
the jagged-edged MRA images and smooth PSM meshes were analyzed
according to PSD criteria.

3. Results

Fig. 1 illustrates the information flow diagram for the statistical
analysis of reconstructed cerebrovascular trees. To detect gross errors in
the tree connectivity, we first visualized MRA and PSM by global su-
perposition in virtual reality environment of Walk-in Brain. For all six
subjects, a total of 1364 vascular segments were automatically scanned
and 119,738 CRS and 571 BIF sampling frames were captured for
quantitative analysis.

3.1. Centerline accuracy

We first performed statistical analysis to evaluate the spatial accu-
racy of the centerline extraction for the vascular segments. Cross-sec-
tional sampling frames were taken perpendicular to the centerlines of
the vessel segments. The comparison of the intensity-weighted centroid of
the RGB (red-green-blue) of the MRA against the PSM showed a mean
deviation of 145.1± μm111.5 for the vascular CRSs (Fig. 5A). Thus, the
vascular centerline accuracy reached a sub-pixel size precision
(< μm400 ) for the arterial trees in this study.

Fig. 4. Sampling frame analysis of the vascular cross-sections (CRSs) and bifurcations (BIFs) for cerebral vascular tree reconstruction. (A) Superposition. Two-
dimensional snapshots containing information of MRA and the reconstructed mesh were captured. (B) Sampling frame acquisition. The software automatically
positions the 2D snapshots (gray planes) so that their normals →n, , are collinear to the centerline velocity vector of a vascular segment. In BIF, the snapshot belongs to
the separation plane spanned by separation points Sab, Sbc, Sac of the branches of a-b, b-c, and a-c, respectively. The detailed schematic of the separation region also
depicts the control points of C1 and C2, as well as the bifurcation points, B. In total, 119,738 vascular CRSs and 571 BIFs snapshots were automatically created for
validation of vascular tree reconstruction. (C) Binary masks and boundary edges of vascular CRSs and BIFs were processed for further statistical analysis.

Table 1
Statistics of the sampling frames for each reconstructed cerebral arterial tree
and CPU time for pre- and post-processing. The pre-processing includes sam-
pling frame acquisition and image filtration. Post-processing includes pixel-
based, pointwise surface-based analysis.

Subjects #CRS #BIF #Vessels Pre-processing
Time (min)

Post-processing
Time (min)

I 15685 68 133 50 13.4
II 22540 100 294 73 18.8
III 17425 89 175 58 13.3
IV 24465 122 309 81 19.4
V 20439 99 247 66 17.8
VI 19184 93 206 63 16.6
Total 119738 571 1364 391 99.3

Table 2
Confusion matrix for statistical analysis.

MRA (Ground Truth)

PSM True False
True TP FP
False FN TN
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3.2. Pixel-based statistical analysis

The binary mask areas covered by the MRA and PSM were com-
pared by performing linear regression and Bland Altman analysis
showing a good agreement in terms of lumen area and bifurcation

topology (R [2]= 0.95) as shown in Fig. 5B. We also quantified the
pixel-based relative area overlap using the Dice similarity coefficient.
Using the Dice coefficient is computed for all sampling frames with a
mean of DscCRS =0.70± 0.09 and = ±Dsc 0.88 0.11BIF . Total pixel-
based reconstruction accuracy, AccCRS =0.91± 0.08 for

= ±Acc 0.83 0.09BIFs . Sensitivity and specificity of mesh reconstruction
was evaluated by assessing the AUC for all vascular networks
(0.96± 0.01 and 0.88± 0.01 for CRSs and BIFs, respectively) as shown
in Fig. 5C. Tables 5 and 6 summarize the pixel-based statistical analysis
for all vascular CRSs and BIFs, respectively.

3.3. Point-based surface offset calculation

The pointwise surface distance method was deployed to quantify the
difference between the jagged edges of the MRA images and the smooth
surface edge of PSM. A schematic of the proposed one-sided pointwise
surface distance is shown in Fig. 6A. Fig. 6B shows the ability of the PSD
index to differentiate between three different illustrative CRSs with the
same Hausdorff distances. The computed HD was the same for these
three cross-sections, while PSD could correctly categorize them into
overestimated, underestimated and acceptable mesh reconstructions.
Therefore, the PSD is a suitable metric to quantify the diameter ap-
proximation for vascular CRSs. Table 7 summarizes the computed HD

Fig. 5. Pixel-based statistical analysis of the PSM reconstructed vascular models. (A) The accuracy of centerline reconstruction based on intensity-weighted centroids
of PSM and reference images of MRA image for the six subjects. The vascular centerline accuracy reached sub-resolution precision (∼ μm400 ) for vascular cross-
sections (CRSs) and bifurcations (BIFs) (B) Linear regression (left) and Bland Altman plot (right) were used to assess the agreement between the MRA and PSM in
vascular CRSs and BIFs sampling frames. The regression plot shows the correlation with R2=0.9489. The red line in Bland Altman plot is the mean of the difference
and the two black lines are the upper and lower 95% limit of agreement. (C) Receiver Operating Characteristic curves (ROC) of CRSs and BIFs for six subjects. Using
MRA images as the ground truth, the area under the curve (AUC) was 0.96 for CRSs, and 0.88 for BIFs. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

Table 3
The mathematical notation for pointwise surface distance calculation.

Notation Definition

A All pixels that have non-zero intensity on the MRA image.
B All pixels that have non-zero intensity on the PSM

reconstruction.
S A( ) Set of all pixels on the boundary of the binary mask A.
S B( ) Set of all pixels on the boundary of the binary mask B .
a S B, ( ) Set of Euclidian distances for a point from ∈a S A( ), to all the

points of S B( ).
ad S B( , ( )) Minimum distance from ∈a S A( )to the closest point of S B( ).

h S A S B( ( ), ( )) One-sided Hausdorff distance from S A( ) to S B( ).
H S A S B( ( ), ( )) Two-sided Hausdorff distance between S A( )and S B( ).
g S A S B( ( ), ( )) One-sided pointwise surface distance from S A( ) to S B( ).
G S A S B( ( ), ( )) Two-sided pointwise surface distance (PSD) between S A( ) and

S (B)
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and PSD for CRSs and BIFs of the six human subjects.
We also introduced the diameter estimation index (DEI) which is a

unitless parameter defined as the two-sided PSD divided by the segment
diameter, D. Fig. 7 deployed the DEI for vascular CRSs of the six cer-
ebral arterial trees to assess the percentage of the over/underestimation
of the diameters in vascular cross-sections. Vessel diameter between 0.8
and 3.2 mm exhibited an accuracy of DEI= 2.5%. The PSM index
showed a tendency of diameter underestimation for the vessels less than
D < 1.7mm, as well as overestimation for the vessels over
D > 2.5mm.

3.4. Morphological and CFD analysis

Morphological analysis. A comprehensive morphological analysis and
territorial distributions of the cerebral arterial tree with a comparison
between age and genders have been previously studied [46,47]. We
performed a preliminary study on morphological and CFD analysis to

show potential future applications of the PSM vascular reconstruction.
Morphological matrices such as curvature, tortuosity, and torsion are
measured for all vascular networks as shown in Fig. 8. Tortuosity is the
ratio between the actual arc-length over the straight-line distance.
Curvature and torsion characterize bending and twisting of the cen-
terline in 3D-space. Appendix 1 lists the mathematical formulae used to
calculate the cerebrovascular biometrics. Using the probability density
function (PDF), we found that the vascular segments have the diameters
of 1.63± 0.75mm, tortuosity 0.2± 0.4, curvature 0.33± 0.63mm−1,
and torsion 0.33± 0.57mm−1.

Large-scale CFD analysis. The image-derived reconstruction of vas-
cular tree can be used for computational CFD analysis to quantify he-
modynamic risk factors such as relative residence time (RRT). For ex-
ample, the occurrence of atherosclerosis-prone regions strongly
correlates with prolonged RRT [48,49]. Hemodynamic analysis with
the elevated RRT region in the basilar artery is shown in Fig. 9. Detailed
hemodynamic risk factor analysis in large-scale human arterial trees is
discussed elsewhere [19].

Automatic mesh generation and vascular reconstruction are parti-
cularly suitable for computer analysis of large datasets such as patient's
medical records database in hospitals. The rigorous and unbiased ana-
lysis of imaging data may become a useful enabling technology to better
differentiate critical pathological factors for subject-specific variations.

4. Discussion

The aim of this study is to validate the spatial accuracy of a recently
proposed automatic mesh generation method for reconstruction of
large-scale cerebral arterial trees. Intensity-based centerline evaluation,
pixel-based statistical analysis, and pointwise surface distance were
used to quantify the shape similarity between the reconstructed PSM
meshes and the MRA images of arterial trees for six subjects. With the
proposed framework, we quantified the degree of over/underestimation
of the anatomically reconstructed PRM for the cerebroarterial trees.
Prior work pointed out the difficulties in validating bifurcation geo-
metries due to the discontinuity nature of the segmentation [50]. Our
study successfully validated mesh surface quality also at bifurcating
forks. The mean of Dsc=0.88 and PSD=1.7 μm for 571 bifurcations
underscore the ability of the reconstructed PSM to faithfully preserve
endovascular bifurcation topology in human arterial trees.

In this work, vascular trees spanning different length-scale ranging
the diameter from 5mm to 400 μm were reconstructed. Although, Dice
similarity coefficient above 0.7 is typically taken as “excellent” agree-
ment [51], this assessment does not allow direct comparison over dif-
ferent length-scales 30. In other words, the same DSc value for a large
diameter artery does not represent the same level of accuracy as in a
small pial artery. Moreover, pixel-based statistical parameters do not
characterize shape fidelity of the reconstructed objects. Our proposed
PSD distance metric precisely quantifies changes in topology (under- or
over-approximation of the enclosed vessel surfaces). The combination
of pixel-based statistical and pointwise surface distance analysis en-
abled the precise evaluation of morphological attributes such as branch
length, vessel diameter and bifurcation topology, and lumen area of
vascular network over multiple length-scales needed in arterial tree
analysis.

Morphometric analysis of vascular networks like the vessel curva-
ture or tortuosity [42,43] can be used for diagnostics and therapeutic
monitoring of endovascular diseases [52–54]. Subject-specific ab-
normalities in the cerebroarterial vasculature such as an increased
tortuosity might provide an indication of pathologies such as diabetes
[55], vasculopathies [56], tumours [57] or dementia [58,59]. These
abnormalities affect blood circulation and may lead to stroke,

Fig. 6. Pointwise surface distance (PSD) analysis.
(A) Schematic of the one-sided PSD analysis. S A( ), and S B( ) are the boundaries
of MRA and reconstructed parametric structured mesh (PSM) regions, respec-
tively. The top panel represents the one-sided PSD from S A( ) to S B( ). The green
and red points indicate under and overestimation of PSM at each point, re-
spectively. The modified Hausdorff distance (HD) from a a a{ , , }1 2 3 to their
nearest point in S B( ) are visualized in solid blue lines. Points ∉a a B{ , }1 3 in-
dicates underestimated of PSM diameter for those specific points. In the lower
panel, we calculated the one-sided PSD from S B( ) to S A( ) as the minimum
distance from … ∈b b b S B{ , , , } ( )m1 2 to their nearest neighbor in S A( ). (B) A
schematic of the difference between HD and PSD computations. Three different
cross-sectional vessel samples gives exactly the same HD are shown in red-
dotted lines ( = =H H H1 2 3), which is an unsatisfactory result. In contrast, the
PSD index enables correct quantification of diameter estimation error for as-
sessing PSM reconstruction against the MRA images as the gold standard.
Positive PSD index indicates overestimation, >PSD 0, shown on the top.
Dimensions are underestimated when it is negative, <PSD 0 , as depicted in
the middle row. In the lower panel an example of accurate diameter approx-
imation ≅PSD 0, is shown. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)
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hemorrhage or hypoxia.
The validated centerline and diameter data allows us to study

morphological data of the large portion of cerebrovascular trees. In this
study, the Bezier splining of the vascular skeleton facilitates computa-
tion and visualization of tortuosity, torsion, and curvature (Fig. 8).
Automatic biometrics extraction would enable morphological analysis
on a large healthy population and patients with intracranial diseases
before and after endovascular treatments.

The sampling frame acquisition required about 65min for each
subject using a single-core 2.4 GHz Xenon CPU processor. It takes about
16min to compute pointwise surface distances for all 2D sampling
frames of all BIFs and CRSs (∼20,050 snapshots) for each subject
(Table 1). The current implementation of the PSD algorithm analyzes
every single edge point of MRA and PRM in 2D sampling frames. Future

Table 4
Algorithm of two-sided pointwise surface distance (PSD) calculation.2

Table 5
Pixel-based statistical analysis of the vascular cross-sections.

Subjects I II III IV V VI Mean± SD

Se 0.80 0.79 0.78 0.81 0.80 0.79 0.80± 0.12
Sp 0.93 0.94 0.93 0.90 0.91 0.92 0.92± 0.10
Ppv 0.93 0.76 0.76 0.66 0.75 0.73 0.73± 0.13
Npv 0.73 0.96 0.96 0.96 0.94 0.96 0.96± 0.06
Acc 0.92 0.92 0.92 0.89 0.89 0.91 0.91± 0.08
Dsc 0.71 0.72 0.72 0.65 0.69 0.70 0.70± 0.09
AUC 0.96 0.96 0.96 0.95 0.96 0.94 0.96± 0.01

Se: sensitivity; Sp: specificity; Ppv: predictive positive value; Npv: negative
predictive values; Acc: accuracy; Dsc: Dice similarity coefficient; AUC: area
under the curve.

Table 6
Pixel-based statistical analysis of the vascular bifurcations.

Subjects I II III IV V VI Mean± SD

Se 0.90 0.88 0.88 0.91 0.89 0.90 0.90± 0.06
Sp 0.89 0.69 0.88 0.49 0.69 0.63 0.63± 0.20
Ppv 0.64 0.86 0.99 0.90 0.87 0.87 0.88± 0.12
Npv 0.86 0.70 0.46 0.53 0.71 0.67 0.65± 0.19
Acc 0.82 0.81 0.88 0.84 0.83 0.83 0.83± 0.09
Dsc 0.87 0.86 0.93 0.91 0.87 0.87 0.88± 0.11
AUC 0.88 0.89 0.86 0.90 0.89 0.87 0.88± 0.01

Se: sensitivity; Sp: specificity; Ppv: predictive positive value; Npv: negative
predictive values; Acc: accuracy; Dsc: Dice similarity coefficient; AUC: area
under the curve.

Table 7
Hausdorff distances (HD) and pointwise surface distance (PSD) for cross-sec-
tions (CRSs) and bifurcation (BIFs) of the six human subjects.

Mean Hausdorff Distances, HD
(mm)

Mean Pointwise Surface Distance,
PSD (mm)

CRS BIF CRS BIF

Subject I 0.4513 0.8247 0.0146 0.0004
Subject II 0.4433 0.7861 0.0048 0.0018
Subject III 0.4721 1.3576 0.0045 0.0021
Subject IV 0.4715 1.2958 0.0083 0.0008
Subject V 0.5010 0.6987 0.0011 0.0021
Subject V1 0.4671 0.9190 0.0090 0.0030
Mean 0.47± 0.02 0.98± 0.28 0.0071 ±

0.0047
0.0017± 0.0009
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extension of PSD algorithm should perform a direct surface comparison
with more efficient 3D surface point sampling techniques [39,60].

In this manuscript, PSD was demonstrated for mesh validation,
however, it may also be applicable for crisp evaluation of the regis-
tration [61], segmentation [62], morphological data acquisition [63]
and motion detection. The PSD parameter could also be used to quan-
tify and track important medical segmentations over time such as a

tumor, prostate, brachial plexus, and brain cortex. The PSD index can
also be extended to optimize current smoothing algorithm by evalu-
ating the surface mesh in each iteration to avoid deformation and
shrinkage of noisy mesh surfaces.

The present automatic segmentation and validation was geared to-
wards a complete analysis for the healthy arterial tree with no need for
operator intervention. In the normal vessels, the circular shape as-
sumption of cross sections limits the application of parametric meshing
on lesion sections such as aneurysms. To address aneurysms, the hybrid
meshing method is recommended to combine automatic parametric
meshes for healthy vessel with manual surface extraction for lesion
sections. For pathological cases in cerebrovascular disease, the pro-
posed metrics (PSD) are applicable, however the circular shape as-
sumption of DEI index is not suitable and would need to be generalized
such as described in shape-based network generation [64].

Another possible direction concerns the application to different
imaging modalities to evaluate venous trees. Another application per-
tains to assessment of arterial wall biomechanics [65,66] by using high-
resolution MRI vessel wall imaging.

5. Conclusion

We deployed image-based processing workflow to evaluate the
spatial fidelity of large-scale automatic subject-specific cerebroarterial
trees using PSM meshing. Such detailed and automatic evaluation is
important for computational modelling to ensure the faithful re-
construction of the anatomical structure which in turn dictates the ac-
curacy of CFD simulations and hemodynamic risk-factor analysis. To
achieve this long-term goal, the automatic image segmentation [17,41]
and structured parametric mesh generation [18,20] may serve as an
intermediate stepping stone to assess high fidelity cerebrovascular
disease-related risk-factors analysis in future research.

Fig. 7. Diameter estimation index (DEI) of vascular cross-sections (CRSs) in six
cerebral arterial trees. The DEI percentage was calculated for more than
119,000 CRSs. Positive DEI represents over-estimation of PSM diameter and
negative DEI shows the under-estimated reconstructed diameters. Vessel dia-
meters in the range of 0.8–3.2 mm have diameter accuracy of ≤ ±DEI 2.5%.
The PSM method exhibited a tendency of diameter underestimation for the
vessels less than 1.7 mm, as well as overestimation for the vessels over 3.5 mm.

Fig. 8. Morphological and computational analysis of six reconstructed subject-specific cerebroarterial trees. Probability density functions (PDF) and contour maps
visualize the distribution of the vascular biometrics including diameter, curvature, torsion and tortuosity for six human subjects.
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