
Scaled Population Arithmetic for Efficient Stochastic Computing

He Zhou, Sunil P Khatri, Jiang Hu and Frank Liu

Abstract— We propose a new Scaled Population (SP) based
arithmetic computation approach that achieves considerable
improvements over existing stochastic computing (SC) tech-
niques. First, SP arithmetic introduces scaling operations that
significantly reduce the numerical errors as compared to SC. Ex-
periments show accuracy improvements of a single multiplication
and addition operation by 6.3× and 4.0×, respectively. Secondly,
SP arithmetic erases the inherent serialization associated with
stochastic computing, thereby significantly improves the compu-
tational delays. We design each of the operations of SP arithmetic
to take O(1) gate delays, and eliminate the need of serially
iterating over the bits of the population vector. Our SP approach
improves the area, delay and power compared with conventional
stochastic computing on an FPGA-based implementation. We
also apply our SP scheme on a handwritten digit recognition
application (MNIST), improving the recognition accuracy by
32.79% compared to SC.

I. INTRODUCTION

Approximate computation is an approach with an emphasis
on area and power efficiency, while sacrificing accuracy. For
certain classes of applications that are tolerant to compu-
tational errors, approximate computation can achieve better
area and power characteristics compared with exact arithmetic.
Hence, it has shown promising application in scientific com-
puting [1], machine learning [2], signal processing [3], and
real-time systems [4].

Popular techniques for approximation computing include
the following: precision scaling [5], inexact or faulty hard-
ware [6], voltage over-scaling [7], and skipping tasks and
memory accesses [8]. Among these techniques, stochastic
computing [9] is a non-conventional arithmetic scheme for
area-efficient implementation of error-tolerant applications.
Stochastic computing has received renewed interest due to,
among other reasons, the degrading reliability of recent VLSI
fabrication processes, its purported decrease in power and
energy, and its robustness to bit-flip errors. In stochastic
computation, values are represented by binary bit streams, and
the arithmetic operations can be processed by simple logic cir-
cuits, such as OR/AND gates for addition and multiplication,
respectively.

However, classical stochastic computing, which is abbre-
viated as SC in this sequal, has its own limitations. First,
although it was claimed that SC has a high error tolerance
to bit flips [10], its accuracy depends heavily on the density
and the randomness of the 1’s in the binary bit-stream [11].
To the best of our knowledge, the error of SC have not been
quantified to date. This paper presents an error analysis for the
proposed scaled population arithmetic as well as SC. Second,
since SC uses a population-based representation alone for all
numbers, it can only represent numbers in [0, 1]. The limitation
can be problematic when overflow occurs in the operations,

H. Zhou, J. Hu and S. P. Khatri are with the Department of Electrical and
Computer Engineering, Texas A&M University.

F. Liu is with the the IBM Austin Research Laboratory.

especially in addition. The third limitation of SC is the runtime
complexity. Although the arithmetic operation units consist
of only OR/AND logic gates, the supporting units, e.g., the
random number generator (RNG) and the shuffler, have a
runtime complexity of O(k), where k is the number of bits
in SC representation. These weaknesses limit the applicability
of SC in real world applications.

In order to alleviate the above limitations, we propose a new
Scaled Population (SP) arithmetic based computation which
achieves fast, approximate computation with a low area/power
overhead and improved accuracy. SP arithmetic uses some of
the basic ideas of SC, but with three key enhancements: a) the
inherent serialization in SC is avoided; b) the errors of SC are
significantly reduced by providing a scaling (exponent) term
in SP arithmetic; and c) the range of numbers that can be
represented by SP is much larger than what is possible in SC.
The key design goal of SP arithmetic is that each operation be
computed using O(1) gate delays (as opposed to clock cycles).
Unlike SC, SP never allows any operation which requires a
serial traversal of the bits of the operand. The SP arithmetic
achieves a dramatic speedup over SC.

Our proposed SP computation greatly improves the accu-
racy of a single multiplication and addition operation by 6.3×
and 4.0×, compared with SC. Our experimental results show
that for addition and multiplication, our SP approach uses
7.13× and 3.75× fewer LUTs than conventional floating point
number based arithmetic circuit, respectively. We also test our
approach in the scenarios of matrix inner product and image
classification using MNIST dataset. Our approach achieved a
32.79% improvement over SC in terms of the accuracy.

The key contributions of this paper are:
• Introduction of SP, with larger range, better error and

reduced delay than SC.
• Achieving constant delay for all operations, and design

for speed and accuracy over SC.
• Quantifying the errors of SP arithmetic and SC.
• Applying the SP approach on simple addi-

tion/multiplication, matrix inner product and MNIST
classification.

II. STOCHASTIC COMPUTING AND PREVIOUS WORKS

Stochastic computing is an approximate arithmetic approach
that allows area-efficient circuit implementation for some op-
erations on fractional numbers. Consider a fractional number
Px ∈ [0, 1). In conventional binary number representation, it
is represented as X = x1x2...xk such that Px =

∑k
i=1 2−ix.

In stochastic computing, by contrast, it is represented by a
Π−bit vector π, where |π| ≤ Π bits are randomly chosen to
be 1, so that Px = |π|

Π ∈ [0, 1].
In [9], [12], the key elements of stochastic computing,

including circuit implementations and a comparison with
analog computing, are introduced. One prominent benefit of
stochastic computing is the very low area cost in implementing
certain arithmetic operations. Fig. 1 and Fig. 2 show examples

xxx-x-xxxx-xxxx-x/xx/$31.00 © 20xx IEEE

of multiplication and addition operations, respectively. The
area advantage is clearly evident. The computing results
depend on the number and the locations of 1’s in the bit-
streams, and therefore are usually inaccurate. Moreover, the
1’s are required to be randomly located in each bit-stream.

Z=XY=01000001

X=01001011

Y=01100101

Fig. 1. Multiplication: 4
8
× 4

8
= 2

8

Z=X+Y=11100011
Y=10100001

X=01000010

Fig. 2. Addition: 2
8

+ 3
8

= 5
8

The work of [13] shows how to realize subtraction in
stochastic computing by using a multiplexer (MUX) and
a NOT gate. In [12], addition and subtraction approaches
are introduced to solve the overflow problem. Although this
approach solved the problem of overflow, it is a serial process,
i.e., only one bit in π is processed at a time. Hence it can easily
form a performance bottleneck. A stochastic division circuit
design, called CORDIV, is proposed in [14].

In the basic form of stochastic computing, only numbers
in [0, 1] are allowed. In [11], multiple representation schemes
are reported to overcome this limitation. The bipolar format
increases the operands’ range to [-1,1] [15]. In [16], the
numerical value of a bit-stream representation is no longer
population-based, but interpreted as the ratio of 1’s to 0’s,
which increases the range to [0,+∞]. Although these ap-
proaches increase the range of the operands, they require a
more complicated design for the arithmetic operation circuits,
while our SP arithmetic achieves a large range for number
representation while ensuring that all operations incur only
O(1) gate delays.

Since the accuracy of stochastic computation relies highly
on the randomness of the 1’s in the bit-stream, data shuffling
has been used in SC [17], through random number generators.
However, these approaches either introduce more overhead
with respect to runtime, area and power, or are not able to
introduce enough randomness. By contrast, our SP approach
makes use of several multi-level Linear-Feedback Shift Reg-
ister (LFSR) based shuffler, which improves both efficiency
and randomness.

In spite of the considerable studies on stochastic computing,
the research attention on quantifying its accuracy and error
characteristics has been surprisingly light. In particular, there
is a lack of a systematic investigation on the errors due
to the densities of 1’s in the bit-stream of the SC number
representation. A key contribution of our SP arithmetic is to
fill this void and remarkably improve the accuracy over SC.

III. SCALED POPULATION ARITHMETIC

A. Number Representation
The number representation in Scaled Population (SP) arith-

metic is an enhancement of that in SC, with a scaling
(exponent) term such that it can cover a range beyond [0, 1].
Specifically, the SP representation of a number x is an M -
bit tuple x = {σ, π}, where σ is a Σ-bit scaling term and
π is a Π-bit population vector such that M = Σ + Π. The
numerical value of x is |π|Π × 2(σ−Σ0) ' x, where |π| is
the number of 1’s in the population vector π, and Σ0 is a
constant, typically chosen to be 2(Σ−1). The reason that we
include the Σ0 constant is to allow the value of the scaling
term in the SP representation (i.e. 2(σ−Σ0)) to be smaller than

1, so that we can have increased resolution, allowing us to
increase the density of the population vector without changing
the numerical value of x. We note that the 1’s in the population
vector π are uniformly distributed, which has the similar
characteristic with SC [12]. The SP representation described
above only handles positive numbers. However, augmenting
SP to handle signed computation can be easily accomplished
by adding a sign bit.

For example, if {σ, π} = {110, 1011010101} then |π| = 6,
Π = 10, Σ = 3 and σ = 6. Hence the numerical value of
the SP number x is 6

10 × 22, which equals 2.4. Note that
the inclusion of the scaling term is something that SC does
not have. The SP number representation not only covers a
much larger range of numbers, but also, and more importantly,
facilitates arithmetic operations that have improved computing
accuracy, as will be elaborated as follows.

B. Arithmetic and Supporting Operations
In this section, we will describe two most commonly used

arithmetic operations, multiplication and addition, followed
by a description to supporting operations such as shuffling,
density checking and scaling.

Fig. 3 is a top level block diagram of the proposed SP
arithmetic system. The input operands are represented as con-
ventional binary numbers X and Y . The generators convert X
and Y to the SP format, e.g., x = {σ, π}. Then, the operands
x and y in SP format are fed into the arithmetic processing
units, such as adder and multiplier, for computation.

z
Operations

Arithmetic
x

y

Generator

GeneratorY

X

Fig. 3. The top level view of SP scheme.

In designing SP-based arithmetic circuits, we ensure that
each operation incurs O(1) gate delays. In particular, any
computation that requires us to iterate over the M bits of an
SP vector (which requires serialization) is avoided. Note that
all the operations described below are approximate in nature.
Also, the computations on the scaling term are efficient, since
Σ is a very small value.

1) Multiplication: Multiplication uses an AND gate as the
underlying function, as in SC. In [12], it was proved that an
AND gate is able to achieve multiplication when the operands
are presented in population-based vectors. In SP arithmetic,
we propose a scaling operation, to be performed prior to each
multiplication in order to improve the computation accuracy.
This improvement is based on the observation that the mul-
tiplication accuracy is higher when there are more 1’s in the
population vectors of the operands.

Lemma III.1. Consider multiplication between x and y,
with the result being z. The computational error ε from the
AND gate-based multiplication decreases when |πx|Π or |πy|Π
increase.

Proof. Let px = |πx|
Π , py =

|πy|
Π and pz = |πz|

Π . Then each
bit in πx, πy and πz is 1 with a probably of px, py and pz ,
respectively. For the ith bit, ideally pz = px × py . Hence, the

error of the ith bit in πz occurs when the probability of it
being 1 is not px × py , i.e., the error at the ith bit in πz is
εi = (1 − px × py). When px or py increases, εi decreases.
Therefore, considering the entire population vector, when px
or py increases, ε will decrease as well.

Based on Lemma III.1, the average error of multipli-
cation with px and py varying over the interval [0, 1] is∫ 1

0

∫ 1

0
(1− pxpy)dpxdpy = 0.75.

The scaling term in the SP number representation allows
us to control the density of population vectors by scaling. A
density checker unit and a scaling unit are needed together to
perform the density control. Also, the randomness of the dis-
tribution of 1’s in the population vectors affects the accuracy
as well. The more uniformly randomly the 1’s are distributed,
the more accurate the result is. Therefore, a shuffle unit is
additionally needed in our design for achieving randomness.
The key elements for the SP multiplication are shown in Fig. 4.

x

y

z

Scale

ScaleDensity Check

Density Check

Fig. 4. The SP-based Multiplication

Consider multiplication between x and y. We first check if
the population vectors of the two numbers are dense enough,
i.e. |πx| ≥ T1 and |πy| ≥ T1, where T1 is a sufficiently
high fraction. Typically, T1 ∼ 0.7 × Π is a good value
according to our experimental results. Such density checking
is performed by the density checker unit. If not dense enough,
the population vectors are scaled to make them dense enough,
and corresponding changes are made to the scaling terms. Now
we compute z = x×y as πz = πx&πy , and σz = σx+σy−Σ0.

2) Addition: In our approach, addition is approximately
achieved by using an OR gate. Suppose we want to add x
and y. A high accuracy requires that the population vectors of
both numbers have a density lower than a threshold T2.

Lemma III.2. Suppose we want to add x and y, with the result
being z. The error ε of the OR-based addition decreases when
|πx|
Π or |πy|Π decreases.

Proof. Let px = |πx|
Π , py =

|πy|
Π and pz = |πz|

Π . Then, each
bit in πx, πy and πz is 1 with a probably of px, py and pz ,
respectively. The OR operation performed on πx and πy leads
to pz = px + py − (px × py). For the ith bit in πx and πy ,
the error at the ith bit in πz is εi = px × py . In other words,
the error of the ith bit in πz occurs when the ith bits in πx
and πy are both 1’s. From the above equation, when px or py
decrease, εi decreases. Thus, considering the entire population
vector, when px or py decreases, ε will decrease.

According to Lemma III.2, the average error of addi-
tion with px and py varying over the interval [0, 1] is∫ 1

0

∫ 1

0
(pxpy)dpxdpy = 0.25.

However, unlike multiplication, as long as the 1’s in the
population are uniformly distributed, we don’t have to use a
density check or scaling unit for addition. Instead, we perform
skewed addition, where each operand occupies the different

halves of the π bits. Therefore, in skewed addition, it is
guaranteed that no matter what the density of the operands’
population vectors is, the 1’s in the two operands will never
be aligned at the same bit position. To perform the skew, we
use 2 Π-bit masks mx and my , where mx has the left Π

2 bits
set to 1, and my has the right Π

2 bits set to 1. The result will
be πz = (πx&mx)|(πy&my), with σz = σx + 1 = σy + 1.
If σx 6= σy , then the scaling unit will be used to adjust
the density of the population vectors of x and y. Fig. 5
shows an example of how skewed addition is processed. In
Fig. 5, x = {01, 00111001} and y = {01, 10000010}. The
numerical values of x and y are 2(1−2(2−1)) × 4

8 = 0.25 and
2(1−2(2−1)) × 2

8 = 0.125, respectively, assuming Σ0 = 2.
After the skewed addition, the numerical value of the result
z = {01, 00110010} is 2(2−2(2−1)) × 3

8 = 0.375, which
matches the theoretical addition.

Note that skewed addition relies on the randomness of the
distribution of 1’s in the population vector. If the 1’s in the
population vector are not uniformly distributed, πx&mx or
πy&my will not have half of the 1’s in πx or πy approximately,
which will introduce an error into the final addition result.

10

mx = 11110000 my = 00001111
&&

x = 00111001 y = 10000010

00110000

=

00000010

=

|

scaling term

01

01

z = 00110010

=

Fig. 5. SP-based Skewed Addition

3) Generator: The generate operation converts a conven-
tional binary number to the SP format. The generators used in
SC have a computational complexity that is proportional to the
bit stream length [18]. Our approach generates a π population
vector with O(1) gate delays, by replicating the bits of the
original number based on their bit position. Assuming the
original binary number to be X = {xn−1, xn−2, ...x1, x0},
where n is the number of bits. We convert it to the SP
format by producing 2i copies of bit xi. The resulting bits
are then fed to a shuffle unit, which randomizes the bits of
π and yields a SP representation of X . Note that in case
this would result in a π vector with |π| > Π, then we
appropriately adjust the population vector by decimating or
dropping the additional bits. Since we assume the 1’s are
uniformly distributed after shuffling, dropping the additional
bits won’t change the numerical value of the population vector.

0000

0100

adjust length

0100

shuffle

11 1

 1 10 0

 1

X=010

 0

Fig. 6. An Example of Generate Operation, with X = 0.25, and Π = 4

An example of the generate operation is shown in Fig. 6.
The numerical value of the binary weighted number X =
0, 1, 0 is 0.25. Assume that the length of the population vector
Π is 4, Σ = 2 and Σ0 = 1. The initial scaling term is 1, since
there is no scaling, initially.

Generating 2i copies of bit xi is accomplished by wires.
Since the shuffle unit and the length adjust unit are both done
with O(1) gate delays (as will be discussed in the following
sections), the generator incurs O(1) gate delays as well.

4) Shuffle Unit: In order to let the 1’s in the population
vector π be uniformly randomly distributed, a 2-level shuffle
unit is designed in our SP arithmetic system. The bits in π
are grouped into W chunks. The first level of the shuffle unit
generates W permutations of the chunks, and a particular
permutation is selected by an LFSR that randomly cycles
through a count between 1 and W . Next, within all the chunks,
the second level generates w permutations of the bits within
every chunk, and a particular permutation is selected by an
LFSR that randomly cycles through a count between 1 and w.
Note that wW = Π. In order to reduce the number of LFSRs,
we select the same bit-level permutation for all the chunks.
Additionally, a third LFSR randomly selects a logical shift of
the resulting permuted number, performed by a barrel shifter.
We choose between left and right shifts randomly. Further, the
number of positions V to shift is also chosen randomly.

4

LFSR

1 2F F F4F3

ShiftLFSR

2 bits

2 bits

4 bits

15 13 8 10 11 9 0 2 3 1 4 6 7 5 12 14

12 14 15 13 8 10 11 9 0 2 3 1 4 6 7 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 13 14 15 8 9 10 11 0 1 2 3 4 5 6 7

LFSR

1 ff f2 f 3

Fig. 7. Shuffle Example (W = w = 4)

Fig. 7 shows an example of the shuffle unit design. Since
Π = 16, the position indices as shown on the top position
vector range from 0 to 15. F1, F2, F3, F4 are different permu-
tations for 4 chunks in π (i.e. W = 4), while f1, f2, f3, f4

are the bit-level permutation within the chunks (i.e. w = 4).
The ⊗ symbol means applying the permutation on π, which
essentially swaps bits around.

5) Density Checker Unit: In SP multiplication, we need to
test if the population density |π|Π is greater than T1, which is
a threshold greater than 0.5. We convert the problem to check
if |π|Π ×

0.5
T1

> 0.5. Note that 0.5
T1

is smaller than 1, and so we
use a Π-bit mask with 0.5

T1
× Π 1’s, and bit-wise AND this

mask with π in order to get |π|Π ×
0.5
T1

, which we denote as
π2. Next, we check if π2 has a density greater than 0.5. Note
that we need to do this approximately, with O(1) gate delays.
Since the 1’s in π2 are randomly distributed, we can do this
approximately by checking π′ = (π2)|(π2 << 1)|(π2 << 2).
In other words, we perform the logical OR of π2 with its left-
shifted counterparts (by 1 and 2 bit positions respectively). If
the result π′ is all 1s, we conclude that the density of |π| is
greater than T1. The test of whether the number is all 1s is

done by using a hash function (HF) of Class 3 [19], in order
to ensure a O(1) gate delay. We hash π′, and perform a bit-
wise comparison of the result with the pre-computed hash of
a population vector with Π 1’s.

6) Scaling Unit: According to Lemma III.1, the density of
the population vector needs to be adjusted by the scaling unit
to achieve an improved accuracy for SP multiplication. Along
with a scaling operation, the scaling term σ for each operand
needs to be updated accordingly.

Suppose we would like to adjust the density of the popula-
tion vector π by β, to yield the result π · β. We will discuss
how to process such an adjustment for different values of β.

1) When 0 < β ≤ 1, we use a mask Mβ with Π bits, where
there are βΠ 1’s in the mask at arbitrary locations. Then
we perform a bit-wise AND operation of the mask Mβ

with π, shuffle the result, and increase σ by 1
β , in order

to keep the numerical value of the SP representation to
be the same. When β = 1, the density of the population
vector π doesn’t change.

2) When 1 < β < 2, we solve the problem of computing
β × |π| as follows. We first scale down π by β

2 by
using the mask M β

2
with density of 1’s being β/2, and

resulting population vector is called π′.

π′ = π&M β
2

(1)

In Eq. 1, M β
2

is a mask with Π bits, where β
2 Π bits

are 1’s. Since, β × |π| = 2 × (|π| × β
2) = 2 × |π′|,

we next double the density of π′ by using the following
equation:

πd = (π′|π′s)|(π′&π′s) (2)

In Eq. 2, πd is the population vector after doubling,
and π′s is the population vector after shuffling π′. If the
1’s are uniformly randomly distributed in π′, π′|π′s will
result in 2π′−π′2. Therefore, another term of π′&π′s is
added in Eq. 2 as a compensation for the numerical loss
of π′2. Due to the error of using bit-wise OR operation
to perform addition, πd is only an approximate version
of 2π′. However, it is computed with O(1) gate delays.

3) When β = 2, we first shuffle π and the result after
shuffling is π′s. Then compute by following Eq. 2, where
π′ in Eq. 2 is the same as π.

4) When β > 2, we repeatedly double |π| until the
remaining adjustment ratio is less than 2. Then we can
use the methods mentioned above to compute π · β.

IV. EXPERIMENT RESULTS

The proposed SP arithmetic scheme is evaluated for sin-
gle multiplication/addition operations, matrix inner product
computation, and MNIST image classification, in terms of
accuracy, power, delay and area. It is implemented on a Zybo
Zynq-7000 development broad with the following specifica-
tions: Xilinx XC7Z010-1CLG400C; number of look-up tables
(LUTs): 17,600; number of flip-flops: 35,200.

A. Single Arithmetic Operation

We first show the results of evaluating accuracy. Our goal of
SP arithmetic is to improve accuracy over SC. The accuracy is
evaluated by comparing average relative errors (over a large
number of operations) with respect to the conventional SC

TABLE I
ERROR CONTRIBUTION OF SP-BASED MULTIPLICATION (%)

T Perfect Generator Density Check Scale Shuffle Imperfect
50% 32.76(10.49) 32.91(10.87) 33.42(9.81) 35.02(12.66) 34.96(11.23) 35.12(13.98)
60% 16.39(4.33) 16.99(4.39) 17.73(5.91) 19.94(12.23) 18.30(7.92) 18.95(9.18)
70% 5.76(3.49) 5.91(3.50) 7.82(4.78) 9.94(11.28) 9.84(9.73) 10.26(11.02)

0 0.2 0.4 0.6 0.8 1

P
1

0.2

0.4

0.6

0.8

1

P
2

0

20

40

60

80

100

(a) SP multiplication T = 70%

0 0.2 0.4 0.6 0.8 1

P
1

0.2

0.4

0.6

0.8

1

P
2

0

20

40

60

80

100

(b) SC multiplication

0 0.2 0.4 0.6 0.8 1

P
1

0.2

0.4

0.6

0.8

1

P
2

0

20

40

60

80

100

(c) SP addition

0 0.2 0.4 0.6 0.8 1

P
1

0.2

0.4

0.6

0.8

1

P
2

0

20

40

60

80

100

(d) SC addition

Fig. 8. Relative errors proportional to darkness.

using IEEE 32-bit floating point representation as a baseline
for comparison. The errors are depicted as heat maps in Fig. 8,
where error is proportional to darkness. The two axes indicate
P1 = |π1|

Π and P2 = |π2|
Π , which are the densities of 1’s in

the population vectors of the two operands. For multiplication,
the density threshold which we use to decide whether to scale
or not is T = 70% for both operands. As expected, SC
multiplication causes large errors for low densities, while SC
addition results in large errors for high densities. By contrast,
the errors from the SP arithmetic are much smaller.

Since an operand of multiplication is scaled if the density
of 1’s in its population vector is lower than T , we analyze
the errors for two different situations. Errors elo are for the
case where either operand has density less than T . Errors
ehi are for the case where both operands have densities
greater than T . We report the separated error results in the
format of elo(ehi). In this format, the average errors from
SP multiplications are 10.26%(11.02%) while those from
SC multiplication are 71.04%(3.19%). Please note that we
categorize SC multiplication errors into the elo(ehi) format
for the ease of comparison. When P1 and P2 are both larger
than T , SP is supposed to process the multiplication in the
same way as SC. However, since the density checker is not
prefect, it might give the wrong judgement of whether P1 or
P2 is smaller than T , which will introduce error. Therefore,
ehi actually increases for SP-based multiplication. On the
other hand, when P1 or P2 is smaller than T , the density
checker is less likely to make a wrong decision. Also even
the density checker is wrong, scaling up a small fraction will
cause less overflow error. Therefore, when when P1 or P2 is
smaller than T , the error of SP-based multiplication decreases.
As expected, introducing scale terms makes the density of

the population vector to be controllable, which benefits the
accuracy of multiplication. For addition, the average SP error
is 5.83% while the error of SC is 23.43%.

We further show the errors from individual components
of each SP arithmetic operation. In Table I, columns 3-6
display the errors from generator, density check, scaling unit
and shuffle unit, respectively, for SP multiplication. When
estimate the error of one component, we compute the other
components using software, which is regarded as perfect.
Column 2 summarizes the errors when all components are
perfect and the errors are from the SP number representation
alone, while the rightmost column is for the cases where all
components are realized in circuits. Such decomposed error
analysis is performed for different threshold levels. Note that
the shuffle operation has the highest error contribution.

TABLE II
ERROR CONTRIBUTION OF SP-BASED ADDITION (%)

Perfect Generator Shuffle Imperfect
0.84 1.21 3.57 5.83

The errors from different components in SP addition are
provided in Table II. Please note that SP addition does not
need the density checker or scaling unit. One can see that most
of the errors are from the shuffle unit. The reason behind is
that the shuffling results are not uniformly random enough.

TABLE III
EFFICIENCY COMPARISON FOR MULTIPLICATION (Π = 32)

delay (ns) #LUTs
SP 1.92 20
SC 4.28 16

Floating point 14.53 956
Fixed point 6.12 84

Next, we show the FPGA resource utilization and perfor-
mance in comparison with SC, Floating point (conventional
arithmetic using IEEE 32-bit floating point representation) and
fixed point (conventional arithmetic using 32-bit fixed point
representation). The results for multiplication are summarized
in Table III. Note that for SP and SC, since the supporting
units such as generator, shuffle unit, scaling unit, and density
checker are shared among multiple operations, the area and
LUTs used by these operations are not counted in Table III.
For reference, if these units are counted, SP-based addition
and multiplication use 7.13× and 3.75× fewer LUTs than the
conventional floating point number based arithmetic circuit,
respectively. One can see that SP arithmetic is 2.2× faster
than SC. On the other hand, SP arithmetic uses almost the
same LUTs as conventional floating point arithmetic, and
much less when considering the supporting units. Thus, SP
reaches a compromise between SC and conventional arith-
metic on performance and resource utilization. Meanwhile,

earlier results indicates its great accuracy improvement over
SC. A similar trend can be observed for addition, whose results
are in Table IV.

TABLE IV
EFFICIENCY COMPARISON FOR ADDITION (Π = 32)

delay (ns) #LUTs
SP 1.45 22
SC 3.24 18

Floating point 12.81 535
Fixed point 4.96 48

B. Application 1: Matrix Inner Product

The accuracy of SP arithmetic is also evaluated for the
matrix inner product computation and the results are shown
in Table V. Errors from individual operations accumulate in
an application that contains many arithmetic operations. The
errors increase with the vector size. The SP approach improves
the accuracy by 20.72× on average compared to SC. The
errors from perfect SP and fixed point only comes from the
limited resolution of the number representation. Therefore,
they are more accurate. Since perfect SP uses population-based
representation, which has a worse resolution than fixed points,
which uses binary weighted representation. SP introduced
slightly more error in the result.

TABLE V
ERROR OF MATRIX INNER PRODUCTION (%) (Π = 32)

Vector size SC SP Perfect SP Fixed point
32 172.50 16.55 1.00 0.21
64 283.52 18.92 1.11 0.38
128 420.15 21.03 1.19 0.46
256 589.39 24.59 1.29 0.49
512 797.42 28.02 1.38 0.52
Avg 452.21 21.82 1.19 0.41

C. Application 2: MNIST Digit Classification

The effect of SP approximation is also evaluated in a neural
network application on MNIST digit classification [20]. The
neural network has two hidden layers, 784 input nodes and
200 hidden layer nodes. The training set and test set have
60,000 samples and 10,000 samples, respectively. The size of
each figure is 28×28. The multiplications and additions in the
network are implemented with SP, SC, and conventional float-
ing point and fixed point arithmetic. The classification success
rates from these arithmetic methods of different bitwidth are
listed in Table VI. On average, SP can reach accuracy of
about 81%, which is a significant improvement over the 60%
accuracy by SC.

TABLE VI
MNIST CLASSIFICATION SUCCESS RATE (%)

SP Perfect SP SC Fixed point Floating point
32-bit 69.06 75.63 49.42 91.78 93.12
64-bit 78.41 84.72 60.07 92.62 93.68
128-bit 86.26 90.11 67.15 93.34 93.96
256-bit 90.86 92.74 70.26 93.99 94.11

Avg 81.15 85.81 61.72 92.93 93.71

V. CONCLUSION

In this paper, a scaled population arithmetic is proposed
to improve accuracy compared to classical stochastic compu-
tation, by introducing a scaling (exponent) term, along with
an adjustable population vector. Also, delays of the scheme
are kept low by ensuring each operation uses O(1) gate
delays. The SP arithmetic scheme improves the accuracy of
multiplication and addition by 6.5× and 4.0×, respectively.
Its computation is also much faster than the classic stochastic
computing. We also apply the SP arithmetic scheme on
a MNIST image classification application and improve the
accuracy by 32.79% compared to SC. In the future, more
arithmetic operations will be designed, including subtraction,
division and logarithm.

REFERENCES

[1] B. Grigorian, N. Farahpour, and G. Reinman, “Brainiac: Bringing
reliable accuracy into neurally-implemented approximate computing,”
in HPCA, 2015, pp. 615–626.

[2] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
online quality management system for approximate computing,” in
ISCA, 2015, pp. 554–566.

[3] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration
with limited-precision analog computation,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 505–516, 2014.

[4] Y. Wang, H. Li, and X. Li, “Real-time meets approximate computing:
An elastic cnn inference accelerator with adaptive trade-off between qos
and qor,” in DAC, 2017, pp. 1–6.

[5] G. Keramidas, C. Kokkala, and I. Stamoulis, “Clumsy value cache: An
approximate memoization technique for mobile gpu fragment shaders,”
in Workshop on Approximate Computing, 2015.

[6] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approxi-
mate arithmetic designs,” in DAC, 2012, pp. 820–825.

[7] J. S. Vetter and S. Mittal, “Opportunities for nonvolatile memory systems
in extreme-scale high-performance computing,” Computing in Science
& Engineering, vol. 17, no. 2, pp. 73–82, 2015.

[8] M. Samadi and S. Mahlke, “CPU-GPU collaboration for output quality
monitoring,” in 1st Workshop on Approximate Computing Across the
System Stack, 2014, pp. 1–3.

[9] B. R. Gaines, “Stochastic computing,” in Proceedings of the Joint
Computer Conference, 1967, pp. 149–156.

[10] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded Computing Systems, vol. 12, no. 2s, p. 92,
2013.

[11] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” TCAD, vol. 37, no. 8, pp. 1515–1531, 2017.

[12] B. R. Gaines, “Stochastic computing systems,” in Advances in Informa-
tion Systems Science. Springer, 1969, pp. 37–172.

[13] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in ICCD, 2013, pp. 39–46.

[14] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in ISVLSI, 2016, pp. 116–121.

[15] A. Alaghi and J. P. Hayes, “A spectral transform approach to stochastic
circuits,” in ICCD, 2012, pp. 315–321.

[16] S.-J. Min, E.-W. Lee, and S.-I. Chae, “A study on the stochastic
computation using the ratio of one pulses and zero pulses,” in ISCAS,
vol. 6, 1994, pp. 471–474.

[17] Z. Wang, S. Mohajer, and K. Bazargan, “Low latency parallel imple-
mentation of traditionally-called stochastic circuits using deterministic
shuffling networks,” in ASPDAC, 2018, pp. 337–342.

[18] M. Van Daalen, P. Jeavons, J. Shawe-Taylor, and D. Cohen, “Device for
generating binary sequences for stochastic computing,” IEE Electronics
Letters, vol. 29, pp. 80–80, 1993.

[19] M. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hashing
functions for high performance computers,” IEEE Transactions on
Computers, vol. 46, no. 12, pp. 1378–1381, 1997.

[20] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist,
vol. 2, p. 18, 2010.

