C proceedings

Differentially-Private Next-Location Prediction
with Neural Networks

Ritesh Ahuja Gabriel Ghinita Cyrus Shahabi
University of Southern California ~ University of Massachusetts Boston ~ University of Southern California
riteshah@usc.edu gabriel.ghinita@umb.edu shahabi@usc.edu
ABSTRACT in a Machine-Learning-as-a-Service (MLaa$S) infrastructure to

The emergence of mobile apps (e.g., location-based services,
geo-social networks, ride-sharing) led to the collection of vast
amounts of trajectory data that greatly benefit the understand-
ing of individual mobility. One problem of particular interest is
next-location prediction, which facilitates location-based adver-
tising, point-of-interest recommendation, traffic optimization,
etc. However, using individual trajectories to build prediction
models introduces serious privacy concerns, since exact where-
abouts of users can disclose sensitive information such as their
health status or lifestyle choices. Several research efforts focused
on privacy-preserving next-location prediction, but they have
serious limitations: some use outdated privacy models (e.g., k-
anonymity), while others employ learning models with limited
expressivity (e.g., matrix factorization). More recent approaches
(e.g., DP-SGD) integrate the powerful differential privacy model
with neural networks, but they provide only generic and difficult-
to-tune methods that do not perform well on location data, which
is inherently skewed and sparse.

We propose a technique that builds upon DP-SGD, but adapts
it for the requirements of next-location prediction. We focus
on user-level privacy, a strong privacy guarantee that protects
users regardless of how much data they contribute. Central to
our approach is the use of the skip-gram model, and its negative
sampling technique. Our work is the first to propose differentially-
private learning with skip-grams. In addition, we devise data
grouping techniques within the skip-gram framework that pool
together trajectories from multiple users in order to accelerate
learning and improve model accuracy. Experiments conducted on
real datasets demonstrate that our approach significantly boosts
prediction accuracy compared to existing DP-SGD techniques.

1 INTRODUCTION

The last decade witnessed a rapid development in mobile de-
vices capabilities, accompanied by the emergence of numerous
locations-centric applications, such as point-of-interest (POI)
search, geo-social networks, ride-sharing services, etc. As a re-
sult, vast amounts of rich trajectory data have become available.
Coupled with recent advances in machine learning, these data can
benefit numerous application domains, such as traffic analysis,
location-based recommendations, homeland security, etc.
Mobile users share their coordinates with service providers
(e.g., Google Maps) in exchange for receiving services customized
to their location. The service providers analyze the data and
create powerful machine learning models. Subsequently, these
models can be (i) placed on user devices to improve the qual-
ity of location-centric services; (ii) shared with business affili-
ates interested in expanding their customer base; or (iii) offered

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

produce business-critical outcomes and actionable insights (e.g.,
traffic optimization). Figure 1 illustrates these cases. Given his-
torical trajectories, several approaches exploit recent results in
neural networks to produce state-of-the-art POI recommender
systems [10, 35, 58]. Even though individual trajectory data are
not disclosed directly, the model itself retains significant amounts
of specific movement details, which in turn may leak sensitive
information about an individual’s health status, political orienta-
tion, entertainment preferences, etc. The problem is exacerbated
by the use of neural networks, which have the tendency to overfit
the data, leading to unintended memorization of rare sequences
which act as quasi-identifiers of their owners [9, 13]. Hence, sig-
nificant privacy risks arise if individual location data are used in
the learning process without any protection.

. =
’\\\

_ Search Targeted
Advertisement
prm— Q 9 Publish —
User2 Location Model iii
.- —_— Ul =
... Updates | Ride Sharing 0% —)
@ % St L Business Insights
2 ! E] ‘» Machine
(e o Learning
User N \Networkmy
- - Next-POI

Recommendation

Mobile Users Service Providers

Figure 1: System Model

The research literature identified several fundamental privacy
threats that arise when performing machine learning on large
collections of individuals’ data. One such attack is membership
inference [25, 52] where an adversary who has access to the
model and some information about a targeted individual, can
learn whether the target’s data was used to train the model.
Another attack called model inversion [56] makes it possible to
infer sensitive points in a trajectory (e.g., a user’s favorite bar)
from non-sensitive ones (e.g., a user’s office). Within the MLaaS
setting—where a third party is allowed to only query the model—
this implies extracting the training data using only the model’s
predictions [20].

Iterative procedures such as stochastic gradient descent (SGD) [7]
are often used in training deep learning models. Due to the re-
peated accesses to the data, they raise additional challenges when
employing existing privacy techniques. In order to prevent the
inference of private information from the training data, recent ap-
proaches rely on the powerful differential privacy (DP) model [14].
Sequential querying using differentially private mechanisms de-
grades the overall privacy level. The recent work in [2] provides
a tight-bound analysis of the composition of the Gaussian Mech-
anism for differential privacy under iterative training procedures,
enabling the utility of a deep learning model to remain high [39],

10.5441/002/edbt.2020.12

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.12

while preventing the exposure of the training data [6, 27]. While
integrating differential privacy techniques into training proce-
dures like stochastic gradient descent is relatively straightfor-
ward, computing a tight bound of the privacy loss over multiple
iterations is extremely challenging (see Section 6 for a summary
of results).

The seminal work in [2] provided record-level privacy for a
simple feed-forward neural network trained in a centralized man-
ner. The approach provides protection only when each individual
contributes a single data item (e.g., a single trajectory). When
an individual may contribute multiple data items, a more strict
protection level is required, called user-level privacy. McMahan
et. al. [39] showed that one can achieve user-level privacy pro-
tection in a federated setting for simple learning tasks. However,
ensuring good utility of the trained model for datasets with var-
ious characteristics remains a challenge. McMahan et. al. [39]
remove skewness in their inputs by pruning each user’s data to
a threshold, thus discounting the problems of training neural
models on inherently sparse location datasets, usually having
density around 0.1% [60]. Existing work on privacy-preserving
deep learning either assume large and dense datasets, or are eval-
uated only on dummy datasets [21] that are replicated to a desired
size using techniques such as [38]. Such techniques overlook the
difficulty of training models on smaller or sparse datasets, which
often prevent models from converging [40]. Moreover, they re-
quire extensive hyperparameter tuning to achieve good accuracy,
and the rough guidelines offered to tune these parameters [37] do
not extend to more complex neural architectures, or to datasets
different from those used in their work.

We propose a technique that can accurately perform learning
on trajectory data. Specifically, we focus on next-location predic-
tion, which is a fundamental and valuable task in location-centric
applications. The central idea behind our approach is the use of
the skip-gram model [41, 43]. One important property of skip-
grams is that they handle well sparse data. At the same time, the
use of skip-grams for trajectory data increases the dimensional-
ity of intermediate layers in the neural network. This creates a
difficult challenge in the context of privacy-preserving learning,
because it increases data sensitivity, and requires a large amount
of noise to be introduced, therefore decreasing accuracy.

To address this challenge, we capitalize on the negative sam-
pling (NS) technique that can be used in conjunction with skip-
grams. NS turns out to be extremely valuable in private gradient
descent computation, because it helps reduce the gradient update
norms, and thus boosts the ratio of the useful signal compared
to the noise introduced by differential privacy. In addition, we
introduce a data grouping mechanism that makes learning more
effective by combining multiple users into a single bucket, and
then training the model per bucket. Grouping has a dual effect:
on the positive side, it increases the information diversity in each
bucket, improving learning outcomes; on the negative side, it
heightens the adverse effect of the introduced Gaussian noise. We
study closely this trade-off, and investigate the effect of grouping
factors in practice.

Our specific contributions are:

(1) We propose a private learning technique for sparse loca-
tion data using skip-grams in conjunction with DP-SGD.
To our knowledge, this is the first approach to combine
skip-grams with DP to build a private ML model. Although

122

our analysis and evaluation focus on location data, we be-
lieve that DP-compliant skip-grams can also benefit other
scenarios that involve sparse data.

We address the high-dimensionality challenge introduced
by skip-grams through the careful use of negative sam-
pling, which helps reduce the norm of gradient descent
updates, and as a result preserves a good signal-to-noise
ratio when perturbing gradients according to the Gauss-
ian mechanism of DP. In addition, we group together data
from multiple users into buckets, and run the ML process
with each bucket as input. By increasing the diversity of
the ML input, we are able to significantly boost learning
accuracy.

We perform an extensive experimental evaluation on real-
world location check-in data. Our results demonstrate
that training a differentially private skip-gram for next-
location recommendation clearly outperforms existing
approaches for DP-compliant learning. We also perform
a thorough empirical exploration of the system parame-
ters to understand in-depth the behavior of the proposed
learning model. Our findings show that DP-compliant skip-
grams are a powerful and robust approach for location
data, and some of the trends that we uncovered can also
extend to other types of sparse data, beyond locations.

(2

~

3

=

The rest of the paper is organized as follows: we provide back-
ground information in Section 2. Section 3 introduces the system
architecture, followed by the details of our private location rec-
ommendation technique in Section 4. We perform an extensive
experimental evaluation in Section 5. We survey related work in
Section 6, followed by conclusions in Section 7.

2 BACKGROUND

2.1 Differential Privacy

Differential Privacy (DP) [17] represents the de-facto standard in
protecting individual data. It provides a rigorous mathematical
framework with formal protection guarantees, and is the model
of choice when releasing aggregate results derived from sensitive
data. The type of analyses supported by DP range from simple
count or sum queries, to the training of machine learning models.
A popular DP flavor that is frequently used in gradient descent
due to its refined composition theorems is (¢, §)-differential pri-
vacy. Given non-negative numbers (¢, §), a randomized algorithm
M satisfies (¢, §)-differential privacy iff for all datasets D and D’
differing in at most one element, and for all E C Range(M), the
following holds:

Pr[M(D) € E] < e*Pr[M(D") € E] + 6 (1)
The amount of protection provided by DP increases as ¢ and &
approach 0. Dwork et al. [17] recommend setting § to be smaller
than 1/n for a dataset of cardinality n. The parameter ¢ is called
privacy budget.

Datasets D and D’ that differ in a single element are said
to be neighboring, or sibling. When the adjacency between the
datasets is defined with respect to a single data record, then the
DP formulation provides record-level privacy guarantees. The
amount of protection can be extended to account for cases when
a single individual contributes multiple data records. In this case,
the sibling relationship is defined by allowing D and D’ to differ
only in the records provided by a single individual. This is a
stronger privacy guarantee, called user-level privacy.

To achieve (¢, §)-DP, the result obtained by evaluating a func-
tion (e.g., a query) f on the input data must be perturbed by
adding noise sampled from a random variable Z. The amount
of noise required to ensure the mechanism M(D) = f(D) + Z
satisfies a given privacy guarantee depends on how sensitive the
function f is to changes in the input, and the specific distribution
chosen for Z. The Gaussian mechanism (GM) [16] is tuned to
the sensitivity Sy computed according to the global £,-norm as
Sg =supp~py |If(D) - f(D")]]2 for every pair of sibling datasets
D, D’ . GM adds zero-mean Gaussian noise calibrated to the
function’s sensitivity as follows:

THEOREM 2.1. For a query f : D — R, a mechanism M that
returns f(D) + Z, where Z ~ N(0, O'ZS;) guarantees (¢, 5)-DP if

o2e? > 2In(1.25/8) and ¢ € [0,1] (see [17] for the proof).

The composability property of DP helps evaluate the effect on
privacy when multiple functions are applied to the data (e.g., mul-
tiple computation steps). Each step is said to consume a certain
amount of privacy budget, and the way the budget is allocated
across multiple steps can significantly influence data utility.

2.2 Neural Networks

Modern machine learning (ML) models leverage the vast expres-
sive power of artificial neural networks to dramatically improve
learning capabilities. Convolutional networks have shown ex-
ceptional performance in processing images and video [30]. Re-
current networks can effectively model sequential data such as
text, speech and DNA sequences [12, 28]. A neural network is
composed of one or more interconnected multilayer stacks, most
of which compute non-linear input-output mappings. These lay-
ers transform the representation at one level (starting with the
raw input) into a representation at a higher, more abstract level.
The key to improving inference accuracy with a neural net is to
continually modify its internal adjustable parameters.

Stochastic gradient descent (SGD) is the canonical optimiza-
tion algorithm for training a wide range of ML models, including
neural networks. It is an iterative procedure which performs
parameter updates for each training example x; and label y;.
Learning the parameters of a neural network is a nonlinear opti-
mization problem. At each iteration, a batch of data is randomly
sampled from the training set. The error between the model’s
prediction and the training labels, also called loss, is computed
after each iteration. The loss is then differentiated with respect
to the model’s parameters, where the derivatives (or gradients)
capture their contribution to the error. A back-propagation step
distributes this error back through the network to change its
internal parameters that are used to compute the representation
in each layer from the representation in the previous layer. Each
internal parameter of the model 0 is brought closer to predicting
the correct label as follows:

0=0-p- Vgg(G;x(i);y(i))

where 7 is the learning rate hyper-parameter and ¢ is the loss
function. Iteratively recomputing gradients and applying them
to update the model’s parameters is referred to as descent, and
this operation is performed until the model’s performance is
satisfactory.

2.3 Differentially Private-SGD (DP-SGD)

Introduced in [1], DP-SGD integrates (¢, §)-DP with neural net-
works. It modifies traditional SGD in that after calculating the

123

Table 1: Summary of Notations

Notation | Definition

U,P Sets of users and check-in locations, respec-
tively

N,L Cardinalities of sets U and P, respectively

Uy, Historical record of user u’s check-ins

dim Dimension of location embedding space

b,n Batch size and learning rate, respectively

q User sampling probability per step

m Expected user sample size per step

) Privacy parameters of Gaussian mechanism

o Noise scale

A Data grouping factor

H Set of training buckets

Cc Per-layer clipping norm

changes in its internal parameters, it obfuscates the gradient
values with noise sampled from the Gaussian distribution.
DP-SGD averages together multiple gradient updates induced
by training-data examples, clips (i.e., truncates) each gradient
update to a specified maximum ¢-norm, and adds Gaussian ran-
dom noise to their averaged value. Clipping each gradient bounds
the influence of each training-data example on the model. Ac-
cordingly, the sensitivity of the average query can be adjusted as
desired, and due to the added noise tuned to the sensitivity of the
query, differential privacy is ensured in each iteration. Typically,
repeatedly executing a query results in sharp degradation of the
privacy protection, as more information is leaked by multiple
usages of private iterations. The moments accountant technique
[1] computes the privacy loss resulting from the composition
of Gaussian mechanisms under random sampling. It tracks the
moments of the privacy loss variable in each step of the descent,
and provides a much tighter upper bound on privacy budget
consumption than the standard composition theorem [17].

3 SYSTEM ARCHITECTURE

In Section 3.1 we define the problem statement. We outline the
learning model architecture in Section 3.2 and we show how
it is utilized in Section 3.3. Table 1 summarizes notations used
throughout the paper.

3.1 Problem Statement

Data Representation. The input to our learning model consists
of check-in data from a set of N users U = {u1,us,...,un }. The
set of L check-in locations (e.g., points of interest) is denoted
as P = {ly,ls,...,1p }. Each user u € U has a historical record of
check-ins denoted as U, = {c1, c2, ...}, where each element ¢; is
a triplet (u, [, t) comprised of user identifier, location and time.
Learning Objective. The objective of our model is to predict
the location that a given user u will check into next, given a
time-ordered sequence of previous check-ins of the user. The
past check-ins can represent the user’s current trajectory or
his entire check-in history. For each scenario, we describe the
usage of the model in Section 3.3. In an initial step, we employ
an unsupervised learning method, specifically the skip-gram
model [43], to learn the latent distributional context [50] of user
movements over the set P of possible check-in locations. A latent
representation of every location in a reduced-dimension vector
space is the intermediate output. Next, we determine for each user

u its inclination to visit a particular location I by measuring how
similar [is in the latent vector space to the locations previously
visited by u.

Output layer

Input layer

P v Softmax

x| 0 Hidden layer Y10

x2| 0 i Y210

! Bias Vector

x3| 0 Iy B (1x1L) y3 0

Embedding of location / .
X W (L x dim) X
. . W' (dimx L)

i ¥
Embedding Matrix | /i Context Matrix

xL| 0 dim-dimensional vector YL| O

Figure 2: Architecture of the location-recommendation
model

3.2 Learning Model

The skip-gram negative sampling (SGNS) model [41, 43] was
initially proposed to learn word embeddings from sentences.
However, several recent efforts [10, 35, 58] show that the model
is also appropriate for location recommendation tasks. Specifi-
cally, the model is used to learn location embeddings from user
movement sequences, where each location corresponds to a word,
and a user’s check-in history to a sentence.

Given the set of check-ins of a user, we treat the consecutively
visited locations as a trajectory that reflects her visit patterns.
A data pre-processing step is required to make the data format
compatible with the input of a neural network: every location in
P is tokenized to a word in a vocabulary of size L = |P|. Given a
target location check-in ¢, a symmetric window of win context
locations to the left and win to the right is created to output
multiple pairs of target and context locations as training samples.
The assumption is that if a model can distinguish between actual
pairs of target and context words from random noise, then good
location vectors will be learned.

Figure 2 illustrates the neural network used in our solution.
The model parameters consist of three tensors 6 = {W,W’, B’}
and two hyper-parameters representing the embedding dimen-
sions dim and the negative samples drawn neg. Consider a target-
context location pair (lx, Iy). First, both locations are one-hot
encoded into binary vectors X and 4 of size L. The multiplication
of X with embedding matrix W produces the embedding vector
for the input location I (i.e., the ith row of matrix W). W X x
represents the mapping of input location x to a vector hin an
dim-dimensional space. Next, for each positive sample (i.e., true
target/context pair), a neg number of negative samples are drawn.
The context location vector along with the negative samples
are passed through a different weight matrix W’ and bias vector
B’. Finally, a sampled softmax loss function is applied to calculate
the prediction error. At a high level (we refer the reader to [49] for
a detailed look), the parameters are modified such that the input
word (and the corresponding embedding) is tugged closer to its
neighbors (i.e., paired context locations), and tugged away from
the negative samples. As a result, during back-propagation, only
neg+ 1 vectors in W or W’ are updated instead of entire matrices.
In the original work [41, 43], negative sampling was devised to

124

improve computational efficiency, as updating the entire model
in each iteration can be quite costly. In private learning, it also
plays an important role in controlling the adverse affects of noisy
training.

We remark here that techniques such as Noise Contrastive
Estimation [23] and Negative Sampling use a non-uniform dis-
tribution for drawing the samples—for example, by decreasing
the sampling weight for the frequent classes—whereas, we use a
sampled softmax function with a uniform sampling distribution.
This is a necessity for preserving privacy, since estimating the
frequency distribution of locations from user-submitted data will
cause privacy leakage. Lastly, the embedded vectors are normal-
ized to unit length for efficient use in downstream applications.
On top of improving performance [32, 55], normalizing the vec-
tors assists similarity calculation by making cosine similarity and
dot-product equivalent.

We detail the privacy-preserving learning model in Section 4.
In the remainder of this section, we show how the model, once
computed in a privacy-preserving fashion, can be utilized.

3.3 Model Utilization

We provide an overview of how our proposed privacy-preserving
next-location prediction model is utilized. Once our privacy-
preserving learning technique is executed, the resulting model
can be shared with consumers, since the users who contributed
the data used in the training are protected according to the seman-
tic model of DP. While the utilization of our model is orthogonal
to our proposal, we include it in this section in order to provide a
complete, end-to-end description of our solution’s functionality.

A typical use of our model is for a mobile user to download® it
to her device, provide her location history as input, and receive a
next-location recommendation. Alternatively, a service provider
who already has the locations of its subscribers, will perform the
same process to provide a next-location suggestion to a customer.
We emphasize that, the model utilization itself does not pose any
privacy issues. In both cases above, neither the input, nor the
output to the model are shared, so there is no privacy concern.
The only time we need to be concerned about privacy is when
training the model, since a large amount of trajectories from
numerous users is required for that task.

Consider a user who has recent check-ins { in a relatively
short time period (e.g., last few hours). This set of locations forms
the basis for recommending to the user the next location to visit.
The normalized embedded matrix W in the fully-trained model
encodes the latent feature vector of all locations. For each loca-
tion check-in /; € ¢, the embedding vectors w(l;) are extracted
and stacked on top of each other. More precisely, to obtain the
embedding vector w(l;), the binary vector of /; is multiplied with
W (similar to the first step of the training process). This process is
equivalent to extracting the dim-dimensional row corresponding
to location /;. Then, the average of elements across dimensions
of the stacked vectors is computed to produce a representation
F () of the recent check-ins of the user. Finally, cosine similarity
scores are computed as the dot-product of the vector F({) to the
embedding vector of each location in the universe L. We rank
all locations by their scores and select the top-K locations as the
potential recommendations for the user.

In the case when the user has no recent check-ins, the rep-
resentation () can be computed over her movement profile

!To reduce communication costs, only the embedding matrix is deployed.

comprising of historical check-ins. Other methods include train-
ing an additional model to learn latent feature vectors of each
user from her preferences and locations visited. As in [19, 58], a
user’s feature representation can be used to determine her incli-
nation to visit a particular location. However, modeling each user
with such personalized representations, while at the same time
preserving user-level privacy, is a fundamentally harder problem
(in terms of both system design and privacy framework), and is
left as future work.

When the model is deployed at an untrusted location-based
service provider (LBS), additional privacy concerns must be ad-
dressed. In this case, the mobile user must protect the set { (or
F({)) locally. Techniques such as geo-indistinguishability [3]
can be applied to protect the check-in history (discussed in Sec-
tion 6). For example, the check-in coordinates can be obfuscated
to prevent adversaries from pinpointing the user to a certain
location with high probability. Addressing these vulnerabilities
in the MLaaS$ setting is orthogonal to the scope of this paper.

4 PRIVATE LOCATION PREDICTION (PLP)

Section 4.1 presents in detail our proposed approach for private
next-location prediction. Section 4.2 provides a privacy analysis
of our solution.

4.1 Private Location Prediction (PLP)

PLP is a customized solution to location recommendation. It
learns latent factor representations of locations while control-
ling the influence of each user’s trajectory data to the training
process. Bounding the contribution of a single data record in the
SGD computation has been proposed in previous work [2, 53].
We make several extensions and contribute data grouping tech-
niques to boost model performance. Even while combining data
of multiple users, we guarantee user-level privacy (such as in
[21, 39]). By grouping data records of multiple users, we benefit
from cross-user learning to improve model performance.

Algorithm 1 depicts the procedure of this learning process.
Model hyperparameters labeled batch size f, learning rate 5
and loss function { are related to gradient descent optimization,
whereas hyperparameters labeled grouping factor A, sampling
probability g, gradient clipping norm bound C, noise scale o and
privacy parameters ¢, § are introduced to create an efficient and
privacy-preserving system. We briefly describe each component
in isolation before coupling them together to illustrate the big
picture.

User Sampling. Given a sampling probability g = m/N, each
element of the user set is subjected to an independent Bernoulli
trial which determines whether the element becomes part of
the sample. As a consequence, the size of sampled set of users
Usample is equal to m only in expectation. This is a necessary
step in correctly accounting for the privacy loss via the moments
accountant [2].

Data Grouping. Data grouping is essentially a pre-processing
technique that significantly boosts model performance. It has
a dual purpose. The first is to reduce the effects of skewness
and sparsity inherent to location data, where the frequency of
check-ins of users at locations follows the Zipf’s law [11]. The
second is to provide cross-user learning to smooth updates in the
model parameters produced by the function in lines 15-22. The
underlying intuition is simple: to ensure good performance of
the context model, each update of a training step must contribute
to the final result. By combining the profiles of multiples users

125

e E[| Usampte|] = m
vi — IH1 ={UL,U2}
= = o=
(0,
| | T
U2| | mrrrn 77
(um] (OO
[Immmmmmmm \)
U Subsampling Grouping |)
Us @ With with |
Probability . grouping |\
C———— || g=066 ([T facor [
| Emm] | A=2 \)
EEuma—])
Us| | EEEramEE H2 ={U+,Us}
EEsma——
] o
Usample =

{U1,U2,U2,U6} Training buckets J

User-gﬁt}oned
data

Figure 3: Data sampling and grouping

we also reduce minor observation errors that may be produced
from specific data points in a user’s profile.

Our data grouping technique agglomerates the data of multiple
users into buckets #. Given a grouping factor A, users (and their
entire data) are randomly assigned to buckets such that each
bucket contains A users. This operation is encapsulated in the
groupData(-) function in line 6. As a separate method, we also
tried equal frequency grouping, where a global pass over the
record count of each user is used to produce buckets such that
each contains approximately the same number of records (while
ensuring that the data records of each user are not split into
multiple buckets). However, we noticed no statistically significant
benefit in model accuracy from equal frequency grouping than
with a random grouping. Accordingly, we use the latter in the
rest of the work.

Figure 3 illustrates the data sampling and grouping process
(corresponding to lines 5-6) for a sampling probability of 0.66
and A = 2. Grouped data in each bucket is organized as a sin-
gle array for processing by gradient descent optimization. Re-
call from Section 3.2 that a symmetric moving window is ap-
plied to create training examples, after the array is read by the
generateBatches() function (in line 17). A number f of target-
context location pairs are placed in each batch.

In brief, at each step of PLP, we sample a random subset of
users (line 5), combine the data of multiple users into buckets
(line 6), compute a gradient update with bounded ¢ norm from
each bucket (lines 7-8), add noise to the sum of the clipped gradi-
ents (line 9), take their approximate average, and finally update
the model by adding this approximation (line 10). Alongside, a
privacy ledger is maintained to keep track of the privacy bud-
get spent in each iteration by recording the values of ¢ and C
(lines 3 and 11). This tracker has the added benefit of allowing
privacy accounting at any step of the training process. Given a
value of § and the recorded ledger, the moments accountant can
compute the overall privacy cost in terms of ¢. This functionality
is provided by the cumulative_budget_spent() function in line
12, which implements the moments accountant from [2].

Privacy Mechanism. The gradient values computed in line
20 do not have an a-priori bound. This complicates the application
of the Gaussian Mechanism (GM), which is generally tuned to the
sensitivity of the performed query. In this particular use case, we
employ a Gaussian sum query in line 9, the results of which are
then averaged using a fixed-denominator estimator. To bound the
sensitivity of this query, a maximum sensitivity of C is enforced

Algorithm 1 Algorithm for Private Location Prediction with
user-level privacy.

Input: loss function (), grouping factor A, learning rate 7,
sampling probability g = m/N, gradient norm bound C, batch
size f, privacy parameters ¢, §

1: procedure TRAINPRIVATELOCATIONEMBEDDING

2 Initialize: Model 6y = {W,W’, B},

3 Privacy Accounting ledger A (4, q)

4 for each stept =1, ... do

5 Usample < arandom sample of m; users

6 Initialize buckets #¢ « groupData(Usampie, A)
7 for each data bucket dj, € # do

8 gn < ModelUpdateFromBucket(6;, d,)

9 gt = ﬁ@he% gn +N(0,5%C?I))
10: Or41 =01 + g¢
1t A track_budget(C, o)

> Noise.
> Model Update.

12: if A.cumulative_budget_spent() > ¢ then:
13: return 0;_;

14:

15: function MODELUPDATEFROMBUCKET(6;, d},)

16: D 9;

17: B « generateBatches(dy, p)

18: for each b € B do

19: Q=0 Uﬁ Z(xiyieb Vod (@, xi, i)

20: gnh = D - 9;

21: gn = gp/max(1, %) > Gradient Norm Clipping.
22: return gy

on every gradient computed on bucket h as follows (equivalent
to line 21):

12l = {nghuz for [lgnll> < C
C for |lgnll2 > C.

Gradient clipping places a strict limit on the maximum cont-
ribution—in terms of its {3 norm—of the gradient computed on a
bucket. Formally, ||gp||2 < C. The sensitivity of the scaled gradi-
ent updates with respect to the summing operation is thus upper
bounded by C. Finally, dividing the GM’s output by the number
of buckets |#| yields an approximation of the true average of the
buckets’ updates.

We note that increasing the number of users in each bucket
increases the valuable information in each gradient update. At the
same time, the noise introduced by the Gaussian mechanism is
scaled to the sensitivity of each bucket’s update (i.e., C). If too few
buckets are utilized, this distortion may exceed a limit, meaning
that too much information output by the summing operation
is destroyed by the added noise. This will impede any learning
progress. We treat the grouping factor A as a hyper-parameter
and tune it.

In a multi-layer neural network such as the one described in
our work, each tensor can be set to a different clipping thresh-
old. However, we employ the per-layer clipping approach of [37],
where given an overall clipping magnitude C, each tensor is
clipped to C/\/m, In the skip-gram model, 6y = {W,W’,B’},
hence |8] = 3, so we clip the £,-norm of each tensor to C/v/3.
However, the effect of clipping on the three tensors is rather
different due to the difference in their dimensionality. Context
matrix W’ is clipped to the same degree as bias vector B’, despite

126

the fact that they have dimensions (L X dim) and (1 X L), respec-
tively. While the dimensionality of the embedding matrix W is
(L x dim), only a fraction of the weights—proportional to neg,
instead of L—are considered for clipping due to the sampling of
neg number of negative examples in the sampled softmax func-
tion. Simply put, ||[W]|3 is proportional to neg and when carefully
tuned, the clipping parameter is large enough that nearly all
updates are smaller than the clip value of C/ \/m , improving the
signal-to-noise ratio over iterative computations. We discuss the
effect of this parameter in controlling the distortion of Gaussian
noise in Section 5.

4.2 Privacy Analysis

Recall that, our proposed system provides user-level differen-
tial privacy to individuals who contribute their check-in history
to the training data. This ensures that all individuals are pro-
tected, regardless of how much data they contribute (i.e., even
if the length of the check-in history varies significantly across
users). Let Uy denote the data of a single user. The sensitivity of
the Gaussian Sum Query (GSQ) function w.r.t. to neighboring
datasets that differ in the records of a single user is defined as

max

”GSQ(Usample U Uk) - GSQ(Usample)HZ
{UsampleaUk}

SGso =

In Algorithm 1, GSQ is executed over the bucket gradients, which
complicates the analysis of the privacy properties of the algo-
rithm. We consider two distinct scenarios where a user’s data
may be assigned to: (i) exactly one bucket; or (ii) more than one
bucket. We define w as the data split factor, meaning that a user’s
data may be placed in at most w buckets.

Case 1 [w = 1]. This represents the scenario where multiple
(up to A) users’ data may be present in a single bucket, but a
single user’s data may be allocated to at most one bucket. Figure
4(a) depicts this case, which is assumed by default in Algorithm 1.
This is a sufficient condition to ensure that the per-user contribu-
tion to a bucket’s gradient update is tightly bounded. Formally,
there exists a unique dj, € # s.t. Ux C dj,. In addition, when the
{3 norm of the gradient ||g||2 computed on a data-bucket dj, is
upper-bounded by the clipping factor C, we get

Sgso < max [[GSQ(H U dp) — GSQ(#)l2 < C
(9, }

An informal proof that this approach satisfies (¢, §)-DP is as fol-
lows: The sensitivity of the gaussian sum query GSQ = >\, cq¢ 9n
is bounded as Sgsg < C, if for all buckets we have [|gy|l2 < C.
By extension, if a sampled user (and his location visits) can be
assigned to exactly one bucket, sibling datasets that differ in the
data of a single user can change the output of GSQ by at most C.
Therefore, Gaussian Noise drawn from N(0, 02C?I) guarantees
user-level (¢, §)-DP.

Case 2 [w > 1]. If the data of a single user is split over multiple
buckets, then it is possible that even after scaling the bucket
gradients to C, the sensitivity of the Gaussian sum query is no
longer C w.r.t. to user-neighboring datasets. Figure 4(b) illustrates
an example with w = 2. A similar split strategy (proposed in
[38]) is used in the empirical evaluation of [21], wherein a small
dataset is scaled up to amplify privacy accounting. However, the
authors fail to regulate their noise scale to reflect the altered
data sensitivity or alternatively recompute the achieved privacy
guarantee. We show that when the data of a user Uy is split
across multiple buckets, the sensitivity of the query increases to

. Assuming that |#| < |Usgmpiel, we can write,

W= max {dy, : d, € # and d}, N Uy, # 0}

{Uk EUsampl e
meaning that the data of a user can influence the gradients of at
most w buckets. Accordingly, if for all buckets ||gp||2 < C, a sin-
gle user can change the output of GSQ by at most wC. Therefore,
to guarantee user-level (¢, §)-DP, Gaussian Noise must be drawn
from N(0, 02 w?C?I) .

Usample =

_ . f —
1 ={ULU# {U1,U,U4,U6} 7 |kl
fe——
1 B
L)) {U2,U1}
e———— r

A (U, U6}

L i
7 w=1,A=2 w:Z,A;l e
H2 ={U2,Us} \E/ {U2,Us}

(a) Buckets generated
withw=1

(b) Buckets generated
with w =2

Figure 4: Sensitivity of Gaussian Sum Query over Usp/¢
users: (a) o = 1, a single user’s data is placed in exactly
one bucket; (b) w = 2, a single user’s data is split across
two buckets. Since gradients computed over the generated
buckets #1, ..., #4, are bounded by C, a user can contribute
at most 2C to the computed sum.

We remark here that values of w > 1 produced no positive
effect in our evaluation. We experimented with w = 2 by splitting
a user’s data to exactly two random buckets. We found that the
signal-to-noise ratio is adversely affected, since the marginally
improved signal from the split data is offset by the now quadru-
pled (proportional to w?) noise variance. In the rest of the work,
we set w to 1.

5 EXPERIMENTS

Section 5.1 provides the details of the experimental testbed. Sec-
tion 5.2 focuses on the evaluation of the proposed technique in
comparison with the state-of-the-art DP-SGD approach. In Sec-
tion 5.3 we evaluate in detail our approach when varying system
parameters, and provide insights into hyper-parameter tuning.

5.1 Experimental Settings

Dataset. We use a real dataset collected from the operation of a
prominent geo-social network, namely Foursquare [59]. The data
consist of a set of user check-ins. Every check-in is described by
a record comprising of user identifier, the latitude and longitude
of the check-in, and the identifier of the POI location. In order to
simulate a realistic environment of a city and its suburbs, we focus
on check-ins within a single urban area, namely Tokyo, Japan.
In particular, we consider a large geographical region covering
a 35 X 25km? area bounded to the South and North by latitudes
35.554, 35.759, and to the West and East by longitudes 139.496,
139.905. We filter out the users with fewer than ten check-ins,
as well as the locations visited by fewer than two users (such
filtering is commonly performed in the location recommendation
literature [33, 61]). The remainder of the data contains a total of
739, 828 check-ins from 4, 602 unique users over 5, 069 locations

127

during a time period of 22 months from April 2012 to January
2014.

Implementation. All algorithms were implemented in Python
on a Ubuntu Linux 18.04 LTS operating system. The experiments
were executed on an Intel Xeon Platinum 8164 CPU, with 64GB
RAM. All data and intermediate structures (e.g., neural network
parameters, gradients) are stored in main memory. The proposed
neural model is built using Google’s Tensorflow library [1]. To
account for the privacy budget consumption of the complex iter-
ative mechanism used in learning, we use the privacy account-
ing method from [54], which allows for a tight composition of
privacy-preserving steps. At each step of the computation, we
calculate the (¢, §) tuple from moment bounds, according to the
moments accountant procedure introduced in [37].

Evaluation Metric. To evaluate the performance of loca-
tion recommendation, we adopt the “leave-one-out” approach,
which has been widely used in the recommender systems litera-
ture [10, 19, 26, 35, 57, 58]. This metric simulates the behavior of
a user looking for the next location to visit. Given a time-ordered
user check-in sequence, recommendation models utilize the first
(t — 1) location visits as an input and predict the ‘" location
as the recommended location. The recommendation quality is
measured by Hit-Rate (HR). HR@k is a recall-based metric, mea-
suring whether the test location is in the top-k locations of the
recommendation list. The outcome of the evaluation is binary:
1 if the test location is included in the output set of the recom-
mender, and 0 otherwise. In the rest of the section, we use the
terms prediction accuracy and HR@k interchangeably.

Model Training. Our testing and validation sets consist of
location visits of users who are not part of the training set. Since
we do not train models to learn user specific representations
(such as in [10, 35, 58]), this is an accurate representation of real-
life model utilization at a user’s device. Validation and testing
sets are created in a similar fashion. First, a randomly selected
set of 100 users and their corresponding check-ins are removed
from the dataset. From these, time ordered sequences of trajecto-
ries are generated. Each individual trajectory does not exceed a
total duration of six hours (following the work in [10, 34]). The
remaining 4402 users and their check-ins represent the training
dataset for learning the parameters of the proposed model.

To train the model, we utilize Adam [29], a widely adopted
optimization algorithm for deep neural network models that
has specific properties to mitigate disadvantages of traditional
SGD, such as its difficulty in escaping from saddle points, or
extensive tuning of its learning rate parameter. We implement
the optimizer in a differentially private manner by tracking an
exponential moving average of the noisy gradient and the squared
noisy gradient, as illustrated in [24]. We found that tuning the
initial learning rate and decay scheme for Adam only affects the
learning in the very first few steps. Typically, Adam does not
require extensive tuning [29] and a learning rate between 0.001
to 0.1 is most often appropriate. In our experiments, we found
that a learning rate value n € [0.02, 0.07] produces similar results,
so we set it to 0.06 for all our runs.

Parameter Settings. We select the training hyper-parameters
of the skip-gram model via a cross validation grid search. Figure
5 depicts the validation accuracy over 200 data epochs using
the non-private learning approach. We plot the validation Hit-
Rate for k = 5, 10 and 20 candidates, respectively. We look for
those models that reach the highest accuracy. The embedding
dimension dim is set to 50. While a larger number of hidden units

allows more predictive power, the accuracy improvement reaches
a plateau when the embedding dimension is in the range [50, 150].
In non-private training, it is preferable to use more units, whereas
for private learning a larger model increases the sensitivity of the
gradient. We keep our model at the lower end of the dim range to
keep the number of internal parameters of the models low. The
batch size is set to b = 32, and the context window parameter
win = 2 (for a total window size of 5). These parameters are
also consistent with those utilized in previous work [10, 58].
Varying the number of negative examples sampled (denoted by
neg) marginally affects the non-private model, whereas with
private learning we find that it directly controls the sensitivity
of the private sum query (in Section 5.3 we show experiments
on how to tune it). The default value for negative samples is
neg = 16.

—- valiHR@5 —% valiHR@10 —©6— vali HR@20

0.40 @/6\9\9__—@ @/e—e———e\e
0.35
030 M M
0.25
5.0.20
[®)
® g g /E—E———E\E
50.15 =
] 25 50 75 100 125 1 2 3 4 5
< Embedding dim Skip Window win
s
S 0.40 9_9-\—9—9\9 e/e—e—e—e
©
kel
=035
>
0.30 W e
0.25
0.20
——8—8— ||l e—8—F—F— ¢
0.15
16 32 64 128 256 4 8 16 32 64

Batch Size b Negative Samples neg

Figure 5: Non-private model hyperparameter tuning

For the privacy parameters, we fix the value of § = 2x 107% <
1/N as recommended in previous work on differentially-private
machine learning [2, 39]. For a given value of §, the privacy
budget ¢ affects the amount of steps we can train until we exceed
that budget threshold. We set the default value of the hyper-
parameters to g = 0.06, 0 = 2.5, C = 0.5, 1 = 4 (please see
Table 1 for a summary of notations). Recall that, the sampling
ratio of each lot is ¢ = m/N, so each epoch consists of 1/q steps.

—— Loss —— test HR@10 ---- vali HR@5 ---- vali HR@20
—— test HR@5 —— test HR@20 ---- vali HR@10
45 A,:\-,‘»-—,\.«\zw"—-‘"""""-‘"\"'“"“""‘"“»”"’”“"“""‘"""" e 104
4.0 >
e
§ 35 0.32
230 <
{= =
25 023
[o
<
2.0 o
0.1
15
0 50 100 150 200 250

Data Epochs

Figure 6: Non-private model performance

128

5.2 Comparison with Baseline

We evaluate the performance of our proposed approach in com-
parison with two baselines: (i) a non-private learning approach
using SGD, and (ii) the state-of-the-art user-level DP-SGD ap-
proach from [2, 39].

First, we evaluate the non-private location prediction model
described in Section 3.2. Figure 6 illustrates the validation and
testing Hit-Rate at k = 5, 10 and 20. The model generalizes well
to the test set, and there appears to be no evidence of overfitting
up to 250 data epochs. The presented results are competitive with
existing approaches in [35, 58], suggesting that the model hyper-
parameters are suitable to capture the underlying semantics of
mobility patterns. The best testing accuracy of the non-private
model for the HR@10 setting is 29.5%.

Throughout our evaluation we found that, when the model is
trained in a differentially private manner, there is only a small
difference between the model’s accuracy on the training and the
test sets. This is consistent with both the theoretical argument
that differentially private training generalizes well [5, 15], and
the empirical evidence in previous studies [2, 39]. For brevity of
presentation, in the rest of this section we only show HR@10
evaluation results (similar trends were recorded for HR@5 and
HR@20).

Next, we evaluate our proposed Private Location Prediction
(PLP) approach in comparison with DP-SGD [2], which is summa-
rized in Section 2. We adapt the model to work on user-partitioned
data, so that it guarantees user-level privacy. The improvements
of PLP over DP-SGD passed the paired ¢-test with significance
value p < 0.01.

Figure 7 plots the prediction accuracy of the privately trained
models for varying levels of privacy ¢. For each ¢ value, we con-
sider two settings each for sampling probability ¢ = 0.06 (upper
left) and ¢ = 0.10 (bottom right). We set 0 = 1.5. We compare
PLP against the baseline DP-SGD for two values of the grouping
factor 1. As expected, a general trend we observed is that provid-
ing more privacy budget allows the models to train to a higher
accuracy. However, for the baseline approach, the convergence
of the model is thwarted because the model update computed
on the data of a single user contributes a limited signal, which
is often offset by the introduced Gaussian noise. On the other
hand, the results show that by incorporating data grouping in
its design, PLP is able to ameliorate the data sparsity problem
inherent to location datasets. The gain is more pronounced when
the grouping factor increases (i.e., higher 1).

Next, we measure the effect of sampling probability g on ac-
curacy. From the theoretical model [2], we know that g directly
affects the amount of privacy budget utilized in each iteration (g
is also called “privacy amplification factor”). A lower sampling
rate includes less data in each iteration, hence the amount of bud-
get consumed in each step is decreased. Our results in Figure 8
confirm this trend. We vary the rate of user sampling q from 4%
to 12%. For all runs, we fixed the budget allowance at ¢ = 2. For
a higher sampling probability, the privacy budget is consumed
faster, hence the count of total training steps is smaller, leading
to lower accuracy. Our proposed PLP method clearly outper-
forms DP-SGD, whose accuracy drops sharply with an increase
in q. We note that, due to the proposed grouping strategy, PLP is
more robust to changes in sampling rate, as its accuracy degrades
gracefully. In general, a larger bucket cardinality leads to better
accuracy, except for the lowest considered sampling rate, where
the small fraction of records included in the computation at each

0.22

—— PLP, A=6, q=0.10

0.201 —— PLP, A=4, g=0.10

..0.181 = DP-SGD, g=0.10 .
8 3
gote o018
<o0.14 <
5 s
5012 3 0.16
= =

2

&

k=1
0 0.10
a

-5~ PLP, A=6, ¢ =0.06
-6~ PLP, A=4, ¢ =0.06
—— DP-SGD, g=0.06

=)
e
IS

0.08

0.06

o
o
o

Running Time
improvement factor
N w w » »
nw o wu o w

N
=3

0.5 1 2 3 4
Privacy parameter €

0.04 0.06

Figure 7: PLP vs DP-SGD: varying pri-

vacy budget ¢ pling ratio ¢

step prevents buckets from reaching a significant diversity in
their composition.

Finally, we provide a result on the runtime improvements
offered by PLP. The y-axis in Figure 9 depicts the multiplicative
factor by which PLP is faster that DP-SGD. We show results for
two values of g, and for each we present the runtime with two
values of noise scale. Linearly scaling the grouping factor has
two opposing effects: on the one hand, fewer buckets implies that
equally few bucket gradients need to be computed and averaged.
On the other hand, as each bucket gets assigned more users, it
takes longer to compute each bucket gradient. When fewer users
are sampled (i.e., ¢ = 0.06) the latter effect begins to dominate for
A > 5, whereas for A € [2,5], the computational efficiency scales
from 1.6X to 2.5X. In the setting where sampling rate is higher,
at ¢ = 0.10, the runtime improvements scale monotonically, to
over 4.8% for A = 6. These results are consistently observed even
with a different number of total iterations (as a larger o allows
more iterations).

In summary, our results so far show that PLP clearly out-
performs the existing state-of-the-art DP-SGD. Furthermore, its
accuracy was observed to reach values as high as 24%, which is
quite reasonable compared to the maximum of 29.5% reached
by the non-private learning approach. In the rest of the evalua-
tion, we no longer consider DP-SGD, and we focus on tuning the
parameters of the proposed PLP technique.

5.3 Hyper-parameter Tuning

The objective of tuning model hyper-parameters is to obtain a
good balance of accuracy and computational overhead of learn-
ing. We focus on the following parameters, which we observed
throughout the experiments to have a significant influence: group-
ing factor A, noise scale o, the magnitude of ¢, clipping norm,
and the number of negative samples neg.

o
N
N

o
N
o

Prediction Accuracy
o
=
©

0.16 -8 ¢=0.06,0=2
—— ¢=0.06,0=3
0.14 —A— ¢=0.10,0=2
—¢ ¢=0.10,0=3

0.12
1 2 3 a 5 6

Grouping Factor A

Figure 10: Effect of varying A

0.08

Sampling probability g

Figure 8: PLP vs DP-SGD: varying sam-

129

0.1 0.12 2 3 5 6

4
Grouping Factor A

Figure 9: Running time, varying group-
ing factor A

Effect of Grouping factor A. Figure 10 shows the influence on
accuracy of grouping factor A. We consider two distinct settings
each of sampling parameter q and noise scale o (for a total of
four lines in the graph). To limit sensitivity, we clip the gradient
norm of each tensor to a maximum I; norm of 0.5. Choosing
the grouping factor must balance two conflicting objectives: on
the one hand, assigning the data of multiple users to the same
bucket improves the signal in each bucket gradient, by improving
the data diversity within the bucket. On the other hand, the
Gaussian noise must be scaled to the sensitivity of a bucket
gradient, and a larger bucket size results to fewer buckets, which
in turn increases the effect of added noise. Our results confirm
this trade-off: initially, when A increases there is a pronounced
increase in accuracy. After a certain point, the accuracy levels
off, and reaches a plateau around the value of A = 5. When the
grouping factor is increased further (not shown in the graph),
the accuracy starts decreasing, because there is no significant
gain in per-bucket diversity, whereas the relative noise-to-signal
ratio keeps increasing.

Effect of Noise Scale ¢. The noise scale parameter o directly
controls the noise added in each step. A larger o leads to more
noise, but at the same time it decreases the budget consumption
per step, which in turn allows the execution of more learning
steps. Figure 11 depicts the model accuracy for varying settings
of noise scale. The results presented correspond to two settings
each of sampling rate and privacy budget (for a total of four lines).
We observe that for the lower-range of o values, the accuracy
is rather poor, especially for smaller settings of privacy budget
¢. This is explained by the fact that too little noise is added per
step, and the privacy consumption per step is high. As a result,
only a small number of steps can be executed before the privacy
budget is exhausted, leading to insufficient learning. For larger ¢
settings, the effect is less pronounced, because there is sufficient
budget to allow more steps, even when the noise scale is low.

Conversely, a larger o allows more steps to be executed, so the
best accuracy is obtained for the largest o = 3.0 setting. However,
we also note that the accuracy levels off towards that setting. For
larger o values (not showed in the graph), we observed that
the noise magnitude is too high, and even if budget is slowly
exhausted, the training loss in each learning step is excessively
high, preventing the model from converging, and leading to very
low accuracy. We conclude that the choice of noise scale must
be carefully considered relative to the total privacy budget, such
that a sufficient number of steps are allowed to execute, while at
the same time the loss function value per step is not excessive.

The total number of executed steps also influences the compu-
tational overhead of learning. If execution time is a concern, one

may want to reduce the number of steps by reducing o, in an
attempt to accelerate the learning (intuitively, since less noise is
added at each step, the model will converge faster). This approach
is still subject to ensuring that a sufficient number of steps are
executed, as neural networks need to perform several complete
passes over the dataset.

0.24] &= q=0.0 —4/9/—9———@
—— g=0.10 4
> 0.22
1<
e
30.20
1%}
<
§0.18
s}
=1
2 0.16
a
0.14 —B- q=0.06,£=2
—— ¢=0.10,e=2
0.12 1~ y . . .
1.0 15 2.0 2.5 3.0

Noise Scale o

Figure 11: Effect of varying o

Effect of Clipping norm C. We vary the clipping bound of
every tensor in the model 8y = {W, W’, B’}. The value C rep-
resents the magnitude of per-tensor clipping, which is set to
be equal for every tensor in the model. Clipping more aggres-
sively decreases sensitivity, which in turn leads to a lower privacy
budget consumption per step, and allows additional learning iter-
ations to be executed. Conversely, setting the threshold too low
also limits the amount of learning that the model can achieve per
step. Figure 12 plots the obtained results for several combinations
of sampling probability and grouping factor.

We observe that the for the range of values considered, the
decrease in sensitivity has a more pronounced impact, and as
a result the smaller clipping bounds lead to better accuracy. Of
course, one cannot set the clipping bound arbitrarily low, as that
will significantly curtail learning. Another factor to consider is
the nature of the data, and the effect on gradient values. If the
norm of the resulting tensors following gradient computation is
high, then a low clipping threshold will destroy the information
and prevent learning. In our case, we were able to keep the
gradient norm low by using negative sampling, which in turn
allowed us to obtain good accuracy for that setting. In cases
where this is not possible, it is recommended to increase the
clipping threshold value.

e o o ©
BONONN
© o N &

e
A
o

Prediction Accuracy

0.1 0.3 0.5

Clipping norm per layer

0.7

Figure 12: Effect of varying ¢, clipping norm

Effect of Negative samples neg. In our final experiment, we
investigate the effect on accuracy of negative sampling, which is
an important factor in the training success of a skip-gram model.

130

We plot the model accuracy for various values of negative sam-
pling in Figure 13. The number of negative samples neg controls
the total fraction of weights that are updated for each training
sample, and as a side effect it helps keeping the gradient norm
low. We can observe a clear ‘U’-shaped dependency, reaching a
maximum at neg = 16. The observed trend is the result of two
conflicting factors: if the number of negative samples is too low,
training is slowed down, due to the fact that only a small part of
the layers are updated per step. Conversely, if too many samples
are drawn, then the correspondingly many parameters that need
to be updated lead to a large norm. Gradient clipping has an
aggressive effect, and as a result, the amount of information that
can be learned in each update is obliterated by the noise.

-5 ¢=0.06,C=0.5
| -~ q=0.06,C=0.3

o
N
N

/S\S\@

Prediction Accuracy
o
in
[oe]

—— ¢=0.10,C=05
14— g=010,C=03

4 8 16 32

Negative Samples neg

64

Figure 13: Effect of varying neg

6 RELATED WORK

Location recommendation. The problems of location recom-
mendation and prediction have received significant attention in
the last decade. Recommending a location to visit to a user necessi-
tates modeling human mobility for the sequential prediction task.
Markov Chain (MC) based methods, Matrix Factorization (MF)
techniques, and Neural Network models (NN) are the schemes
of choice for this objective. MC-based methods utilize a per-user
transition matrix comprised of location-location transition prob-
abilities computed from the historical record of check-ins [62].
The m*"-order Markov chains emit the probability of the user
visiting the next location based on the latest m visited locations.
Private location recommendation over Markov Chains is stud-
ied in [63]. Aggregate counts of check-ins in discretized regions
are published as differentially private statistics. However, due to
the sparsity in check-in behavior and the general-purpose pri-
vacy mechanisms, their method can only extend to coarse spatial
decompositions (e.g., grids having larger than 5km? cells). Factor-
izing Personalized Markov Chains (FPMC) [47] extend MC by fac-
torizing this transition matrix for the collaborative filtering task.
Matrices containing implicit user feedback on locations can also
be exploited for location recommendation via weighted matrix
factorization [33]. Private Matrix Factorization has been explored
in [36, 51], but we are not aware of any proposal for their appli-
cation to the problem we are considering. Neural Networks have
become a powerful tool in recommender applications due to their
flexibility, expressive power and non-linearity. Recurrent Neural
Networks (RNN) can model sequential data effectively, especially
language sentences [42]. Recurrent nets have also been adapted
for location sequences [34, 64]. However, RNNs assume that tem-
poral dependency changes monotonically with the position in a
sequence. This is often a poor assumption in sparse location data.
As aresult, the state-of-art [10, 19, 35, 58] employs the skip-gram

model [43] to learn the distributional context of users check-in
behavior. Extensions incorporate temporal [19, 35, 61], textual
[10] and other contextual features [58]. However, none of these
studies provide any privacy features, which is the crux of our
work.

Differential Privacy (DP) and Neural Networks. A recent
focus in the differential privacy literature is to reason about cu-
mulative privacy loss over multiple private computations given
the values of ¢ used in each individual computation [8, 18, 44, 54].
A fundamental tool used in this task is privacy amplification
via sampling [4], wherein the privacy guarantees of a private
mechanism are amplified when the mechanism is applied to a
small random subsample of records from a given dataset. Abadi
et. al. [2] provide an amplification result for the Gaussian out-
put perturbation mechanisms under Poisson subsampling. Their
technique, called moments accountant, is based on the moment
generating function of the privacy loss random variable. Other
privacy definitions that lend themselves to tighter composition
include Rényi Differential Privacy [44] and zero-Concentrated
Differential Privacy [8], and their application to private learning
with data subsampling ([54],[31] respectively). However, these
privacy models are relatively new and the distinctions in privacy
guarantees at the user-end remain to be investigated. In practice,
(¢, 8)-differential privacy is the de-facto privacy standard [21, 39].

Location Privacy We overview literature that focuses on pre-
venting the location based service provider (the adversary) from
inferring a mobile user’s location in the online setting. Spatial
k-anonymity (SKA) [22] generalizes the specific position of the
querying user to a region that encloses at least k users. The result-
ing anonymity set bounds the adversary’s probability of identify-
ing the query user to at most 1/k. However, this syntactic notion
of privacy can be easily circumvented when the data are sparse,
i.e., the distribution of the number of location visits of an average
user over the universe of POIs is long-tailed. Moreover, check-ins
in sparse regions are especially vulnerable to an adversary with
background knowledge, significantly increasing the probability
that de-anonymization succeeds [45]. Another source of leakage
is when the querying user moves, disconnecting himself from
the anonymity set. DP can be used in the context of publishing
statistics over datasets of locations or trajectories collected from
mobile users. The Local Differential Privacy paradigm is well
suited for this purpose, and its application to location data is
explored in [46]. The Randomized Response mechanism is used
to report, in addition to users actual locations, a large number of
erroneous locations. Recommendation models that utilize these
statistics can at best leverage spatial proximity queries [48] or
apply to coarse spatial decompositions [46], and are incapable of
cross-user learning such as in the case of the skip-gram model.
Lastly, adapting the powerful guarantees of DP to protecting
exact location coordinates, Geo-indistinguishability (Geolnd) [3]
relaxes the DP definition to the euclidean space. It is the pri-
vacy framework of choice for obfuscating user check-ins in the
absence of a trusted data curator.

Note that, SKA and Geolnd rely on obfuscating individual
location records that make up the larger dataset, making them
suitable only for applications that utilize spatial proximity queries
(e.g., a user that sends noisy coordinates to obtain points of in-
terest in her vicinity). Utilizing these methods to publish data for
training ML models is not viable, since adding noise to the coor-
dinates wipes out any contextual information on the POI visited
(beginning with the POI identifier). Moreover, since the same

131

user may have numerous check-in records in a longitudinal loca-
tion dataset, data publishing with the common techniques suffers
from serious privacy leakages. User-level correlations (e.g., multi-
ple checkins of a user that are closely related) severely increase
the possibility of de-anonymization in the case of SKA. Likewise,
in the case of Geolnd, the cumulative privacy loss variable cal-
culated via a standard composition theorem exceeds reasonable
privacy levels.

7 CONCLUSIONS

We proposed a new approach for differentially-private next-
location prediction using the skip-gram model. To the best of
our knowledge, ours is the first technique that deploys DP-SGD
for skip-grams. We made use of negative sampling to reduce the
norms of gradient updates when dealing with high-dimensional
internal neural network layers, and provided a data grouping
technique that can improve the signal-to-noise ratio and allows
for effective private learning. Our extensive experiments show
that the proposed technique outperforms the state-of-the-art, and
they also provide insights into how to tune system parameters.

Although our results focus on location data, we believe that
our findings can be extended to other types of sparse data. In
future work, we plan to test the viability of our approach for
other learning tasks. Furthermore, we plan to investigate flexible
privacy budget allocation strategies across different stages of the
learning process, such that accuracy is further improved. Finally,
we will study more sophisticated data grouping approaches that
make informed decisions on which users to place together in the
same bucket. Since such decisions are data dependent, a careful
trade-off must be considered between the budget consumed per-
forming the grouping and the remaining budget used for learning,
such that prediction accuracy is maximized.

Acknowledgements. This research has been funded in part
by NSF grants IIS-1910950 and IIS-1909806, the USC Integrated
Media Systems Center (IMSC), and unrestricted cash gifts from
Microsoft and Google. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of any of the
sponsors such as the National Science Foundation.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 265-283, 2016.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang. Deep learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages
308-318. ACM, 2016.

M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-
indistinguishability: Differential privacy for location-based systems. In ACM
CCS, 2013.

B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification by subsampling:
Tight analyses via couplings and divergences. In Advances in Neural Informa-
tion Processing Systems, pages 6277-6287, 2018.

R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algo-
rithmic stability for adaptive data analysis. In Proceedings of ACM Symposium
on Theory of Computing, pages 1046-1059, 2016.

R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In IEEE Symposium on Foundations
of Computer Science, pages 464-473, 2014.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT 2010, pages 177-186. 2010.

M. Bun and T. Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. In Theory of Cryptography Conference, pages
635-658. Springer, 2016.

N. Carlini, C. Liu, J. Kos, U. Erlingsson, and D. Song. The secret sharer:
Measuring unintended neural network memorization & extracting secrets.

(2]

&

[10]

[11]

[12

[13]

[14

[15]

[16

[17]
(18]

[19]

[20]

[21]
[22]

[23]

[24

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32

[33]

[34]

[35]

[36]

[37]

[38]

arXiv preprint arXiv:1802.08232, 2018.

B. Chang, Y. Park, D. Park, S. Kim, and J. Kang. Content-aware hierarchical
point-of-interest embedding model for successive poi recommendation. In
IJCAL pages 3301-3307, 2018.

E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement
in location-based social networks. In Proc. of ACM SIGKDD Conf. on Knowledge
discovery and data mining, pages 1082-1090, 2011.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. Journal of machine learning
research, 12(Aug):2493-2537, 2011.

Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in
the crowd: The privacy bounds of human mobility. Scientific reports, 3:1376,
2013.

C. Dwork. Differential privacy: A survey of results. In Theory and Applications
of Models of Computation, pages 1-19, 2008.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Gener-
alization in adaptive data analysis and holdout reuse. In Advances in Neural
Information Processing Systems, pages 2350-2358, 2015.

C.Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pages 265-284.
Springer, 2006.

C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3-4):211-407, 2014.
C. Dwork and G. N. Rothblum. Concentrated differential privacy. arXiv
preprint arXiv:1603.01887, 2016.

S. Feng, G. Cong, B. An, and Y. M. Chee. Poi2vec: Geographical latent repre-
sentation for predicting future visitors. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pages
1322-1333. ACM, 2015.

R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning: A
client level perspective. arXiv preprint arXiv:1712.07557, 2017.

M. Gruteser and D. Grunwald. Anonymous usage of location-based services
through spatial and temporal cloaking. In Proceedings of the Ist international
conference on Mobile systems, applications and services, pages 31-42. ACM,
2003.

M. U. Gutmann and A. Hyvirinen. Noise-contrastive estimation of unnormal-
ized statistical models, with applications to natural image statistics. Journal
of Machine Learning Research, 13(Feb):307-361, 2012.

R. Gylberth, R. Adnan, S. Yazid, and T. Basaruddin. Differentially private
optimization algorithms for deep neural networks. In 2017 International
Conference on Advanced Computer Science and Information Systems (ICACSIS),
pages 387-394. IEEE, 2017.

J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro. Logan: Membership
inference attacks against generative models. Proceedings on Privacy Enhancing
Technologies, 2019(1):133-152, 2019.

X.He, Z. He, J. Song, Z. Liu, Y.-G. Jiang, and T.-S. Chua. Nais: Neural attentive
item similarity model for recommendation. IEEE Transactions on Knowledge
and Data Engineering, 30(12):2354-2366, 2018.

B. Hitaj, G. Ateniese, and F. Pérez-Cruz. Deep models under the gan: infor-
mation leakage from collaborative deep learning. In Proc. of ACM Conf. on
Computer and Communications Security, pages 603-618, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735-1780, 1997.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097-1105, 2012.

J. Lee and D. Kifer. Concentrated differentially private gradient descent with
adaptive per-iteration privacy budget. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1656—
1665. ACM, 2018.

O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 3:211-225, 2015.

D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui. Geomf: joint geographical
modeling and matrix factorization for point-of-interest recommendation. In
Proc. of ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 831-840, 2014.

Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next location: A recurrent
model with spatial and temporal contexts. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

X. Liu, Y. Liu, and X. Li. Exploring the context of locations for personalized
location recommendations. In IJCAL pages 1188-1194, 2016.

Z. Liu, Y.-X. Wang, and A. Smola. Fast differentially private matrix factor-
ization. In Proceedings of the 9th ACM Conference on Recommender Systems,
pages 171-178. ACM, 2015.

H. B. McMahan and G. Andrew. A general approach to adding differential
privacy to iterative training procedures. arXiv preprint arXiv:1812.06210, 2018.
H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al. Communication-
efficient learning of deep networks from decentralized data. arXiv preprint

132

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

arXiv:1602.05629, 2016.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially
private language models without losing accuracy. ICLR, 2018.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In IEEE Symposium on Security and
Privacy, 2019.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

T. Mikolov, M. Karafit, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent
neural network based language model. In Eleventh annual conference of the
international speech communication association, 2010.

T. Mikolov, L Sutskever, K. Chen, G. S. Corrado, and]J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111-3119, 2013.

L. Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 263-275. IEEE, 2017.

A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse
datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), May 2008.
D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and J. Crowcroft. Spotme
if you can: Randomized responses for location obfuscation on mobile phones.
In 2011 31st International Conference on Distributed Computing Systems, pages
363-372. IEEE, 2011.

S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proc. of Intl. Conf. on
World Wide Web, pages 811-820, 2010.

D. Riboni and C. Bettini. Differentially-private release of check-in data for
venue recommendation. In 2014 IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages 190-198. IEEE, 2014.

X. Rong. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

M. Sahlgren. The distributional hypothesis. Italian Journal of Disability Studies,
20:33-53, 2008.

H. Shin, S. Kim, J. Shin, and X. Xiao. Privacy enhanced matrix factorization
for recommendation with local differential privacy. IEEE Transactions on
Knowledge and Data Engineering, 30(9):1770-1782, 2018.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference
attacks against machine learning models. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 3-18. IEEE, 2017.

S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and
Information Processing, pages 245-248. IEEE, 2013.

Y.-X. Wang, B. Balle, and S. Kasiviswanathan. Subsampled renyi differential
privacy and analytical moments accountant. arXiv preprint arXiv:1808.00087,
2018.

B.J. Wilson and A. M. Schakel. Controlled experiments for word embeddings.
arXiv preprint arXiv:1510.02675, 2015.

X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. A methodology for formaliz-
ing model-inversion attacks. In 2016 IEEE 29th Computer Security Foundations
Symposium (CSF), pages 355-370. IEEE, 2016.

X. Xin, X. He, Y. Zhang, Y. Zhang, and J. Jose. Relational collaborative filter-
ing: Modeling multiple item relations for recommendation. arXiv preprint
arXiv:1904.12796, 2019.

C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han. Bridging collaborative filtering
and semi-supervised learning: A neural approach for poi recommendation.
In Proc. of ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
pages 1245-1254, 2017.

D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. Revisiting user mobility and
social relationships in lbsns: A hypergraph embedding approach. In Proc. of
Intl. Conf. on World Wide Web, 2019.

D. Yang, D. Zhang, L. Chen, and B. Qu. Nationtelescope: Monitoring and
visualizing large-scale collective behavior in lbsns. Journal of Network and
Computer Applications, 55:170-180, 2015.

Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-
of-interest recommendation. In Proceedings of the 36th international ACM
SIGIR conference on Research and development in information retrieval, pages
363-372. ACM, 2013.

C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty, and J. Han. Gmove:
Group-level mobility modeling using geo-tagged social media. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1305-1314. ACM, 2016.

[63] J.D. Zhang, G. Ghinita, and C. Y. Chow. Differentially private location recom-

[64]

mendations in geosocial networks. In 2014 IEEE 15th International Conference
on Mobile Data Management, volume 1, pages 59-68. IEEE, 2014.

S. Zhao, T. Zhao, I. King, and M. R. Lyu. Geo-teaser: Geo-temporal sequential
embedding rank for point-of-interest recommendation. In Proc. of Intl, Conf.
on World Wide Web, pages 153-162, 2017.

	Differentially-Private Next-Location Prediction with Neural NetworksRitesh Ahuja, Gabriel Ghinita, Cyrus Shahabi

