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Abstract
We study two optimization problems on simplicial complexes with homology over Z2, the minimum
bounded chain problem: given a d-dimensional complex K embedded in Rd+1 and a null-homologous
(d− 1)-cycle C in K, find the minimum d-chain with boundary C, and the minimum homologous
chain problem: given a (d + 1)-manifold M and a d-chain D in M, find the minimum d-chain
homologous to D. We show strong hardness results for both problems even for small values of d;
d = 2 for the former problem, and d = 1 for the latter problem. We show that both problems
are APX-hard, and hard to approximate within any constant factor assuming the unique games
conjecture. On the positive side, we show that both problems are fixed-parameter tractable with
respect to the size of the optimal solution. Moreover, we provide an O(

√
log βd)-approximation

algorithm for the minimum bounded chain problem where βd is the dth Betti number of K. Finally,
we provide an O(

√
lognd+1)-approximation algorithm for the minimum homologous chain problem

where nd+1 is the number of (d+ 1)-simplices inM.
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1 Introduction

Simplicial complexes are best known as a generalization of graphs, but have more structure
than other generalizations such as hypergraphs. Despite the structure, simplicial complexes
are sufficiently expressive to make many algorithmic questions computationally intractable.
For example, the generalization of shortest path that we examine in this work is NP-hard
in 2-dimensional simplicial complexes [16]. Since planar graphs (1-dimensional simplicial
complexes embeddable in R2) exhibit structure that is algorithmically useful, resulting in more
efficient or more accurate algorithms than for general graphs, we ask whether 2-dimensional
simplicial complexes that are embeddable in R3 (and more generally, d-complexes emdeddable
in Rd+1) also have sufficient structure that can be exploited algorithmically. To this end, we
examine the algebraic generalization of the shortest path problem in graphs to simplicial
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21:2 Minimum Bounded Chains

complexes of higher dimension. This restriction via embedding in Euclidean space would still
result in a useful algorithmic tool, given the connection of embedded simplicial complexes to
meshes arising from physical systems.

Formally we study the minimum bounded chain problem which is the algebraic generaliz-
ation of the shortest path problem in graphs [23]. The goal of the minimum bounded chain
problem is to find a subcomplex whose boundary is a given input cycle C. More precisely:
Given a d-dimensional simplicial complex K and a null-homologous (d− 1)-dimensional cycle
C ⊂ K, find a minimum-cost d-chain D ⊂ K whose boundary ∂D = C. The requirement
that the cycle be null-homologous is necessary and sufficient for the existence of a solution
and we study the problem in the context of Z2-homology.1 In Z2-homology, a d-chain is a
subset of d-simplices of the simplicial complex. We see this as a generalization of the shortest
path problem in graphs as follows: Let K be a one dimensional simplicial complex (i.e. a
graph). A pair of vertices in the same connected component, s and t, is a null-homologous
0-chain and the minimum 1-chain whose boundary is {s, t} is the shortest (s, t)-path. Grady
has written on why this generalization is useful in the context of 3D graphics [18].

The minimum bounded chain problem is closely related to the minimum homologous
chain problem which asks: given a d-chain D, find a minimum-cost d-chain X such that the
symmetric difference of D and X form the boundary of a (d+1)-chain. Alternatively, X is the
minimum-cost d-chain that is homologous to D. Dunfield and Hirani [16] show the minimum
bounded and homologous chain problems are equivalent under additional assumptions. We
study the minimum homologous chain problem for d-chains in (d+ 1)-manifolds.

1.1 Our results
We present approximation and fixed-parameter tractable algorithms for the minimum bounded
chain and the minimum homologous chain problem. In this paper we consider both problems
in the context of simplicial homology over Z2. We denote by nd the number of d-simplices
of the d-dimensional simplicial complex K. Two of our results assume the unique games
conjecture. For an overview of the unique games conjecture and its impact on computational
topology we refer the reader to the work of Growchow and Tucker-Foltz [19].

I Theorem 1. There exists an O(
√

log βd)-approximation algorithm for the minimum bounded
chain problem for a simplicial complex K embedded in Rd+1, with dth Betti number βd.

I Theorem 2. There exists an O(15k ·k ·n3
d) time exact algorithm for the minimum bounded

chain problem for simplicial complexes embedded in Rd+1, where k is the number of d-simplices
in the optimal solution.

I Theorem 3. There exists an O(
√

lognd+1)-approximation algorithm for the minimum
homologous chain problem for d-chains in (d+ 1)-manifolds.

I Theorem 4. There exists an O(15k·k·n3
d) time exact algorithm for the minimum homologous

chain problem for d-chains in (d+ 1)-manifolds, where k is the size of the optimal solution.

The running times for the first two theorems is computed assuming that the dual graph
of the complex in Rd+1 is available. The last two theorems hold, more generally, for weak
pseudomanifolds studied by Dey et al. in [14].

On the hardness side, we show that constant factor approximation algorithms for these
problems (minimum bounded chain and minimum homologous chain) are unlikely.

1 Formal definitions are presented in Section 2.
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I Theorem 5. The minimum bounded chain problem is
(i) hard to approximate within a (1 + ε) factor for some ε > 0 assuming P 6= NP, and
(ii) hard to approximate within any constant factor assuming the unique games conjecture,

even if K is a 2-dimensional simplicial complex embedded in R3 with input cycle C embedded
on the boundary of the unbounded volume in R3 \ K.

I Theorem 6. The minimum homologous chain problem is
(i) hard to approximate within a (1 + ε) factor for some ε > 0 assuming P 6= NP, and
(ii) hard to approximate within any constant factor assuming the unique games conjecture,

even when the input chain is a 1-cycle on an orientable 2-manifold.

1.2 Related Work
1.2.1 Chain problems over Z and R
Research on the minimum bounded chain problem is limited to the case of Z-homology,
where linear programming techniques can be employed algorithmically. Sullivan described
the problem as the discretization of the minimal spanning surface problem [28] with Kirsanov
reducing the problem to an instance of minimum cut in the dual graph [23]. Sullivan’s
work is on the closely related cellular complexes, but under the same restrictions we study
(embedded in Rd) and Kirsanov studies the problem in embedded simplicial complexes.

Likewise, research on minimum homologous chain has largely worked in Z-homology. Dey,
Hirani and Krishnamoorthy formulate the minimum homologous chain problem over Z as
an integer linear program and describe topological conditions for the linear program to be
totally unimodular (and so, poly-time solvable) [13]. Of course, integer linear programming
approaches do not extend to Z2-homology.

This linear programming approach was then applied to the minimum bounded chain
problem (over Z) by Dunfield and Hirani [16]. Moreover, they show the minimum bounded
chain problem is NP-complete via a reduction from 1-in-3 SAT. The gadget they use was
originally used by Agol, Hass and Thurston to show that the minimal spanning area problem
is NP-complete [2].

Linear programming techniques have also been used by Chambers and Vejdemo-Johansson
to solve the minimum bounded chain problem in the context of R-homology [9]. In R-homology
Carvalho et al provide an algorithm finding a (not necessarily minimum) bounded chain in a
manifold by searching the dual graph of the manifold [7].

1.2.2 Chain problems over Z2

Special cases of the minimum homologous chain problem have been studied in Z2 homology.
The homology localization problem is the case when the input chain is a cycle. The homology
localization problem over Z2 in surface-embedded graphs is known to be NP-hard via a
reduction from maximum cut by Chambers et al. [8]; our reduction is from the complement
problem minimum uncut. On the algorithmic side, Erickson and Nayyeri provide a 2O(g)n logn
time algorithm where g is the genus of the surface [17]. Using the idea of annotated simplices,
Busaryev et al. generalize this algorithm for homology localization of 1-cycles in simplicial
complexes; the algorithm runs in O(nω) + 2O(g)n2 logn time where ω is the exponent of
matrix multiplication, and g is the first homology rank of the complex [6].

Using a reduction from the nearest codeword problem Chen and Freedman showed
that homology localization with coefficients over Z2 is not only NP-hard, but it cannot be
approximated within any constant factor in polynomial time [11]. These hardness results

SoCG 2020
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hold for a 2-dimensional simplicial complex, but not necessarily for 2-dimensional complexes
embedded in R3. They also give a polynomial-time algorithm for the special case of d-
dimensional simplicial complex that is embedded in Rd. (This is different from our setting of
a d-dimensional simplicial complex that is embedded in Rd+1; however the algorithm also
reduces to a minimum cut problem in a dual graph, much like that of Kirsanov and Gortler.)

1.2.3 Algebraic formulations
The minimum bounded chain problem over Z2 can be stated as a linear algebra problem,
but this has little algorithmic use since the resulting problems are intractable. The algebraic
formulation is to find a vector x of minimum Hamming weight that solves an appropriately
defined linear system Ax = b. (It is possible to reduce in the reverse direction, but the
resulting complex is not embeddable in general, and so provides no new results.)

In coding theory this algebraic problem is a well studied decoding problem known as
maximum likelihood decoding, and it was shown to be NP-hard by Berlekamp, McEliece
and van Tilborg [4, 29]. Downey, Fellows, Vardy and Whittle show that maximum likelihood
decoding is W[1]-hard [15]. Further, Austrin and Khot show that maximum likelihood
decoding is hard to approximate within a factor of 2(logn)1−ε under the assumption that
NP * DTIME(2(logn)O(1)) [3]. This work was continued by Bhattacharyya, Gadekar, Ghosal
and Saket who showed that maximum likelihood decoding is still W[1]-hard when the problem
is restricted to O(k logn)×O(k logn) sized matrices for some constant k [5].

1.2.4 Paper organization
In Section 2, we give formal definitions for the paper. In Section 3, we present our approx-
imation algorithms and fixed-parameter tractable algorithms. In Section 4, we present our
hardness results.

2 Preliminaries

2.1 Simplicial complexes
Given a set of vertices V we define an abstract simplicial complex K to be a subset of the
power set of V such that the following property holds: if σ ∈ K and τ ⊂ σ then τ ∈ K. We
call any σ ∈ K a simplex and define the dimension of σ to be |σ| − 1 if |σ| − 1 = d we call σ
a d-simplex. Further, we call 0-simplices, 1-simplices, and 2-simplices vertices, edges, and
triangles. We define the dimension of K to be equal to the largest dimension of any simplex
in K. If K has dimension d we refer to K as a d-simplicial complex or d-complex. We refer
to any subset of a d-simplex σ as a face of σ.

2.2 Homology
In this paper we work in simplicial homology with coefficients over the finite field Z2. Here
we briefly define the concepts from homology that will be used throughout this paper. We
assume familiarity with the basics of algebraic topology, and refer the reader to standard
references [20, 25] for the details.

Given a simplicial complex K we define the dth chain group of K to be the free abelian
group, with coefficients over Z2, generated by the d-simplices in K. We denote the chain
group as Cd(K) and note that its elements are expressed as formal sums

⊕
αiσi where
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αi ∈ Z2 and σi ∈ K is a d-simplex. We call the elements of the chain group chains or more
specifically d-chains. When working over Z2 there is a one-to-one correspondence between
d-chains and sets of d-simplices in K. It follows that adding two d-chains over Z2 is the
same thing as taking the symmetric difference of their corresponding sets. Hence, we use the
notation σ ⊕ τ to denote the sum of two d-chains. By abuse of notation we will also use ⊕
to denote the symmetric difference of sets, but the context should always be clear.

For a d-simplex σ we define its boundary ∂σ to be the sum of the (d − 1)-simplices
contained in σ. We extend this operation linearly to obtain the boundary operator on chain
groups, ∂d : Cd(K)→ Cd−1(K). We will often drop the subscript when the context is clear.
Note that the composition ∂d−1∂d is always equal to the zero map. If ∂σ = τ we say that σ
is bounded by τ . We call a chain σ a cycle if ∂σ = 0.

By Zd(K) we denote the dth cycle group of K. This is subgroup of Cp(K) generated by
the d-simplices in ker ∂d. Similarly, by Bd(K) we denote the dth boundary group of K, which
is the subgroup of Cp(K) generated by the d-simplices in im ∂d+1. Since ∂d+1∂d = 0 we have
that Bd(K) is a subgroup of Zd(K). We define the dth homology group of K, denoted Hd(K),
to be the quotient group Zd(K)/Bd(K). The dth Betti number of K, denoted βd, is defined
to be the dimension of Hd(K). We call a d-chain σ null-homologous if it is a boundary,
that is σ ∈ Bd(K). Further, we call two d-chains σ and τ homologous if their difference is a
boundary, that is σ ⊕ τ ∈ Bd(K).

2.3 Embeddings and duality
Given a d-complex K an embedding of K is a function f : K → Rd+1 such that f restricted
to any simplex in K is an injection. Further, for any two simplices σ, τ ∈ K we require that
f(σ) ∩ f(τ) = f(σ ∩ τ). That is, the images of two simplices only intersect at their common
faces. The function f is an embedding of the abstract simplicial complex K. In this paper we
make no distinction between K and an embedding of K. Hence, we use the notation K to
refer to both and refer to K as an embedded simplicial complex.

The Alexander duality theorem, a higher dimensional analog of the Jordan curve theorem,
states that Rd+1 \ K is partitioned into βd + 1 connected components. Exactly one of
these connected components is unbounded, and we refer to the unbounded component as
V∞. Using this partition we define the dual graph K∗ of K. K∗ has one vertex for each
connected component of Rd+1 \ K with the vertex corresponding to V∞ denoted by v∞.
Further, K∗ has one edge for each d-simplex in K. There is an edge between two vertices
representing connected components V1 and V2 in K if there is a d-simplex contained in
the intersection of the topological closures of V1 and V2. Note that K∗ can have parallel
edges and self-loops. Since each d-simplex can be in the closure of at most two connected
components we have a one-to-one correspondence between d-simplices in K and edges in K∗.
If S is a set of d-simplices in K we denote their corresponding edges in K∗ by S∗. Similar to
planar graphs, there is a duality between d-cycles in K and edge cuts in K∗. There exists a
one-to-one correspondence between d-cycles in K and minimal edge cuts in K∗. We refer to
this correspondence as cycle/cut duality, and it will play a central role in many of our proofs.

By shell(K) we denote the outer shell of K. This is defined to be the subcomplex of K
consisting of all d-simplices whose corresponding edges in K∗ are incident to v∞. Equivalently,
it is also the subcomplex of K consisting of all d-simplices contained in the boundary of V∞.

We endow the embedding of a simplicial complex K with the subspace topology inherited
from Rd+1. We call K a d-dimensional manifold if every point in its embedding is contained
in a neighborhood homeomorphic to Rd. If every point in the embedding of K is contained
in a neighborhood homeomorphic to either Rd or the d-dimensional half-space we call K a
manifold with boundary.

SoCG 2020
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2.4 Graph cuts
Let G = (V,E) be a graph. For any two subsets V1, V2 ⊂ V a (V1, V2)-cut is a set of edges E′
such that the graph G′ = (V,E \E′) contains no path from V1 to V2. Often we will consider
(S, S)-cuts for some S ⊂ V where S denotes the complement of S in V . By ES we refer
to the edge set corresponding to all edges that have one endpoint in S and the other in S,
which is the minimum (S, S)-cut. We extend this notation to vertices. For any two vertices
s, t ∈ V an (s, t)-cut refers to a set of edges whose removal disconnects s from t.

2.5 The minimum bounded/homologous chain problems
Now we give the formal statement of the minimum bounded chain problem. Given a
d-dimensional simplicial complex K and a (d − 1)-cycle C contained in K the minimum
bounded chain problem (K, C) asks to find a d-chain X with ∂X = C such that the cost
of X is minimized. The cost of X is given by its `1 norm ‖X‖1. Here we are treating
X as an n-dimensional indicator vector where n is the number of d-simplices in K. The
simplicial complex K may be weighted by assigning a real number to each d-simplex in K.
In this case the cost of X is given by 〈W,X〉, where W is a vector assigning weights to the
d-simplices of K.

Now let D be a d-chain, which may or may not be a cycle. The minimum homologous
chain problem asks to find a minimum d-chain X such that X = D⊕∂V for some (d+1)-chain
V , equivalently, the minimum d-chain X such that D ⊕X is null-homologous. The cost of
X as well as the weighted problem are defined the same as in the previous paragraph.

In this paper, we study the minimum bounded chain problem for complexes embedded in
Rd+1, and the minimum homologous chain problem for d-chains in (d+ 1)-manifolds.

3 Approximation algorithm and fixed-parameter tractability

In this section, we describe approximation algorithms and parameterized algorithms for both
minimum bounded chain and minimum homologous chain problems. Our algorithms work
with the dual graph of the input space. In order to simplify our presentation we assume that
the dual graph of the input complex contains no loops. The following lemma shows that we
can make this assumption without any loss of generality. The proof can be found in the full
version of the paper.

I Lemma 7. In polynomial time we can preprocess an instance of the minimum bounded
chain problem (K, C) into a new instance (K′, C ′) such that (i) (K′)∗ contains no loops
and (ii) an α-approximation algorithm for (K′, C ′) implies an α-approximation algorithm
for (K, C).

3.1 Reductions to the minimum cut completion problem
Given G = (V,E) and E′ ⊆ E, the minimum cut completion problem asks for a cut (S, S)
with edge set ES that minimizes |ES ⊕E′|. First, we show that the minimum cut completion
problem generalizes the minimum bounded chain problem.

I Lemma 8. For any d-dimensional instance of the minimum bounded chain problem, (K, C),
there exists an instance of the minimum cut completion problem (G = (V,E), E′) that can
be computed in polynomial time, and a one-to-one correspondence between cuts in G and
d-chains with boundary C in K. Moreover, if the cut (S, S) with edge set ES in G corresponds
to the d-chain Q in K then |ES ⊕ E′| = |Q|.
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Proof. Let F be any d-chain such that ∂F = C, such an F can be computed in polynomial
time, by solving the linear system. In turn, let G = K∗, and E′ = F ∗.

Now, let Q be any d-chain such that ∂Q = C. So, ∂(Q ⊕ F ) = 0. Thus, by cycle/cut
duality Q⊕F partitions Rd+1, let (S, S) be the corresponding dual cut in K∗, and let ES be
the edge set of this cut. We have |ES ⊕ E′| = |ES ⊕ F ∗| = |Q∗| = |Q|.

On the other hand, let (S, S) be a cut in K∗, with edge set ES . By cycle/cut duality
∂E∗S = 0. Now, let Q = E∗S ⊕ F . It follows that ∂Q = C. Moreover, we have |Q| =
|E∗S ⊕ F | = |ES ⊕ F ∗| = |E∗S ⊕ E′|. J

We show via a similar argument that the cut completion problem also generalizes the
minimum homologous chain problem when the input complex is a weak pseudomanifold (see
the full version of the paper for the proof). A weak pseudomanifold is a pure d-complex
such that every (d− 1)-simplex is a face of at most two d-simplices. Weak pseudomanifolds
generalize manifolds and the definition was first introduced by Dey et al. in [14]. Although
recognizing d-manifolds is undecidable [12], weak pseudomanifolds can be recognized in
polynomial time.

I Lemma 9. For any d-dimensional instance of the minimum homologous chain problem
(M, D), whereM is a weak pseudomanifold, there exists an instance of the minimum cut
completion problem (G = (V,E), E′) that can be computed in polynomial time, and a one-
to-one correspondence between cuts in G and d-chains in M that are homologous to D.
Moreover, if the cut (S, S) with edge set ES in G corresponds to the d-chain Q in K then
|ES ⊕ E′| = |Q|.

3.2 Algorithms for the minimum cut completion problem
We show an O(

√
log |V |)-approximation algorithm and a fixed-parameter tractable algorithm

for the cut completion problem. We obtain both of these results via reduction to 2CNF
Deletion: given an instance of 2SAT, find the minimum number of clauses to delete to make
the instance satisfiable. Agarwal et al. [1] show an O(

√
logn)-approximation algorithm for

2CNF Deletion, where n is the number of clauses, and Razgon and O’Sullivan show that the
problem is fixed-parameter tractable.

I Lemma 10 (Agarwal et al.[1], Theorem 3.1). There is a randomized polynomial-time
algorithm for finding an O(

√
logn)-approximation for the minimum disagreement 2CNF

Deletion problem.

I Lemma 11 (Razgon and O’Sullivan [27], Theorem 7). Let B be an instance of 2CNF
Deletion problem with m clauses that admits a solution of size k. There is an O(15k · k ·m3)
time exact algorithm for solving B.

The next lemma shows similar results for the cut completion problem.

I Lemma 12. For the cut completion problem (G = (V,E), E′),
(i) there is a randomized polynomial-time O(

√
log |V |)-approximation algorithm, and

(ii) there is an O(15k · k · |E|3) time exact algorithm, where k is the size of the optimal
solution.

Proof. Let G = (V,E), and E′ ⊆ E. We show a 2CNF Deletion instance BG such that for
any cut (S, S) with edge set ES , the number of unsatisfied clauses in BG is exactly |ES ⊕E′|.
The statement of the lemma will follow from Lemma 10 and 11.

SoCG 2020
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Let BG be the instance of the 2CNF Deletion problem defined on G as follows:
For each vertex v ∈ V , we have variable b(v).
For each edge (u, v) ∈ E:

if (u, v) ∈ E′, we add b(u) ∨ b(v) and ¬b(u) ∨ ¬b(v) to B, and
if (u, v) /∈ E′, we add b(u) ∨ ¬b(v) and ¬b(u) ∨ b(v) to B.

(Note that in both cases, any assignment of b(u) and b(v) satisfies at least one of the
clauses. Again in both cases, assignments exist that satisfy both clauses.)

Let (S, S) be a cut with edge set ES . Let bS be the natural boolean vector that corresponds
to the cut: b(v) = [v ∈ S] for all v ∈ V . We show that |ES ⊕ E′| is equal to the number of
clauses that are not satisfied in BG. Specifically, we show (I) for each edge (u, v) ∈ ES ⊕ E′,
exactly one of its corresponding clauses is satisfied, and (II) for each edge (u, v) /∈ ES ⊕E′
both of its corresponding clauses are satisfied.

If (u, v) ∈ ES ⊕ F there are two cases to consider: (I.1) (u, v) ∈ ES and (u, v) /∈ E′, that
is b(u) 6= b(v) and the corresponding clauses are b(u) ∨ ¬b(v) and ¬b(u) ∨ b(v). Exactly one
of the clauses is satisfied. (I.2) (u, v) /∈ ES and (u, v) ∈ E′, that is b(u) = b(v), and the
corresponding clauses are b(u)∨ b(v) and ¬b(u)∨¬b(v); exactly one of the clauses is satisfied.

If (u, v) /∈ ES ⊕ E′ there are two cases to consider: (II.1) (u, v) ∈ ES and (u, v) ∈ E′,
that is b(u) 6= b(v) and the corresponding clauses are b(u) ∨ b(v) and ¬b(u) ∨ ¬b(v). Both
of the clauses are satisfied. (II.2) (u, v) /∈ ES and (u, v) /∈ E′, that is b(u) = b(v), and the
corresponding clauses are b(u)∨¬b(v) and ¬b(u)∨ b(v). Both of the clauses are satisfied. J

3.3 Wrap up (Proofs of Theorems 1, 2, 3, and 4)
Lemma 8 and Lemma 9 show that the bounded chain problem and the minimum homologous
chain problem are special cases of the cut completion problem, and Lemma 12 shows that
we obtain O(

√
log |V |)-approximation algorithm and O(15k · k · |E|3) time exact algorithm

for the cut completion problem. The number of vertices |V | translates to βd for simplicial
complexes embedded in Rd+1 (Theorem 1), and nd+1, the number of (d+ 1)-dimensional
simplices for (d+ 1)-manifolds (Theorem 3). The number of edges |E| translates to nd in
both simplicial complexes embedded in Rd+1 (Theorem 2) (d+ 1)-manifolds (Theorem 4).

4 Hardness of approximation

In this section, we show it is unlikely that either of the minimum bounded chain or minimum
homologous chain problems admit constant factor approximation algorithms, even for their
low dimensional instances. Our hardness results follow from reductions from the minimum
cut completion problem, defined in the previous section.

4.1 Minimum bounded chain to minimum cut completion
We show that the minimum cut completion problem reduces to a 2-dimensional instance of
the minimum bounded chain problem (K, C), where shell(K) is in fact a manifold and C is
a (possibly not connected) cycle on shell(K). Our hardness of approximation result for the
minimum bounded chain problem is based on this reduction.

I Lemma 13. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.
There exists an instance of the 2-dimensional minimum bounded chain problem (K, C) with
C on the outer shell of K that can be computed in polynomial time, and a one-to-one
correspondence between cuts in G and 2-chains with boundary C in K. Moreover, if the cut
(S, S) with edge set ES in G corresponds to the 2-chain Q in K then
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|Q|
τ
− 1 ≤ |ES ⊕ E′| ≤

|Q|
τ
,

where τ = 58m+ 2 and m is the number of edges in G.

Proof. Our construction is simple in high-level. We start from any embedding of G in R3,
and we thicken it to obtain a space, in which each edge corresponds to a tube. We insert a
disk in the middle of each tube; we call these disks edge disks. Then we triangulate all of
the 2-dimensional pieces. The dual of the complex that we build is almost G, except for one
extra vertex corresponding to its outer volume, and a set of extra edges, all incident to the
extra vertex. We give our detailed construction below.

We consider the following piecewise linear embedding of G in R3; let n and m be the
number of vertices and edges of G, respectively. First, map the vertices of G into {1, 2, . . . , n}
on the x-axis. Now, consider m+ 2 planes h0, h1, . . . , hm+1 all containing the x-axis with
normals being evenly spaced vectors ranging from (0, 1, 1) to (0, 1,−1). We use h1, . . . , hm
for drawing the edges G. We arbitrarily assign edges of G to these plane, so each plane will
contain exactly one edge. Each edge is drawn on its plane as a three-segment curve; the first
and the last segment are orthogonal to x-axis and the middle one is parallel. All edges are
drawn in the upper half-space of R3. See Figure 1, left.

Next, we place an axis parallel cube around each vertex. The size of the cubes must be so
that they do not intersect, fix the width of each cube to be 1/10. We refer to these cubes as
vertex cubes. Then, we replace the part of each edge outside the cubes with a cubical tube,
called edge tube. We choose the thickness of these tubes sufficiently small so that they are
disjoint. We also puncture the cubes so that the union of all vertex cubes and edges tubes
form a surface; see Figure 1, left. (This surface will have genus m− n+ 1 by Euler’s formula,
which is the dimension of the cycle space of G)

Figure 1 Left: an embedding of K3 in R3, and the thickened surface composed of blue vertex
cubes and pink edge tubes, right: an edge tube subdivided by an edge square.

Next, we subdivide each tube by placing a square in its middle; see Figure 1, right. We
refer to these squares as edge squares. Edge squares partition the inside of the surface into n
volumes. We observe that each of these volumes contains exactly one vertex of the drawing
of G, thus, we call them vertex volumes.

For our reduction to work, we need that the weight of each 2-cycle to be dominated by
the weight of its edge squares. To achieve that we finely triangulate each edge square. For an
edge tube, we first subdivide its surface to 16 quadrangles as shown in Figure 2, left. Then,
we obtain a triangulation with 32 triangles by splitting each quadrangle into two triangles.
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For a vertex cube, note that all the punctures are on the top face by our construction.
We split all the other faces by dividing each of them into two triangles. For the top face,
we can obtain a triangulation in polynomial time; this triangulation will have 4 deg(v) + 8
triangles by Euler’s formula, where deg(v) is the degree of the vertex corresponding to the
cube. Therefore, the triangulation of each vertex cube will have 4 deg(v) + 18 triangles, see
Figure 2, right. Therefore, there are

(∑
v∈V 4 deg(v) + 18

)
+ 32m ≤ 58m triangles that are

not part of edge squares. Finally, we triangulate each edge square into 58m+ 2 triangles so
that the cost of one edge square is greater than the sum of all triangles not contained in edge
squares. This triangulation can be done by starting with a square made up of two triangles
and repeatedly subdividing triangles by inserting a new vertex in the interior and connecting
it to the corners with edges. The subdivision is performed by inserting a vertex into the
interior of the triangle and connecting it with an edge to each vertex on the boundary of the
triangle. The result is a new complex, homeomorphic to the original, with two additional
triangles. Overall, our complex K has O(m2) triangles.

Figure 2 Left: subdividing the surface of an edge-tube to quadrangles, right: triangulating the
surface of a vertex cube.

We are now done with the construction of K. Let B be the set of all triangles in edge
squares that correspond to edges in E′. Then, let C = ∂B. We show an almost cost
preserving one-to-one correspondence between cuts in the cut completion problem in G and
chains with boundary C in K.

Let (S, S) be a cut with edge set ES , note that the cost of this cut is |ES ⊕E′| in the cut
completion problem (G,E′). In K, let VS be the symmetric difference of the vertex volumes
that correspond to vertices of S. The total weight of VS is between |ES |(58m + 2) and
|ES |(58m+ 2) + 58m. Similarly, the total weight of VS ⊕B is between |ES ⊕ E′|(58m+ 2)
and |ES ⊕ E′|(58m+ 2) + 58m. Since we cannot get an exact count on the number of edges
in the subgraph induced by S we have a range of values for the weight of VS instead of an
exact weight. However, if ES and ES′ are two cuts with |ES | < |ES′ | then the weight of VS
is strictly less than the weight of VS′ by the construction of the edge squares.

On the other hand, let Q be a 2-chain with boundary C in K. As C does not intersect the
interior of any edge square, for each edge square either Q contains all of its triangles or none
of them. Also, Q⊕B has no boundary, thus its complement R3 \ (Q⊕B) is disconnected.
The interior of each vertex volume is completely inside one of the connected components of
R3 \ (Q⊕B), as by the construction Q⊕B must either contain the entire vertex volume or
none of it. Now, let S be the set of all vertices whose corresponding vertex volumes are in the
unbounded connected component of R3 \ (Q⊕B). The edges of the cut (S, S) correspond
to edge squares in Qs ⊕ B, where Qs is the set of edge square triangles of Q. As B is in
one-to-one correspondence to E′, it follows that the cut completion cost of (S, S) is |Qs|

58m+2 .
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We have |Q| = |Qs|+ |Qr| where Qr is the set of triangles in Q not contained in edge squares.
The size of |Qs| is 58m+ 2 per edge square, and |Qr| ≤ 58m by construction. It follows that
we have our desired inequality,

Q

58m+ 2 − 1 ≤ |ES ⊕ E′| ≤
Q

58m+ 2 . J

The next lemma shows that an approximation algorithm for the minimum bounded chain
problem implies an approximation algorithm with almost the same quality for the minimum
cut completion problem.

I Lemma 14. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.
For any α ≥ 1 and any ε > 0, there exists an instance of the 2-dimensional minimum bounded
chain problem (K, C) that can be computed in polynomial time, such that an α-approximation
algorithm for (K, C) implies a ((1 + ε)α)-approximation algorithm for (G,E′), and C is on
the outer shell of K.

Proof. Let ε > 0. Given an α-approximation algorithm for the minimum bounded chain
problem, we describe an ((1 + ε)α)-approximation algorithm for the cut completion problem.
Let G = (V,E), and E′ ⊆ E be any instance of the cut completion problem, and let
(Sopt, Sopt) with edge set be an optimal solution for this instance. Our algorithm considers
two cases, based on whether |ESopt ⊕ E′| < 1/ε or not. It solves the problem under each
assumption and outputs the best solution it obtains in the end.

If |ESopt ⊕E′| < 1/ε, then our algorithm finds the optimal solution in O(n1/ε+O(1)) time
by considering all subsets of edges E′′ of size at most 1/ε as candidates for ESopt ⊕E′. From
all candidates, we return the minimum E′′ such that E′′ ⊕ E′ is a cut. Note this is an exact
algorithm, so in this case we find the optimal solution.

Otherwise, if |ESopt ⊕ E′| ≥ 1/ε, we use the given α-approximation algorithm for the
minimum bounded chain problem for a simplicial complex K, and chain C that corresponds
to (G,E′) by Lemma 13. Note that K is an unweighted simplicial complex piecewise linearly
embedded in R3 and C is a cycle in its outer shell.

Let Qopt be the corresponding 2-chain to (Sopt, Sopt) in K. Thus, Qoptτ −1 ≤ |ESopt⊕E′| ≤
|Qopt|
τ . In addition, let Q be the surface with boundary C that the α-approximation algorithm

finds, so |Q| ≤ α · |Qopt|. Finally, let (S, S) be the cut corresponding to Q in G via the
one-to-one correspondence of Lemma 13. Therefore, Q

τ − 1 ≤ |ES ⊕ E′| ≤ |Q|
τ . Putting

everything together,

|ES ⊕ E′| ≤
|Q|
τ
≤ α · |Qopt|

τ
≤ α ·

(
|ESopt ⊕ E′|+ 1

)
. (1)

Since |ESopt ⊕ E′| ≥ 1/ε, we have: |ESopt ⊕ E′|+ 1 ≤ (1 + ε) · |ESopt ⊕ E′|. Therefore,
together with (1), we have a ((1 + ε)α)-approximation algorithm, as desired. J

4.2 Minimum homologous cycle to minimum cut completion
We show a similar reduction from the cut completion problem to the minimum homologous
cycle problem for 1-dimensional cycles on orientable 2-manifolds. The minimum homologous
cycle problem is the special case of the minimum homologous chain problem when the input
chain is required to be a cycle, so showing hardness of approximation for it implies hardness
of approximation for the more general minimum homologous chain problem.

I Lemma 15. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.
For any α ≥ 1, there exists an instance of the 1-dimensional minimum homologous cycle
problem (M, D) that can be computed in polynomial time such that an α-approximation for
(M, D) implies an α-approximation for (G,E′).
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Proof. We construct a 2-manifoldM as in the proof of Lemma 13, but we omit the edge
squares. Each edge of G corresponds to a cycle with 4 edges in M; these cycles are the
boundaries of the omitted edge squares. We call these cycles edge rings. The connected
components of M after removing the edge rings correspond to the vertices of G, we call
these connected components vertex regions. We set D to be equal to the set of edge rings
corresponding to E′. Intuitively, if X is the minimum cycle homologous to D we do not want
X ⊕D to intersect the interior of any vertex region. That is, X ⊕D is a collection of edge
rings and corresponds to a cut in G. To achieve this, we subdivide each edge not contained
in an edge ring into a long path. The result is an embedded graph with non-triangular faces,
which is not a simplicial complex. To fix this, we triangulate the inside of each non-triangular
face such that the shortest path between any two vertices on the face remains the shortest
path after the triangulation. Given any α-approximation of the new complex we can obtain
a smaller solution using only the edge rings, which corresponds to a cut in G. Our formal
construction follows.

Let τ = 4dαe|E|+ 1; we subdivide each edge not contained in an edge ring τ times. For
each face of length ` > 3 we triangulate by adding `+1 concentric cycles, each with ` vertices,
labeled γ0, . . . , γ`, where γ0 is the original face from the subdivided version ofM. By vi,j
we denote the jth vertex in γi. We add the edges (vi,j , vi+1,j and (vi,j , vi,j+1 mod `). To
complete the triangulation we add one additional vertex v at the center of γ` and add an
edge between it and each vertex on γ`. We call the new simplicial complexM′. See Figure 3
for an example.

Figure 3 Subdividing a face of length five; the outer face with white vertices is the original face.

Let (Sopt, Sopt) be an optimal solution to the minimum cut completion instance (G,E′).
Suppose we can compute an α-approximation C of the minimum homologous cycle instance
(M′, D), hence |C| ≤ α|Copt|. By our construction an optimal solution to (M′, D) has the
same size as an optimal solution to (M, D). As C is a cycle, if C crosses a cycle γ0 it
must cross it an even number of times. For any two consecutive vertices u, v ∈ γ0 in C we
replace the path between them with the shortest path contained in γ0. We call the new cycle
C ′, since C ′ ≤ C we have that C ′ is also an α-approximation for (M′, D). Note that C ′
is a union of edge rings, otherwise |C ′| > α|Copt|. It follows that C ′ corresponds to a cut
ES′ with |C ′| = 4|ES′ ⊕ E′|. Hence, we have |ES′ ⊕ E′| ≤ α|ESopt ⊕ E′|. Thus, ES′ is an
α-approximation for (G,E′). J

4.3 Wrap up
It remains to show that the cut completion problem is hard to approximate. We show this
via a straightforward reduction from the minimum uncut problem: given a graph G = (V,E),
find a cut with minimum number of uncut edges. Note that the optimal cuts for the minimum
uncut problem and the maximum cut problem coincide, yet, approximation algorithms for
one problem do not necessarily imply approximation algorithm for the other one.
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I Lemma 16. The minimum uncut problem is a special case of the minimum cut completion
problem.

Proof. Consider the cut completion problem for G = (V,E), and let E′ = E. Let (S, S) be
any cut with edge set ES . The cut completion cost of this cut is

|ES ⊕ E′| = |ES ⊕ E| = |E \ ES |,

which is the number of uncut edges by (S, S). J

Now, we are ready to prove our hardness results.

Proof of Theorem 5 and 6. The minimum uncut problem is hard to approximate within
(1 + ε) for some ε > 0 [26]. In addition, it is hard to approximate within any constant factor
assuming the unique games conjecture [24, 21, 10, 22]. By Lemma 16, the cut completion
problem generalizes the minimum uncut problem. Finally, by Lemma 15 and 14, for any
α > 1 and ε > 0, an α-approximation algorithm for the minimum bounded chain problem or
the minimum homologous cycle problem implies a ((1 + ε)α)-approximation algorithm, or an
α-approximation for the cut completion problem, respectively. J
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