

1 **The kinetics of elementary thermal reactions in heterogene-**
2 **ous catalysis**

3 **G. Barratt Park^{1,2}, Theofanis Kitsopoulos^{2,5,6}, Dmitriy Borodin¹, Kai Golibrzuch², Jannis**
4 **Neugebohren¹, Daniel J. Auerbach², Charles T. Campbell⁴ & Alec M. Wodtke^{1,2,3*}**

5 ¹Institute for Physical Chemistry, Georg-August University of Goettingen, Tammannstraße 6,
6 37077 Göttingen, Germany.

7 ²Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am
8 Faßberg 11, 37077 Göttingen, Germany.

9 ³International Center for Advanced Studies of Energy Conversion, Georg-August University
10 of Goettingen, Tammannstraße 6, 37077 Göttingen, Germany.

11 ⁴Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA

12 ⁵ Department of Chemistry, University of Crete, Heraklion, Greece

13 ⁶ Institute of Electronic Structure and Laser – FORTH, Heraklion, Greece

14

15 *email: alec.wodtke@mpibpc.mpg.de

16

17 KEYWORDS: Ion-imaging, velocity-resolved kinetics, CO oxidation, heterogeneous catalysis,
18 slice ion-imaging, molecular beams, surface chemistry.

19

20

21 **Abstract**

22 The kinetics of elementary reactions is fundamental to our understanding of catalysis. Just as
23 micro-kinetic models of atmospheric chemistry provided the predictive power that led to the
24 Montreal protocol reversing loss of stratospheric ozone, pursuing a micro-kinetic approach to
25 heterogeneous catalysis has tremendous potential for societal impact. However, developing this
26 approach for catalysis faces great challenges. Methods for measuring rate constants are quite
27 limited and present predictive theoretical methods remain largely un-validated. This paper pre-
28 sents a short perspective on recent experimental advances in our ability to measure the rates of
29 elementary reactions at surfaces that rely on a stroboscopic pump-probe concept for neutral
30 matter. We present the principles behind successful measurement methods and discuss a recent
31 implementation of those principles—velocity resolved kinetics. The topic is discussed within
32 the context of a specific but highly typical surface reaction: CO oxidation on Pt, which despite
33 more than forty years of study, was only clarified after experiments with velocity-resolved ki-
34 netics became possible. This *deceptively simple* reaction illustrates fundamental lessons con-
35 cerning the coverage dependence of activation energies, the nature of reaction mechanisms in-
36 volving multiple reaction sites, the validity of transition state theory to describe reaction rates
37 at surfaces, and the dramatic changes in reaction mechanism that are possible when studying
38 reactions at low temperatures.

39

40 **Introduction**

41 The importance of heterogeneous catalysis is exemplified by the problems of treating automobile
42 exhaust. Our transport needs are largely fulfilled through fossil fuel combustion. Among
43 combustion's many problems, its exhaust is poisonous. Catalytic surface chemistry is used to
44 remove these poisons by converting them to less harmful chemicals (e.g. CO to CO₂ and NO_x
45 to N₂ and H₂O). How well these catalysts work is literally a matter of life and death; it has been
46 reported that tens of thousands of premature deaths per year could be avoided if on-road per-
47 formance of catalysis matched laboratory test performance¹.

48 Heterogeneous catalysis also has enormous financial impacts on business suggesting that re-
49 search in heterogeneous catalysis has calculable monetary value; problems arising in commer-
50 cial catalysis that could, in principle, be solved through research can result in costs on the order
51 of 100s of billions \$US. In May 2014, scientists discovered evidence of 'defeat-devices' on
52 Volkswagen automobiles, running the most modern technology for catalytic NO_x removal².
53 These discoveries eventually led to VW being prosecuted under US law. Fortune magazine
54 reported in 2018 that costs associated with settlement of these prosecutions have reached 35
55 Billion \$US³. In the meantime, lawsuits from major shareholders continue and class action law-
56 suits in Europe loom. Worldwide costs to VW in 2016 and 2017 were estimated to be more
57 than 130 billion \$US⁴. Prospective costs are difficult to estimate, but loss of US market share
58 and damage to its brand both remain likely long-term outcomes.

59 Although existing technologies are capable of almost complete NO_x conversion, they require a
60 fuel penalty (in the case of Lean NO_x Traps) or the consumption of a reductant (in the case of
61 Selective Catalytic Reduction Systems). Why company leaders made decisions to circumvent
62 emissions regulations will become a question discussed in business schools and ethics classes
63 for years to come; however, one thing is clear: had more efficient, easy-to-implement catalytic
64 technology been available to address the NO_x emission of diesel engines, discussion of these
65 dubious decisions would never have reached the board rooms of major automobile companies.
66 Why then were there no such easy-to-implement technologies available?

67 Despite more than a century of research into heterogeneous catalysis, the search for improved
68 catalysts remains an empirical effort characterized by the expression "cook and look". Alt-
69 though fundamental insights have been obtained and there are reasons to be optimistic that pre-
70 dictions of new catalysts⁵ will become more common, for now, most commercial catalyst de-
71 velopments can only be indirectly connected to basic understanding derived from fundamental
72 research.

73 There is no reason that this must persist. Examples exist of complex problems in catalytic chem-
74 istry that have been understood at a fundamental level leading to great societal benefit. Consider
75 another chemical reactor; as in automobile exhaust chemistry, catalysis also plays a defining
76 role in the Earth's atmospheric chemistry⁶. The critical breakthrough in atmospheric chemistry
77 came from advances in chemo-kinetic models. Knowledge of the rates of a large number of the
78 most important reactions in the atmosphere led to a clear understanding of the role played by
79 trace atmospheric contaminants in the balance of the Earth's atmosphere. For example, we now
80 know that anthropogenic chlorofluorocarbons—although present in only tiny abundance—de-
81 stroy the Earth's stratospheric ozone layer. We also understand why NO_x emission from auto-
82 mobiles under the right conditions results in excess ozone in the troposphere, posing a health
83 threat in areas of high traffic congestion.

84 The development of today's chemo-kinetic models of the atmosphere required decades of work
85 by many researchers. While the price was high, the understanding that was derived was ex-
86 tremely valuable, leading to passage of the *Montreal Protocol on Substances that Deplete the*
87 *Ozone Layer*, regulating use of freons on a global scale. And these changes are yielding fruits—
88 recent studies show the onset of stratospheric ozone recovery⁷.

89 This example shows that the chemistry research community is capable of developing a predic-
90 tive understanding of complex catalytic systems. Why have we not so far also developed
91 chemo-kinetic models for heterogeneous catalysis? Researchers in this field will point to many
92 challenges, but one of the most daunting is our current limitations in accurately measuring or
93 theoretically predicting the rates of *elementary* thermal reactions in heterogeneous catalysis.
94 Simply put, the kinetics of heterogeneous catalysis is hard.

95 What are the reasons for this?

96 Consider the example of NO_x removal from automobile exhaust; catalytic surface chemistry on
97 platinum, vanadium oxide and other materials is used⁸. In this case, we have not yet identified
98 all of the elementary chemical reactions involved, nor have we measured the rates of the ones
99 that have been identified. Moreover, multiple reaction sites are typically found on catalytic
100 surfaces and many of these reaction sites remain unidentified. Beyond experiment, theoretical
101 approaches to modeling reaction rates could be used, but when rate measurements are so chal-
102 lenging, how can we know that theories yield reliable results?

103 In contrast, in the case of atmospheric chemistry, rates of elementary reactions can be obtained
104 by a variety of well proven methods. For example, photodissociation of a free radical precursor

105 molecule with a short laser pulse (flash photolysis) can be used to initiate the reaction and the
106 radical's lifetime in the presence of a known concentration of a chosen reactant can be measured
107 by time resolved absorption spectroscopy. These "pump-probe" methods have been widely
108 used to measure gas-phase reaction rates—for a representative review, see Ref. 9. When reac-
109 tion rates cannot be measured directly, theoretical predictions can often be made using another
110 powerful option: electronic structure calculations and transition state theory¹⁰. Furthermore,
111 since these systems have few atoms and many experimental rates are available for validation,
112 the reliability of theoretical predictions is high and well understood.

113 Analogous methods for measuring or predicting the rates of elementary thermal reactions at
114 surfaces are either lacking or unproven. Flash photolysis cannot be used to initiate most surface
115 reactions since reactant adsorption to the solid catalyst is the much more typical initiation step;
116 it is the first step of the Langmuir-Hinshelwood mechanism. Methods for following the time
117 evolution of reaction intermediates on two-dimensional surfaces also require higher intrinsic
118 sensitivity than for three-dimensional gases. Finally, the theoretical foundations necessary to
119 predict the rates of surface reactions are not yet fully established since so many atoms are in-
120 volved¹¹⁻¹³. Surface chemistry also provides an additional complication not present in gas phase
121 reactions—while a gas phase collision is fundamentally homogenous, heterogeneous catalysis
122 even on the simplest catalysts often occurs at multiple reaction sites and reactants may not fully
123 mix.

124 This helps explain why greater progress had not already been made at the time of the now
125 infamous decisions to program defeat devices in VW automobiles.

126 The aim of this perspective is to show that despite the daunting challenges, recent advances,
127 both on the experimental and theoretical sides, foster optimism that we can improve our under-
128 standing and develop predictive capability needed to impact catalyst technologies.

129 The perspective is structured around an example reaction: CO oxidation on catalytically active
130 single crystal Pt. This reaction has been studied for over 40 years, yet only recently has it been
131 clearly understood. It is interesting in its own right, as it is a piece of many important technol-
132 ogies. It is also *deceptively simple*, providing a remarkable example of the challenges faced in
133 measuring the rates of elementary chemical reactions on surfaces. Knowing what we now know,
134 it is possible to see clearly the kinds of experimental principles that form the basis of successful
135 surface kinetics and what can go wrong when these principles are not fulfilled.

136 We first present a discussion of these principles within the context of the CO oxidation reaction.
137 We then show an implementation of these principles, one which led to a complete clarification
138 of a system that presented many conflicting or ambiguous results. We use that knowledge to
139 highlight where some classic papers in the field went wrong and why. We also point out that
140 some of the conclusions of those classic papers must now be reconsidered. Finally, we discuss
141 the importance of theoretical predictions of rates of elementary surface reactions. With the ad-
142 vent of unambiguous rate data, the moment has come for development and testing of theories
143 and for those that pass muster, their wide-scale application.

144 **Velocity-resolved surface kinetics**

145 On the most basic level, kinetics of surface reactions requires us to measure the “kinetic trace”:
146 product flux, Φ , versus reaction time, τ_{rxn} . For the CO oxidation reaction, we define the kinetic
147 trace as Φ_{CO_2} vs. τ_{rxn} . Hence, one of the most fundamental requirements of a kinetics measure-
148 ment in CO oxidation surface chemistry is to measure
149 product flux.

150 CO oxidation on Pt is a typical Langmuir-Hinshelwood
151 (LH) reaction. It proceeds by adsorption and dissoci-
152 ation of O₂ and non-dissociative adsorption of CO fol-
153 lowed by diffusion of CO to an O atom after which CO₂
154 forms and desorbs. The rate of CO₂ product formation
155 at the surface is, by definition, a flux: the number of
156 CO₂ molecules produced per second per cm². Yet, ex-
157 periments normally provide signals proportional to the
158 density of the product CO₂ molecules, $\rho_{CO_2} = \Phi_{CO_2} /$
159 v_{CO_2} . See for example Fig. 1 from Ref. 14, where elec-
160 tron bombardment ionization was used to detect CO₂
161 product released from the surface. There, the CO₂ detection probability is proportional to the
162 time spent by the CO₂ molecule in the ionizing electron beam, which is inversely proportional
163 to its velocity, v_{CO_2} . In Fig. 1b, the CO₂ desorbing in the normal direction from a surface at
164 880 K exhibits a kinetic energy of $E/k_B = 3560$ K, or most probable velocity near 1.16×10^5
165 cm/sec. We now know that hyperthermal CO₂ is produced by the reaction occurring at 111
166 terraces and is a minor channel under the conditions of many previous experiments¹⁵. CO₂ can
167 also be produced by other reactions occurring at steps¹⁵—these reactions produce velocity and

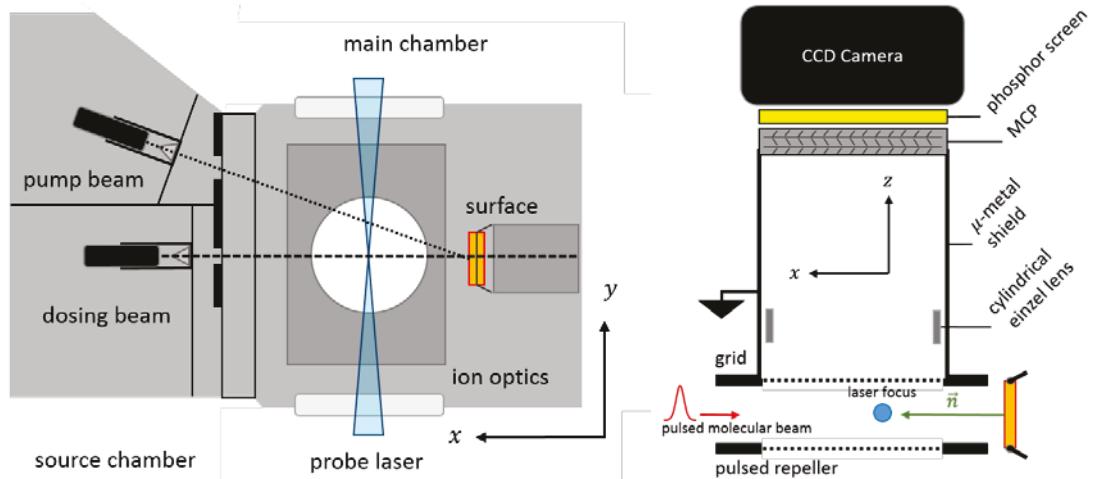
Figure 1: Hyperthermal CO₂ from CO oxidation on Pt(111). Time of flight spectra of a) a CO molecular beam used to initiate the reaction, CO₂ reaction product detected in the direction b) normal and c) 45° to the surface normal. Such hyperthermal CO₂ has been observed at least 40 years ago; only now do we know that this is the reaction taking place at the 111 terraces. Oxygen Pressure = 1×10^{-7} Torr. $T_s = 880$ K. Figure adapted with permission from Ref. 14, American Institute of Physics.

168 angular distributions reflecting CO₂ products that have been thermalized with the surface¹⁶ with
169 most probable velocities near 8×10^4 cm/sec at a surface temperature of 880 K.

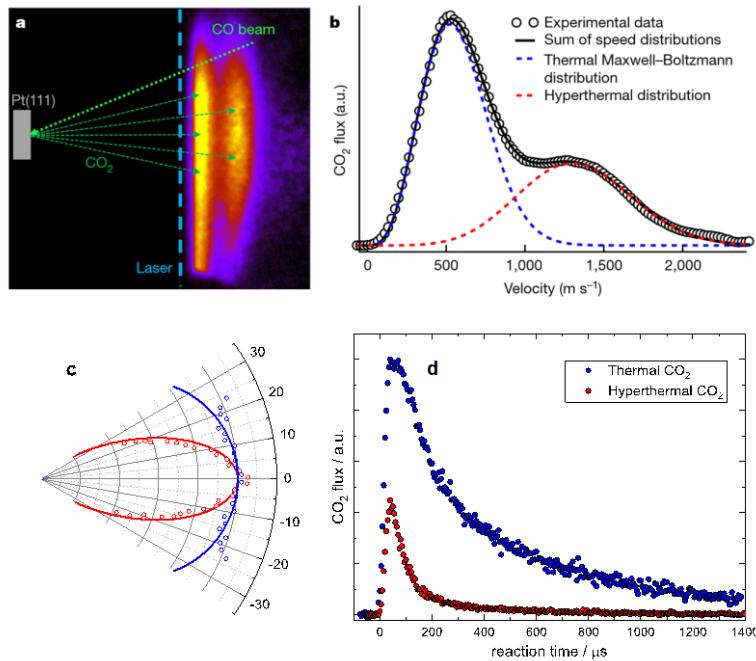
170 The branching between the reactions resulting in thermal and hyperthermal products depends
171 on surface O-coverage and temperature. Consider the problems arising when measuring the
172 branching ratio between these two reactions with a number density detector and no knowledge
173 of the velocities. If both reactions produce the same number of product molecules per second,
174 a density detector would yield an apparent ratio of $\sim 1:1.45$ in favor of the thermal channel,
175 since faster molecules appear with lower density. With measured velocities to complement a
176 number density detector, like data shown in Fig. 1, we can correct the observed densities to
177 obtain relative fluxes of the two channels and obtain the correct branching.

178 Combining a density detector with velocity measurement capability also allows the develop-
179 ment of a pump-probe experiment applicable to LH (or indeed other surface) reactions. Pump-
180 probe experiments are normally done with two laser light pulses. The time-resolved signal must
181 depend on both pulses and is then measured as a function of the delay between them. Formally,
182 the time dependent signal depends on both the flight times of the photons to the interaction zone
183 and from the interaction zone to the light detectors. The experiment is dramatically simplified
184 by the fact that light travels so fast and with a constant velocity; these flight times are usually
185 negligibly small and constant. This is not so for mole-
186 cules. Consider CO oxidation—here, three times must
187 be distinguished to obtain meaningful kinetic data.
188 First, the reaction is initiated by a pulse of CO mole-
189 cules. This CO pulse must fly from the position where
190 it is produced to the reactive surface (τ_{CO} , reactant
191 flight-time). The reaction then takes place on the sur-
192 face over a certain time, (τ_{rxn} , reaction time). Finally,
193 desorbing products fly from the surface to the detector
194 (τ_{CO_2} , product flight time). We can only observe the
195 signal as a function of the total time, $\tau_{CO} + \tau_{rxn} +$
196 τ_{CO_2} . Of course, only τ_{rxn} is relevant for the kinetics.

197 A final demand for accurate kinetics measurements is
198 the ability to integrate the product flux over all angles of desorption, an aspect of the experi-
199 mental challenge that CO oxidation also reveals. It is long known that the hyperthermal channel


Figure 2: CO₂ product angular distribution from the CO oxidation on Pt(111). Flux measurements were performed lacking velocity resolution. The incident molecular beam had a 1 mm diameter and the quadrupole detector had a 1 mm slit located 4 cm from the surface, resulting in an angular resolution of 2.9°. T_s = 467 K. The angular distribution depends on O-coverage, θ_o. The fits to the data are based on two contributions that exhibit a narrow and broad angular distribution. Figure drawn using data from Ref. 17.

200 appears with a narrow angular distribution while the thermal channel appears with a broad one.
 201 Figure 2 shows measurements of the product angular distribution, which changes with O-cov-
 202 erage at a constant surface temperature¹⁷. We now know that the narrowing of the angular dis-
 203 tribution at higher O coverage results from increased reaction at terraces relative to steps with
 204 increasing O-coverage. While the evidence of Figure 2 may not be fully persuasive of this as-
 205 ssertion, such conclusions become obvious with velocity resolved detection.

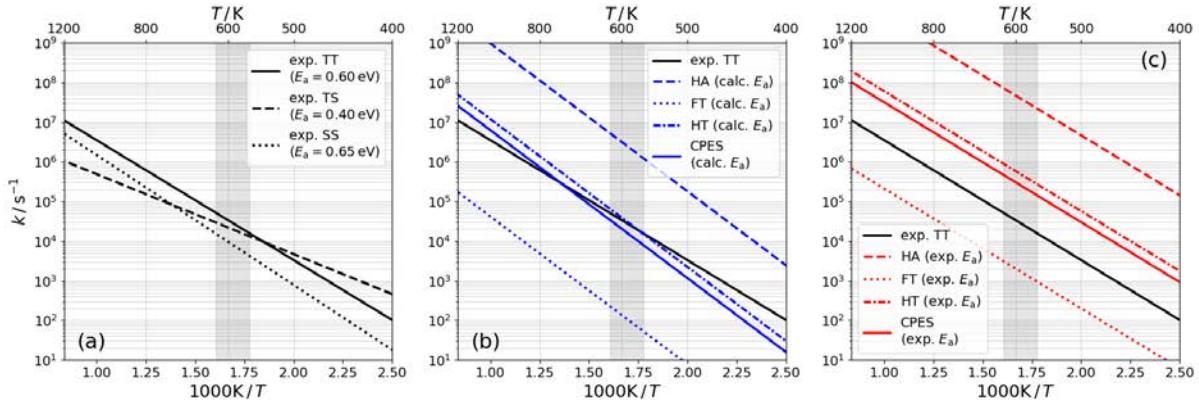

206 **Implementing the principles**

207 As far back as 1977, the time-of-flight detector used in Ref. 14 (Fig. 1) could have been used
 208 to combine product velocity information with density measurements. To our knowledge no such
 209 experiments were ever attempted. The practical difficulties that must be overcome are consid-
 210 erable¹⁸. Nowadays, it is far simpler to carry this out using ion imaging^{19,20}. Figure 3 shows an
 211 instrument constructed in the Göttingen laboratory that combines ultrahigh vacuum surface sci-
 212 ence methods, molecular beams, and ion imaging.

213 This machine uses two pulsed molecular beams—one for CO and one for O₂—that fly in the
 214 horizontal plane to deliver reactants to the catalytic surface shown at the intersection of the two
 215 beams (left panel top view). In the right panel (side view) the implementation of ion imaging

Figure 3: An instrument for velocity resolved surface reaction kinetics. (left panel) top view of the instrument. Two molecular beams deliver reactants to the catalytic surface. Differential pumping chambers reduce the pressure to ultrahigh vacuum in the main chamber. Sample preparation is performed with an Argon Ion Gun, a residual gas analyzer (RGA) and an Auger electron spectrometer. (right panel) side view of the instrument. Ion imaging detection of products provides velocity information. Non-resonant multiphoton laser ionization of products is performed with a 3 mJ, 120 fs pulse of 800 nm light and mass-specific ion detection via time-of-flight measurement is enabled by pulsing the voltage on the multichannel plate (MCP) detector.

Figure 4: Ion imaging of chemical reaction products from CO oxidation on Pt(111) directly reveals the contribution of a thermal and a hyperthermal channel. a) ion image of CO_2 , obtained by scanning the focus of the ionization laser along the vertical blue dotted line, b) derived velocity distribution, c) derived angular distributions of the thermal (blue) and hyperthermal (red) components. d) The total CO_2 flux in each channel is obtained as a function of reaction time by scanning the time delay between the incident pulsed CO beam and the ionization laser, focused near the surface normal. The densities have been converted to flux using the measured velocities, the intensities have been corrected for differences in angular distributions, and the time axis has been corrected for product flight time. See Ref. 15 for further details of how such data is obtained. Figure reproduced with permission from Ref. 15, Nature Publishing Group.


216 with reactant surface scattering is shown. The two beams pass between a repeller, initially held
 217 at ground, and another grounded grid. A laser pulse at the blue point ionizes reaction products
 218 desorbing from the surface; the laser beam is coplanar with the incident molecular beams. We
 219 refer to this hereafter as the probe laser. After a delay of 0–3 μs , the repeller is pulsed to a high
 220 voltage and the ions fly to the ion imaging detector. The ion image is then recorded for each
 221 pulse. The position where the ion is recorded reveals the velocity projected onto the plane de-
 222 fined by the molecular and laser beams. The in-plane probe laser geometry discriminates against
 223 products that scatter out of this plane. Further discrimination as well as mass resolution is ob-
 224 tained by pulsing the z-stack MCPs, thus employing mass-resolved slice imaging²¹ and ensuring
 225 that the product molecule's absolute speed is obtained. This quantity is then multiplied by the
 226 signal intensity to obtain a flux intensity map. To improve velocity resolution, an Einzel lens
 227 placed after the grounded grid provides the capability to perform velocity map imaging²².

228 Figure 4 presents typical results for CO oxidation on Pt(111). Panel a) shows an ion image
 229 obtained shortly after the adsorption of the CO pulse onto the partially oxidized Pt surface. The
 230 green arrows schematically indicate the velocity vectors of the desorbing CO_2 product, which
 231 is ionized by a pulsed laser at the position of the blue dashed line. The ion image clearly exhibits
 232 two contributions. The ions appearing furthest to the right are part of the hyperthermal channel;

233 those closer to the blue dashed line are the thermal channel. Such images can be analyzed as
234 shown in panel b) to deconvolute the relative contributions of the thermal and hyperthermal
235 channels. The ion images also yield the angular distributions of the two channels shown in panel
236 c). The information contained in panels a–c corresponds to a snapshot of the reaction kinetics
237 at a point in time of the kinetic trace defined by the delay between the CO pulse used to initiate
238 the reaction and the probe laser pulse used to detect products. Similar information is collected
239 throughout the entire range of delays necessary to observe the full kinetic trace shown in panel
240 d. The kinetic trace for each channel has been integrated over the angular distribution and the
241 measured densities have been converted to flux. The time axis has been corrected for the prod-
242 uct flight time.

243 The experimentally derived quantities presented in Fig. 4d) are, to our knowledge, the first
244 accurate measurements of the branching between different surface reaction pathways to prod-
245 ucts with different velocity and angular distributions. Using this approach, it was possible to
246 obtain similar kinetic traces at a variety of oxygen coverages and surface temperatures. It was
247 then possible to construct a simple kinetic model involving three reactions: one where both CO
248 and O are bound at neighboring terrace sites—the so-called TT reaction, which gives rise to
249 hyperthermal CO₂—and two reactions where O is bound at a step site and CO is bound either
250 at a neighboring step or terrace site—the SS and the TS reactions, respectively, which give rise
251 to thermal CO₂.

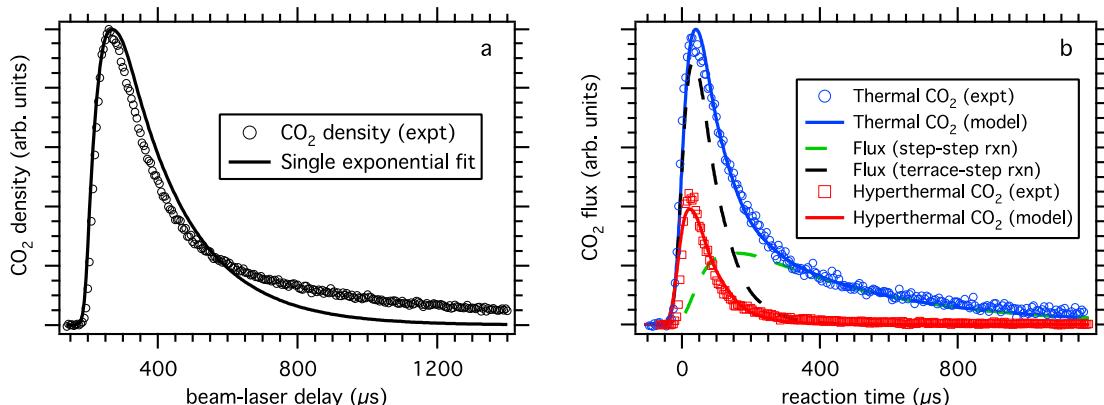

252 Figure 5a shows the three rate constants obtained both for Pt(111) and Pt(332) surfaces. The
253 step density on the Pt(332) surface is approximately 66x higher than the measured step density
254 on the Pt(111) surface. Although there is uncertainty concerning the step direction on the
255 Pt(111) surface, differences in step direction do not appear to affect the observed reaction ki-
256 netics strongly: For both Pt(111) and (332), nearly identical rate constants are obtained for the

Figure 5: Measured and calculated rate constants for CO oxidation reactions occurring on steps or terraces. In each case, the rate constants, k , are defined in terms of the product formation rate as: rate = $k \theta_{CO} \theta_O$. TT & SS refer to the reaction with both O and CO on terrace, or step sites, respectively. TS is the reaction with O at a step and CO at a terrace. Panel (a) shows the measured rate constants for the three elementary oxidation reactions from Ref. 15. Results obtained from a Pt(111) surface with a 0.25% step density and those obtained from a Pt(332) crystal with 16.7% step density were nearly identical and the average is plotted here. In panels (b) and (c), the rate constant of the TT reaction (black solid line) is compared with a transition state theory calculation using a harmonic approximation (HA)²⁶, and with a free two-dimensional translator (FT) and a hindered translator (HT) approximation²⁹. A complete potential energy sampling method calculation²⁹ is also shown. The theoretical rates in panel (b) are plotted with the calculated activation barrier and the rates in panel (c) have been adjusted to the experimentally determined activation barrier. The gray shaded region indicates the temperature range over which the experiments were performed.

257 three reactions. These results provide rates of elementary reactions on a surface with multiple
 258 reaction sites. There are a few things we can learn from this.

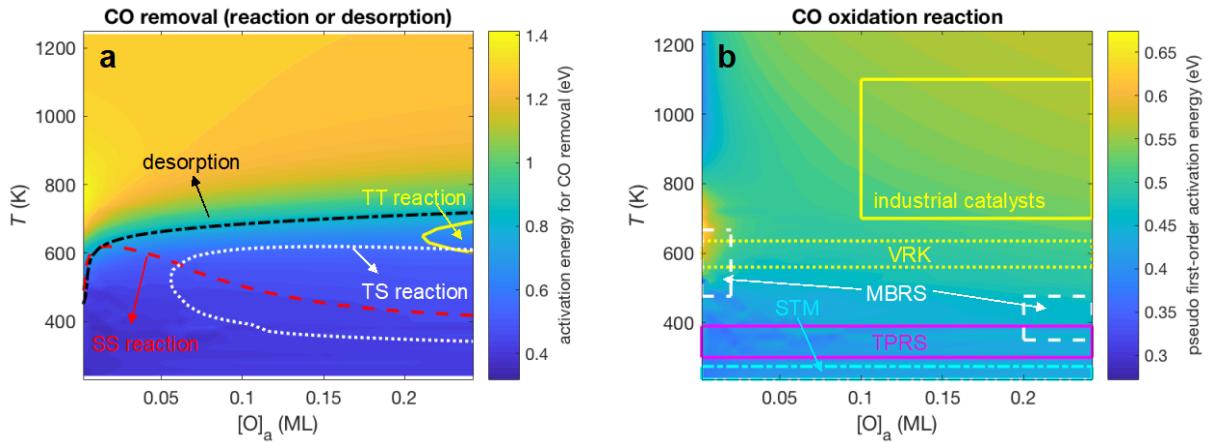

259 First, we can investigate the importance of velocity resolved detection to obtaining accurate
 260 results on this problem. Figure 6 compares the results obtained should velocity information be
 261 unavailable (panel a), to that obtained with velocity-resolved kinetics experiments (panel b).
 262 Without velocity information (panel a), no density-to-flux conversion can be performed; hence,

Figure 6: Comparison of the density vs. time trace (a) with the velocity-resolved CO₂ flux trace. The data is from a Pt(111) surface at a temperature of 623 K and an oxygen coverage of 0.04 ML. The density trace (a) is obtained by integrating the total product density at angles within 5° of the surface normal. The CO₂ flux trace (b) is obtained from the velocity-resolved ion images as illustrated in Figure 4. The relative intensities of the two velocity-resolved channels has been corrected for differences in speed and angular distributions, and different kinetics for the two channels can be distinguished. This information enabled a quantitative fit to a model involving three elementary reactions: reactions on terraces (red curve), reactions of CO on terraces with O on steps (black dashed curve), and reactions of CO on steps with O on steps (green dashed curve). The data is obtained from Ref. 15.

263 the y -axis represents the density of products near the surface normal as a function of delay
264 between the molecular beam pulse of reactants and the ionization laser pulse. The information
265 content of this data is clearly lower than that of panel b. It is not surprising that data like this
266 obtained in previous work was fit assuming pseudo-first order rate equations—by default as-
267 suming a single reaction. In panel b, the velocity-resolved data reveals different kinetics for the
268 thermal and hyperthermal channels, which led to the development of a site-resolved model for
269 the elementary reaction steps. The hyperthermal channel, which arises from reactions on ter-
270 races, decays quickly whereas the thermal channel exhibits biexponential decay with a fast
271 component (terrace-step reaction) that decays at the rate of the hyperthermal channel and a
272 second component (step-step reaction) that decays at a slower rate. The temperature and oxygen
273 coverage dependence of the reaction kinetics were obtained previously by temperature pro-
274 grammed reaction²³ and molecular beam reactive scattering²⁴. In order to fit the data, it was
275 necessary to allow the activation energy to vary with surface coverage. This required postulat-
276 ing that the energetic barrier to CO₂ formation varied by ~ 0.7 eV as the surface coverage of O
277 atoms changed due to the influence of nearby adsorbed O atoms. We now know this is not
278 correct.

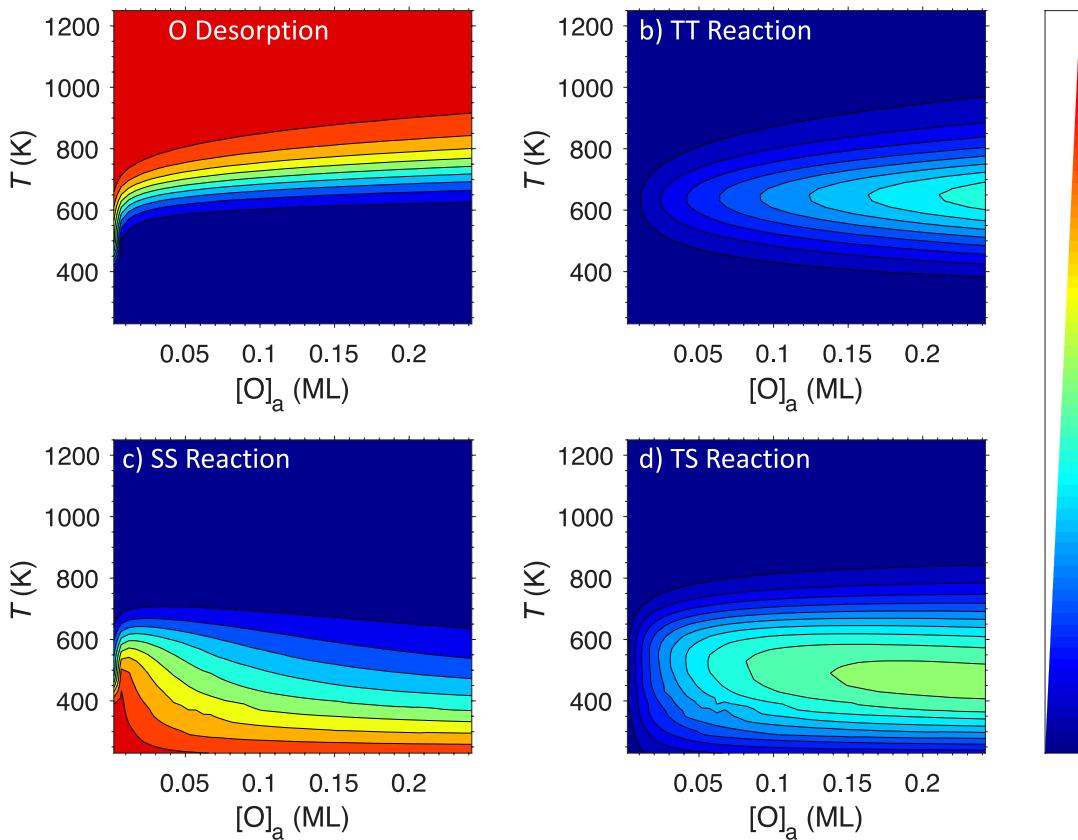
279 In Ref. 15, it was shown that when velocity-integrated kinetic traces like those of Fig. 6a are fit
280 with a pseudo first-order kinetic model (single exponential fit, Fig. 6a), the apparent reaction
281 activation energy varies strongly with oxygen coverage over a similar range as that reported
282 previously.^{23,24} This comparison made an important point: if activation energies depend
283 strongly on reactant concentration (in this case O-coverage), it is possible that this is a result of
284 using the wrong chemical mechanism to fit the data. Figure 7 shows effective pseudo first-order
285 activation energies obtained from the fit model (Table 1 of Ref. 15) as a function of surface
286 temperature and oxygen coverage at low CO coverage. The effective activation energies in
287 panel a are obtained from the overall decay rate of product signal, which reflects disappearance
288 of CO via either reaction or desorption. The activation energy depends on O-coverage and sur-
289 face temperature, varying over about 1 eV due to the dominance of different elementary pro-
290 cesses at different temperatures and coverages. The effective activation energies for the oxida-
291 tion reaction, obtained after correcting for the effects of desorption, are shown in panel b. The
292 temperature and O-coverage range of various experiments and of industrially relevant catalysis
293 are also indicated. (A direct comparison to the model may not be appropriate in all cases, since
294 some experiments were performed at high CO coverage where poisoning of reactive sites may
295 occur.)

Figure 7: Temperature- and coverage-dependence of effective activation energies. The pseudo first-order activation energy is obtained from the model in Table 1 of Ref. 15 (see text) and plotted for low CO coverage as a function of temperature and oxygen coverage. Shifts in the activation energy reflect shifts in the dominant rate-limiting process. The energies are calculated from $-k_B dk_{eff}/dT^{-1}$, where $k_{eff} = P_f k_f + P_s k_s$ is the weighted average of the “fast” rate (k_f , involving terrace CO), and the “slow” rate, (k_s , involving step-bound CO). (P_f and P_s are the fraction of CO_2 formed via the fast and slow decay channels, respectively.) The energies in panel a are obtained from the overall product decay so that they represent the activation energy for CO removal by reaction or desorption, whereas the energies in panel b include only the reactive processes. i.e. in panel a, $k_f = k_0^T + k_1^{TS}\theta_s + k_2^{TT}\theta_{0,terr} + k_2^{TS}\theta_{0,step}$, and $k_s = k_0^S + k_2^{SS}\theta_{0,step}$. ($\theta_{0,terr}$, $\theta_{0,step}$, and θ_s are the fractional coverage of oxygen on terraces, oxygen on steps, and unoccupied step sites, respectively; the elementary rate constants are defined as in Table 1 of Ref. 15). The isolcures in panel a represent the temperature and coverage at which the yield of each process amounts to 40% of the initial CO coverage. (Desorption is indicated by a black dash-dotted curve, the TT reaction by a yellow solid curve, the TS reaction by a white dotted curve and the SS reaction by a red dashed curve. See Fig 8.) In panel b, the rate constants defined similarly, but do not include desorption from terraces and steps (k_0^T and k_0^S , respectively). The boxes in panel b illustrate the temperature and coverage range relevant to industrial catalysis (yellow solid box), and at which kinetic measurements have been performed via Scanning Tunneling Microscopy (STM, dash-dotted cyan box)⁴⁴, Temperature Programmed Reaction Spectrometry (TPRS, solid magenta box)²³, Modulated Beam Relaxation Spectrometry (MBRS, white dashed boxes)²⁴, and Velocity Resolved Kinetics (VRK, yellow dotted box)¹⁵.

296 Figure 7 illustrates how easily kinetic measurement can be misinterpreted—the absence of ve-
 297 locity resolved data easily leads to an assumption of an incorrect kinetic mechanism, where the
 298 activation energy depends on the reactant concentration and surface temperature. Moreover, the
 299 activation energy derived will depend on the temperatures and O-coverages where the experi-
 300 ment could be carried out.

301 In stark contrast to this, the kinetic model that has been derived from velocity resolved kinetics
 302 explains the roles of different reaction sites and provides activation energies that are independ-
 303 ent of O-coverage and surface temperature. Figure 8 shows this for CO oxidation on Pt(111)
 304 with 0.25% step density. The four panels show the fraction of adsorbed CO that undergoes
 305 desorption (panel a) or oxidation via the three elementary reactions included in the model (pan-
 306 elns b–d). Nearly all kinetics work has been carried out in the temperature range from 230–670
 307 K. We note that step reactions dominate, despite the fact that the Pt(111) surface used in this
 308 work had a measured surface step density of far less than 1% of a monolayer. Clearly, the vast
 309 majority of reactivity proceeds via CO adsorption at terraces followed by diffusion to steps,
 310 where CO_2 is formed.

311 Typical commercial applications of Pt catalyzed CO oxidation occur in the region between 700
312 K and 1100 K. (Note, however, that the micro-kinetic model used in Fig. 8 is for a Pt(111)
313 surface under UHV conditions and cannot make quantitative predictions for industrial cata-
314 lysts.) Here, reactions at terraces are much more important and the CO oxidation probability is
315 reduced. This is easy to understand. At high temperatures CO desorption is much faster than
316 diffusion and we enter a regime where diffusion plays no role. Reaction occurs at the point of
317 adsorption and desorption reduces the overall reaction probability. Since the low-oxygen-cov-
318 erage MBRS measurements of ref. 24 monitored only the CO₂ normal to the surface, they could
319 easily have been biased in favor of the TT reaction, whose contribution increases at high tem-
320 peratures. This could easily have led to an artificially high apparent activation energy for the
321 Langmuir-Hinshelwood step (1.05 eV, versus 0.67 eV at the most in Fig. 7b), again showing
322 the importance of a correct mechanistic model.


323 This simple mechanistic insight also suggests that catalyst studies using scanning tunneling
324 microscopy, which are typically performed at temperatures below 300 K, must be interpreted
325 very carefully when conclusions from that work might be applied at higher reaction tempera-
326 tures. See the discussion of oxygen island formation and its effect on reactivity presented below.

327 The analysis makes a fundamental point: surface kinetics may be simpler than we believed. If
328 we employ an approximation of homogeneous reactant mixing and if we further assume that
329 activation energies are independent of reactant concentration, we would expect an expression
330 for the rate of a single elementary CO oxidation reaction would take the following form:

$$331 \quad \text{rate} = Ae^{-E_A/RT} \theta_{CO} \theta_O.$$

332 The simplicity of such a form is attractive. But if real physical effects exist where the barriers
333 to chemical reactions depend on surface concentrations, then the problem is more complex.

334 Although a mild dependence on surface coverage cannot be ruled out due to experimental un-
335 certainty, the results of this study suggest that for the CO oxidation reaction such effects are
336 minor. This may seem surprising as adsorption energies certainly do depend on surface cover-
337 age, an effect that has been explained by repulsive forces between densely packed adsorbates
338 in a monolayer – see for example Ref. 25. However, if there is a repulsive interaction that lowers
339 the adsorption energy of reactants, there will often also be repulsive interactions that lower the
340 adsorption energy of the transition state and of the surface-bound product to some extent. This

Figure 8: The role of steps in a surface reaction. The micro-kinetic model for CO oxidation on Pt(111) reveals that a large fraction of the products are formed at step defects, even when the step density is low, and how the role of steps changes with temperature and O coverage. The four panels show the fraction of CO that undergoes desorption (a) or that is oxidized via the three different elementary reactions (TT, SS, and TS) included in the model of Ref. 15 (panels b–d). The fractions are calculated from the parameters given in Table 1 of Ref. 15 in the low CO coverage limit.

341 may mean that activation energies that are coverage independent, or nearly so, are more com-
 342 mon than presently believed. While exceptions will undoubtedly be found, we should in future
 343 be cautious about interpreting data using models where the activation energy changes strongly
 344 with coverage. The kinetics studies presented here on three CO oxidation reactions show no
 345 strong coverage dependence, which suggests that previously reported coverage dependence
 346 may have been an artefact due to the assumption of an overly simple mechanism.
 347 Perhaps the most significant idea we would like to convey to the reader is that we are now close
 348 to being able to develop accurate theories of surface reaction rates based on experimental bench-
 349 marks. Figures 5b and c compare the experimentally derived rate constant for the TT reaction
 350 (most commonly assumed in theoretical treatments of CO oxidation on metals) to that obtained
 351 theoretically. The dashed blue line in panel b shows calculations from Eichler²⁶ using methods
 352 that would be commonly used today. Here, density functional theory is used to calculate the
 353 energy and structure of the transition state of the TT reaction. Once the transition state structure

354 is found, its vibrational frequencies are calculated. This provides the necessary input for transi-
355 tion state theory, the most commonly used and successful model of gas-phase reaction rates.

356 The deviation with experiment is between one and two orders of magnitude, better at low tem-
357 perature than at high temperature. The theory does not give the proper temperature dependence.
358 This is not the most fundamental problem as the RPBE functional used in this calculation has
359 been found to overestimate the height of reaction barriers in other systems²⁷. One assumes that,
360 sooner or later, better functionals will be found that provide more accurate barrier heights. If
361 we simply adjust the barrier height to match the experimental activation energy (red dashed
362 line, panel c), the agreement with experiment is significantly worsened.

363 This line of reasoning clearly shows that the analysis of Eichler introduced large errors in the
364 Arrhenius pre-exponential factor, a quantity that reflects the entropy difference between reac-
365 tants and the transition state. It would appear that Eichler pursued a model where the reactants
366 have far too little entropy. A closer look at the assumptions of that paper reveals that the influ-
367 ence of CO diffusive entropy was not considered. At the temperatures relevant to this reaction,
368 the CO molecule explores a wide range of configuration space before finding the transition state
369 as it wanders about the surface looking for its pathway to products²⁸. The use of a free translator
370 model (dotted lines in Fig 5b and c) significantly decreases the rate constant to bring it 1–2
371 orders of magnitude below experiment. A hindered translator model (dash-dotted lines) exhibits
372 better agreement with experiment. Jørgensen *et al.* recently introduced a first principles ap-
373 proach to dealing with this sort of problem: the complete potential energy sampling method
374 (CPES)²⁹. We applied this method to obtain the rate constants shown as solid blue and red lines
375 in Fig. 5b and c. The resulting rate constant is in good agreement with experiment when the
376 RPBE energies are assumed (panel b), but this is likely due to cancellation of error. When the
377 CPES prefactor is used with experimentally determined activation energies, the resulting rate
378 constants overestimate the experiment by an order of magnitude (panel c).

379 The remaining order of magnitude difference between experiment and theory poses questions
380 that must be addressed in future research. Improved electronic structure calculations are clearly
381 needed that provide the properties of the transitions state more accurately. Beyond this, the
382 fundamental assumptions of transition state theory need to be tested. Transition state theory
383 assumes that once the transition state is crossed it can never be re-crossed; hence, it always
384 provides a rate that is higher than or equal to the actual rate. The importance of transition state
385 re-crossing in CO oxidation—or any other surface reaction—is still unknown. Another funda-
386 mental assumption of the transition state theory is its assumption of the absence of frictional

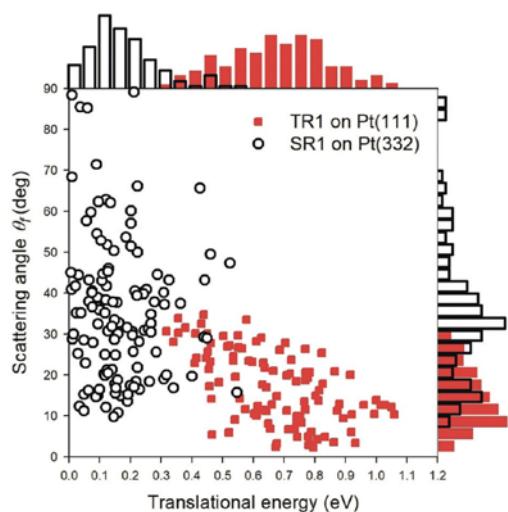
387 forces in the transition state traversal. Such forces can arise from interactions between the O
388 and C atoms with the electrons of the platinum, where the Born-Oppenheimer approximation
389 fails¹¹⁻¹³ and electron-hole pair excitation robs energy from the nuclear motion³⁰ through the
390 transition state, reducing reaction probability.

391 **Other methods of interest**

392 The focus of this short perspective has been the velocity resolved approach to studying kinetics
393 of elementary reactions on well-defined model catalytic surfaces. However, velocity resolved
394 methods are not always necessary to gain insights into heterogeneous catalysis. Understanding
395 catalysis also requires information on adsorbate stabilities. Due to its simplicity, there is a vast
396 literature of Temperature Programmed Desorption (TPD)-based adsorbate binding energies;
397 but, we caution these may be subject to large errors, especially when assumptions about de-
398 sorption prefactors are made. Ways to extract the most accurate information possible from TPD
399 have been discussed³¹⁻³⁴. The most accurate binding energies can be derived when TPD exper-
400 iments are conducted over a wide range of heating rates, when better prefactor estimates are
401 available or by numerical fitting of the entire TPD curve.

402

403 Equilibrium measurements of coverage vs. temperature and pressure are widely used to obtain
404 reliable adsorption energies^{31,32}. When equilibrium cannot be realized, single crystal adsorption
405 calorimetry (SCAC) can be used to measure the heat input induced by adsorption directly³⁵⁻³⁷.
406 A molecular beam is used to deliver a series of weak pulses (≈ 0.01 ML) of the molecule of
407 interest to a single crystal sample and the temperature rise of the sample is measured. The most
408 sensitive method to date uses a pyroelectric detector in contact with the back of the single crystal
409 sample to measure the temperature rise³⁶. The adsorption probability for the beam pulse is
410 determined by measuring the fraction of the beam that reflects, and the heat adsorbed is cali-
411 brated by adsorption of light from a laser beam, directed down the same path as the molecular
412 beam. Thus, the heat released by the adsorption of a known number of molecules at a certain
413 coverage can be determined for both molecular adsorption and dissociative adsorption.


414 There are also a variety of alternatives for measuring kinetics. For example, in Temperature
415 Programmed Reaction Spectrometry (TPRS)³⁸, the system is first prepared with a given con-
416 centration of reactants at low temperature. Desorbed reaction products are observed while
417 providing a linear ramp of the surface temperature. This method has been successful for catalyst

418 characterization, understanding reaction mechanisms, determining kinetic data, rapid evalua-
419 tion of catalyst activity, and measuring surface areas of adsorption³⁹.

420 Alternatively, one may use surface sensitive detection methods to follow the concentration of
421 adsorbed reactants, intermediates and products as a function of reaction time. This approach
422 also provides the kinetic trace; unfortunately, available techniques like Infrared Reflection Ab-
423 sorption Spectroscopy (IRAS)^{40,41}, X-Ray Photoelectron Spectroscopy (XPS)^{42,43} and Scanning
424 Tunneling Microscopy (STM)⁴⁴ tend to be restricted to conditions where reaction rates are slow
425 working at low surface temperatures that are often far from those of practical interest and ex-
426 hibit qualitatively different kinetic mechanisms.

427 Here again, the comparison of methods when applied to CO oxidation on Pt surfaces is inter-
428 esting. When rates of CO oxidation are measured with sub-millisecond time resolution at $T_s =$
429 500–700 K, (see Fig. 6) kinetic models based on complete reactant mixing are successful. Ki-
430 netic analysis starts with the mathematical Ansatz $\Phi_{CO_2} = k \cdot \theta_O \cdot \theta_{CO}$. Studies with STM and
431 XPS were used to observe the reaction at $T_s \approx 250$ K. By pre-adsorbing O and exposing to CO
432 in the background gas, time resolved STM images showed the reaction rate was proportional to
433 the perimeter length of O-islands⁴⁴. Synchrotron based XPS was also used to follow the reac-
434 tion under similar conditions and gave consistent results⁴³. At low T_s , the rate took the form $k \cdot$
435 $\theta_O^{0.55}$. These results highlight real differences in the way reactions occur at low temperatures
436 and the danger of extrapolating results to high temperature conditions closer to real catalytic
437 conditions.

438 Another kinetics approach is Modulated Beam Relaxation Spectrometry (MBRS)⁴⁵, which can
439 follow much faster reactions. Here, reactants are delivered to the surface as periodic pulses; the
440 delay of the product signal is measured as a phase lag relative to these pulses. The phase lag
441 between the product and reactant signal is related to the rate of reaction. Analysis requires
442 formulating a kinetic model of the reaction and adjusting the parameters of the model to achieve
443 agreement with the observed product signals. If the kinetic model is not correct, it may still be
444 possible to get agreement with the observed product signal over the range of conditions probed,
445 but the inferred kinetic parameters will be incorrect and not useful for calculating rates under
446 other conditions. Nevertheless, when properly applied the MBRS method can be a powerful
447 tool.

Figure 9: Results of *ab initio* molecular dynamics trajectory calculations used to obtain the final angular and translational energy distributions from the site-specific post-transition state dynamics of CO oxidation on Pt. TR1 (red filled squares) represents results from the preferred path on the Pt(111) terrace and SR1 (open circles) represents the preferred reaction path at a Pt(332) step site. The calculated angular and speed distributions are in semi-quantitative agreement with experiment. Figure reprinted with permission from Fig. 3 of Ref. 16.

Outlook

The improvements in computational chemistry we have witnessed over the last three decades are nothing short of revolutionary. State-of-the-art problems for theory in the 1980s included the $\text{H} + \text{H}_2 \rightarrow \text{H}_2 + \text{H}$ reaction. Today, we can simulate the adsorption of H-atoms to a solid metal surface³⁰ or to graphene⁴⁶, describing the dynamics that occur on the femtosecond timescale with atomic-scale precision. The development of new catalysts has traditionally been achieved by experimental empiricism. In future, this will be led and guided by theoretical simulations with predictive power⁴⁷. The recent velocity-resolved kinetics results on CO oxidation have already led to new synergy between theory and

464 experiment that help explain the site-specific reaction dynamics. A DFT-based *ab initio* molecular dynamics simulation found that CO_2 formed on the Pt(111) terrace desorbs directly, 465 whereas CO_2 formed on a Pt(332) step site is temporarily trapped in a shallow chemisorption 466 well for enough time for the translational energy to thermalize with the surface, giving rise to 467 the thermal and hyperthermal reaction channels observed experimentally (see Fig. 9).¹⁶ 468

469 Modern synchrotron XPS- and STM-based methods capable of operating at high or near-ambien- 470 t pressure have revealed significant structural changes to the surface that make it challenging 471 to connect UHV experiments on model catalysts to “real-world” problems.⁴⁸ Two examples 472 that address this so-called “pressure gap” are worth special note. The first employed experi- 473 mental results obtained in ultrahigh vacuum experiments on single crystal metals together with 474 DFT based theory⁴⁹⁻⁵⁴, to devise a kinetic model for a high pressure reactor comprised on na- 475 noparticles. The extrapolation from UHV and single crystals to high pressure and nanoparticles 476 has been referred to as the pressure and material gaps, but – in the words of these authors – 477 “...they actually comprise a knowledge continuum, which can be understood from basic prin- 478 ciples”. In that study, basic knowledge derived from the study of model systems could be used 479 to predict product selectivity for oxygen-assisted esterification of methanol over gold nanopar-

480 ticle catalysts under high pressure catalytic conditions⁵⁵. This successful micro-kinetic model-
481 ing of catalytic reactions across a wide set of reaction conditions provides a framework for
482 future studies of rational catalysis design.

483 In related work, micro-kinetic modeling with Monte-Carlo kinetics methods based on rate con-
484 stants derived from first principles electronic structure theory was used to describe catalytic CO
485 oxidation on RuO₂⁵⁶. Results could be compared to experiments carried out at high tempera-
486 tures and pressures and the theory was in good agreement with observations. Laser Induced
487 Fluorescence (LIF) imaging of CO oxidation under elevated pressure conditions on a curved
488 Pd crystal also revealed micro-kinetic information about the influence of different step types,
489 which could be understood by comparison of experiment with theory.⁵⁷ Such work shows the
490 way forward despite the fact that fundamental questions remain due to the difficulties in testing
491 these theoretical approaches against accurately measured reaction rates – a theme of this paper.
492 But these tests will be made and where theories are found to be lacking new ideas will emerge.
493 Nothing is needed to ensure this bright future other than support of the chemical community
494 still struggling with the daunting problem of unraveling the secrets of heterogeneous catalysis.

495 In the introduction to this paper, we documented the costs of inadequate heterogeneous catalysis
496 to just a single company to be on the order of several 100 billion \$US. Had the leaders of those
497 same companies had greater vision, they might have invested a small fraction of these losses in
498 the basic research of heterogeneous catalysis to improve our ability to design new catalysts by
499 principles based on physical understanding. That investment together with one for in-house
500 proprietary applications research, surely would have led to technological improvements that
501 would have offered more attractive solutions than defeat devices. To put it another way, had
502 the EU in cooperation with European automakers invested just 1% of VWs eventual losses—
503 one billion € per year—in research on catalytic processes, it would have been among the largest
504 research initiative in the world. Such research would surely have had an impact, not only on the
505 value of VWs stock, but on tens of thousands of people whose lives ended prematurely due to
506 automobile air pollution.

507 **References**

508 1 Anenberg, S. C. *et al.* Impacts and mitigation of excess diesel-related NO_x emissions in 11
509 major vehicle markets. *Nature* **545**, 467-471, doi:10.1038/nature22086 (2017).

510 2 Thompson, G. J. *In-Use Emissions Testing of Light-Duty Diesel Vehicles in the United States*
511 <https://www.theicct.org/sites/default/files/publications/WVU_LDDV_in-use_ICCT_Report_Final_may2014.pdf> (2014).

513 3 Fortune. *VW Fights Investors as Diesel-Scandal Cost Could Top \$35 Billion*,
514 <<http://fortune.com/2018/09/08/volkswagen-vw-diesel-scandal/>> (2018).

515 4 Ling, S., Kho, F., Lim, J. & Chu, C. *Driving Volkswagen AG into the future*,
516 <<https://foster.uw.edu/wp-content/uploads/2014/12/PP-B3-Singapore-NUS.pdf>> (2016).

517 5 Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational
518 design of solid catalysts. *Nature Chemistry* **1**, 37-46, doi:10.1038/nchem.121 (2009).

519 6 Crutzen, P. J. My life with O₃, NO_x, and other YZO_x compounds (Nobel lecture). *Angewandte
520 Chemie-International Edition* **35**, 1758-1777, doi:10.1002/anie.199617581 (1996).

521 7 Weber, M. *et al.* Total ozone trends from 1979 to 2016 derived from five merged observational
522 datasets - the emergence into ozone recovery. *Atmos. Chem. Phys.* **18**, 2097-2117,
523 doi:10.5194/acp-18-2097-2018 (2018).

524 8 Roy, S., Hegde, M. S. & Madras, G. Catalysis for NO_x abatement. *Appl. Energy* **86**, 2283-2297,
525 doi:10.1016/j.apenergy.2009.03.022 (2009).

526 9 Kurylo, M. J. & Orkin, V. L. Determination of atmospheric lifetimes via the measurement of
527 OH radical kinetics. *Chem. Rev.* **103**, 5049-5076, doi:10.1021/cr020524c (2003).

528 10 Vereecken, L. & Francisco, J. S. Theoretical studies of atmospheric reaction mechanisms in the
529 troposphere. *Chem. Soc. Rev.* **41**, 6259-6293, doi:10.1039/c2cs35070j (2012).

530 11 Wodtke, A. M. Electronically non-adiabatic influences in surface chemistry and dynamics.
531 *Chem. Soc. Rev.* **45**, 3641-3657, doi:10.1039/c6cs00078a (2016).

532 12 Golibrzuch, K., Bartels, N., Auerbach, D. J. & Wodtke, A. M. in *Annual Review of Physical
533 Chemistry*, Vol 66 Vol. 66 *Annual Review of Physical Chemistry* (eds M. A. Johnson & T. J.
534 Martinez) 399-425 (Annual Reviews, 2015).

535 13 Silva, M., Jongma, R., Field, R. W. & Wodtke, A. M. The dynamics of "stretched molecules":
536 Experimental studies of highly vibrationally excited molecules with stimulated emission
537 pumping. *Annu. Rev. Phys. Chem.* **52**, 811-852, doi:10.1146/annurev.physchem.52.1.811
538 (2001).

539 14 Becker, C. A., Cowin, J. P., Wharton, L. & Auerbach, D. J. CO₂ product velocity distributions
540 for CO oxidation on platinum. *The Journal of Chemical Physics* **67**, 3394,
541 doi:10.1063/1.435289 (1977).

542 15 Neugebohren, J. *et al.* Velocity-resolved kinetics of site-specific carbon monoxide oxidation on
543 platinum surfaces. *Nature* **558**, 280--283, doi:10.1038/s41586-018-0188-x (2018).

544 16 Zhou, L., Kandratsenka, A., Campbell, C. T., Wodtke, A. M. & Guo, H. Origin of thermal and
545 hyperthermal CO₂ from CO oxidation on Pt surfaces: The role of post-transition-state dynamics,
546 active sites, and chemisorbed CO₂. *Angew. Chem. Int. Ed.* **58**, 6916-6920,
547 doi:10.1002/anie.201900565 (2019).

548 17 Segner, J., Campbell, C. T., Doyen, G. & Ertl, G. Catalytic oxidation of CO on Pt(111): The
549 influence of surface defects and composition on the reaction dynamics. *Surf. Sci.* **138**, 505-523,
550 doi:10.1016/0039-6028(84)90262-0 (1984).

551 18 There is a great deal buried in this simple sentence. The 1977 work of Ref. 14 used a single
552 chopper wheel. Here, one chopper wouldn't do. To measure velocity resolved kinetics would
553 require a way to initiate the reaction at a known time (e.g. chopped supersonic beam or pulsed

554 supersonic beam) and a way to measure the velocity of products. Measuring product velocity
555 could be done with a chopper or velocity selector in the path of the products, i.e. after the
556 surface. The chopper after the surface would have to be synchronized with the initiating pulse
557 to get the velocity resolved kinetic trace. A pulse picker or equivalent electronics would be
558 needed to chop the product distribution at a certain reaction time. Corrections for flight time
559 from the input chopper to the surface and from the surface to the exit chopper would be quite
560 difficult. A rotatable detector is also needed to obtain the angular distribution information. Each
561 double chopper implemented velocity resolved kinetics measurement would have to be repeated
562 at a number of desorption angles. In light of this, it is perhaps easier to see how truly wonderful
563 it is to have a detector like slice ion-imaging that intrinsically gives the product momentum -
564 both speed and direction - with every laser shot.

565 19 Chandler, D. W. & Houston, P. L. TWO-DIMENSIONAL IMAGING OF STATE-SELECTED
566 PHOTODISSOCIATION PRODUCTS DETECTED BY MULTIPHOTON IONIZATION.
567 *Journal of Chemical Physics* **87**, 1445-1447, doi:10.1063/1.453276 (1987).

568 20 Heck, A. J. R. & Chandler, D. W. IMAGING TECHNIQUES FOR THE STUDY OF
569 CHEMICAL-REACTION DYNAMICS. *Annual Review of Physical Chemistry* **46**, 335-372,
570 doi:10.1146/annurev.pc.46.100195.002003 (1995).

571 21 Gebhardt, C. R., Rakitzis, T. P., Samartzis, P. C., Ladopoulos, V. & Kitsopoulos, T. N. Slice
572 imaging: A new approach to ion imaging and velocity mapping. *Review of Scientific
573 Instruments* **72**, 3848-3853, doi:Doi 10.1063/1.1403010 (2001).

574 22 Eppink, A. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic
575 lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. *Rev.
576 Sci. Instrum.* **68**, 3477-3484, doi:10.1063/1.1148310 (1997).

577 23 Gland, J. L. & Kollin, E. B. Carbon monoxide oxidation on the Pt(111) surface: Temperature
578 programmed reaction of coadsorbed atomic oxygen and carbon monoxide. *The Journal of
579 Chemical Physics* **78**, 963, doi:10.1063/1.444801 (1983).

580 24 Campbell, C. T., Ertl, G., Kuipers, H. & Segner, J. A molecular-beam study of the catalytic-
581 oxidation of CO on a Pt(111) surface. *J. Chem. Phys.* **73**, 5862-5873, doi:10.1063/1.440029
582 (1980).

583 25 Yeo, Y. Y., Vattuone, L. & King, D. A. Calorimetric heats for CO and oxygen adsorption and
584 for the catalytic CO oxidation reaction on Pt{111}. *J. Chem. Phys.* **106**, 392-401,
585 doi:10.1063/1.473203 (1997).

586 26 Eichler, A. CO oxidation on transition metal surfaces: reaction rates from first principles.
587 *Surface Science* **498**, 314-320, doi:10.1016/s0039-6028(01)01805-2 (2002).

588 27 Diaz, C. *et al.* Chemically accurate simulation of a prototypical surface reaction: H₂ dissociation
589 on Cu(111). *Science* **326**, 832-834, doi:10.1126/science.1178722 (2009).

590 28 Sprowl, L. H., Campbell, C. T. & Arnadottir, L. Hindered translator and hindered rotor models
591 for adsorbates: Partition functions and entropies. *Journal of Physical Chemistry C* **120**, 9719-
592 9731, doi:10.1021/acs.jpcc.5b11616 (2016).

593 29 Jørgensen, M. & Gronbeck, H. Adsorbate entropies with complete potential energy sampling in
594 microkinetic modeling. *Journal of Physical Chemistry C* **121**, 7199-7207,
595 doi:10.1021/acs.jpcc.6b11487 (2017).

596 30 Bünermann, O. *et al.* Electron-hole pair excitation determines the mechanism of hydrogen atom
597 adsorption. *Science* **350**, 1346-1349, doi:10.1126/science.aad4972 (2015).

598 31 Campbell, C. T. & Sellers, J. R. V. Enthalpies and entropies of adsorption on well-defined oxide
599 surfaces: Experimental measurements. *Chem. Rev.* **113**, 4106-4135, doi:10.1021/cr300329s
600 (2013).

601 32 Silbaugh, T. L. & Campbell, C. T. Energies of Formation Reactions Measured for Adsorbates
602 on Late Transition Metal Surfaces. *Journal of Physical Chemistry C* **120**, 25161-25172,
603 doi:10.1021/acs.jpcc.6b06154 (2016).

604 33 Habenschaden, E. & Kuppers, J. Evaluation of flash desorption spectra. *Surf. Sci.* **138**, L147-
605 L150, doi:10.1016/0039-6028(84)90488-6 (1984).

606 34 King, D. A. Thermal desorption from metal surfaces. *Surf. Sci.* **47**, 384-402, doi:10.1016/0039-
607 6028(75)90302-7 (1975).

608 35 Borroni-Bird, C. E., Al-Sarraf, N., Andersson, S. & King, D. A. Single crystal adsorption
609 microcalorimetry. *Chem. Phys. Lett.* **183**, 516-520, doi:10.1016/0009-2614(91)80168-w (1991).

610 36 Stuckless, J. T., Frei, N. A. & Campbell, C. T. A novel single-crystal adsorption calorimeter and
611 additions for determining metal adsorption and adhesion energies. *Rev. Sci. Instrum.* **69**, 2427-
612 2438, doi:10.1063/1.1148971 (1998).

613 37 Campbell, C. T. Energies of adsorbed catalytic intermediates on transition metal surfaces:
614 Calorimetric measurements and benchmarks for theory. *Acc. Chem. Res.* **52**, 984-993,
615 doi:10.1021/acs.accounts.8b00579 (2019).

616 38 Madix, R. J. & Telford, S. G. The kinetic isotope effect for C-H bond activation on Cu(110):
617 The effects of tunnelling. *Surf. Sci.* **277**, 246-252, doi:10.1016/0039-6028(92)90765-x (1992).

618 39 Falconer, J. L. & Schwarz, J. A. Temperature-programmed desorption and reaction:
619 Applications to supported catalysts. *Catal. Rev.-Sci. Eng.* **25**, 141-227,
620 doi:10.1080/01614948308079666 (1983).

621 40 Xu, J. Z. & Yates, J. T. Catalytic oxidation of CO on Pt(335): A study of the active site. *J.
622 Chem. Phys.* **99**, 725-732, doi:10.1063/1.465745 (1993).

623 41 Zaera, F. New advances in the use of infrared absorption spectroscopy for the characterization
624 of heterogeneous catalytic reactions. *Chem. Soc. Rev.* **43**, 7624-7663, doi:10.1039/c3cs60374a
625 (2014).

626 42 Fuhrmann, T. *et al.* Activated adsorption of methane on Pt(111) - an *in situ* XPS study. *New J.
627 Phys.* **7**, 19, doi:10.1088/1367-2630/7/1/107 (2005).

628 43 Papp, C. & Steinruck, H. P. In situ high-resolution X-ray photoelectron spectroscopy -
629 Fundamental insights in surface reactions. *Surf. Sci. Rep.* **68**, 446-487,
630 doi:10.1016/j.surfrep.2013.10.003 (2013).

631 44 Wintterlin, J., Völkening, S., Janssens, T. V. W., Zambelli, T. & Ertl, G. Atomic and
632 macroscopic reaction rates of a surface-catalyzed reaction. *Science* **278**, 1931--1934,
633 doi:10.1126/science.278.5345.1931 (1997).

634 45 Schwarz, J. A. & Madix, R. J. Modulated beam relaxation spectrometry: Its application to the
635 study of heterogeneous kinetics. *Surf. Sci.* **46**, 317-341, doi:10.1016/0039-6028(74)90260-x
636 (1974).

637 46 Jiang, H. Y. *et al.* Imaging covalent bond formation by H-atom scattering from graphene.
638 *Science* **364**, 379-382 (2019).

639 47 Reuter, K. & Metiu, H. in *Handbook of Materials Modeling*. (ed Yip S. Andreoni W.)
640 (Springer, Cham, 2018).

641 48 van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Surface science under reaction
642 conditions: CO oxidation on Pt and Pd model catalysts. *Chem. Soc. Rev.* **46**, 4347-4374,
643 doi:10.1039/C7CS00045F (2017).

644 49 Xu, B. J., Madix, R. J. & Friend, C. M. Predicting gold-mediated catalytic oxidative-coupling
645 reactions from single crystal studies. *Acc. Chem. Res.* **47**, 761-772, doi:10.1021/ar4002476
646 (2014).

647 50 Stowers, K. J., Madix, R. J. & Friend, C. M. From model studies on Au(111) to working
648 conditions with unsupported nanoporous gold catalysts: Oxygen-assisted coupling reactions. *J.*
649 *Catal.* **308**, 131-141, doi:10.1016/j.jcat.2013.05.033 (2013).

650 51 Xu, B. J., Haubrich, J., Baker, T. A., Kaxiras, E. & Friend, C. M. Theoretical study of O-
651 assisted selective coupling of methanol on Au(111). *Journal of Physical Chemistry C* **115**,
652 3703-3708, doi:10.1021/jp110835w (2011).

653 52 Xu, B. J. & Friend, C. M. Oxidative coupling of alcohols on gold: Insights from experiments
654 and theory. *Faraday Discuss.* **152**, 307-320, doi:10.1039/c1fd00015b (2011).

655 53 Outka, D. A. & Madix, R. J. Acid-base and nucleophilic chemistry of atomic oxygen on the
656 Au(110) surface: Reactions with formic acid and formaldehyde. *Surf. Sci.* **179**, 361-376,
657 doi:10.1016/0039-6028(87)90063-x (1987).

658 54 Wachs, I. E. & Madix, R. J. The surface intermediate H₂COO. *Appl. Surf. Sci.* **5**, 426-428,
659 doi:10.1016/0378-5963(80)90106-3 (1980).

660 55 Reece, C., Redekop, E. A., Karakalos, S., Friend, C. M. & Madix, R. J. Crossing the great
661 divide between single-crystal reactivity and actual catalyst selectivity with pressure transients.
662 *Nature Catalysis* **1**, 852-859, doi:10.1038/s41929-018-0167-5 (2018).

663 56 Reuter, K. & Scheffler, M. First-principles kinetic Monte Carlo simulations for heterogeneous
664 catalysis: Application to the CO oxidation at RuO₂(110). *Physical Review B* **73**, 045433,
665 doi:10.1103/PhysRevB.73.045433 (2006).

666 57 Blomberg, S. *et al.* Strain dependent light-off temperature in catalysis revealed by planar Laser-
667 Induced Fluorescence. *ACS Catalysis* **7**, 110-114, doi:10.1021/acscatal.6b02440 (2017).

668

669 **1. Highlighted references**

670 Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational
671 design of solid catalysts. *Nature Chemistry* **1**, 37-46, doi:10.1038/nchem.121 (2009).

672 Neugebohren, J. *et al.* Velocity-resolved kinetics of site-specific carbon monoxide oxidation on
673 platinum surfaces. *Nature* **558**, 280--283, doi:10.1038/s41586-018-0188-x (2018).

674 Jørgensen, M. & Gronbeck, H. Adsorbate Entropies with Complete Potential Energy Sampling
675 in Microkinetic Modeling. *Journal of Physical Chemistry C* **121**, 7199-7207,
676 doi:10.1021/acs.jpcc.6b11487 (2017).

677 Wintterlin, J., Völkening, S., Janssens, T. V. W., Zambelli, T. & Ertl, G. Atomic and Macro-
678 scopic Reaction Rates of a Surface-Catalyzed Reaction. *Science* **278**, 1931--1934,
679 doi:10.1126/science.278.5345.1931 (1997).

680 Reece, C., Redekop, E. A., Karakalos, S., Friend, C. M. & Madix, R. J. Crossing the great divide
681 between single-crystal reactivity and actual catalyst selectivity with pressure transients. *Nature*
682 *Catalysis* **1**, 852-859, doi:10.1038/s41929-018-0167-5 (2018).

683 Reuter, K. & Scheffler, M. First-principles kinetic Monte Carlo simulations for heterogeneous
684 catalysis: Application to the CO oxidation at RuO₂(110). *Physical Review B* **73**, 045433,
685 doi:10.1103/PhysRevB.73.045433 (2006).

686 Xu, B. J., Madix, R. J. & Friend, C. M. Predicting Gold-Mediated Catalytic Oxidative-Coupling
687 Reactions from Single Crystal Studies. *Acc. Chem. Res.* **47**, 761-772, doi:10.1021/ar4002476
688 (2014).

689

690 **Glossary**

691 **Langmuir-Hinshelwood mechanism:** A common reaction mechanism in heterogeneous ca-
692 talysis comprising four steps: adsorption of reactants to the catalyst including possibly dissoci-
693 ation of reactant(s) followed by diffusion bringing reactants together and reaction followed by
694 product desorption.

695 **Acknowledgements**

696 AMW gratefully acknowledges support from the Alexander von Humboldt Foundation. We
697 acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) and the Ministerium
698 für Wissenschaft und Kultur (MWK) Niedersachsen, and the Volkswagenstiftung under Grant
699 No. INST 186/952-1, CTC acknowledges support for this work by the US National Science
700 Foundation under Grant No. CHE-1665077. TNK acknowledges the European Research Coun-
701 cil (ERC) under the European Union's Horizon 2020 research and innovation programme (grant
702 agreement No. [833404]). DB thanks the BENCh graduate school, funded by the Deutsche For-
703 schungsgesellschaft (DFG, German Research Foundation) – 389479699/GRK2455.

704

705