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ABSTRACT: A photoinduced palladium-catalyzed 1,2-carbofunctionalization of conjugated dienes has been developed. This mild
modular approach, which does not require employment of exogeneous photosensitizers and external oxidants, allows for efficient and
highly regio- and stereoselective synthesis of a broad range of allylic amines from readily available 1,3-dienes, alkyl iodides, and
amines. Employment of O- and C-nucleophiles toward oxyalkylation and dialkylation products was also demonstrated. A putative 7-
allyl palladium radical-polar crossover path is proposed as a key event in this three-component coupling process. The utility of this
protocol is highlighted by its application for derivatization of several amine-containing drugs.
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hybrid s-allyl palladium radical species A that would exist in
equilibrium with the classical z-allyl complex B. The
anticipated aminoalkylation product would be delivered upon
nucleophilic attack by amine at the latter (Scheme 1c).

To this end, we commenced our study with examining the
reaction of 1-phenylbutadiene (1), (trimethylsilyl)methyl
iodide (2), and N-methylbenzylamine (3). Expectedly, the
major challenge was to suppress the expected side reactions,
including Heck reaction (§), hydroamination (6), and amine
alkylation (7) processes. After extensive screening of reaction
parameters,'” we were delighted to obtain 4a in 80% isolated
yield (Table 1, entry 1). Similarly to our previous studies,""*

Table 1. Optimization of Reaction Conditions”

PdCl, (5 mol%)
Xantphos (10 mol%)

Me. _.Bn
"N AgNTf, (10 mol%)
H Cs2C05 (1 equiv) Me.\-Bn Me.-Bn
_ +
PN s THRESM) pp N ™S Ph ™S
(B-1 2 1, 15h 4a 4b
blue LED 1,2-addition 1,4-addition
standard conditions
i Side products
! Me. .Bn pp |
! N o~
P NN g 4 TMS
; Ph/\)\Me Me
5 6 7
Heck hydroamination Sp2
Entry Deviation from standard conditions 4:5:6:7° Yield of 4a“
1 None 98:1:0.5:0.5  89% (80%)
2 (B)/(2)-1 (1:12) 96:1:1:2 83% (75%)
3 45 or 80 °C (dark) 8:0:0:92 Trace
4 Without PdCl, 4:0:0:96 Trace
s Without AgNTS, 91:5:2:2 48%*
6 Without Cs,CO; 62:29:7:2 44%

%0.2 mmol scale; (E)-1:2:3 = 1:1.3:1.3. ®Determined by GC/MS
using pentadecane as internal standard; 4a:4b > 20:1. “Determined by
"H NMR using dibromomethane as internal standard; isolated yields
given in parentheses. “Formation of substantial amounts of radical
dimerization products was observed.

the combination of Pd salt with Xantphos ligand proved to be
the most efficient catalytic system. This reaction appeared to
be insensitive to the stereochemistry of diene, as employment
of a 1:1.2 mixture of (E)/(Z) isomers of 1 did not lead to a
significant change of the yield (entry 2). Control experiments
indicated that both visible light irradiation and palladium
catalyst were necessary (entries 3, 4). Without silver triflimide
(entry S), the reaction was significantly less efficient due to the
formation of substantial amounts of radical dimerization
products (see Scheme 4b and discussion, therein). Likewise,
the reaction efficiency was substantially lower in the absence of
the base (entry 6). Employment of a bromo analog of 2 was
much less efficient (24%), whereas the chloro counterpart did
not react under these conditions at all.

With the optimized conditions in hand, we examined the
generality of this methodology (Table 2). First, the diene
scope was tested. It was found that 1l-aryl and hetaryl
substituted dienes are all capable partners for this trans-
formation. Thus, electron-rich dienes reacted smoothly to give
the corresponding allyic amines in good yields (8—12).
Notably, in the case of a phenol-containing moiety (9), the
formation of a potential competing carboalkoxylation product
was not observed, thus indicating high chemoselectivity of this
reaction. Electron-deficient aryl groups were also tolerated,
thus delivering the expected products in moderate to good
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yields (13—15). Alkyne and halide functionalities were also
compatible with this transformation (16—19). Aminoalkyla-
tion of dienes possessing substituents at meta- and ortho-
positions of the arene proceeded uneventfully producing the
reaction products 20—24. Ferrocenyl and heteroaryl groups
were also amenable to this catalytic process, affording the
corresponding products in moderate to good yields (25—30).
Alkyl-substituted dienes were also reactive under these reaction
conditions. Selective 1,2-addition was observed with a
secondary alkyl substituent (31), whereas mixtures of 1,2-
and 1,4-adducts were isolated for the primary counterparts
(32—33), probably due to steric reasons. In addition, this
MCR can be performed with trienes to obtain the
corresponding dienamines 34—35. A lower yield from diene
ester (36) was obtained, presumably due to the electronic
mismatch between the silylmethyl radical and electron-
deficient diene ester. Importantly, 1,2-disubstituted butadiene
also proved to be a viable substrate to produce trisubstituted
alkenyl amine 37. A higher catalyst loading, however, was
required to achieve a reasonable yield for this substrate.

Next, the scope of alkyl iodides has been evaluated. Primary
alkyl iodides bearing a-silyl or germyl substituents reacted
efficiently to furnish the coupling products 38—40 in
reasonable to good yields. Reactions employing primary alkyl
iodides gave diminished yields (41—44), presumably due to
the stronger C—I bond and thus lower reactivity,14 as well as
due to the competing alkylation reaction of the amine. In
contrast, different secondary alkyl iodides reacted well
producing the corresponding allylic amines 45—50 in good
yields. Due to the steric reasons, employment of bulky tert-
butyl iodide, however, produced a nearly equimolar mixture of
1,2- and 1,4-adducts (51). This reaction was found to be very
general with the respect to the secondary amine used. Thus,
benzylamines readily participated in this reaction, delivering
the allylic amines $2—55 in moderate to good yields. An amine
containing a picolyl moiety (56) was also found to be effective.
Aliphatic acyclic amines also reacted, though with somewhat
lower efficiency (57—58). Reactions with various amine
heterocycles, including pyrrolidine, piperidine, piperazine,
and morpholine, proceeded smoothly to furnish the target
allylic amines in good yields (59—64), presumably due to
higher nucleophilicity'® in comparison to that of their acylic
counterparts. Remarkably, reactions of less nucleophilic N-Me-
aniline and indoline were successful, as well (65—66).
Importantly, employment of allylic amines led to the
corresponding di- and triallylamines, albeit in low yields
(67—68). Notably, N-methyl-1-naphthyl amine underwent
smooth reaction to give 69, which represents an alkylated
analogue of the drug naftifine. The scope of this transformation
was also tested in a more complex setting. Hence, a secondary
amine moiety of ciprofloxacin and desloratadine drugs was
successfully converted into allylic amine functionality (70—
71).

Importantly, 1,3-dienes containing substituents at C2 and/or
C3 positions were also proven competent reaction partners.
However, in these cases, 1,4-aminoalkylation products 73 and
75 were obtained selectively (Scheme 2).'°

Moreover, the use of O- and C-nucleophiles, such as phenol
(76) and malonate derivatives (78), respectively, led to the
1,2-carbofunctionalization products in reasonable yields
(Scheme 3).

Naturally, we were eager to elucidate the mechanism of this
novel transformation. We believe that under these reaction

https://dx.doi.org/10.1021/jacs.0c03993
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Table 2. Scope of Three-Component 1,2-Carboamination of 1,3-Dienes”

PdCl, (5 mol%)

Xantphos (10 mol%) e

AgNT, (10 mol%) R4 RS RY R® :
NG 4 5 CsyCO; (1 equiv) '
R‘/\(ﬁ\ + RY + R\N‘R - - - O . & R3 ! _— R® !
R? H THF (0.5 M) R! iR ;

i, 15h R? i R?
blueleED  TTTTTTmTTTomTomsees

Diene scope
Me.  .Bn Me. .Bn Me\ . Me\ Bn

8, 76% 9, 75% 10, 78% 11,73% 12, 83% 13,67%
Me\ N N -
Me Bn Me N Bn Me N Bn
W /@/\)\A /@W /@/\)\/\ /@/WTMS /@/\)\/\TMS
MeO,C cl Br
14, 75% 15, 62% 16, 70% 17,67% 18, 65% 19, 53%%¢
Me.  .Bn
Me. - Me., - Me., - Me., Me. - N
g~
S ]
Fle
20, 68% 21,76% 22, 66% 23, 59% 24, 52% = 25, 60%
Me\ .Bn Me\ .Bn Me. .Bn Me\N,Bn Me\N,Bn

)
BocN S

26, 65% 27, 65% 28, 78% 29, 42% 30, 65% 31,63%
Me. B Me. _B
Me.-Bn Me.-Bn Me.,-Bn Me.,-Bn SN SN
EtO\”/W X
/\/\/\)\/\ /\/\)\/\ /\/\/\/\)\/\TMS Ph/\/\)\/\ ™S Ph o T™S
32, 62% 33, 56% 34, 66% 35, 65% 36, 30%° 37, 55%7
(14:1rr) (1.3:1rr) (1.4:1rr)
Halide scope
Me\N,Bn Me.-Bn Me., .Bn Me.-Bn Me..-Bn Me.-Bn Me.,-Bn
X /\)\/\
Ph SiMe,Ph Ph/\)\/\SMezOt-Bu Ph/WGeMea PhWFBu PhA)\/\Q Ph FPr Ph/\)\/” Bu
38,81% 39, 55% 40, 78% 41, 68% 42, 56% 43, 48% 44, 54%
Me\N,BnTMS /ie;’iiB;Q % /ie;&o Me\N,Bn o Me\N,Bn NBoc Me\N,Bn
tB
Ph/WTMS PR PR PR Ph PR Ph/\)\/ !
45, 32% 46, 70% 47,70% 48, 67% 49, 76% 50, 80% 51, 46%
(2:1rr) (13:1rr) (1:1.2rr)
Amine scope
N
I
F =
Me\N,PMB Me\N N Bn\N,Bn Me\N Et\N,Et Me\N/\/f-Pr
Ph/WTMS Ph/WTMS Ph/WTMS Ph/WTMS Ph/WTMS Ph/\)\/\ms PhWTMS
52, 70% 53, 65% 54, 71% 55, 68% 56, 59% 57,59% 58, 38%
Me

N

) ™ S

N Q N
Phw ™S Ph/\)\/\ms Ph/\)\/\ms Ph/\)\/\TMS Ph/\)\/\TMS Ph/wms Ph/\)\/\TMS

59, 47% 60, 70% 61, 68% 62, 71% 63, 75% 64, 60% 65, 65%“¢

4:1rr) (4:1rr)

66, 83% 67, 25% 68, 26%

—— Drug analogue & deri

OMe
/\_/\ \ AN =
z )
N Me. N ANF A VS N ANF OO o N NN
o
Ph/W ™S Ph/WTMS Ph/WTMS Me\ ™S ™S

Ph ™
s Folon .
69, 81% 70, 58%” 71, 75%9 P2
naftifine analogue from ciprofioxacin s from desloratidine Ph

N N

methyl ester Ph

“0.4 mmol scale; isolated yields. PNMR yield. “0.2 mmol scale. 910 mol % PdCl,, 20 mol % Xantphos and 20 mol % AgNTf, were used. 10 mol %
Pd(OAc),, 20 mol % Xantphos and 20 mol % AgNTf, were used. "THF/MeOH = 1:1 (0.25 M). THF/DCM = 2:1 (0.33 M).

conditions, an interplay between hybrid radical and ionic
palladium intermediates takes place. The involvement of
radical intermediates was unambiguously supported by the
following experiments. Thus, initially formed alkyl radicals
from alkyl iodide 2 were trapped by 2,2,6,6-tetramethyl-
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piperidine-N-oxyl radical (TEMPO) in 22% yield (Scheme 4a,
80''"). Next, the intermediacy of the allylic radicals was
uncovered in the reaction performed without silver triflimide.
In that case, the reaction produced a substantial amount of
allylic radical dimerization'” products 81 (Scheme 4b, Table 1,

https://dx.doi.org/10.1021/jacs.0c03993
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Scheme 2. Examples of 1,4-Carboamination of 1,3-Dienes”

Me Me
Me. .Bn standard conditions
\A + TMS N+ H — - B~ ™S
|
Me 2 3 Me Me
72 73,73%
Ph Ph
Me Bn standard conditions
P °N” Bn Pz
\A tIms Y N ——————— N ™S
74 2 3 Me 75, 59%

#0.4 mmol scale; isolated yields.

Scheme 3. Employment of O- and C-Nucleophiles”

Me
- o
P N+ TMS TN+ J@/ o
HO /\)\/\
PR MS

(B)1 2 76
77, 68%

i,

79, 62%

Pd(OAc), (10 mol%)
Xantphos (20 mol%)
AgNTf, (20 mol%)
Cs,CO0;3 (1 equiv)

THF (0.5 M)
t,15h
blue LED

Pd(OAc), (10 mol%)

Xantphos (20 mol%)

AgNTf, (20 mol%)
[e] Cs,CO;3 (1 equiv)

o]
X PSS
PhTNX H TMST I+
EtoMOEt

(B)1 2 78

THF (0.5 M)
n, 15 h
blue LED

“0.2 mmol scale; isolated yields.

Scheme 4. Mechanistic Studies

a Reaction in the presence of TEMPO

TEMPO (2 equiv)
PdCl, (10 mol%)
Xantphos (20 mol%)

Me. -Bn AgNTf, (20 mol%) Me
H Cs,CO; (1 equiv) Me. -Bn Me
’ /\)\/\ . Nog
P XX 1”7 TMS THrlt= (102.5hM) P ™S o o7 " TMs
-1 s e Me
& 2 blue LED 4a 80
0% 22% NMR yield
b Reaction without AgNTf,
no AgNTf,
PdCl, (5 moi%)
Me. N'Bn Xantphos (10 mol%) Me Ph ™s
H Cs,CO;5 (1 equiv) =
8 /\)\/\
P NN 17 TMs THR (05 M) TMS Ph ™S
Gy 2 12 %'S";‘&/
blue LED 44% NMR yield
81, 34%
¢ Reactions of rrallyl Pd complexes with TEMPO
Me_ Me
0 'S
TEMPO (1.5 equiv, Ph .
o (1.5 equiv) Oy
Ph\p\Pd/p—Ph CDCly Me
Ph’ Ph sa Me
Ph/\\y
82, X =1 complex conditions NMR yield of 84
83, X = NTf,

74%
50%

rt, 0.5 h, blue LED
40 °C, 12 h, dark

rt, 0.5 h, blue LED
40°C, 12 h, dark

59%

83 0%

entry S). A beneficial effect of accessing more electrophilic 7-
allyl palladium entities in reactions with nucleophiles by
employing weakly coordinating anions is well documented."®
Accordingly, we presumed that employment of triflimide
would not only render the Pd-complex more electrophilic but
also potentially shift the proposed equilibrium between z-allyl
radical- and 7-allyl ionic Pd entities to the right (cf. Scheme Ic,
A 5 B). To validate this assumption, we synthesized model z-
allyl palladium complexes bearing a Xantphos ligand'® with
iodide (82) and triflimide (83) counterions and subjected
them to the reaction with TEMPO under blue light irradiation
(Scheme 4c). In both cases,”® the product of allyl radical
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trapping (84)'7%*" was observed in good yields; however, the

reaction of 83 occurred at a slower rate as compared to that of
complex 82."° Control experiments under the thermal
conditions showed that the reaction of 82 with TEMPO still
proceeded albeit much slower, while complex 83 was
completely nonreactive under such conditions. These results
support our hypothesis that a triflimide anion stabilizes the 7-
allyl Pd complex against homolysis upon irradiation with blue
light or thermal conditions, thereby suppressing the undesired
radical dimerization process.

Based on the results of the aforementioned studies, the
following reaction mechanism is proposed (Scheme 5). First,

Scheme 5. Proposed Mechanism

base- HX

1/\H\’ R3 LoPd® i
A %,

R "ty

NuH, base L,Pd'X <R3

[
I
LiPd' . VN
F{‘/\%’R R2

L,Pd'X

X:\VN

photoexcited L,Pd° undergoes a single electron transfer (SET)
process with alkyl iodide to produce hybrid alkyl palladium
radical species C,'"' which adds to the terminal position of
diene to produce radical species A that exists in equilibrium
with z-allyl complex B. In the presence of a triflimide anion,
this equilibrium is shifted toward complex B. A subsequent
attack of the amine at the latter delivers the carbofunctional-
ization product and regenerates the palladium catalyst.*”

In conclusion, the first visible-light-induced protocol for the
intermolecular aminoalkylation, oxyalkylation, and dialkylation
of 1,3-dienes has been developed. This mild multicomponent
coupling reaction, which utilizes readily available reaction
partners with broad functional group compatibility, does not
require employment of exogeneous photosensitizers or external
oxidants. It can be used for the late-stage derivatization of
complex molecules and drugs. Preliminary mechanistic studies
suggest that the radical-polar crossover path is crucial for the
success of this reaction. It is expected that this modular,
general, and mild method for synthesis of densely function-
alized alkenes will find use in organic synthesis and drug
discovery.
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