Energy-efficient localised rollback via data flow analysis and
frequency scaling

Kiril Dichev

Queen’s University Belfast
Belfast, United Kingdom
k.dichev@qub.ac.uk

ABSTRACT

Exascale systems will suffer failures hourly. HPC programmers rely
mostly on application-level checkpoint and a global rollback to
recover. In recent years, techniques reducing the number of rolling
back processes have been implemented via message logging. How-
ever, the log-based approaches have weaknesses, such as being
dependent on complex modifications within an MPI implementa-
tion, and the fact that a full restart may be required in the general
case. To address the limitations of all log-based mechanisms, we
return to checkpoint-only mechanisms, but advocate data flow roll-
back (DFR), a fundamentally different approach relying on analysis
of the data flow of iterative codes, and the well-known concept
of data flow graphs. We demonstrate the benefits of DFR for an
MPI stencil code by localising rollback, and then reduce energy
consumption by 10-12% on idling nodes via frequency scaling. We
also provide large-scale estimates for the energy savings of DFR
compared to global rollback, which for stencil codes increase as n?
for a process count n.

KEYWORDS

Fault Tolerance, Checkpoint/Restart, MPI, Data Flow, Discrete-
Event Simulator, Stencil Applications, Frequency Scaling, Energy
Efficiency

ACM Reference Format:

Kiril Dichev, Kirk Cameron, and Dimitrios S. Nikolopoulos. 2018. Energy-
efficient localised rollback via data flow analysis and frequency scaling. In
25th European MPI Users’ Group Meeting (EuroMPI ’18), September 2326,
2018, Barcelona, Spain. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3236367.3236379

1 INTRODUCTION

It is widely accepted that compute clusters and supercomputers
are transitioning towards systems of millions of compute units to
satisfy the requirements of compute-intensive parallel scientific
applications. With this increase in compute components, a propor-
tional decrease in the Mean-Time-Between-Failure (MTBF) across
parallel executions will follow [24, 28], which would make highly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6492-8/18/09...$15.00
https://doi.org/10.1145/3236367.3236379

Kirk Cameron
Queen’s University Belfast
Belfast, United Kingdom
k.cameron@cs.vt.edu

Dimitrios S. Nikolopoulos
Queen’s University Belfast
Belfast, United Kingdom
d.nikolopoulos@qub.ac.uk

scalable parallel application runs infeasible without integrating
resilience.

In this manuscript, we focus on recovery from fail-stop errors,
i.e. any failures leading to the unexpected termination of an MPI
process and the loss of its data; a node crash is among the possible
causes of fail-stop errors. For such failures, checkpoint/restart (C/R)
strategies are commonly used; they introduce time redundancy
due to the rollback of execution but require fewer additional re-
sources than resource replication techniques. The recent advances
in fault-tolerant MPI library implementations, such as ULFM [6],
have integrated efficient and scalable detection and recovery prim-
itives to allow MPI applications to deal with failures. C/R with
global rollback is the most widely used fault tolerance technique in
HPC applications today; in global rollback, all processes roll back
to the last globally consistent checkpoint, and continue execution.
Global rollback can be universally applied to all types of application
kernels, and its significant advantages in failure-prone executions
are widely known.

It is often unnecessary to roll back all participating processes as
in global rollback. Message logging rollback protocols (for brevity,
we often use the term “log-based” in this paper) have explored this
property in the past, and have successfully reduced the rollback by
finding a more recent consistent cut. The existing research explor-
ing localised recovery in MPI suggests that its end-to-end benefits
lie in more energy-efficient rollback [16]. However, no quantitative
work has ever shown the scale of savings that can be made during
localised rollback.

We argue that localised rollback can be achieved without the
considerable programming and runtime overhead of log-based tech-
niques within MPI library implementations. We demonstrate that
reducing rollback can be programmed statically for a wide range
of applications, and our main driver for such a non-global rollback
is the inherent data flow between MPI processes of the application.
Therefore, we call our technique data flow rollback (DFR). We also
provide concrete experimental evidence that energy savings are
indeed achievable with little programming overhead, once DFR is
implemented. Importantly, the energy savings, compared to the
common global rollback, can be significant if the application ker-
nels have localised data dependencies. We show that for codes with
neighbourhood data dependencies only, we can save energy in the
order of O(n?) for n processes compared to global rollback, which
is a very desirable property in the exascale computing era.

Our work differs from existing MPI-based contributions on lo-
calising rollback in a number of key aspects. DFR logs no messages,
saving space at runtime, and makes no assumptions that an appli-
cation or a runtime will provide any message logging capabilities,
instead relying entirely on recompute of work, similar to global

https://doi.org/10.1145/3236367.3236379
https://doi.org/10.1145/3236367.3236379
https://doi.org/10.1145/3236367.3236379

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

rollback. DFR is coupled to the application, and decoupled from
the underlying runtime; as a consequence, DFR can be applied to
different parallel runtimes, such as MPI implementations without
message logging capabilities, or alternatively to a global address
space runtime. DFR also minimises rollback on an algorithmic level,
which makes it robust and applicable to any physical topology. In
contrast, partial log-based protocols minimise rollback by explicitly
specifying the underlying cluster topology, and optimising for it.
Non optimised log-based protocols, on the other hand, introduce
the largest logging overhead.
The main contributions are as follows:

e We describe a non-global rollback mechanism for applica-
tions, based entirely on their data flow graphs

e We implement DFR for a popular MPI Jacobi code, and couple
it with a CPU frequency scaling technique

o We develop a data-flow-based simulator for large-scale runs

e We measure and model the energy savings for the proposed
DFR technique, compared to global rollback

The paper is organised as follows. In Sect. 2 we introduce the
reader to the concept of data flow rollback. We then implement
the introduced concepts in an MPI code in Sect. 3. We then present
our experimental settings, including a small-scale cluster and a
simulator, in Sect. 4. The experimental results are detailed in Sect.
5. We further model the energy savings rate in Sect. 6. In Sect. 7
we summarise the related work and position DFR within the fault
tolerance domain. We conclude with Sect. 8.

2 DATA-FLOW-DRIVEN ROLLBACK

2.1 Summary and Motivation

Every iterative algorithm, with timeline ranging from 0. . . co, can
be described as a data flow graph (DFG) [18, 22], which is a directed
graph where the nodes represent units of computation, and the
edges represent communication paths. Consider the illustration
given in Fig. 1, which summarises how our understanding of iter-
ative applications can educate our decisions on rollback recovery.
Two different data-flow graphs are displayed, which describe how
an iteration step is computed. f is a partitioned global array, and
the function g computes an output out of a number of incoming
inputs. The degree of incoming edges differs for different applica-
tion kernels. Fig. 1(a) demonstrates that to update partition f[j], we
need as input partitions j — 1, j, and j + 1. In contrast, for another
computational kernel (Fig. 1(b)), all the global data may be required
for an iteration update. This observation of data flow between pro-
cesses is the major driving force for the presented rollback recovery
in this work. In particular, we explore kernels with DFGs that show
localised, rather than global, data dependencies. We use the terms
localised and non-global rollback interchangeably here, referring
to any rollback that requires less processes to roll back than in the
global rollback case.

In formal terms, each data partition j requires a range of data
partitions as input to perform an iteration update i — i + 1:

FI* = glrange(f)) &)
g is a function performing a computation on its input data, while

range returns the range of partitions required to update any given
partition j. The range amounts to the number of incoming arrows

Kiril Dichev, Kirk Cameron, and Dimitrios S. Nikolopoulos

DFG of iterative code with
global dependencies

DFG of iterative code with
localised dependencies

(a (b)

Figure 1: Illustration of data flow graphs (DFG) as main mo-
tivator for data-flow-driven recovery. The underlying idea
is to exploit localised rollback, based on data flow depen-
dencies of the DFG. (a) DFG with localised dependencies and
beneficial with DFR. (b) DFG with global dependencies, not
beneficial with DFR.

into the function block g for the DFG shown in Fig. 1. The data-
flow-driven rollback is more beneficial if the indegree of g is small,
relative to the number of partitions.

For example, consider a range operator defined as range(f;) =
{fli = 11, fUjl, fUU + 1]} for the global array f; this matches the
DFG illustrated in Fig. 1(a). An iterative execution for this kernel
can experience a process failure, and depending on the rollback
mechanism, one of two different execution graphs are possible.
These are illustrated in Fig. 2. In either case, a globally consistent
checkpoint is taken after iteration i. Two iterations later, in iteration
i + 2, a process allocated data partition j fails. The global rollback
scenario is illustrated above — all processes roll back to their local
checkpoints of iteration i. This rollback is robust, and oblivious of
any underlying data flow dependencies, and computes more than
minimally required. If we used the DFG of the kernel, we would
recompute partition j for iteration i + 2 more efficiently. We can
minimally recover by only involving the close neighbour processes,
as illustrated in Fig. 2(b). The failed process is replaced (by a spare or
respawned process), and a few processes are required to update its
data. The remaining processes are idle during rollback, potentially
saving compute resources and energy. We call this rollback data
flow rollback (DFR), and it is the centrepiece of this contribution.

After a process failure, data is lost, and global data consistency
needs to be carefully examined. For replacement process and sur-
viving processes, this translates into these questions:

(1) How can a replacement process return to the forefront of
computation for its data partition, while involving a mini-
mum number of surviving processes?

(2) How can all surviving processes retain their data partitions
without rolling back, and keep the data consistency?

2.2 Replacement process

In this contribution we assume that the failed process is replaced
by a replacement process, either from a set of spare nodes, or by
respawning a dead process. The replacement process can advance
from the last checkpoint to the beginning of a failed iteration with

Energy-efficient localised rollback via data flow analysis and frequency scaling

= = »LF]- i =y > [19]
= = DLk ek =pfe > [12]

-»fiE- > rolback
-»ie- > [w] @
= > [1-1]
>z > [12] N
___)‘I'_— i+1 —‘) Data

last global
checkpoint

partitions

>3]

-> (7]

' -; ot
- (b)
->

-> (2]

-> (73]

- - >[H

iterations

Figure 2: Illustration of global and data-flow-driven rollback
for codes with neighbourhood dependencies: Marked in red
is the process (or data partition) which needs to be recovered.
A data-flow-driven rollback releases all processes handling
remote data from the need to do rollback.

support from neighbouring processes. As illustrated, the exact set
of rollback processes depends on:

e j, the index of the lost partition
e i, the index of the failed iteration

Both of these can be provided at runtime - j by ULFM, and i by the
application. All of the required processes for the recovery, except for
the replacement process, work on “duplicate data” for the recovery.
This duplicate data is loaded from the last global checkpoint. It is
discarded upon recovery completion everywhere, except for the
replacement process, which keeps this data as its new partition
data f[j]. No other process needs to be involved in the recovery.

2.3 Surviving processes

All surviving processes keep their partition data during recovery;
even the subset of processes involved in rollback do so with tempo-
rary copies of their partition. Due to the existing data dependencies
between surviving processes, their state remains “almost” consis-
tent even after recovery — with the exception of partitions f|[j — 1]
and f[j+1], which may need to be reset to the beginning of iteration
i+ 2.

The main advantage of the illustrated data-flow recovery is that
only processes responsible for neighbouring partitions of data, in
respect to a lost data partition due to failure, need to support the
recovery. This has far reaching consequences for large-scale runs,
and in particular for exascale, since the illustrated recovery is in-
dependent of the number of data partitions / processes. The larger
the scale of the application run, the larger the benefits of data-flow
rollback compared to the wasteful global rollback.

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

3 ROLLBACKS FOR MPI-BASED JACOBI
METHOD

In this section, we detail the implentation of global rollback and
our DFR technique for MPI-based Jacobi implementation, which is
representative for stencil codes in 2D.

3.1 Global rollback for MPI Jacobi method

Our DFR implementation builds on the global rollback recovery
code for a Jacobi solver provided for open access by the ULFM
developers in hands-on form and documented [3].

The Jacobi iteration, defined as follows [15], can be repeated
until convergence is reached:

k+1_ 1ok k k k 2. o
Uy = Z(ui—l,j tup g Ut~ fig) o (2)

When parallelising the Jacobi iteration via MPI, domain decom-
position is required. A common decomposition is the 2D Cartesian
decomposition, where the 2D grid is partitioned into 2D subdo-
mains for each process. Each 2D subdomain holds ghost regions,
which need to be exchanged at each iteration with neighbouring
processes of the 2D Cartesian decomposition.

The original algorithm used by the ULFM developers is outlined
in Alg. 1 in black.

The code relies on the capability of the ULFM MPI implementa-
tion to detect failures during MPI calls. The MPI communication
can be at ghost exchange (line 12) and norm (line 17), or during
checkpoint operations (line 14 and 26). If either call at any pro-
cess detects a failure, it revokes the communicator globally in an
error handling function. All processes ultimately enter the error
handler, which rebuilds the communicator. During global rollback,
surviving and replacement processes follow the same application
logic: the last global checkpoint is loaded, and a rollback to that
iteration is forced for all processes. All computation following the
last checkpoint is discarded across all processes.

3.2 DEFR for MPI Jacobi method

Our incremental modifications to the algorithm are highlighted in
blue. The source code is available under [2].

Eq. 2 determines data flow dependencies between neighbouring
elements of a 2D grid in order to progress between consecutive
iteration steps. The 2D grid represents the domain decomposition
between MPI processes, and is concerned with data flow between
processes. Data flow within a process is irrelevant to our work,
since only messages between processes may survive an unexpected
process crash, and modify a subdomain.

These inter-process data flow dependencies determine the entire
DFR method proposed in this section. Our proposed rollback is
different from the global rollback in previous section. No surviv-
ing process rolls back its data. However, all survivors examine if
their data is required by the replacement process for the data-flow
driven recovery. This is expressed for the virtual topology in line
25, and is based on how data flows from iteration to iteration. If the
data of a surviving process is required, it creates duplicates of the
stencil, which live only as long as the recovery continues. Once the
replacement process restores its state, it keeps the computed data,

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

Algorithm 1 Global rollback for stencils as documented for ULFM
[3], and an outline (marked in blue) of DFR for the same code.

1: set error handlers
2: build row and column communicators
3: if recover then
4 DFR(failed_rank, failed_iter)
5 if CPU scaling enabled then
6: reduce CPU frequency to minimum
7: barrier
8 reset CPU frequency
9: end if
10: end if
11: repeat
12: exchange data with neighbors (om)
13: if time for chkpt then
14: save checkpoint (om)
15: end if
16: compute local updates and residual (nm < om)
17: allreduce the residual with all processes
18: swap om and nm
19: until convergence (iterations or residual)
20: function GLOBAL-ROLLBACK
21 get data from buddy
22: goto local computation
23: end function
24: function DFR(failed_rank, failed_iter)
25: if PARTITION-DISTANCE(f ailed_rank, rank) <
(failed_iter — last_ckpt_iter) then
26: read checkpoint
27: join recovery communicator
28: create duplicate data structures
29: perform || failed_iter — last_ckpt_iter — 1|| iterations
with recovery communicator
30: if (rank = failed_rank) then
31: save duplicate data into om
32: else
33: discard duplicate data
34: end if
35: end if

36: end function

but all supporting processes discard it to resume computation with
the pre-failure partition data (lines 30 — 34).

This implements a mechanism for Jacobi codes to perform DFR,
which is universally applicable across various platforms without
further modifications. Independent of the physical topology, this
approach will use a reduced number of recovery processes, which
only depends on the frequency of checkpointing.

There are some important issues with global data consistency
when using DFR. The recompute of the correct data of a replacement

process — until it reaches the iteration of failure - is easy to validate.

However, the consistency of data across all surviving processes
after the recovery is not guaranteed in general. For example, a
globally inconsistent state between surviving process p; and pa
may be observed:

Kiril Dichev, Kirk Cameron, and Dimitrios S. Nikolopoulos

o p; performs the buffer swap of line 18 at iteration i, but
e a process failure elsewhere leads p, to abort the allreduce
(line 17) at iteration i, never swapping buffers

This may happen only if p; completes its allreduce, and p, aborts its
allreduce due to a revoke (all processes must at least have initiated
allreduce for any process to exit and swap buffers). This scenario is
quite unlikely: first, the norm computation takes up a small fraction
of an overall iteration time; second, the allreduce is semantically
equivalent to reduce plus broadcast, so it is possible but improbable
for a process to complete both of these collectives, while another
process fails either of them. Still, the scenario is a potential cause
of global inconsistency, and a weak spot of the proposed approach,
so it needs to be highlighted.

On the other hand, the use of allreduce removes the many po-
tential issues of surviving processes failing in different iterations,
where the global data consistency would be extremely difficult to
maintain.

For the given code and the trigger of a failure as in the original
code, we confirmed the preserved global data consistency. We used
metrics such as the summed squares of the matrix across various
iterations. We observed no difference in the summed squares for test
runs with fault-free iterations, global rollback, or the implemented
data-flow-driven rollback.

3.3 Used frequency scaling technique

To explore potential energy savings, we use a simple form of CPU
frequency scaling, which is shown in lines 5 — 9, and further illus-
trated in Fig. 3. During localised rollback, many processes will be
idle, and we can reduce their CPU frequency; as we demonstrate in
later section, this results in = 10% reduction on energy consump-
tion. We are not aware of other existing energy saving mechanisms
for localised rollback. Indeed, when localising rollback for existing
log-based recovery, the runtime makes inference on the latest con-
sistent cut with the help of logs; it is an open research question if
the runtime can also perform frequency scaling in a similar vein.

For the used Haswell processors, the frequency range without
voltage scaling (which we do not employ) is between minimum 1.2
GHz and maximum of 3.2 GHz. Therefore, we cap the maximum fre-
quency of a host CPU of an idling MPI process to 1.2 GHz, and then
reset it to the default 3.2 GHz once all processes reach a synchro-
nised post-recovery point. Note that for the Haswell processors we
use the default intel_pstate [1] module loaded by the Linux kernel
(we use CentOS 7 with the default kernel 3.10). This module has
different semantics than the older cpufreq, and not all modifica-
tions to frequency have the same effect as older modules. The only
modification we employ is capping the maximum frequency of all
cores, and then resetting it to its default. Note that this technique
does not increase the overall execution time in our experiments,
since it only performs frequency scaling for idle processors. We
have observed that when the frequency is capped recklessly, it can
double the execution time, since the frequency is roughly halved
from the nominal value of 2.2-2.4 GHz to 1.2 GHz.

4 CLUSTER AND SIMULATOR SETTINGS

In this section, we provide a summary of the cluster setup for MPI
experiments and power measurements, followed by a summary

Energy-efficient localised rollback via data flow analysis and frequency scaling

timeline s
\é.
O
@
y max. frequency
&S - 00
& I I
Q/@ | |
| |
I detect failure I barrier
| |
< | |
) {_}&'ma‘ . frequency |
S5 e -
o

Figure 3: Illustration of CPU frequency scaling used across
different nodes for data-flow rollback

N\ () ([
0 « > 2 <€ > 4 <€ 6
1 < > 3 < > 5 < 7
J - J - L
node1 node2 node3 node4

u []]

process fails process is idle process supports recovery
during recovery

Figure 4: Cartesian topology of the 8 MPI process runs of
the Jacobi method, mapped onto 4 physical nodes for our
experimental setup.

of the simulator we implement for exploring different resilience
strategies at scale.

4.1 Platform Setup

Our platform setup is shown in Fig. 4. We use 4 physical nodes
equipped with Intel Haswell processors, with 32 GB RAM each, and
connected via 1Gbit Ethernet. The total power consumption of each
physical node is measured by a Sentry Switched PDU. We sample
the power output at each node every 0.5 seconds, using SNMP to
read power output at each node. Since we found no suitable tool to
measure and visualise the power consumption at this relatively fine
granularity for a PDU, and since we have a specific MPI application
setup, we are forced to devise our own measurements. We sample
power consumption on 2 physical nodes of the physical setup shown
in Fig. 4, with one node participating in non-global recovery (node
3), and one node that remains idle during the non-global recovery
(node 4). We manually filter out all readings of power output less
than 110 watts, based on the observation that each node consumes
around 100 watts without any workloads running. We perform
each local and global rollback 10 times, and compile the power
readings into an aggregated text file. Each individual data point
in the subsequent plots is the mean over 10 iterations. Due to the
manually compiled data and possibility for error, we additionally
measure the standard deviation from the mean at any given data
point below 4.5 watts; this is not significant given that power varies
within a range of 15-20 watts per run.

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

4.2 SimGrid-based resilience simulator for 1D
stencils

There are a number of reasons to explore various localised recovery
techniques with a simulator. On one hand, it is highly desirable
to explore simulated large-scale runs with various rollback strate-
gies, in order to increase our confidence on the localised nature
of the proposed data-flow rollback, and to compare it with the
traditional global rollback. On the other hand, the exploration of
various rollback strategies is important to properly position DFR
techniques.

The fact that data flows are at the center of our studies makes it
convenient to focus on simulation frameworks which provide data
and control flow dependency support. Our simulator of choice is the
open-source framework SimGrid [9], and in particular its SimDag
API. Note that SimGrid has no resilience capabilities; instead, a
developer needs to use its API (in our case: SimDag) to implement
resilience capabilities, which is part of our contribution for this
work. Some of the advantages of SimGrid are:

o the SimDag interface provides the possibility to express ker-
nel executions as a directed acyclic graph of tasks, and has
an API to express data flow and task flow dependencies

o SimGrid has been demonstrated to scale competitively in di-
rect comparison with other simulators (such as LogGOPSim)

e SimGrid allows to experiment with the physical configura-
tion, which allows for extensions of this work

Our simulator provides various implementations of rollback re-
covery techniques for one-dimensional codes with neighbourhood
dependencies (mostly: stencils). Since it is execution-driven, each re-
covery step can be carefully designed and evaluated, which cannot
be directly done with trace-driven simulation. In our implementa-
tion, an application run is explicitly defined as a directed acyclic
graph (DAG) of tasks. The DAG can be seen as “unrolling” of the
DFG of Fig. 1 into a number of iterations. Each task corresponds to
exactly one iteration of one MPI process; we find that this mapping
of MPI code to the more abstract representation as tasks works
well.

All tasks are then scheduled in parallel for execution, respecting
their data dependencies. Each rollback recovery scheme is imple-
mented via discarding and rescheduling tasks. The simulation also
necessarily implements a scheduling scheme, which parallelises
execution, while at the same time respecting all underlying task
dependencies. The domain decomposition, and virtual topology, are
configurable and flexible within the code. In addition, the physical
topology can be specified and used by our simulator, borrowing
the features of the underlying SimGrid framework.

Our 1D simulator and the presented rollback strategies are im-
plemented in around 600 lines of C++ code, and freely available [2].
It has been updated to the most recent SimGrid API (3.19) (released
in March 2018).

4.2.1 Simulated cluster. We use as a reference for simulating
stencils the detailed experimental results provided by Tang et al. [26]
for an efficient single-node shared-memory implementation of sten-
cils. In the PSA benchmark of reference work, 10° elements over
10° timesteps are computed in 10 seconds, with a sustained speed
of 20 GFLOP/s on average for a 12-core Xeon X5650 processor.

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

Therefore, we model each node to have a peak processing power
of 20 GFLOP/s. We model one task (which represents one iteration
update of a node partition) to take 10 seconds, by configuring it
as a 200 GFLOPs task (simulator takes FLOPs as input per task).
Also, we model a simple network as a router to which all hosts
are directly linked, with no congestion or serial bus in between.
Each host is linked to the router with 1 Gigabit Ethernet (1Gbit
bandwidth), with latency of 50 microseconds.

4.2.2 Simulated data flow for 1D stencils. Data flow dependen-
cies for 1D stencils are modelled as illustrated in Fig. 1(a). The
update of a partition i at iteration k allows data flow into iteration

.k k+1 k k+1 k k+1 T
k+Tlasiuf — utlhuf —uf™, uf — uft! (boundary partitions

carry fewer depéniiencies). But how do we model the amount of
transferred data at each boundary per task? Since we have a 1D
stencil, boundary exchange could be a single double. However, this
would mean we implicitly translate a 10°x10°> PSA benchmark into
a larger single-timestep problem. Instead, we model each boundary
exchange to amount to exchange of 10° elements. This follows the
notion that each node runs a full 10-second PSA benchmark per one
iteration. This notion is imperfect — the fine-grained dependencies
are thus grouped as 1 large coarse-grained dependency transfer-
ring all PSA data at once — but it still models all coarse-grained
inter-node data flow dependencies. The transferred data per buddy
checkpoint is modelled as transferring each process sudomain (10°
elements).

5 EXPERIMENTAL EVALUATION

In this section, we first experiment with DFR and global rollback
for the MPI Jacobi code, and demonstrate that energy savings can
be made for DFR, without loss in overall execution time. Then, we
scale up our experimental settings using the resilience simulator,
and this provides us with valuable insight about the amount of
rollback and the total runtime at larger scale, and for three different
rollback strategies.

5.1 Power measurements for small-scale runs

5.1.1 Failure setting for MPI Jacobi code. We run 2 MPI pro-
cesses on each physical node, and each run resembles a 2x4 Carte-
sian topology of 8 MPI processes (Fig. 4), with each MPI process
computing a grid of 10K? elements. We retain the efficient buddy
checkpointing scheme of the original code, but we modify the bud-
dies to be paired within a physical node, e.g. processes 0 and 1
are checkpointing buddies confined within node 1, etc. This is im-
portant, since non-uniform checkpointing overheads can skew the
measurement results. We limit Jacobi to 10 iterations, and due to
the small scale of the experiment, a global checkpoint is taken only
at the end of iteration 0. This block of iterations, enclosed by a
checkpoint at the start, is representative of any given block be-
tween two global checkpoints, and serves the purpose of evaluating
the energy efficiency of DFR. We forcefully terminate MPI process
1 at the start of the fourth iteration, having completed 3 full itera-
tions. This is the trigger for rollback recovery (ULFM detects the
failure of a process). We experiment with both global and local roll-
back. The global rollback is as implemented in the sample solution
provided by the ULFM developers. All processes roll back to the
checkpoint of iteration 0 upon failure, performing 3 pre-failure, and

Kiril Dichev, Kirk Cameron, and Dimitrios S. Nikolopoulos

9 post-failure full iterations. For the non-global rollback strategy,
we use our DFR implementation, where only the closest neighbours
participate in the recovery of the failed process. The distance from
the replacement process is 2 (see line 25 in pseudocode), since to
reach iteration 3, the replacement process needs a full boundary
exchange and local update for iteration 1 and iteration 2. These can
only be provided with the participation of two neighbours in each
of 4 directions in 2D.

5.1.2 Results. The results of our experiments are visualised in
Fig. 5. The top plot shows the power measurements taken at node 3
of our experimental setup (Fig. 4), which participates in the recovery,
while the bottom plot shows node 4, which remains idle during the
recovery, since its processes 6 and 7 are not needed in the recovery
of failed process 1: to recover 2 full iterations, only the closest 2
neighbours are required in the virtual 2D topology. Each iteration
takes ~ 3.8 seconds to compute. We outline the main phases in the
execution, in seconds, in case a failure occurs:

e 0s — 12s: initialisation, first 3 iterations

e 12s — 24s: failure detection, global or local rollback (2 full
iterations only on some nodes for DFR, all nodes for global
rollback)

e 24s - 51s: remaining 7 iterations, termination

The global rollback strategy (in blue) involves all processes in
equal measures, and shows no drop in energy consumption. The
DFR strategy without frequency scaling (in red), shows a marginal
(1-2 J/s) but measurable drop in power consumption during the re-
covery. Finally, the DFR strategy with frequency scaling (in green)
shows a significant drop in power consumption, from an average
of 125 J/s during stencil computation, down to 110 J/s on all idle
nodes with reduced frequency scaling. The curve reflects the sig-
nificant impact of the introduced frequency scaling technique for
idle processors. Again, we remark that each data point is averaged
over 10 iterations of the manually compiled data extracts.

Overall, our evaluation shows that even for this short interval,
at least 10-15 J/s, or 10-12 % of the total energy consumption, can
be saved for each idle node per DFR phase.

5.2 Simulated large-scale runs

In the simulation experiments, we compare 3 strategies:
e global rollback for stencils
e our DFR for stencils

e our implementation of an efficient stencil-specific log-based
recovery, based on work for the S3D application [14]'.

The presented techniques cover well localised and global rollback
(see Fig. 8). We have implemented support only for one-dimensional
stencils for all three rollback techniques in this work.

We only focus on weak scaling experiments —we scale up the
node count (assuming 1 MPI process per node), with constant load
per MPI process. We measure various metrics of interest for the
same set of experiments. We do not allow multiple failures at the
same time, or during recovery. We also model detection and re-
placement process startup as zero-overhead operations, since this
study focuses on the amount of rollback. A total of 1000 iterations
are run, and the simulated runtime is 10* seconds, or ~ 2.7 hours.

!Upon enquiry, we were unable to obtain the sources of their work

Energy-efficient localised rollback via data flow analysis and frequency scaling

Node 3
135 T T T T T T T

130

125
120
115
110

Power (watts)

105

100
0.

Node 4
135 T T T T T T T

130+ s
125
120
115 j

Power (watts)

110
105

100 i i i i i i i i i i i i
0.00 3.92 7.85 11.77 15.69 19.62 23.54 27.46 31.38 35.31 39.23 43.15 47.08
Time (seconds)

— Global rollback
— DFR with CPU freq scaling
— DFR without CPU freq scaling

Figure 5: Power measurements during global rollback, DFR
without CPU scaling, and DFR with CPU scaling.

Each checkpoint transfers its entire stencil array to another host’s
main memory (buddy checkpointing). We use a checkpoint interval
of 6 iterations for each strategy; as long as the checkpoint inter-
val is fixed, the relation between techniques is representative. For
each given random seed, different failure times manifest, and the
execution differs. Therefore, we average for each single datapoint
over 10 runs with different seeds, using the same seeds for better
comparison across rollback strategies. We set the node MTBF to
a rather pessimistic value of 100 hours, with the sole purpose of
demonstrating the order of magnitude that different rollback strate-
gies differ in, and since we are unable to scale the experiments to
many thousand nodes for that many tasks.

5.2.1 Recomputed work. We show the amount of recomputed
iterations in Fig. 6a. The system MTBF linearly increases for larger
runs, ranging from 2 crashes for 100 nodes, to 30 crashes for 1000
nodes. The global rollback strategy recomputes a larger number of
tasks than any local recovery technique, rolling back significantly
more iterations with increasing MPI process count. On the other
hand, DFR and log-based rollback are both localised in the number
of recomputed iterations. The most efficient of the tested rollback
strategies is the highly optimised and stencil-specific log-based
rollback, which only needs to replay the lost work on a replacement
node; the ghost exchange can be replayed from message logs, and
requires no recompute on surviving nodes. On the other hand, the
proposed DFR, which follows the ideas as outlined in previous
sections, needs to reschedule work both on the replacement node,
and a limited number of neighbouring nodes. Both the log-based and
the data-flow-driven solution, as expected, behave as non-global
rollback: the recomputed iterations depend on the checkpointing
interval and failure rate, but not on the MPI process count of the
parallel runs. This is an important local recovery property, which

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

80000-| «—e Global rollback
e—e |og-based rollback

60000| ~— Data flow rollback
o7 n n I v, 0 »n
o 9 9 2 2 2 2 2 &
40000{2 < < 4 g 3 5 8 8 ©
E E S o o o v o] v
o [¥] o] — < — < ~ =
20000P 0 ® i = - N o o "

Total of recomputed iterations

100 200 300 400 500 600 700 800 9
Number of processes

o

0 1000

(a) Recomputed iterations for global rollback, log-based rollback,
and DFR.

— Simulator provided difference in iterations
le7 | — Curve fitting with 2nd degree polynomial

HoUbouwououwo

00 200 300 400 500 600 700 800 900 1000
Number of processes

Projected energy savings (J)
OO KFNNWWHA

(b) Projection of total energy savings (in joules) for DFR compared
to global rollback.
e—e Global rollback

e—e |og-based rollback
»—= Data flow rollback

14000

= 13000

4

& 12000

£ 11000 ——t——

S 10000
9000

8000
100 200 300 400 500 600 700 800 900 1000
Number of processes

(c) Total runtime for global rollback, log-based rollback, and DFR.

Figure 6: 1D stencil simulation of ~ 2.7 hours, scaled up to
1000 hosts (weak scaling), with MTBF per node of 100 hours.

we use later (see Eq. 5 and Eq. 6) to model the extent of recompute
as non-global.

5.2.2 Projection of energy savings. To further quantify the gains
of DFR over global rollback in this section, we display in Fig. 6b the
energy savings per run in joules for DFR. We do this by multiply-
ing the difference in total iterations by a projection of the energy
consumed per iteration. The energy per iteration is here approxi-
mated as 500 joules, and adopted from Jacobi experiments, where
an iteration of 4 seconds at 125 J/s results in 500 joules (Fig. 5).
Then, the savings in energy consumption are in the order of O(nz),
as evidenced by a curve fitting with a second degree polynomial;
this is further formalised in later section. For large-scale runs with
1000 nodes (1 process per host), energy savings of 4 * 10 joules
are projected; note that these significant savings result from the 31
crashes during a 2.7 hour 1000-node run.

5.2.3 Total runtime. We also can measure the overall execu-
tion time for either of the employed rollback strategies, and show
results in Fig. 6c. We find any localised rollback, either DFR or log-
based, does not show any consistent reduction in overall execution

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

time, compared to global rollback. This finding is entirely plausible,
since not rolling back (for localised rollback) does not imply that
execution can freely progress. The neighbourhood dependencies
ultimately propagate to all processes and slow down execution even
for localised rollback. This result served as important hint for us
to pursue improvements in overall energy efficiency, rather than
overall execution time. We note that recent research [14] shows
that overall runtime can be reduced with localised log-based roll-
back; the authors simulate higher failure rates, where the so called
“failure masking” is observed. Our findings of Fig. 6¢ do not allow us
to claim significant savings in overall execution time for localised
rollback approaches.

6 MODEL OF DFR ENERGY SAVINGS FOR
LARGE-SCALE RUNS

We previously demonstrated that using non-global rollback, par-
ticularly when combined with simple CPU frequency scaling tech-
niques, yields power savings, compared to global rollback methods;
in particular, all processes which are distant from the failed process,
(in the virtual topology) can remain idle and scale down the CPU
frequency. Now, we provide an estimate of the rate of overall energy
savings across the system for an MPI-parallel run of an application
employing DFR, compared to the same run using the global rollback
method. The energy savings are visible through the green timelines
illustrated in Fig. 2. There are three parameters to consider for these
estimates:
e The system failure rate £ (unit: %)
e The number of idle processes P; 4;, during DFR. This number
depends on the DFG of a kernel (no unit)
e The savings in energy per process and rollback Ce; this con-
stant cannot be generalised, and depends on kernel, platform,
energy-saving technique etc. (unit: J)

We estimate the rate of energy savings across the system as the
product of all these factors (unit: J/s):

n
E= ;*Pidle*ce (3

6.1 Idle Processes (P;4;.)

Consider DFR recovery for 1D and 2D stencils, which is illustrated
in Fig. 7 for a minimal and efficient scheme. An increase in involved
processes occurs with each lost iteration; all iterations between
the last global checkpoint and the iteration of failure are lost. If
a failure happens in iteration i, we extend to the left and right-
hand neighbour of the previous iteration (i — 1), until we reach the
iteration of the last checkpoint. (Note that the DFR solution for
Jacobi shown in Alg. 1 is less efficient than shown for the 2D stencil
case of Fig. 7 for simplicity)

When observing an execution of an arbitrary number of iter-
ations, we only need to study the confined range of iterations
between any two global checkpoints; this range is representative
of the entire execution, since at any given time the rollback is con-
fined by the last global checkpoint. Without loss of generality, we
only consider that a failure in iteration i happens within the en-
closing global checkpoint iterations: 0 < i < Cj;, where Cj; is the
interval of checkpointing in iterations. Cit is the main factor of the
remaining estimates of this section. At any given iteration, only

Kiril Dichev, Kirk Cameron, and Dimitrios S. Nikolopoulos

Rolling back for 1D

Rolling back for 2D

Figure 7: Required partitions for a minimal data-flow roll-
back for 1D 3-point stencils, and for 2D 5-point stencils.

the distance in iterations to the last global checkpoint matters. Let
a failure happen i iterations after the last global checkpoint. Then
the total number of neighbouring processes which need to support
the replacement process during non-global recovery is:

PID (i) = 2 (max(i — 1,0)) = 0(i)

neig

PP (i) = 2+ (max(i — 1,0))* = 0(%)

neig
We also estimate the average number of neighbouring processes
involved in the recovery, given a checkpoint interval (in iterations)
of Cj;. We consider a uniform probability distribution, i.e. a failure
may happen at any given iteration i. We can average the number
of active neighbouring processes for a block of iterations enclosed
by global checkpoints as:

Cit
1
1D _ 1D N\ —
Pactive - Cit aneigh(]) - Q(C,'t)
. 5)
Cit

1
2D _ 2D N 2
Poctive = C_zt ZPneigh(]) - e(cit)
Jj=1

We now need to inverse this formula to find the number of
processes that remain idle during an execution which experiences
single failures. This can then be estimated for n MPI processes as:

1D _ 1D

Pile == Puliive € O(n) ©
2D 2D

Pidle =n- Pactive € O(n)

Via Eq. 5, for 2D stencils, an order of magnitude more processes
need to rollback. Still, as long as we choose a reasonable check-
point interval, and a large process count n is used, a proportionate
number of processes remains idle during localised rollback. We
add two potential scenarios when DFR is not beneficial. First, if we
checkpoint very rarely (Cj; > n), rollback degrades into global roll-
back. Experimental work employing the same kernels and buddy
checkpointing [13] demonstrates that the opposite is the case (
Cit+ < n), with optimal checkpointing intervals every 4 iterations
for extreme-scale runs on the Titan supercomputer. Second, algo-
rithms with global dependencies may have no idle processors for
DFR, which naturally translates to P; 5, = 0 and 0 energy savings,
compared to global rollback. There is no avoiding this limitation,
therefore we maintain throughout this paper that DFR is beneficial
when dependencies are not global at each iteration.

Energy-efficient localised rollback via data flow analysis and frequency scaling

6.2 System failure rate

At exascale, some projections estimate a mean time between failures
(MTBF) of hours [8], while other experimental work has already
measured MTBFs of hours [13, 27]. MTBF of future systems in the
order of minutes [10] has also been suggested. We can estimate
the system MTBF for n nodes, assuming the MTBF per node is p
(independent of other nodes), as % (e.g. [7]). The system failure rate
is therefore the reciprocal value %

6.3 Energy savings per DFR phase and process
(Ce)

We experimentally verified in Sect. 5 the energy savings for one MPI
application per node , which amount to 10-15 J/s per idle process,
or 10-12% of the total energy consumption, for the duration of the
rollback. To estimate the average duration of recovery, we can apply
the same logic as in Sect. 6.1. Again, we are encapsulated within a
global checkpoint interval, and we assume a failure happens with
uniform probability in any iteration i, with 0 < i < Cj;. This
results in an average of % rollback iterations. To make things
more concrete, we again consider the MPI code we ran, where each
iteration runs for nearly 4 seconds. For energy savings of 10 J/s,
this results in average energy savings per DFR phase and process
of Ce =20 Cy; J.

6.4 Overall energy savings for used MPI code
and platform

Based on Eq. 3, and the subsequent derivations, we conclude that on
the example of the proposed DFR technique for the Jacobi method,
our rate of energy savings (J/s) compared to implementing global

rollback is:
2

n
E]acobi ~ 7 20 * Cit (7)

For example, for an application run with 10* MPI processes (1
process / node), MTBF of nodes of 50 years, and checkpoint interval
of 10 iterations, our overall energy savings for the entire run are
~ 13]/s, as opposed to a strategy employing global rollback for
the same code and setup, which is a modest energy saving. If we
instead use e.g. 10°> MPI processes (1 process / node), the overall
energy savings rate compared to global rollback increases to 13102
J/s. This transfers into energy savings comparable to running 13
additional machines for the entire application run, assuming a
machine has an energy consumption of 100 J/s.

7 RELATED WORK

A comprehensive survey of rollback recovery strategies, divided
into checkpoint-based and log-based, is given by Elnozahy et al.
[11]; our work fits into checkpoint-based rollback, but requires
application modifications, which is beyond the main focus of the
survey. Regardless of the chosen rollback, an advanced MPI imple-
mentation is indispensable when using and experimenting with
various recovery options; we use ULFM [6] to implement data-flow
recovery mechanisms for MPI codes.

We provide an up-to-date and graphical outline of closely related
global and non-global rollback techniques in Fig. 8; our work is
positioned within the related work as well. The two dimensions

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

Coordinated Icr;lgrlilcigi};e d Uncoordinated
Rollback checkpoint- . checkpoint-
. checkpoint- |
ing in,
ing
stand/ard
Global
rollback §
S [16]
S [ih]
g partial [23]
Log-based
rollback

Figure 8: A graphical presentation of related work in roll-
back recovery strategies, considering message logging over-
head, and recompute from rollback, as x and y axis. Data-
flow-driven recovery, as proposed in this work, has no log-
ging overhead, and its rollback depends on the data-flow de-
pendencies of the underlying kernel.

we study are message logging, and the level of rollback (global or
non-global).

The most popular approach to resilience is coordinated check-
pointing, combined with global rollback. This mechanism requires
no message logging, and guarantees that a rollback to a globally
consistent checkpoint is done across any application codes. In this
approach, all processes (synchronously or asynchronously) write
local checkpoints, which build a consistent global checkpoint. In
case of a process failure, all processes roll back to this checkpoint,
and they lose the progress made since that checkpoint. The advan-
tage of this approach is that it is robust, it requires no execution
logs, and the overhead in programming it is manageable (even if not
trivial). However, global rollback potentially wastes the progress
across many running processes, especially in large-scale parallel
runs.

A different solution to this problem is in the use of uncoordinated
log-based protocols, which target the reduction of required roll-
back. A runtime, such as a modified MP1I library, can log messages
exchanged between processes, and selectively take checkpoints at
each process (uncoordinated checkpointing). In the case of a failure,
processes follow one of a number of message-logging protocols
[4] to roll back to the last globally consistent cut, with the support
of available message logs. In the general case, such rollback is not
guaranteed to work; the so called “domino effect” may roll back all
participating processes to the start of the application [11]. Varia-
tions on log-based rollback mechanisms exist to resolve some of
the existing issues. The promise of these is the reduction of rollback
and uncoordinated checkpointing. The main challenges, however,
are the logging overhead and the complexity of protocols.

One way to address this issue is to focus on a subclass of appli-
cations; a recent contribution [16] implements a complex log-based
protocol in an MPI runtime, which performs local recovery for a

Message-logging

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

large set of MPI applications (send-deterministic applications). An-
other way is to focus on an application, and implement application-
specific log-based protocols as is the case for the S3D application
[14]. Compromises between the extremes of global rollback and log-
based rollback, called hybrid or partially message-logging protocols,
also exist [23].

Within the existing work, the proposed data-flow driven rollback
fits as shown in Fig. 8: DFR, unlike all log-based approaches, does
not log messages, being based on data flow analysis of the appli-
cation kernel and programming the localised rollback at program
level. In this respect, it is similar to global rollback, which requires
no message logging. However, DFR can function as a localised roll-
back, as we have shown in this work, as long as the DFG of the
kernel show local dependencies.

In our work, we are not interested in data flow dependencies
within a process, obviously a central topic of interest in the compil-
ers domain. Instead, we study data flow dependencies between MPI
processes. Some research exists on statically analysing the data flow
of MPI applications [25], based on the MPI communication calls of
the codes. However, data flow and its role in implementing reduced
rollback strategies for distributed codes, has not been studied and
advocated, to the best of our knowledge, in the MPI domain.

In a study on energy consumption for fault tolerance, Meneses
et al. [20] also focus on rollback to improve energy efficiency. The
authors parallelise rollback strategies via migration in Charm++ and
Adaptive MPI; in contrast, we design non-global rollback, reducing
its overall amount.

Aside from the MPI domain, task-based runtimes, which have
an explicit model of task and data dependencies, have explored
localised rollback. For example, localised rollback has been proposed
for the Kaapi framework [5]. More recently, a distributed version of
Cilk designed an efficient scheme for localised recovery [17] in fork-
join programs; as all Cilk programs, these rely on the master-slave
paradigm, and focus on recovering work units (such as Fibonacci),
but not global data, for distributed-memory runs.

Simulation has been used to explore fault tolerance in the past.
Some highly scalable MPI simulators have been extended for re-
silience studies [19, 21]; alternatively, special-purpose resilience
simulators for specific studies [12, 14] have been developed. With
the exception of LogGOPSim [19], which is actively maintained,
these simulators are not available to the community to the best
of our knowledge. LogGOPSim is a trace-driven simulator, while
SimGrid is execution-driven. Trace-driven simulators directly, and
thus more accurately, capture the underlying experimental plat-
form, while execution-driven simulators such as SimGrid need to
model the underlying platform, for example via a configuration file.
However, execution-driven simulation does offer advantages in the
ease and flexibility of testing various scenarios, and the detachment
from an application or MPI library implementation.

8 CONCLUSION AND LIMITATIONS

In this manuscript, we introduced a version on non-global rollback,
which differs from the related work in the MPI domain, since it is
not based on message logging, but on a careful analysis of the data
flow graph of an application kernel. The analysis enables a localised
rollback scheme for many applications. We have demonstrated this

Kiril Dichev, Kirk Cameron, and Dimitrios S. Nikolopoulos

on the example of the popular Jacobi method. In order to quantify
the end-to-end benefits of this approach, we combined the localised
rollback with a CPU frequency scaling technique. This resulted
in reproducible energy savings of 10-12% of the machine power
consumption (10-15 J/s) for all idle processes, and for the duration of
the rollback. A simple model allowed us to estimate that the energy
savings, as opposed to global rollback, scale as n?, if n is the MPI
process count, when DFR is applied to stencils. One factor is due to
the increase of failures across the system with increase in nodes.
The second factor, which applies only for codes with localised
dependencies (such as stencils), is due to the localised impact of each
failure. Significantly, the rollback via data-flow analysis requires
no message logging, and has similar benefits to the state-of-the-art
localised rollback methods employing logging.

One notable disadvantage of our work, compared to a generic
log-based localised rollback [16], is that each data-flow recovery
needs to be designed with an application kernel in mind; however,
since data flow dependencies are more abstract than kernels, it can
be argued that each design could cover a class of applications, as
is the case for neighbourhood dependencies, and stencils. Another
challenge is that applications with global data-flow dependencies at
each iteration step, such as illustrated in Fig. 1(b), are most likely to
produce a global rollback scheme. However, related work employing
message logging for such kernels similarly shows prohibitively
large runtime overheads. Therefore, this problem may point to the
general issue of applying any localised rollback for certain tightly
coupled kernels, and does not disprove the use of the proposed
data-flow rollback scheme.

We also faced various technical difficulties, both in the MPI im-
plementation and the used simulator. On the one hand, while ULFM
is an MPI library with advanced fault tolerance features, we did ex-
perience bugs (e.g. even when scaling up failures using the original
recovery scheme). On the other hand, SimGrid also showed unex-
pected bugs during partial replacement of the execution DAG. The
scalability of SimGrid was impressive, handling millions of tasks in
less than an hour, improving significantly on a much slower vanilla
implementation based on Python; however, these settings are still
very limited — a million tasks are already contained in a DAG rep-
resenting 1000 MPI processes for 1000 iterations. Therefore, we are
unable to run simulations of larger scale at this moment. Another
challenge we faced was the difficulty of performing fine-grained
power measurements with good visual tools; in the end, we had to
devise our own experimental setting and visualisation. Still, when
benchmarking overall runtime and performance, it is difficult to
distinguish between the performance of the fault tolerance func-
tionality, and the performance of the essential application code;
a deeper analysis of power consumption without more advanced
introspective tools would be difficult.

ACKNOWLEDGEMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 671603.

REFERENCES

[1] [n.d.]. intel pstate CPU Performance Scaling Driver. https://www.kernel.org/
doc/html/v4.12/admin-guide/pm/intel_pstate. html.

https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html

Energy-efficient localised rollback via data flow analysis and frequency scaling

[10

[11

[12

[13

[14

(15

[16

(7

[18

[19

[20

[21

[22

]

]

]

]

]

]

[n. d.]. Resilience Prototype.
data-flow-driven-rollback.

[n. d.]. ULFM Tutorial for SC’17.
SC17-handson.pdf.

Lorenzo Alvisi and Keith Marzullo. 1998. Message logging: Pessimistic, optimistic,
causal, and optimal. IEEE Transactions on Software Engineering 24, 2 (1998), 149—
159.

Xavier Besseron and Thierry Gautier. 2008. Optimised Recovery with a Coordi-
nated Checkpoint/Rollback Protocol for Domain Decomposition Applications.
In Modelling, Computation and Optimization in Information Systems and Man-
agement Sciences, Hoai An Le Thi, Pascal Bouvry, and Tao Pham Dinh (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 497-506.

Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack
Dongarra. 2013. Post-failure recovery of MPI communication capability: De-
sign and rationale. The International Journal of High Performance Computing
Applications 27, 3 (2013), 244-254. https://doi.org/10.1177/1094342013488238
arXiv:https://doi.org/10.1177/1094342013488238

George Bosilca, Aurélien Bouteiller, Elisabeth Brunet, Franck Cappello, Jack
Dongarra, Amina Guermouche, Thomas Herault, Yves Robert, Frédéric Vivien,
and Dounia Zaidouni. 2014. Unified model for assessing checkpointing protocols
at extreme-scale. Concurrency and Computation: Practice and Experience 26, 17
(2014), 2772-2791.

Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kalé, Bill Kramer, and Marc
Snir. 2009. Toward Exascale Resilience. Int. J. High Perform. Comput. Appl. 23, 4
(Nov. 2009), 374-388. https://doi.org/10.1177/1094342009347767

Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. 2014. Versatile, scalable, and accurate simulation of distributed applications
and platforms. ¥. Parallel and Distrib. Comput. 74, 10 (2014), 2899-2917.

Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio,
Jean-Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand
Braunschweig, et al. 2011. The international exascale software project roadmap.
The international journal of high performance computing applications 25, 1 (2011),
3-60.

Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B
Johnson. 2002. A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys (CSUR) 34, 3 (2002), 375-408.

Kurt Ferreira, Jon Stearley, James H. Laros, III, Ron Oldfield, Kevin Pedretti, Ron
Brightwell, Rolf Riesen, Patrick G. Bridges, and Dorian Arnold. 2011. Evaluating
the Viability of Process Replication Reliability for Exascale Systems. In Proceedings
of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC '11). ACM, New York, NY, USA, Article 44, 12 pages.
https://doi.org/10.1145/2063384.2063443

Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky,
and Manish Parashar. 2014. Exploring Automatic, Online Failure Recovery
for Scientific Applications at Extreme Scales. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC
’14). IEEE Press, Piscataway, NJ, USA, 895-906. https://doi.org/10.1109/SC.2014.78
M. Gamell, K. Teranishi, J. Mayo, H. Kolla, M. A. Heroux, J. Chen, and M. Parashar.
2017. Modeling and Simulating Multiple Failure Masking Enabled by Local
Recovery for Stencil-Based Applications at Extreme Scales. IEEE Transactions on
Parallel and Distributed Systems 28, 10 (Oct 2017), 2881-2895. https://doi.org/10.
1109/TPDS.2017.2696538

William Gropp, Ewing Lusk, and Anthony Skjellum. 1999. Using MPI: portable
parallel programming with the message-passing interface. Vol. 1. MIT press.
Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and Franck
Cappello. 2011. Uncoordinated checkpointing without domino effect for send-
deterministic mpi applications. In Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International. IEEE, 989-1000.

Gokcen Kestor, Sriram Krishnamoorthy, and Wenjing Ma. 2017. Localized fault
recovery for nested fork-join programs. In Parallel and Distributed Processing
Symposium (IPDPS), 2017 IEEE International. IEEE, 397-408.

Edward Ashford Lee and David G Messerschmitt. 1987. Static scheduling of
synchronous data flow programs for digital signal processing. IEEE Transactions
on computers 100, 1 (1987), 24-35.

Scott Levy, Bryan Topp, Kurt B Ferreira, Dorian Arnold, Torsten Hoefler, and
Patrick Widener. 2013. Using simulation to evaluate the performance of re-
silience strategies at scale. In International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems. Springer,
91-114.

Esteban Meneses, Osman Sarood, and LV. Kalé. 2014. Energy profile of rollback-
recovery strategies in high performance computing. Parallel Comput. 40, 9 (2014),
536 — 547. https://doi.org/10.1016/j.parco.2014.03.005

Thomas Naughton, Christian Engelmann, Geoffroy Vallée, and Swen Bohm. 2014.
Supporting the development of resilient message passing applications using
simulation. In Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd
Euromicro International Conference on. IEEE, 271-278.

Keshab K Parhi. 2007. VLSI digital signal processing systems: design and imple-
mentation. John Wiley & Sons.

https://hpdc-gitlab.eeecs.qub.ac.uk/kdichev/

http://fault-tolerance.org/downloads/

[23

[24

[25

[26

[27

[28

]

]

]

EuroMPI ’18, September 23-26, 2018, Barcelona, Spain

Thomas Ropars, Amina Guermouche, Bora Ucar, Esteban Meneses, Laxmikant
Kalé, and Franck Cappello. 2011. On the Use of Cluster-Based Partial Message
Logging to Improve Fault Tolerance for MPI HPC Applications. , 567-578 pages.
B. Schroeder and G. Gibson. 2010. A Large-Scale Study of Failures in High-
Performance Computing Systems. IEEE Transactions on Dependable and Secure
Computing 7, 4 (Oct 2010), 337-350. https://doi.org/10.1109/TDSC.2009.4
Michelle Mills Strout, Barbara Kreaseck, and Paul D Hovland. 2006. Data-flow
analysis for MPI programs. In Parallel Processing, 2006. ICPP 2006. International
Conference on. IEEE, 175-184.

Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk,
and Charles E. Leiserson. 2011. The Pochoir Stencil Compiler. In Proceedings
of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA '11). ACM, New York, NY, USA, 117-128. https://doi.org/10.
1145/1989493.1989508

Devesh Tiwari, Saurabh Gupta, and Sudharshan S Vazhkudai. 2014. Lazy check-
pointing: Exploiting temporal locality in failures to mitigate checkpointing over-
heads on extreme-scale systems. In Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. IEEE, 25-36.

Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé. 2012. A scalable double in-
memory checkpoint and restart scheme towards exascale. In Dependable Systems
and Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference
on. IEEE, 1-6.

https://hpdc-gitlab.eeecs.qub.ac.uk/kdichev/data-flow-driven-rollback
https://hpdc-gitlab.eeecs.qub.ac.uk/kdichev/data-flow-driven-rollback
http://fault-tolerance.org/downloads/SC17-handson.pdf
http://fault-tolerance.org/downloads/SC17-handson.pdf
https://doi.org/10.1177/1094342013488238
http://arxiv.org/abs/https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342009347767
https://doi.org/10.1145/2063384.2063443
https://doi.org/10.1109/SC.2014.78
https://doi.org/10.1109/TPDS.2017.2696538
https://doi.org/10.1109/TPDS.2017.2696538
https://doi.org/10.1016/j.parco.2014.03.005
https://doi.org/10.1109/TDSC.2009.4
https://doi.org/10.1145/1989493.1989508
https://doi.org/10.1145/1989493.1989508

	Abstract
	1 Introduction
	2 Data-flow-driven rollback
	2.1 Summary and Motivation
	2.2 Replacement process
	2.3 Surviving processes

	3 Rollbacks for MPI-based Jacobi method
	3.1 Global rollback for MPI Jacobi method
	3.2 DFR for MPI Jacobi method
	3.3 Used frequency scaling technique

	4 Cluster and simulator settings
	4.1 Platform Setup
	4.2 SimGrid-based resilience simulator for 1D stencils

	5 Experimental Evaluation
	5.1 Power measurements for small-scale runs
	5.2 Simulated large-scale runs

	6 Model of DFR energy savings for large-scale runs
	6.1 Idle Processes (Pidle)
	6.2 System failure rate
	6.3 Energy savings per DFR phase and process (Ce)
	6.4 Overall energy savings for used MPI code and platform

	7 Related Work
	8 Conclusion and Limitations
	References

