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a b s t r a c t 

In this work, an application of a phase field formulation suitable for modeling the motion 

of individual partial and full dislocations in hexagonal close packed (HCP) crystals is pre- 

sented. The formulation incorporates periodic potentials for glide on the distinct HCP slip 

systems, which are informed here by density functional theory (DFT). The model is applied 

to simulate the dissociation process starting from an unstable perfect dislocation and end- 

ing at its final equilibrium structure for different slip planes and in different HCP metals. 

The structural characteristics that are predicted for these dislocations include the partial 

Burgers vectors, dissociation distances, core widths of the partials, and any asymmetries 

in these quantities. Mg is selected as one of the model materials since its dislocations are 

the most well studied and it is nearly elastically isotropic. For Mg, it is shown that the 

predictions for dissociation distances agree with those reported previously by atomic-scale 

calculations, including density functional theory, for dislocations on the basal < a > , pris- 

matic < a > , and pyramidal type II < c + a > slip systems. Phase field model results are 

also presented for dislocations in Ti and Zr, which we find develop distinctively different 

equilibrium structures than Mg. 

© 2019 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

1. Introduction 

The plastic deformation response of materials with a hexagonal close packed (HCP) crystal structure is governed by the

glide of dislocations on both low index and high index planes ( Partridge, 1967 ). Each mode of slip is defined by the specific

slip plane and slip direction of these dislocations ( Partridge, 1967; Yoo, 1969 ). For an HCP crystal, whether it deforms in a

brittle or ductile manner depends on the relative amounts of moving dislocations contributed by each mode ( Bertin et al.,

2014 ). The ease of dislocation motion is largely a consequence of the characteristics of the dislocation core structure, such

as number of planes on which is extends, whether it dissociates into smaller partial dislocations, its splitting distance, and

the width of the individual partials. 

For HCP crystals, the structure of the dislocation core depends on the type of glide plane and Burgers vector, the elastic

strain, and the strain energy that the dislocation core generates in the surrounding material outside the core region. Most

dislocation cores can be described as being dissociated into partial dislocations with a smaller Burgers vector and a stacking
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fault in between ( Kumar et al., 2017; Partridge, 1967; Wu et al., 2015; Yin et al., 2017 ). The spreading distance between

the partials is governed primarily by the balance between the interaction strain energy between the partials and the energy

required to form or grow the stacking fault ( Hirth and Lothe, 1968 ). For the HCP Mg crystal, recent density functional theory

(DFT) and Molecular Dynamics (MD) studies have calculated the core structures of dislocations of edge and screw character

belonging to the basal < a > , prismatic < a > , and pyramidal < c + a > modes ( Kumar et al., 2017; Shen et al., 2014; Wu

et al., 2015; Yasi et al., 2009 ). They are all shown to be planar, with the partials and associated core displacements predom-

inantly acting in the slip plane. The basal < a > dislocation dissociates into two partials with an intrinsic stacking fault in

between, the prismatic < a > dislocation remains compact, i.e., undissociated, and the pyramidal < c + a > dislocation splits

into two partials of equal Burgers vector separated by a stacking fault. For other structurally relevant metals, such as HCP

Ti and Zr, far fewer DFT and MD studies on core structures currently exist ( Clouet, 2012; Clouet et al., 2015; Domain and

Besson, 2004; Udagawa et al., 2010 ). 

Apart from core structures, atomistic simulations have been successful in modeling the motion of individual HCP dislo-

cations ( Wang et al., 2012; 2014a ). Due to size limitations, the dynamics of dislocations have not been simulated by DFT.

MD, given an interatomic potential, has been used to study the motion of a wide range of HCP crystals, such as Mg and Mg

alloys, Zr, and Ti ( Clouet, 2012; Shen et al., 2014; Wang and Beyerlein, 2012b; Wang et al., 2014a; Wu et al., 2015; Yin et al.,

2017 ). Yet still, it is widely recognized that length and time scale limitations prevent the study of traditional size crystals ( >

microns) and typical laboratory test conditions ( > 10 −3 /s). These limitations also make it prohibitive to model collections

of dislocations. 

As an alternative to atomic-scale simulations are continuum mechanics models that attempt to model directly an indi-

vidual dislocation or dislocations moving on specific planes. These models are often referred to as mesoscale models, due

to the length and/or time scales of the phenomenon they model as opposed to the theory or formulation on which they

are based. The discrete dislocation dynamics (DDD) technique is one such example and has, for several decades, proven to

be a powerful and effective tool for modeling from a few to several hundreds of individual dislocations, propagating within

a number of crystal structures, including HCP crystals ( Bertin et al., 2014; Capolungo et al., 2010 ). However, in DDD, dislo-

cations are modeled as linear objects and the structure of the dislocation core is not resolved. Another class of continuum

models are Peierls-Nabarro (P-N) models, or more recently generalized PN models (GPN), that calculate core structures of

dislocations based on minimizing the elastic strain and lattice energies. But to date, these have been applied mostly to

face-centered cubic (FCC) and body-centered cubic (BCC) crystals, with exception of ( Wang et al., 2010 ), which investigated

dislocations lying in the basal plane in Mg. 

A third type of continuum mechanics models are those that adopt the framework of phase field (PF) theory and apply

it to simulate the motion of discrete dislocations in single and polycrystalline systems ( Beyerlein and Hunter, 2016; Cao

et al., 2015; Hunter et al., 2018; Wang and Li, 2010 ). Traditionally, PF theory has been used to predict the temporal and

spatial evolution of domain structures, whose distinguishing property is indicated by a set of order parameters, ζ (e.g.,

representing solute concentration, atomic order, polarization, dislocation slip) ( Beyerlein and Hunter, 2016; Steinbach, 2009;

Svendsen et al., 2018; Wang and Li, 2010 ). In PF-based discrete dislocation modeling, the general free energy density E of

Cahn and Hilliard (1958) is made to depend on the total strain energy and stacking fault energy (SFE). The phase field order

parameter, ζ α , corresponds to the crystallographic shift caused by a gliding dislocation on the slip plane α. A coupled set

of time-dependent Ginzburg-Landau equations is then employed to solve for ζ α , at every time step. Accordingly, with this

methodology, the values of ζ α correspond to non-negative dissipation and gradient flow toward thermodynamic equilibrium.

Like DDD and P-N/GPN models, PF dislocation mechanics models have primarily been employed to study dislocations in FCC

crystals. Recent application of the PF approach to dislocation processes has seen treatment of the nucleation and motion

of defects, such as dislocations and twins, and their interactions with surfaces, boundaries, and interfaces in FCC single

crystals and polycrystalline materials ( Beyerlein and Hunter, 2016; Hunter and Beyerlein, 2015; Hunter et al., 2018; Lei et al.,

2013; Zeng et al., 2016 ). Only recently has PFDD been applied to BCC crystals, to study misfit dislocations in a BCC twist

boundary or anisotropy in loop expansion under stress ( Peng et al., 2019; Qiu et al., 2019 ). For glide processes relevant to

HCP stacking, a few notable exceptions are the work by Louchez et al. (2017) , who investigated the transition of the FCC

to HCP structure via the glide of FCC Shockley partial dislocations, and by Zhao et al. (2019) , who recently modeled slip

transmission of Shockley partial dislocations on the basal plane in a Ti alloy across an HCP/BCC interface. 

In this work, we build upon the 3D phase field dislocation formulation, called phase field dislocation dynamics (PFDD),

presented in ( Hunter and Beyerlein, 2013; 2014; 2015; Peng et al., 2019 ) and adapt it to treat dislocations on slip systems be-

longing to distinct slip modes in an HCP crystal. To demonstrate the method, we carry out calculations for a small selection

of materials, Mg, as well as an MgY alloy, Ti and Zr that would be potentially distinct in the structures of their dislocation

cores. The choice of Mg is particularly important since dislocations in Mg have been heavily studied by a number of other

computational methods. It is nearly elastically isotropic and the dislocations belonging to the different slip modes are suf-

ficiently distinct. The PFDD model requires as input the stacking fault energies on the different slip planes of HCP crystals,

and here, the slip-plane energetic landscapes, called the generalized stacking fault energies, are calculated using DFT for Mg,

Ti, and Zr. Use of DFT advantageously circumvents the need for reliable interatomic potentials from atomic-scale simulation.

The extended HCP phase field dislocation model is applied to calculate the core structures of dislocations on the three com-

mon HCP slip modes: basal, prismatic, and pyramidal-type II. We compare these results with similar calculations by MD and

DFT available in the literature to verify the model extensions. This 3D phase field method will be suitable for calculating the

formation, motion and interaction of extended defects in strained HCP crystals. 
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2. Methodology 

The PFDD formulation is general and application to different material systems falls largely on choice of energetic terms,

and their parameters and functional forms. Up to now research has focused on cubic systems, and the energetic terms in

the master energy functional have been selected to apply best to cubic crystal structures. Due to the symmetry of cubic

materials, some simplifying assumptions could be made and here for the low symmetry of HCP crystals, these need to be

re-evaluated. In this section we briefly review the PFDD approach and in the next section, we detail the energetic terms

applicable for dislocations in HCP crystals. 

2.1. The phase field approach for dislocations 

Phase field formulations treat a 3D discretized system where every point is a thermodynamic system, whose free energy

is specified as a function of the field variables of interest. A scheme is used to minimize the total system energy and solve

for the corresponding values for the field variables. The field variables, or order parameters, are scalar-valued and evolve

within the system. In the case of dislocations, the order parameters, ζ α , represent the location of slip by dislocations in the

slip system α. A physically based definition for these order parameters associates one order parameter with slip made by

each slip system. In the case of an FCC crystal, there are 12 order parameters needed to fully describe dislocation dynamics

in an FCC crystal ( Beyerlein and Hunter, 2016; Koslowski et al., 2002; Wang et al., 2001 ). A mathematically based definition,

however, considers a reduced set of order parameters associated with slip made by independent directions. For an FCC

crystal, using this definition produces eight order parameters, consisting of a set of slip by both perfect and partial slip

systems ( Mianroodi and Svendsen, 2015 ). 

In the dislocation problems of interest, the total free energy of the system consists of three contributions ( Beyerlein and

Hunter, 2016; Koslowski et al., 2002; Wang et al., 2001 ): 

E = E strain + E ext + E lat t ice (1)

where E strain is the elastic strain energy generated by a dislocation and dislocation-dislocation interactions, E ext is work

done to the system through an applied stress, and E lattice describes the energy expended as a dislocation glides through

the crystal lattice breaking and re-forming atomic bonds. Some, but not all, phase field dislocation formulations ( Mianroodi

and Svendsen, 2015; Wang et al., 2001 ) include an energy term associated with the gradient in the order parameter. It is

particularly relevant at the dislocation line, at the boundary between the slipped and unslipped region and its functional

form depends on the configuration of the core, e.g., whether it is planar or non-planar, spread or compact. It is best informed

by atomic-scale calculations, and in practice the term has introduced fitting parameter(s) to be adjusted according to an

atomic scale core calculation. The impact of the additional gradient energy term has been reported in a few studies, each

having focused on its effects for a particular FCC metal ( Mianroodi et al., 2016; Pi et al., 2017; Shen and Wang, 2004; Xu

et al., 2019 ). In this work, we elect to make independent comparisons between our dislocation structure calculations and

those from other methods and to not add fit parameters. Therefore, in this first presentation of the HCP formulation, we

neglect the gradient energy term, bearing in mind that it would straightforward to include it in later treatments. 

Traditionally, the strain energy E strain can be expressed as 

E strain = 

1 

2 

∫ 
C i jkl ε

e 
i j (x , t) ε

e 
kl (x , t) d 

3 x (2)

where C ijkl is the elastic moduli tensor. Through transformation into Fourier space, the elastic strain, εe , can be expressed in

terms of the plastic strain, εp . The strain energy can then be written as 

E strain = 

1 

(2 π) 3 

∫ 
− 1 

2 
ˆ A mnu v (k ) ̂  ε p 

mn (k ) ̂  ε p∗
u v (k ) d 3 k (3)

where a superposed ˆ () denotes the Fourier transform, ˆ A mnu v (k ) = C mnu v −C klu v C i jmn ̂
 G k (k ) k j k l , k is the wavenumber vector,

ˆ G k (k ) is the Fourier transform of the Green’s tensor of linear elasticity, 
∫ − denotes the principal value of the integral, and

the superscript ( ∗) denotes the complex conjugation. 

The plastic strain εp results from the motion of dislocations and, therefore, can be expressed as a function of the order

parameters ( Koslowski et al., 2002; Wang et al., 2001 ): 

ε p 
i j 

= 

1 

2 

N ∑ 

α=1 

bζα(x , t) δα(s αi m 
α
j + s αj m 

α
i ) . (4)

The sum is taken over all slip systems from 1 to N included in the material, b is the magnitude of the Burgers vector, m

is the slip plane normal, s is the slip direction (normalized Burgers vector), and δα is a Dirac distribution supported on the

active slip planes. Considering again, as an example, the FCC crystal structure, wherein there are 12 slip systems belonging

to the {111} < 110 > slip mode and hence 12 order parameters. Dislocations on these systems are referred to as perfect

dislocations since their Burgers vector corresponds to a lattice translation vector. The slip plane normals are of the {111}

type, slip directions are of the < 110 > type, and N = 12 for all possible glide systems. 
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The external energy is given by: 

E ext = 

∫ 
σ appl 
i j 

ε p 
i j 
d 3 x (5) 

where σ appl is the applied stress tensor. Similar to the strain energy, the dependence on the order parameters comes through

the expression of the plastic strain shown in Eq. (4) . 

The lattice energy E lattice represents the expenditure of breaking and reforming interlayer atomic bonds as a perfect or

partial dislocation moves through the crystal lattice. This lattice energy depends on the material and on the crystallographic

plane under consideration. In general, the lattice energy E lattice can be written as: 

E lat t ice = 

N ∑ 

α=1 

∫ 
φα(ζ1 (x ) , ζ2 (x ) , . . . , ζN (x )) d 

2 x (6)

where φα(ζ1 (x ) , ζ2 (x ) , . . . ) is a periodic potential and the equation is integrated over the slip plane. It is also possible that
this potential could be a function of multiple order parameters from slip systems, ζ 1 ( x ), ζ 2 ( x ) ... ζN ( x ). 

The time-dependent Ginzburg-Landau (TDGL) equation is used to evolve the total system energy to equilibrium and

determine the order parameters corresponding to the equilibrium state. It relates the time variation of the order parameters

to the variation in the total system energy with respect to each order parameter α as follows: 

∂ζα(x , t) 

∂t 
= −L 

δE(ζ ) 

δζα(x , t) 
(7) 

where L is related to the convergence speed (or mobility) of the system and has a non-negative coefficient that is constant

for all order parameters. For calculations involving multiple order parameters, Eq. (7) becomes a set of N coupled integro-

differential equations, where N equals the number of order parameters, that must be solved numerically to evolve the

system. Additionally, the solution of this equation requires the use of a Fast Fourier Transform in order to determine the

contribution of the strain energy (as shown in Eq. (3) ) to the total energy. 

2.2. Phase field extensions for HCP crystal structures 

The PF formulation for an HCP crystal structure departs from the foregoing one in two main aspects, first by taking into

account the low symmetry of the HCP crystal structure, and second, the multiplicity of slip modes. These aspects affect the

development of all energetic terms in the master energy functional, which in the present study, are the elastic strain energy,

external energy, and lattice energy in Eq. (1) . 

The first important departure from the cubic systems is that the basis for the lower symmetry HCP system is not Carte-

sian. Directions in the HCP unit cell are conventionally expressed using the Miller-Bravais four-index notation {hk.l} or Miller

three-index notation {hkl}. Unlike FCC metals, the Miller three-index notation for HCP slip systems has a 120 ◦ angle between

the first two indices. Further one axis, the c-axis, is longer than the other two axes. The c/a ratio depends on the HCP metal.

In the present code, we elect to first transform all slip plane normals and slip directions expressed in the HCP basis to a

Cartesian coordinate system, so that that usual mathematical manipulations, utilizing dot and cross-products, can be used. 

The second aspect concerns the multiplicity of slip modes, which involves specifically appreciating the differences in the

atomic structure and crystallography among the common slip modes in the HCP system. Every slip mode in the HCP crystal

has its own value of the Burgers vector, slip plane, and number of slip systems. Within a mode, the slip systems share

the same crystallography but are independently oriented. Here we demonstrate the method by modeling dislocations on

three of the most frequently observed modes in deformed HCP crystals: the basal, prismatic, and pyramidal-II slip modes.

Both the basal ((0 0 01) plane) and prismatic ({ ̄1 010} type planes) slip modes accommodate glide of < a > -type dislocations,

which are dislocations with < a > Burgers vectors. The prismatic and basal slip modes also each have three slip systems.

The pyramidal-II mode ({ ̄2 112} type planes), however, can accommodate strain in the < c > direction through the motion

of < c + a > dislocations. The Burgers vector is aligned along a specific < c + a > direction lying in the glide plane. Six slip

systems belong to the pyramidal-II mode. Apart from these three modes, a few other slip modes have been observed in the

deformation of HCP crystals (such as the pyramidal-I mode) but are not considered in the present examples. These can be

incorporated using the same methodology as developed here. 

Redefinition of the slip planes and slip directions for the HCP crystal affect the formulation of the plastic strain, εp ,

which is used directly in the calculation of the elastic strain energy and external energy, Eqs. (3) and (5) . To accommodate

the different slip modes and their distinct Burgers vectors, Eq. (4) is re-written to consider a slip plane-dependent Burgers

vector: 

ε p 
i j 

= 

1 

2 

N ∑ 

α=1 

b αζα(x , t) δn (s 
α
i m 

α
j + s αj m 

α
i ) (8) 

As before, the slip plane normal and slip direction are slip system-dependent, but in the above, the dependency of the

magnitude of the Burgers vector on the slip mode is also taken into account. N is the total number of slip planes. Consid-

ering the three slip modes, we define N b , N pr , and N py as the number of slip systems available in the basal, prismatic, and

pyramidal-II slip modes, respectively. Hence, N b + N pr + N py = N and α = 1 to N , where N = 12. 
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The expression for E lattice will also differ substantially from one slip mode to another within the same HCP crystal. First,

as in the other terms, the crystallography of the slip planes and slip directions associated with preferred slip in the HCP

crystal must be defined. Second, the lattice energies for each slip mode need to be considered individually, since the atomic

density and configuration of the atoms differ among the glide planes of these modes. The general form of the lattice en-

ergy presented in Eq. (6) is still appropriate; however, the functional form of the periodic potential will depend on the

atomic interactions across the particular slip plane of interest. The total E lattice will consist of the energy contributions from

dislocations that may be present on any or all of these three slip modes at a time. 

In the present formulation, slip by each slip system is defined physically and so a unique order parameter is associated

with each slip system. Consequently, the lattice energies associated with different systems are mutually exclusive, permitting

us to write the lattice energy as follows: 

E lat t ice = E basal + E prism + E pyrII 

= 

N b ∑ 

α=1 

∫ 
φbasal 

α (ζ1 (x ) , . . . , ζN b (x )) d 
2 x + 

N pr ∑ 

α=1 

∫ 
φpr 

α (ζ1 (x ) , . . . , ζN pr (x )) d 
2 x + 

N py ∑ 

α=1 

∫ 
φpyrII 

α (ζ1 (x ) , . . . , ζN py (x )) d 
2 x 

(9)

where E basal is the lattice energy for dislocations gliding on basal slip planes, E prism the lattice energy for dislocations gliding

on prismatic planes, and E pyrII for the lattice energy for dislocations gliding on pyramidal-II planes. At a given point in the

computational volume, lattice energies will for the most part correspond to one plane and hence order parameters on that

plane. The sum of two or more lattice energies will occur when glide planes from different slip modes intersect. In addition,

as exemplified in Eq. (6) , the periodic potentials may be a function of order parameters from multiple slip systems. 

2.3. DFT Determined γ -surfaces and GSFE curves 

The E lattice is a material-specific and slip-plane-specific function of the order parameters, associated with the energy

expended when bonds are broken across the plane in dislocation glide. In prior works, the models used for E lattice originate

from simple functions, such as a single parameter sine-squared function ( Zeng et al., 2016 ) to multi-parameter piece-wise

quadractic function ( Koslowski et al., 2002 ), to more complex sinusoidal functions modeling in detail a generalized stacking

fault energy (GSFE) curve ( Hunter et al., 2011; Shen and Wang, 2003 ), or Fourier sine series ( Beyerlein and Hunter, 2016;

Hunter et al., 2014; Schoeck, 2001; Shen and Wang, 2004 ), modeling a 2D γ -surface. The parameters associated with these

functions are usually informed by an atomistic calculation particular to the material. When the energy landscape is too

complex to be described reliably by a function, an alternative approach has been to employ look-up tables comprised a large

set of pre-calculated energies corresponding to a fine grid of points on the energetic landscapes ( Mianroodi and Svendsen,

2015; Xu et al., 2019 ). Obtaining the energy associated with dislocation glide on a particular plane has been derived by

considering an ideal situation of cutting a perfect crystal in half across the glide plane of interest and calculating the excess

energy per unit area incurred by shifting one crystal half with respect to the other half ( Schoeck, 2005; Vitek, 1968 ). The

γ -surface is the energy landscape associated with all possible shifts in the two in-plane dimensions. The energy associated

with shifting this plane in solely one crystallographic direction lying on the plane (one slice of the γ -surface) corresponds

to a curve, referred to as a generalized stacking fault energy (GSFE) curve. In the case of slip in an FCC crystal, γ -surface

is usually calculated for the {111} slip plane, the one glide plane of interest, and the energy associated with shifting this

plane in either the < 110 > or < 112 > directions are the common GSFE curves. GSFE curves and γ -surfaces do not directly

represent a dislocation, but they represent the energy associated with the changes in atomic positions that a dislocation

would cause as it glides on that plane. These energetic quantities have been adopted in E lattice since they are undeniably

more convenient to calculate than the Peierls barrier. 

Here, as mentioned, we apply the model to different glide planes in four HCP crystals, Mg, MgY, Ti, and Zr, and we will

adopt GSFE curves or γ -surfaces in E lattice for them. These energetic quantities are commonly calculated with atomic-scale

methods, such as DFT or MD ( Mianroodi et al., 2016; Shen et al., 2014 ). However, most DFT γ -surfaces and GSFE curves apply

to cubic materials and not to planes in HCP materials ( Kaxiras and Duesbery, 1993; Lu et al., 20 0 0 ). The most common cases

for HCP metals are the GSFE curves for the basal slip mode in Mg and Mg alloys ( Shang et al., 2014; Shen et al., 2014; Wu

et al., 2015 ). Here we will use the GSFE for the basal plane in Mg 47 Y from Pei et al. (2013) . For the prismatic slip plane in

Mg, Zr and Ti, the DFT-calculated GSFE curves that we will use have been calculated in ( Ardeljan et al., 2018; 2016; Clouet,

2012; Domain, 2006; Wu et al., 2015 ). The γ -surface for the pyramidal-I plane in Mg has already been presented in ( Kumar

et al., 2017; Rodney et al., 2017; Wu et al., 2015 ). 

For the PFDD calculations presented in this work, we performed additional DFT calculations for the GSFE curves for the

HCP crystalline planes that are not available in the literature, which include γ -surfaces and GSFE curves for the basal plane

in Mg and the pyramidal-II planes in Mg and Ti. For all DFT calculations here we use the code as implemented in Vienna

Ab-initio Simulation Package (VASP) ( Kresse and Furthmüller, 1996a; 1996b ) and utilize the generalized gradient approxima-

tion (GGA) for the exchange correlation functional with the Perdew-Burke-Ernzerhof (PBE) parameterization ( Perdew et al.,

1996 ). The interaction between valence electrons and ionic cores was treated using PAW potentials. The number of valence

electrons in Mg potential taken is 2 and in the Ti potential 4. A plane wave energy cutoff of 400 eV was employed and the

structure was optimized until the force on each atom became smaller than 0.01 eV/A. We used a 19x19x19 Gamma-centered
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Table 1 

Lattice constant (in Å) and elastic constants (units of GPa) for bulk HCP-Mg, Ti, and Zr obtained from DFT 

and isotropic averages for the shear modulus, μ, and Lamé’s parameter, λ. 

Material a ( ̊A) c/a C 11 C 33 C 12 C 13 C 44 C 66 μ λ

Magnesium 3.190 1.625 63.3 65.7 25.9 20.8 18.0 18.7 19.26 23.53 

Mg 47 Y 3.206 1.626 63.3 65.7 25.9 20.8 18.0 18.7 19.26 23.53 

Titanium 2.923 1.581 159.4 191.7 108.9 83.9 37.6 25.2 35.68 94.43 

Zirconium 3.231 1.601 135.1 166.1 80.3 70.7 26.1 27.4 30.23 77.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monkhorst Pack k-point mesh to integrate the Brillouin Zone of the primitive HCP unit cells to calculate the lattice constants

and elastic constants. 

The lattice parameters and elastic constants are presented Table 1 . All values were calculated here using our DFT methods

but the moduli for Mg 47 Y, which were obtained from Pei et al. (2013) . Overall, these are in good agreement with previous

DFT calculations and experimental measurements ( Ardeljan et al., 2016; Kumar et al., 2017 ). These values will be used in

the PFDD calculations that follow. For the sake of simplicity, the elastic strain energy generated around the dislocation is

calculated under the assumption that the material is a linear elastic, isotropic solid. The isotropic elastic stiffness tensor is

given by: 

C = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

λ + 2 μ
λ λ + 2 μ
λ λ λ + 2 μ Symm 

μ
μ

μ

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(10) 

where μ is the shear modulus and λ is Lamé’s first parameter, which are related by 

K b = λ + 

2 

3 
μ (11) 

We calculate μ and K b using the following Voigt equations for hcp ( Hill, 1952 ) 

μ = 

1 

15 
[(2 C 11 + C 33 ) − (C 12 + 2 C 13 ) + 3(2 C 44 + C 66 )] (12)

K b = 

1 

9 
[(2 C 11 + C 33 ) + 2(C 12 + 2 C 13 )] (13)

The DFT determined and isotropic averages used in the calculations for Mg, Ti, and Zr are presented in Table 1 . 

In the DFT calculation of the generalized stacking fault energies, we used the relaxed method ( Kumar et al., 2017 ),

wherein for each displacement step, minimization of the energy of the system is ensured by fixing all atomic positions

along the glide direction and allowing positions along the plane normal and the in-plane direction lying normal to the glide

direction to relax. For each slip plane, the supercell dimensions are chosen based on the minimum number of layers along

the z -direction for which convergence in system energy is attained. For Mg, the periodic model for basal slip plane contains

52 atoms and its dimensions are 3.19 Å along x , 5.53 Å along y and 77.17 Å along z . The periodic model for pyramidal-II slip

plane in Ti contains 60 atoms and its dimensions are 5.063 Å along x , 5.467 Å along y , and 51.960 Å along z . All supercells

contain a thick vacuum layer of 15 Å along the z -direction. 

2.4. The lattice energy for the basal slip mode 

On the basal plane, there are three possible directions of slip, each corresponding to an order parameter for that plane,

ζ 1 , ζ 2 , and ζ 3 . For the basal plane, the lattice energy E 
basal can be expressed as: 

E basal = 

N b ∑ 

α=1 

∫ 
φbasal 

α (ζ1 , ζ2 , ζ3 ) d 
2 x, (14) 

where φbasal 
α is the periodic potential and α = 1 to N b , the number of basal slip systems. As mentioned, here we characterize

this potential with the GSFE surface, or γ -surface, the excess energy associated with shift one crystalline half relative to

another about the basal plane. Using DFT for set of in-plane shear displacement, this surface has been calculated for Mg.

Fig. 1 presents the γ -surface for the basal plane calculated from DFT. First, it is recognized that the location of the maxima

and minima in this basal plane γ -surface coincide well with those of the {111} plane in an FCC crystal. In prior PFDD work

on FCC γ -surfaces, a common approach is to parameterize a continuous function for the φ( ζ ) from a discrete set of DFT

calculations on a γ -surface. In this way derivatives were directly calculable and less DFT calculations were required overall

to construct the potential. A function that fit the FCC plane well is the seven-coefficient complex Fourier series function
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Fig. 1. Comparison of γ -surfaces for the basal slip plane in Mg as determined with DFT (bottom) and the parameterization (top) presented in Eq. (15) . The 

points used from the material γ -surface to determine the coefficients calculated with Eq. (16) are labeled on both plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Hunter et al., 2014; Schoeck, 2001; Shen and Wang, 2004 ). Here we adopt this function for the φbasal 
α and parameterize it

for the basal plane using the seven DFT calculated points on the basal plane γ -surface. This function is given by: 

φbasal (ζ1 , ζ2 , ζ3 ) = j 0 + j 1 [ cos 2 π(ζ1 − ζ2 ) + cos 2 π(ζ2 − ζ3 ) + cos 2 π(ζ3 − ζ1 )] 

+ j 2 [ cos 2 π(2 ζ1 − ζ2 − ζ3 ) + cos 2 π(2 ζ2 − ζ3 − ζ1 ) + cos 2 π(2 ζ3 − ζ1 − ζ2 )] 

+ j 3 [ cos 4 π(ζ1 − ζ2 ) + cos 4 π(ζ2 − ζ3 ) + cos 4 π(ζ3 − ζ1 )] 

+ j 4 [ cos 4 π(3 ζ1 − ζ2 − 2 ζ3 ) + cos 4 π(3 ζ1 − 2 ζ2 − ζ3 ) 

+ cos 4 π(3 ζ2 − ζ3 − 2 ζ1 ) + cos 4 π(3 ζ2 − 2 ζ3 − ζ1 ) 

+ cos 4 π(3 ζ3 − ζ1 − 2 ζ2 ) + cos 4 π(3 ζ3 − 2 ζ1 − ζ2 )] 

+ k 1 [ sin 2 π(ζ1 − ζ2 ) + sin 2 π(ζ2 − ζ3 ) + sin 2 π(ζ3 − ζ1 )] 

+ k 3 [ sin 4 π(ζ1 − ζ2 ) + sin 4 π(ζ2 − ζ3 ) + sin 4 π(ζ3 − ζ1 )] , (15)

where the coefficients j 0 − j 4 , k 1 , k 3 define the material-dependent local maximum, local minimum, and curvature of the

2D energy surface. These coefficients correspond to particular points taken from the γ -surface, G, G 1 , G 2 , G 3 , T, T 1 and are

related to the coefficients via the following expressions ( Schoeck, 2001 ): 

j 0 = 0 . 823(4 G − 6 G 1 + 6 G 2 − 7 . 392 G 3 + 0 . 804 T + 0 . 804 T 1 ) 

j 1 = 0 . 274(−8 G + 12 G 1 − 12 G 2 + 14 . 785 G 3 − 1 . 608 T + 0 . 215 T 1 ) 

j 2 = 0 . 091(23 . 072 G − 29 . 138 G 1 + 32 . 785 G 2 − 42 . 215 G 3 + 2 . 569 T − 2 . 412 T 1 ) 

j 3 = 0 . 137(−8 G + 12 G 1 − 12 G 2 + 14 . 785 G 3 + 0 . 215 T − 1 . 608 T 1 ) 

j 4 = 0 . 023(1 . 856 G − 13 . 723 G 1 + 6 . 431 G 2 − 4 . 277 G 3 − 0 . 962 T + 3 . 531 T 1 ) 

k 1 = 0 . 137(−32 G + 48 G 1 − 48 G 2 + 62 . 785 G 3 − 4 . 608 T − 2 . 785 T 1 ) 

k 3 = 0 . 046(17 . 072 G − 19 . 292 G 1 + 31 . 923 G 2 − 34 . 708 G 3 + 3 . 341 T − 8 . 354 T 1 ) . (16)

Fig. 1 compares the DFT calculated γ -surface for pure Mg and the surface calculated with the Fourier series approxi-

mation presented in Eq. (15) . The points, G, G 1 , G 2 , G 3 , T, T 1 , taken from the γ -surface to parameterize the approximation,

are also shown on both energy landscapes. The pathway starting at point A and traveling through points T and T 1 (in

< 11 ̄2 0 > type directions) represents a perfect Burgers vector translation. The other two pathways (one starting at A and

traveling through G 1 , G 2 , G 3 to point G , and the other starting at point G ), represent the two partial dislocation translations

in < 1 ̄1 00 > type directions. In the case of basal slip, the six points shown in Fig. 1 from the material γ -surface determine

the coefficients needed in Eq. (15) . These values for pure Mg are: G = 29.32 mJ / m 
2 , G 1 = 57.70 mJ / m 

2 , G 2 = 88.49 mJ / m 
2 ,

G = 66.08 mJ / m 
2 , T = 262.73 mJ / m 

2 , and T = 151.53 mJ / m 
2 . The greatest deficiency of the Fourier series approximation is
3 1 
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Table 2 

Inter-planar spacing d normalized in terms of the Burgers vector b and the calculated coefficients for the lattice 

energy potential function ( Eq. (15) ) for the basal slip mode. All coefficients are shown in units of mJ / m 
2 . 

Material d j 0 j 1 j 2 j 3 j 4 k 1 k 3 

Mg 0.81250 120.7223 −4.6751 −53.0878 25.4338 −3.8782 13.6261 −21.5761 

Mg 47 Y 0.81305 143.6364 −33.1868 −18.2934 5.6344 −0.9729 −44.8569 −6.2832 

Fig. 2. Direct comparison of GSFE curves determined with DFT and the periodic potentials used in the calculation of the lattice energy in PFDD for (a) 

basal slip systems in pure Mg, (b) basal slip systems in Mg 47 Y, (c) prismatic slip systems in pure Mg, Zr, and Ti, and (d) pyramidal-II slip systems in pure 

Mg, and Ti. Unlike the symmetric energetic paths for partials on the basal and prismatic planes, the pyramidal-II plane can have different positions and 

values for the local minima and maxima. 

 

 

 

 

 

 

 

 

 

labeled by M in the top figure of Fig. 1 . The M point represents a global energetic maximum where two atoms are located

directly on top of each other, and is incorrectly represented by Eq. (15) . However, this atomic configuration is not located

along a pathway that would be involved in the dissociation of the perfect dislocation. 

In order to model basal slip in Mg 47 Y, we determined a parameterized γ -surface from the same seven points lying along

the < 11 ̄2 0 > and < 1 ̄1 00 > GSFE curves calculated by DFT by Pei et al. (2013) . From their work, we obtained the following

values for Mg 47 Y: G = 27.80 mJ / m 
2 , G 1 = 44.46 mJ / m 

2 , G 2 = 83.82 mJ / m 
2 , G 3 = 61.65 mJ / m 

2 , T = 214.69 mJ / m 
2 , and T 1 =

124.34 mJ / m 
2 . Using these values in Eq. (16) , the coefficients needed to inform φbasal are calculated and presented in Table 2 .

Fig. 2 (a) and (b) directly compare the GSFE curves in a < 1 ̄1 00 > type direction as determined with DFT and the Fourier

series approximation, showing reasonable agreement for this particularly important slice of the energetic landscape. 

2.5. The lattice energy for the prismatic and pyramidal-II slip modes 

For prismatic slip, the relevant GSFE curve on the prismatic plane is associated with the prismatic slip system, { ̄1 010}

< 1 ̄2 10 > . For a prismatic dislocation in PFDD, E prism can be expressed as a function of a single order parameter ζ α corre-
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Table 3 

Inter-planar spacing d normalized in terms of the Burgers vector b and the calculated coefficients for the lattice energy periodic potentials 

for the prismatic and pyramidal-II ( Eq. (19) ) slip mode. All coefficients are shown in units of mJ / m 
2 . 

Material Plane d p 0 p 1 p 2 p 3 p 4 q 1 q 2 q 3 q 4 

Mg Prism 0.86603 119.18 −102.05 −13.60 −1.117 0.000 0.000 0.000 0.000 0.000 

Ti Prism 0.86603 138.65 −89.53 −43.96 2.591 −7.328 0.000 0.000 0.000 0.000 

Zr Prism 0.86603 129.90 −93.28 −33.45 3.198 −4.051 0.000 0.000 0.000 0.000 

Mg Pyr II 0.22318 217.98 −75.35 −116.48 −6.137 −9.728 −55.26 15.05 8.900 −1.228 

Ti Pyr II 0.22589 427.52 −165.06 −220.30 −22.96 −9.542 −52.33 118.72 −13.57 −16.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sponding to the slip direction < 1 ̄2 10 > on the prismatic plane. The lattice energy is given by: 

E prism = 

N pr ∑ 

α=1 

∫ 
φprism 

α (ζα) d 2 x, (17)

φprism 

α is the periodic potential for the excess energy expended in gliding along the slip vector. The φprism 

α can be character-

ized by a GSFE curve along the slip direction < 1 ̄2 10 > . Here, these GSFE curves are calculated by DFT and are taken from

published DFT results from Ardeljan et al. (2018) for Mg, Ardeljan et al. (2016) for the Zr data, and Domain (2006) for the

Ti data. Fig. 2 (c) displays these curves. In a material like Zr, the GSFE curve along the prismatic plane has a local minimum,

suggesting the possibility of a dislocation dissociation. Conversely in Mg, the GSFE curve has no local minimum, which

would imply that the core is likely to remain compact. 

The relevant GSFE curve for the pyramidal-II slip system is { ̄2 112} < 2 ̄1 ̄1 3 > . Similar to the prismatic case, we consider

only one active order parameter ζ α defined in a < 2 ̄1 ̄1 3 > -type slip direction. In this case, the lattice energy is given by: 

E pyrII = 

N py ∑ 

α=1 

∫ 
φpyrII 

α (ζα) d 2 x, (18)

where φpryII is the periodic potential associated with excess energy in gliding along the slip vector. For φpryII , we adopt

a generalized stacking fault energy curve along < 2 ̄1 ̄1 3 > calculated using DFT. The pyramidal plane GSFE curve for Mg is

taken from Kumar et al. (2017) , but here, it was necessary to calculate the GSFE curve for Ti, as described in Section 2.3 . GSFE

curves for both Mg and Ti are different from those DFT curves previously reported, which did not employ full relaxation

( Rodney et al., 2017; Wu et al., 2015 ). 

In an effort to provide a continuous function for φ, we observe that the DFT GSFE curves for the prismatic and pyramidal-

II systems for the particular metals we study here can be generally represented by the following function (where we drop

the subscript α on ζ for brevity): 

φm (ζ ) = p 0 + p 1 cos (2 πζ ) + p 2 cos (4 πζ ) + p 3 cos (6 πζ ) + p 4 cos (8 πζ ) 

+ q 1 sin (2 πζ ) + q 2 sin (4 πζ ) + q 3 sin (6 πζ ) + q 4 sin (8 πζ ) , (19)

where m = prism and/or pyrII depending on the active slip mode(s). We found this function convenient, but emphasize

that not all GSFE curves would require all nine coefficients. If the potential is symmetric, such as for the prismatic plane

GSFE curve for Ti, then the coefficients q 1 − q 4 can be set to zero. If it is symmetric and contains no local minima, like the

prismatic plane GSFE curve for Mg, then p 4 can also be equal to zero. 

The parameterized curves for φprism 

α are compared against the DFT calculations in Fig. 2 (c). In these three metals, the

continuous potential function provides excellent agreement to the data. Fig. 2 (d) shows the DFT calculated pyramidal-II

GSFE curves in comparison with the function in Eq. (19) for Mg and Ti. The pyramidal-II plane has an asymmetric GSFE

curve along the slip direction, which requires calculation of all p 0 − p 4 , q 1 − q 4 coefficients to fit the potential φpyrII 
α to

the DFT determined energy profile. For the two pyramidal-II curves, the function offers an excellent continuous function

representation to the DFT data. All coefficients for the prismatic and pyramidal-II cases were fit using the MATLAB curve

fitting tool ( MATLAB and Curve Fitting Toolbox Release, 2016b ) and they are summarized in Table 3 . 

3. Equilibrium dislocation structure calculations 

In the following sections, we apply the HCP-PFDD method to simulate the dissociation of an initially perfect dislocation

into a stable, equilibrium structure under zero applied stress. The structural characteristics that can be ascertained from

the calculation are the partial dislocations resulting from the dissociation, the distance between the partials, the width of

the individual partials and any asymmetry between their widths. For demonstration, the character of the starting perfect

dislocation will be either pure edge or pure screw, although in principle, a dislocation of any initial character may be con-

sidered. In the examples, these dislocations lie on one of three planes: basal, prismatic, and pyramidal-II. When possible,

we compare our results to those previously calculated by DFT and molecular statics or MD. Not all cases treated here have

been observed experimentally or pursued by other computational methods, such as DFT or MD. 
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Fig. 3. Schematics showing (a) the initial simulation set-up for the PFDD computational cell, which was utilized with orientations for an edge dislocation 

on the (b) basal, (c) pyramidal-II, and (d) prismatic glide planes. The simulation set-up for a screw dislocation would have the same initialization shown 

in (a), while the unit cells in (b–d) would be rotated around their respective z − axis by 90 ◦ . For clarity, the x −, y −, and z − axis in our simulation cell 

correspond to the x −, y −, and z − axis respectively in our unit cells when initializing for an edge dislocation and to y −, x −, and z − axis respectively when 

initializing for a screw dislocation. Thus, the slip plane lies parallel to the simulation cell surface, the dislocation line sense lies parallel to the y − axis and 

the Burgers vector (and unit cell) orientation is reflective of the desired dislocation character). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Simulation configuration 

All simulations were carried out in a 3D cuboidal simulation cell. Due to the use of a Fourier transform in the calculation

of the elastic strain energy, all boundaries are periodic. We elect to orient the primary glide plane such that its normal

direction lies parallel to the z -axis, as shown in Fig. 3 (a). Accordingly the crystallographic directions of the x, y , and z -

directions depend on the slip system of interest. The corresponding directions for each simulation cube used for the basal,

prismatic, and pyramidal-II planes are shown for an edge dislocation in Fig. 3 (b), (c), and (d), respectively. The x −, y −, and

z − axis in our simulation cell Fig. 3 (a) correspond to the x −, y −, and z − axis respectively in our unit cells (see Fig. 3 (b-d))

when initializing for an edge dislocation and to y −, x −, and z − axis respectively when initializing for a screw dislocation.

Thus, the slip plane normal is always parallel to the z − axis of the simulation cell, the dislocation line sense is always

parallel to the y − axis and the Burgers vector, which determines the orientation of the unit cell within the simulation cell

and the character of the dislocation with respect to the line sense, is parallel to the x − axis for an edge dislocation and the

y − axis for a screw dislocation. This additional orientation step is not a requirement but a choice made here since only one

dislocation is being evaluated at a time in this study. 

For convenience the grid spacing in all x, y , and z directions, is chosen to be the inter-planar distance of the slip plane,

d , (normalized by the Burgers vector b of a dislocation on that plane for a material, given in Tables 2 and 3 . For any HCP

slip plane, given in ( hkil ) or ( hk.l ) Miller-Bravais notation the un-normalized inter-planar spacing d ∗ depends on the c / a

ratio, and is given by 1 

d ∗2 
= 

4 
3 
h 2 + hk + k 2 

a 2 
+ 

l 2 

c 2 
. In this way, the c -axis, and in particular, differences in the c -axis length (or

the c / a ratio) for different HCP materials are taken into account. For the particular set up chosen here, the c -axis length

is taken into account in the grid spacing normal to the slip plane ( z -axis in Fig. 3 (a)). Accounting for the c -axis in this

way is advantageous when using a cubic computational grid, as is done here. A computational cell length of D = 256 d

was used for simulations on basal and prismatic planes, and D = 640 d was used for simulations modeling the pyramidal-

II plane. By repeating the simulation for different cell sizes, the cell sizes used for the results that follow were deter-

mined to be sufficiently large that the dislocation structures were unaffected by the image dislocations in the periodic

cells. 
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Fig. 4. Zoomed-in area of the slip plane showing the gradient of the disregistry d �/ dx from PFDD for a basal edge dislocation in Mg as it evolves to a 

final equilibrium dissociated state over time: (a) 0, (b) 400, (c) 10 0 0, and (d) 1400 time steps. The approximate side length of the area shown is 5.1 nm. 

The arrows labeled b and b p are the Burgers vectors for the full and partial dislocations respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inside the crystal, a dislocation dipole, consisting of a pair of perfect dislocations with equal and opposite sign, is initially

placed on the glide plane (see Figs. 3 (a) and 4 (a,c)). The dipole allows for a zero Burgers circuit around the simulation

cell. The calculations are completed for both a perfect edge dipole and a perfect screw dipole. For the edge case, the line

orientation is aligned along the y -axis and the Burgers vector along the x -axis. For the screw dipole, the line orientation

is aligned along the y -axis and Burgers vector also along the y -axis. With the perfect dislocations in place on the glide

plane, the simulation begins by evolving the system energy using Eq. (7) to a minimum energy state. During this time, we

observe that in some cases a perfect dislocation dissociates into smaller partial dislocations, which move apart in the glide

plane, while in other cases, the dislocation simply spreads but does not dissociate. Since no external stress is applied in the

examples here, the partial dislocations move to achieve an equilibrium structure. 

To identify the displacement resulting from dislocation glide, particularly when multiple order parameters are active, we

calculate the disregistry �( x ) across the glide plane, which is defined as ( Shen and Wang, 2004 ) 

�(x ) = 

3 ∑ 

i =1 

ζi (x ) s i · s p , (20)

where s p is the Burgers vector direction of the initial perfect dislocation, and s i are the slip directions of each order param-

eter ζ i on the glide plane. For instance, in the case of the basal plane, there are three order parameters, ζ 1 , ζ 2 , and ζ 3 (in

directions [11 ̄2 0] , [1 ̄2 10] , [ ̄2 110] ). Slip directions of Shockley partial dislocations ( [ ̄1 100] , [0 ̄1 10] , [10 ̄1 0] ) would correspond to

a linear combination of ζ 1 , ζ 2 , and ζ 3 , see Eq. (15) . A dislocation is located at the boundary where the disregistry �( x )

transitions from 0 to 1 (see Fig. 4 (a,b)). 

A dislocation results in a gradient in �( x ). The peak in d �( x )/ dx corresponds the central position of a dislocation and

spread non-zero d �( x )/ dx about the peak corresponds to its width (see Fig. 4 (c,d)). Splitting of the perfect dislocation into

multiple partial dislocations of smaller Burgers vector values would correspond to multiple peaks in the final d �( x )/ dx

profile, the distance between which is quantified as the stacking fault width SFW. In the case, where the perfect and partial

dislocations are collinear (i.e., only one order parameter is active), the disregistry ( �), calculated in Eq. (20) , is equivalent to

the order parameter ( ζ ). To best visualize important structural features of the relaxed dislocations and any resulting partials

and SFW we plot a zoomed in cross-section, centered around the position of the initial perfect dislocation, for both the

disregistry �( x ) and the gradient of the disregistry d �/ dx . 

3.2. Dissociation on the basal plane 

With the PFDD model, we simulate the dissociation of perfect edge and screw oriented dislocations along the basal

plane in pure Mg. Fig. 5 shows the disregistry �( x ) profile of the final state of the edge and screw basal dislocation after

the dissociation has completed. To reveal the dislocations, in the same figure, the gradient d �( x )/ dx is also presented. 

The calculation predicts that both edge and screw dislocations split into two Shockley partials, which correspond to the

two peaks in the d �( x )/ dx curve. The spread about these peaks indicates the widths of the partials, which are observed

to be nearly equal. The stacking fault width (SFW) is the distance between these peaks or the center-to-center distance

between the partials. Due to the grid spacing used in the PFDD calculations the error in the SFW is ± 0.5 d . As defined, a

portion of the SFW includes the cores of the partials and is not comprised entirely of a perfect intrinsic stacking fault. For

an edge dislocation in the basal plane of pure Mg, the SFW is 15.551 Å (4.875 b ), where b = 3 . 190 on the basal plane for

Mg. For the screw dislocation, the SFW is 10.367 Å (3.250 b ). The dissociation of perfect edge and screw basal dislocations

in Mg 47 Y are also simulated and the results included in Fig. 5 for comparison. The edge dislocation dissociation results in

a SFW of 20.856 Å (6.504 b ), and the screw dislocation dissociation, a SFW of 10.428 Å (3.2522 b ), where b = 3 . 2064 on the

basal plane for Mg 47 Y. The differences in the SFWs between Mg and Mg 47 Y are negligible for the screw dislocation and ∼5

Å, just slightly less than 2 b , wider for an edge dislocation on Mg Y compared to Mg. It can also be seen from d �/ dx that
47 
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Fig. 5. Equilibrium stacking fault width calculations for initially (a) edge and (b) screw oriented perfect dislocations in the basal plane as determined by 

PFDD. Results for both pure Mg and Mg 47 Y are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the cores of the two partials are narrower for Mg 47 Y compared to those for Mg and from �(x = 0) that the magnitude of

the Burgers vectors for both the right and the left partials are equal. 

The PFDD calculation follows the general expectation from continuum dislocation theory, which is that a perfect disloca-

tion on the basal slip plane undergoes a planar dissociation following ( Partridge, 1967 ): 

1 

3 
[1 ̄2 10] → 

1 

3 
[1 ̄1 00] + 

1 

3 
[0 ̄1 10] . (21) 

The above reaction indicates that a perfect dislocation will dissociate into two Shockley partial dislocations. Analogous to

the dissociation of a perfect FCC dislocation on the {111} plane, the Burgers vectors of these Shockley partial dislocations

on the basal plane are non-collinear and correspond to the two < 1 ̄1 00 > -type directions the basal γ -surface leading to the

local minimum ( Hirth and Lothe, 1968; Partridge, 1967; Rodney et al., 2017 ). A force balance on this dissociated structure

gives as the split distance, R e , from the following analytical equation ( Hirth and Lothe, 1968 ) 

R e = 

μ

2 πγI 

[
( b L · ξL ) ( b T · ξT ) + 

( b L × ξL ) · ( b T × ξT ) 

1 − ν

]
, (22) 

where γ I is the intrinsic SFE, ν is Poisson’s ratio, and b L and b T are the Burgers vectors of the leading and trailing partial

dislocations, respectively. This expression presumes the reaction has already happened, reached the local minimum configu-

ration, and does not consider the dissociation process that achieved it. Therefore, the only energy on the γ -surface needed

is the γ I , intrinsic stacking fault energy corresponding to the local minimum. This analytical model for Mg basal edge and

screw dislocations predicts equilibrium SFW values of 27.360 Å (8.577 b ) and 13.316 Å (4.174 b ), respectively. Similarly, in the

case of Mg 47 Y, the analytical model produces 27.018 Å (8.443 b ) for the equilibrium SFW for the split edge dislocation, and

13.15 Å (4.109 b ) for the split screw dislocation. In both materials, the analytical model overestimates the SFW compared to

the PFDD model, which calculated the equilibrium SFW in Mg to be 15.551 Å (4.875 b ) and 10.367 Å (3.25 b ) and in Mg 47 Y to

be 20.856 Å (6.504 b ) and 10.428 Å (3.252 b ) for dissociated edge and screw dislocations respectively. The PFDD simulation

takes into account the changes in interaction and lattice energies as the partials glide apart during the dissociation process

towards its final equilibrium state, which is not known or specified a priori . The analytical model, in contrast, assumes an

end state comprised of two distinct partial dislocations and does not account for changes in the interaction energy as the

two partial dislocations move apart from each other. 

Other computational approaches have been used to calculate the equilibrium structure of the basal dislocation. We com-

pare these results with the PFDD calculations of the equilibrium SFWs for both edge and screw dislocations on the basal

plane in pure Mg in Table 4 . Atomic-scale simulation has been used to simulate the dissociation process, considering dynam-

ical forces in the disassociation process, which are missing in the PFDD simulation. The data among the atomistic studies

are wide spread, due to the use of different simulation cell sizes, boundary conditions, and interatomic potentials. Never-

theless, the PFDD results lie in well within this range. The SFWs reported here are notably close to DFT predictions from

Yasi et al. (2009) and Yin et al. (2017) . Our results agree well with those from the atomistic study by Shen et al. (2014) ,

who unlike the others in the table used the Mg EAM potential by Daw and Baskes (1984) . Values for SFWs calculated by

Wu et al. (2015) , using both DFT and simulations using the MEAM potential, are the lowest compared to all published DFT

and EAM values. We also show estimates form GPN models, which utilize a time-dependent minimization scheme simi-

lar to the one used here. Differences between our results and GPN can be attributed to the functional form and origin of

the fault energies used in the development of the E lattice term. Our results can be directly compared to the GPN model by

Wang et al. (2010) , wherein they also used as input a full γ -surface. 
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Table 4 

Equilibrium stacking fault widths in units of Å from the dissociation of edge and screw oriented perfect dislocations along the basal plane in pure Mg 

reported previously in the literature and compared to values calculated with PFDD. The different methods are abbreviated as: phase field dislocation 

dynamics (PFDD), density functional theory (DFT), atomistic calculations that use an embedded atom method (EAM) or a modified embedded atom method 

(MEAM) interatomic potential, Generalized Peierls-Nabarro (GPN), and anisotropic linear elastic theory (ALET). In the PFDD calculations, the error bars 

correspond to 0.5 d , which is error due to the grid spacing used in the calculations. 

Author Edge ( ̊A) Screw ( ̊A) b ( ̊A) Method 

This work 15.551 ± 1.296 10.367 ± 1.296 3.19 PFDD 

27.360 13.316 Analytical ( Hirth and Lothe, 1968 ) 

Yasi et al. (2009) 16.64 6.4 3.2 DFT 

14.4 6.4 EAM 

12.8 1.28 EAM 

Yin et al. (2017) 23.895 11.151 3.186 ALET 

22.323 12.756 3.189 DFT 

Wu et al. (2015) 7.011 4.016 3.187 DFT 

12.493 4.016 3.187 MEAM 

Fan et al. (2014) 27.2 14.016 3.2 P-N 

Shen et al. (2014) 18.816 6.912 3.2 EAM 

Groh et al. (2009) 25.6 16.416 3.2 EAM 

Wang et al. (2010) 21.312 – 3.2 GPN 

Fig. 6. Equilibrium stacking fault width calculations for initially (a) edge and (b) screw oriented perfect dislocations in the prismatic plane as determined 

by PFDD. Results for pure Mg, Zr, and Ti are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Dissociation on the prismatic plane 

We next apply the extended PFDD model to dislocations belonging to the prismatic slip mode. Fig. 6 shows the disreg-

istry �( x ) and its gradient d �/ dx profiles across the final equilibrium dislocation structure for Mg, Zr, and Ti. In the case

of Mg, neither the edge nor screw dislocation dissociated, and no stacking fault region develops. The compact structure of

the perfect dislocation is maintained. Stability of the compact core can be expected since the GSFE curve for Mg on the

prismatic plane lacks a local minimum. This result agrees with DFT and atomistic calculations ( Wu et al., 2015 ). For Zr and

Ti, the results from PFDD in Fig. 6 indicate that the perfect dislocations dissociate into two distinct partial dislocations. 

In the case of Zr and Ti, both perfect edge and screw dislocations dissociate into two partials, collinear of the [1 ̄2 10] type

and equal in Burgers vector. The final equilibrium SFW is 5.596 Å (1.732 b ) for Zr and 5.062 Å (1.732 b ) for Ti. Neither metal

exhibits a strong edge/screw character dependence. The differences between the screw and edge SFW are small and must lie

within ± 0.5 d , hence significant differences are not apparent in the PFDD calculations. The structures of these dislocations

are symmetric, with the cores of the partials being equal in width. In both metals, the SFW is not broad, an outcome of the

shallow local energy minimum associated with formation of the stacking fault as seen in the prismatic GSFE curve Fig. 2 (c).

Further the core widths of the partial dislocations are relatively large compared to the SFW, suggesting that the SFW is

not comprised of a homogeneous intrinsic stacking fault. For these dislocations the two partials are slightly more separated

in Ti than Zr. The variations arise because the final split distances are influenced by both the repulsive elastic interactions

between the partials and the local maxima and minimum in the GSFE curves. Ti has the lower peak barriers, which would

lead to the wider partial cores, and it also has the higher modulus, which would lead to the stronger repulsive interaction. 

From continuum dislocation theory, perfect dislocations on the prismatic slip plane are expected to dissociate following

( Partridge, 1967; Rodney et al., 2017 ): 

1 [
1 ̄2 10 

]
→ 

1 [
1 ̄2 10 

]
+ 

1 [
1 ̄2 10 

]
. (23)
3 6 6 
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Table 5 

Equilibrium stacking fault widths in units of Å from the dissociation of screw oriented perfect dislocations along the 

prismatic plane in pure Zr reported previously in the literature and compared to values calculated with PFDD. The 

different methods are abbreviated as: phase field dislocation dynamics (PFDD), anisotropic linear elastic theory (ALET), 

and semidiscrete variational Peierls-Nabarro (SVPN). In the PFDD calculations, the error bars correspond to 0.5 d , which 

is error due to the grid spacing used in the calculations. 

Author Screw ( ̊A) b ( ̊A) Method 

This work 5.596 ± 1.399 3.231 PFDD 

6.071 Analytical ( Hirth and Lothe, 1968 ) 

Clouet et al. (2015) 6.1 3.23 ALET 

Udagawa et al. (2010) 17.5 3.23 SVPN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we have seen from the PFDD calculations, this dissociation is seen only to occur in Zr and Ti and not in Mg. Applying

the analytical formula, Eq. (22) , to Zr and Ti only and using the energy minimum in the DFT GSFE curves for γ I , the equi-

librium SFWs for an edge and screw dislocation in Zr and Ti are found to be much larger than those calculated by PFDD.

For Zr, the analytical model predicts an SFW of 9.730 Å (3.011 b ) for edge and 6.071 Å (1.879 b ) for screw. For Ti, the SFW

values are 10.282 Å (3.518 b ) and 6.370 Å (2.179 b ) for edge and screw, respectively. The PFDD simulation takes into account

the changes in interaction and lattice energies as the partials glide apart during the dissociation process towards its final

equilibrium state. The analytical model, in contrast, neglects the dissociation process. 

Transmission electron microscopy (TEM) analyses of Ti and Zr suggest that screw dislocations encounter much higher

Peierls barriers than non-screw dislocations, and therefore, control plastic deformation ( Farenc et al., 1993; 1995; Naka

et al., 1988 ). Published estimates for the equilibrium SFWs have focused on screw and not edge dislocations. Previous work

has computed SFWs for screw dissociations on the prismatic plane in Zr using a P-N model ( Clouet, 2012; Domain and

Besson, 2004; Udagawa et al., 2010 ). When these models are informed with DFT values for the elastic constants and γ I , the

calculations are consistent with those calculated here with PFDD (e.g., 5.9 Å and 4.6 Å reported by Clouet (2012) ). Other

numerical approaches include anisotropic linear elastic theory (ALET) and semidiscrete variational Peierls-Nabarro (SVPN) 

and these are listed in Table 5 . The ALET model ( Clouet et al., 2015 ) achieves reasonable agreement with PFDD, which can

be expected since both approaches were informed with DFT. The SVPN result ( Udagawa et al., 2010 ), however, is noticeably

higher, since the system minimization is time independent, and like the analytical model, does not consider the dissociation

process. 

3.4. Dissociation on the pyramidal-II plane 

We repeated the equilibrium SFW calculation with PFDD for dissociation of edge and screw dislocations on the

pyramidal-II slip plane in Mg and Ti. The GSFE curves along the pyramidal-II slip plane have a local minimum, and we

expect two collinear partial dislocations with Burgers vector in a < 11 ̄2 3 > direction to form. Fig. 7 shows the disregistry

profiles resulting from the PFDD simulations for edge/screw dissociation in both Mg and Ti. The calculations indicate that

two distinct partial dislocations form in both Mg and Ti during the PFDD simulations. For Mg, PFDD simulations calculated

equilibrium SFWs of 25.810 Å (4.240 b ) and 19.018 Å (3.125 b ) for perfect edge and screw dislocation dissociation, respec-

tively. In the case of Ti, PFDD calculations produce equilibrium SFWs of 17.293 Å (3.162 b ) and 11.117 Å (2.033 b ) for edge and

screw dislocation dissociation, respectively. 
Fig. 7. Equilibrium stacking fault width calculations for initially (a) edge and (b) screw oriented perfect dislocations in the pyramidal-II plane as determined 

by PFDD. Results for both pure Mg, and Ti are shown. 
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Table 6 

Equilibrium stacking fault widths in units Å from the dissociation of edge and screw oriented perfect dislocations along the pyramidal-II plane in pure 

Mg reported previously in the literature and compared to values calculated with PFDD. The different methods are abbreviated as: phase field dislocation 

dynamics (PFDD), and density functional theory (DFT). In the PFDD calculations, the error bars correspond to 0.5 d , which is error due to the grid spacing 

used in the calculations. 

Author Edge ( ̊A) Screw ( ̊A) b ( ̊A) Method 

This work 25.810 ± 0.679 19.018 ± 0.679 6.087 PFDD 

22.155 15.632 Analytical ( Hirth and Lothe, 1968 ) 

Ghazisaeidi et al. (2014) 18.3 16.6 6.106 DFT 

Itakura et al. (2016) – 14 6.0827 DFT 

Kumar et al. (2017) 22.6 – 6.089 DFT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A few experimental observations as well as MD simulations have reported the perfect dislocations on the pyramidal-II

slip plane to dissociate into two partials equal in magnitude and collinear according to ( Kumar et al., 2017; Partridge, 1967;

Rodney et al., 2017; Stohr and Poirier, 1972 ): 

1 

3 

[
2 ̄1 ̄1 3 

]
→ 

1 

6 

[
2 ̄1 ̄1 3 

]
+ 

1 

6 

[
2 ̄1 ̄1 3 

]
. (24)

In the case of Mg, DFT has previously calculated the equilibrium SFW for both edge and screw dislocations on the

pyramidal-II slip plane, as shown in Table 6 . The equilibrium SFW as calculated with PFDD for both the edge and screw

dislocation dissociation reactions are slightly higher, but compare well with those determined with DFT. We also note that

there are further variations among the DFT results, possibly due to the use of different exchange correlation functionals and

k-points, supercell sizes, initial dislocation configuration, and method of defining the SFW width. To the authors’ knowl-

edge, equilibrium SFW calculations have not been previously reported for edge or screw dislocation dissociations along the

pyramidal-II plane in Ti. 

Interestingly, the disregistry gradient d �/ dx in Fig. 7 shows that the dissociated dislocations in Mg have an apparent

asymmetry between the core widths of the two partials. The left partial has a much wider ( ∼2.5 times wider) core than the

right partial. Differences in the widths of the individual partials (partial core spreading) in the split pyramidal-II dislocation

in Mg have also been reported in atomistic molecular dynamics calculations using the MEAM potential ( Kumar et al., 2017;

Wu et al., 2015 ). The distances these two partials glide during the dissociation are also unequal as well, with the left partial

moving further to the left than the right partial. In the case of Ti, the partial core widths are not as dissimilar as in Mg,

and the differences between the distances the right and left partial glide during the dissociation is less than that in Mg and

favors glide of the right partial more than the left. 

We surmise that the asymmetries in the Mg and Ti dislocation cores arise from the asymmetry of the positions and

critical energetic values in their GSFE curves. First we consider the Burgers vectors of the two partials. The reaction in

Eq. (24) suggests that the dissociation leads to two partials of equal Burgers vector. From the PFDD calculated core structure,

we can determine the magnitude of the Burgers vector from the value of the disregistry � at x = 0 . For Mg �(0) is ∼0.5

and thus we can expect a dislocation split into partials with equal Burgers vectors, consistent with Eq. (24) . For Ti, however,

�(0) is ∼0.45, meaning the left and right partials have a Burgers vector magnitude of 0.45 b and 0.55 b respectively, where b

is the magnitude of the Burgers vector for the initial perfect dislocation. This asymmetry in the partial Burgers vector value

is governed by the displacement needed to achieve the local minimum or intrinsic stacking fault energy I in the GSFE curve

in Figs. 2 (d) and 8 . As shown in Fig. 7 , unlike Mg, the Burgers vectors of the two dissociated pyramidal dislocations in Ti

are not equal in magnitude. 
Fig. 8. GSFE curves for both Mg and Ti showing labels for critical energetic points and the peak shear stresses as the slopes leading to and from these 

points. 
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Table 7 

The relationships between the absolute values for the maximum slopes between the global and 

local maxima and minima of the GSFE curves for the pyramidal-II planes of Mg and Ti as shown 

in Fig. 2 (d). 

Material τ out 
1 τ in 

1 τ in 
2 τ out 

2 τ out 
1 /τ in 

1 τ out 
2 /τ in 

2 τ in 
2 /τ

in 
1 τ out 

2 /τ out 
1 

Mg 16.85 6.29 15.50 24.03 2.68 1.55 2.47 1.43 

Ti 50.24 21.38 30.28 36.36 2.35 1.20 1.42 0.72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is noticed that the partial with the wider core is associated with the lower unstable stacking fault peak U 1 (left)

and the narrower one with the higher unstable stacking fault peak U 2 (right) in the GSFE curve (see Figs. 2 (d) and 8 ).

During the dissociation process, the lower peak barrier would pose less resistance to partial dislocation glide, permitting

core spreading. For Ti, with the more symmetrical core structure the difference between the peak barriers in the Ti GSFE

curve is comparatively smaller, apparently leading them to only a slight asymmetry between the core widths of the left and

right partials. 

Related to the peak energies U is the peak shear stress required to move the partial dislocations apart during the dissoci-

ation. These critical stresses are calculated directly from the derivative of the GSFE curves with respect to the displacement

shift. The left partial would follow the energetic path starting from the reference point (global minimum at 0 shift) to U 1 ,

whereas the right partial would follow a path associated with the right most reference point (global minimum at 1 to the

peak U 2 ). The ideal shear stress associated with the resistance for the left partial to move is τ out 
1 

is the maximum slope

from a global minimum to U 1 , and that for the right partial is τ
out 
2 

, the maximum slope from the global minimum to U 2 .

The local minimum in the GSFE corresponds to the stacking fault formed by the glide of the partials. The peak slopes on

either side of the local minimum, τ in 
1 
andτ in 

2 
, are related to the resistance for the core of the partials to spread in plane. With

interest in the effect of asymmetries in the GSFE with asymmetries in core structures, we analyze the ratios of these ideal

shear stresses. Table 7 shows the four peak slopes and the ratios of τ out 
2 

/τ out 
1 

and τ in 
2 

/τ in 
1 

as well as τ out 
1 

/τ in 
1 

and τ out 
2 

/τ in 
2 

for Mg and Ti. 

According to Table 7 , τ out 
2 

/τ out 
1 

for Ti is less than unity, suggesting that it will be easier for the right partial to glide

right than the left partial to glide left. As seen in the PFDD calculated core structure of the dissociated screw dislocation in

Fig. 7 (b), the left partial moves ∼0.9 b left and the right partial moves ∼1.1 b right. Conversely, for Mg τ out 
2 

/τ out 
1 

is greater

than unity, suggesting that it will be far easier for the left partial to glide left than the right partial to glide right. Accord-

ingly, the core of the Mg pyramidal dislocations as calculated via PFDD finds that the left and right partials move ∼2.9 b

and ∼1.3 b , respectively for the dissociated edge dislocation and ∼2.0 b and ∼1.1 b , respectively for the dissociated screw

dislocation. 

Once the SF has formed, whether or not the spreading of a partial dislocation core occurs is governed by τ in 
2 

/τ in 
1 
. Refer-

ring to Table 7 , while τ in 
2 

/τ in 
1 

exceeds unity for both Ti and Mg, it is much higher in Mg than that for Ti, indicating that core

spreading is more likely in one partial dislocation in Mg than Ti. Further, the ratios τ out 
1 

/τ in 
1 

and τ out 
2 

/τ in 
2 

indicate which

partial dislocation is likely to experience this spreading. According to these values for Mg, we would anticipate spreading of

the left partial core. In agreement, in simulation, the left partial in the pyramidal core of Mg is found to broadened widely,

more so than the right one. 

4. Summary 

This work presents model extensions to advance a phase field approach for studying dislocation motion, called phase

field dislocation dynamics (PFDD), to include crystals with a hexagonal close packed (HCP) crystal structure. The functional

form of the lattice energy was modified to include periodic potentials that depend on slip mode. In this way, the significant

differences seen in the γ -surfaces and GSFE curves on different HCP slip planes, as determined with atomistic approaches,

can be represented. The new periodic potentials are directly informed by generalized stacking fault energy (GSFE) curves

calculated with density functional theory (DFT), either calculated here or adopted from previously published DFT data. For

instance, the γ -surface for the basal slip plane in Mg and the GSFE curve for the pyramidal-II slip plane in Ti are presented

here. 

With the model, we calculate the equilibrium SFWs for both edge and screw dislocations in various HCP metals, including

pure Mg, Mg 47 Y, Ti, and Zr, and on the basal, prismatic, and pyramidal-II slip planes. These examples illustrate the flexibility

of the model formulation, as well as permit direct comparison with calculations of equilibrium SFW by other computa-

tional approaches, such as atomistic and other continuum approaches previously reported in the literature. For example,

the method is able to capture both the compact dislocation core on the prismatic plane in Mg, and also the dissociated

dislocation core on the prismatic plane in Zr and Ti. In all cases, the PFDD results show reasonable comparison to results

previous reported using MD or DFT. Since PFDD was informed with DFT GSFE information, best comparisons are generally

found with DFT calculated values, or GPN models also informed with DFT information. In addition, results were compared

to analytical calculations of the equilibrium SFW ( Hirth and Lothe, 1968 ). In all cases, the analytical values were larger than

those determined by PFDD. The analytical equation does not fully account for the dissociation process, including energy

barriers partials must overcome as they spread apart through the crystal lattice. In addition, it is worth noting that in some
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cases, such as screw and edge dislocations in Zr and Ti on the pyramidal-II plane, data for the equilibrium core structures

were not available in the current literature for comparison. 

In simulating the dissociation process from an initially unstable perfect dislocation to its final equilibrium structure, the

PFDD model revealed additional effects of the displacements and values of energetic local maxima and minima of the GSFE

curve. The most pronounced example arose when considering the structure of dislocations on the pyramidal-II plane, which

has an asymmetrical GSFE curve. In the case of Mg, the PFDD results show that the width of the left partial is nearly three

times wider than the right partial, for a dissociated edge dislocation. It is also shown that while the Burgers vectors for

the partial dislocations are equal in magnitude, the left partial glides farther than the right partial. Consequently, the left

partial contributes more to the total SFW than the right partial. These results are in agreement with previous work using

atomistic calculations with the MEAM potential, which also found an asymmetry in the width of individual partials along the

pyramidal-II plane in Mg ( Kumar et al., 2017; Wu et al., 2015 ). With the aid of PFDD calculations with designed GSFE curves,

we identify the relationships between the asymmetries in the GSFE curve and the asymmetries in the equilibrium core

structure of the dislocation, namely distances traveled by the two partials as they glide apart during the dissociation and in

the core widths and values of the Burgers vectors of the two partial dislocations, explaining why the extended dislocation

structures exhibit significant differences in asymmetry between Mg and Ti. On the other hand, while Ti also has a GSFE

curve that possesses some asymmetries, its pyramidal dislocation core structure bears less asymmetric characteristics than

the Mg pyramidal dislocation core. Our analysis reveals that the partials in Ti have Burgers vectors with different magnitudes

that correspond to the position of the intrinsic stacking fault energy, such that the left partial has a smaller Burgers vector

than the right partial. 

We mention that other dislocations have been reported in HCP materials. In both Zr and Ti, another important pyramidal

slip system is pyramidal type I, which has twelve slip systems. For Mg, whether this system is as active or more active than

the pyramidal type II mode studied here has been a point of debate. This is a potential area for future work with the newly

extended HCP-PFDD model. 

HCP metals, particularly in pure form, as studied here, tend to twin easily when the c-axis of the crystals are stretched

or compressed. The role of dislocations in the formation of deformation twin nuclei has been studied predominantly using

dislocation theory and atomistic simulation ( Beyerlein and Wang, 2019; Wang and Beyerlein, 2012a; Wang et al., 2013;

2014b ). It has been suggested that twin embryo formation begins with the stress-induced dissociation of linear defects

with relatively large Burgers vectors, such a pyramidal dislocation or pile up of basal dislocations ( Beyerlein et al., 2012;

Capolungo and Beyerlein, 2010; Mendelson, 1970 ). While in this study we do not simulate twin formation, we simulate the

dissociation process of individual dislocations. These calculations would be fundamental to further calculations of dislocation

reactions among many dislocations with the PFDD model presented here. 
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