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Electrical and optical control of single spins
integrated in scalable semiconductor devices
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Spin defects in silicon carbide have the advantage of exceptional electron spin coherence combined
with a near-infrared spin-photon interface, all in a material amenable to modern semiconductor
fabrication. Leveraging these advantages, we integrated highly coherent single neutral divacancy spins
in commercially available p-i-n structures and fabricated diodes to modulate the local electrical
environment of the defects. These devices enable deterministic charge-state control and broad

Stark-shift tuning exceeding 850 gigahertz. We show that charge depletion results in a narrowing

of the optical linewidths by more than 50-fold, approaching the lifetime limit. These results demonstrate
a method for mitigating the ubiquitous problem of spectral diffusion in solid-state emitters by
engineering the electrical environment while using classical semiconductor devices to control

scalable, spin-based quantum systems.

olid-state defects have enabled many

proof-of-principle quantum technologies

in quantum sensing (), computation (2),

and communications (3). These defects

exhibit atom-like transitions that have
been used to generate spin-photon entangle-
ment and high-fidelity single-shot readout
(4), enabling demonstrations of long-distance
quantum teleportation, entanglement distilla-
tion, and loophole-free tests of Bell’s inequal-
ities (3). However, fluctuating electric fields
and uncontrolled charge dynamics have lim-
ited many of these technologies (I, 4-7). For
example, lack of charge stability and of photon
indistinguishability are major problems that
reduce entanglement rates and fidelities in
quantum communication experiments (4-6).
In particular, indistinguishable and spectrally
narrow photon emission is required to achieve
high-contrast Hong-Ou-Mandel interference
(8). This indistinguishability has been achieved
with some quantum emitters through dc Stark
tuning the optical lines into mutual resonance
(9, 10). A variety of strategies (1, 6, 11-13) have
also been proposed to reduce spectral diffu-
sion (14) and blinking (15), but consistently
achieving narrow and photostable spectral
lines remains an outstanding challenge (16).
In addition, studies of charge dynamics (17, 18)
have enabled quantum-sensing improvements
(1, 7) and spin-to-charge conversion (19), allow-
ing electrical readout of single-spin defects
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(20). However, these experiments have largely
been realized in materials such as diamond, in
which scalable nanofabrication and doping
techniques are difficult to achieve.

By contrast, the neutral divacancy (VV?)
defect in silicon carbide (SiC) presents itself
as a candidate spin qubit in a technologically
mature host, allowing for flexible fabrication,
doping control, and availability on the wafer
scale. These defects display many attractive
properties, including all-optical spin initializa-
tion and readout (21), long coherence times
(22), nuclear spin control (23), as well as a near-
infrared high-fidelity spin-photon interface
(24). However, VV° has displayed relatively
broad optical lines (24), charge instability
(18), and relatively small Stark shifts (10). Fur-
thermore, the promise of integration into clas-
sical semiconducting devices remains largely
unexplored.

Here, we use the mature semiconductor
technology that SiC provides to create a p-i-n
structure that allows tuning of the electric
field and charge environment of the defect.
First, we isolate and perform high-fidelity con-
trol on highly coherent single spins in the
device. We then show that these devices en-
able wide dc Stark tuning while maintaining
defect symmetry. We also demonstrate that
charge depletion in the device mitigates spec-
tral diffusion, thus greatly narrowing the line-
widths in the optical fine structure. Finally,
we use this device as a testbed to study the
photoionization dynamics of single VV°, result-
ing in a method for deterministic optical con-
trol of the defect charge state.

The effects presented here suggest that doped
SiC structures are flexible and scalable quan-
tum platforms hosting long-lived, single-spin
qubits with an electrically tunable, high-quality
optical interface. The demonstrated reduction
in electric field noise can lead to increased spin
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coherence (25) and electrical tuning of “dark”
spins in quantum sensing (26), whereas charge
control could extend the memory time of nu-
clear spins (27). Additionally, this platform opens
new avenues for spin-to-charge conversion,
electrically driven single-photon emission (28),
electrical control (29), and readout (20, 30, 31)
of single spins in SiC CMOS (complementary
metal oxide semiconductor)-compatible and
optoelectronic semiconductor devices.

Isolated single defects in a
semiconductor device

We first isolated and controlled single VV° in
a 4H-SiC p-i-n diode created through com-
mercial growth of doped SiC epilayers. After
growth, we electron irradiated and annealed
our samples to create single, isolated VV° de-
fects. We fabricated microwave striplines and
ohmic contact pads, allowing for spin manip-
ulation and electrical gating (Fig. 1A) (32). In
contrast to other defects in SiC, such as the
isolated silicon vacancy (33), the divacancy is
stable above 1600°C (34), making it compati-
ble with device processing and high-temperature
annealing to form ohmic contacts.

Spatial photoluminescence (PL) scans of the
device showed isolated emitters correspond-
ing to single VV° (Fig. 1B), as confirmed by
second-order correlation (g®) measurements
(Fig. 1B, inset) (32). The location in depth of the
observed defects is consistent with isolation to
the i-type layer. This is to be expected because
formation energy calculations (35) indicate that
the neutral charge state is energetically favor-
able when the Fermi level is between ~1.1 and
2 eV, and this condition must be satisfied some-
where in the i-type layer (32, 36). This depth
localization provides an alternative to delta
doping (37), which is not possible with intrin-
sic defects, facilitating positioning and con-
trol in fabricated devices (fig. S1). Additionally,
owing to the diode’s highly rectifying behav-
ior at low temperature, large reverse biases are
possible with low current (Fig. 1C) (32).

Sweeping the frequency of a narrow-line
laser, we obtained photoluminescence excita-
tion (PLE) spectra of the optical fine structure
of these single defects (Fig. 1D). Using the
observed transitions for resonant readout and
preparation, we performed high-contrast Rabi
oscillations of isolated VV° in the p-i-n struc-
ture (Fig. 1E) (32). The contrast exceeded 98%,
improving on previous demonstrations through
the use of resonant spin polarization (24).
Additionally, a single-spin Hahn-echo decay
time of 1.0 + 0.1 ms was measured for spins
in the device (Fig. 1F), consistent with pre-
vious ensemble measurements (22). The long
Hahn-echo times and high-fidelity control
demonstrate that integration into the semi-
conductor structures does not degrade the
spin properties of VV°. This isolation and con-
trol of highly coherent spin qubits achieved
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in these functioning semiconductor devices
unlocks the potential for integration with a
wide range of classical electronic technologies.

Large Stark shifts in a p-i-n diode

Because the (2h) and (kk) divacancies (32) in
SiC are nominally symmetric along the c-axis
(growth axis), the geometry of the diode allows
for large electric fields that mostly conserve
the symmetry of the defect. Therefore, wide
tuning of the VV° optical structure is possible
while reducing unwanted mixing from trans-
verse or symmetry-breaking components of
the excited-state Hamiltonian (9, 24, 38). Be-
cause the i-type region can be relatively thin
(10 um here), the applied voltage is dropped
over a much smaller region than if a bulk
sample were used (10), leading to significantly
larger Stark shifts for a given applied voltage.
In principle, this region can be reduced to a
thickness that exceeds limitations from optical
access with metal planar gates (limited by the
optical spot size of ~1 um). Furthermore, it is
possible to use doped layers as in situ transpa-
rent native contacts to Stark tune and control
localized defects in suspended photonic or
phononic structures (39), enabling complex hy-
brid electrical, photonic, and phononic devices.

In our p-i-n junction device, we applied up
to 420 V in reverse bias. Our results show
Stark tuning of several hundreds of gigahertz
on different defects of the same type and on
inequivalent lattice sites, where the Stark shift
was between 0.4 and 3.5 GHz/V after a thresh-
old was passed (Fig. 2A). For example, we
observed a (hh) divacancy shifted by >850 GHz
(2.5 meV) at a reverse bias of 420 V and a (kh)
divacancy shifted by >760 GHz at a reverse
bias of 210 V (Fig. 2B). These shifts are among
the largest reported for any single-spin defect
to date and were only limited by the voltage
output of our source. We expect that, owing
to the high dielectric breakdown field of SiC,
even higher shifts of a few terahertz are pos-
sible (32). The high-field limit of these shifts
corresponds to estimated dipole moments
(d,) of 11 GHz m/MV and 4.5 GHz m/MYV for
(hh) and (kk) divacancies, respectively, consist-
ent with previous reports (10, 40). For the (kh)
basal divacancy observed, the estimated trans-
verse dipole moment is di. ~ 35 GHz m/MV.
Furthermore, because the Stark shift repre-
sents a measure of the local electric field, we
conclude that negligible field is applied to the
VV° before a certain threshold voltage where
the depletion region reaches the defect (41).
This results from nonuniform electric fields in
the diode caused by residual n-type dopants in
the intrinsic region [Fig. 2C (32)].

Overall, our system could be used as a wide-
ly frequency-tunable, spectrally narrow source
of single photons. In particular, our system
enables one of the highest Stark shift-to-
linewidth ratios (>40,000) obtained in any
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solid-state single-photon source (table S1).
These characteristics make this system ideally
suited for tuning remote defects into mutual
resonance and for frequency multiplexing of
entanglement channels (42). The tunability
range is so wide that it could even enable the
tuning of a (hh) divacancy into resonance with
a (kk) divacancy, allowing for interference and

entanglement between different species of de-
fects. This wide tunability stems from the
rectification behavior of the diode, which
allows large electric fields without driving
appreciable currents that can degrade spin
and optical properties. Furthermore, the ob-
served sensitivity of the optical structure of

single VV° defects could serve as a nanoscale
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Fig. 1. Isolation of single VV° in a commercially grown semiconductor device. (A) Schematic of the
device geometry. (B) Spatial PL scan of an example device showing isolated emitters (example circled
in red) confirmed by autocorrelation (inset) showing g(z) (0) < 0.5 (red line). Extracted emitter lifetime
is 14.7 + 0.4 ns (green arrows). Gate and microwave stripline features are drawn and color coded

as in (A). Cts, counts. (C) Top: Current-voltage (/-V) curves of the device at various temperatures;
bottom: low-temperature reverse bias behavior. C, contrast. (D) PLE spectrum of a single (kk) divacancy
at 270 V of reverse bias. (E) Optically detected Rabi oscillations of a single (kk) VV© with >98%
contrast (fit in blue) using resonant initialization and readout. a.u., arbitrary units. (F) Hahn-echo
decay of a single (kk) VV° in the diode. Rabi, Hahn, and g‘® data are taken at 270 V of reverse bias

and at ~240 Gauss at T = 5 K.
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electric field sensor, enabling field mapping
in these working devices with sensitivities of
~100 (V' /m) //Hz or better, which is compet-
itive with state-of-the-art spin- and charge-
based electrometry techniques (32, 43-46).

Reducing spectral diffusion using

charge depletion

Uncontrolled fluctuating electrical environments
are a common problem in spin systems, where
they can cause dephasing (25), as well as in

quantum emitters, where they result in spec-
tral diffusion of the optical structure and lead
to large, inhomogeneous broadening. For ex-
ample, adding and removing just a single
electron charge 100 nm away causes shifts of
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Fig. 2. Stark shifts in p-i-n diode. (A) Low-field Stark tuning of a single (kk)
defect showing a turn-on behavior for the Stark shifts and a narrowing with
voltage. This threshold is the same as that in Fig. 4A. These scans contain the
lower branch (E;, E,, and Ey) where the linewidth of E, is ~1 GHz and E; and E are
unresolved. The PLE lines show no shifting down to zero bias. (B) High-field

Reverse bias (V)

Stark shifts of multiple example defects (located at various depths and positions in
the junction) showing >100 GHz shifts. (C) Schematic electric field distribution

and depletion region width (Wy) in the diode for increasing reverse bias. Location
in the junction can determine the local field experienced by the defects in (B). The
error bars in (B) are smaller than the point size. All data were obtained at T = 5 K.
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Fig. 3. Optical linewidth narrowing by tuning the electrical environment of a
solid-state emitter. (A) Multiple PLE sweeps taken over 3.5 hours of the E, line
showing small residual spectral diffusion (fitted inhomogeneous linewidth of 31 +
0.4 MHz). The red arrow corresponds to the single scan shown with a fitted linewidth
of ~20 MHz. (B) Comparison of the average linewidth of all orbitals (blue) and
defect transverse asymmetry (red) with respect to applied reverse bias. The yellow
line is the lifetime limit. (C) Temperature dependence of the linewidth. A free power
law fit gives an exponent of 3.2 + 0.3. Constraining the fit to a T° relation, we extract a
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zero temperature linewidth of 11 + 5 MHz (yellow line). Errors on the plot represent a
95% confidence interval. (D) Model for the effect of charge depletion on spectral
diffusion in the illuminated volume (yellow). To the left of each diagram is a schematic
band diagram with the relevant transitions. CB, conduction band; VB, valence

band; GS, ground state; ES, excited state. Errors for the fits values in (A) and (C)
represent 1 SD. All data are from a single (kk) VV°. In (B), the laser power is slightly
higher than in (A), causing some broadening. For (A) and (C), the E, line is shown
at 270 V of reverse bias. Data in (A) and (B) were obtained at T = 5 K.
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~100 MHz for the optical fine structure of VV°
(fig. S2). Previous work (24) has shown that by
doing an exhaustive search through many de-
fects in a specially grown material, one can
find defects with lines as narrow as 80 MHz
(typically 100 to 200 MHz or larger); how-
ever, this is still much larger than the Fourier
lifetime limit of ~11 MHz (24). In bulk intrinsic
commercial material, the narrowest linewidths
are significantly broadened to 130 to 200 MHz
or greater (24) (fig. S3). Overall, spectral diffu-
sion has been a notoriously difficult outstand-
ing challenge for nearly all quantum emitters
in the solid state.

Here, we introduce a technique for miti-
gating spectral diffusion. We demonstrate that
by applying electric fields in our device, we
deplete the charge environment of our defect
and obtain single-scan linewidths of 20 +
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1 MHz (Fig. 3A) without the need for an ex-
haustive search. This reduction in PLE line-
width has a different voltage dependence than
the transverse asymmetry in the defect, thus
eliminating reduced mixing as a possible mech-
anism for narrowing (Fig. 3B). The temperature
dependence of the linewidth is roughly con-
sistent with a T? scaling at these low temper-
atures (47) [fitted exponent 3.2 + 0.3 and a
zero-temperature linewidth of 11 + 5 MHz
(32)]. Although the dominant temperature
scaling may change at lower temperature, this
trend hints at a possible explanation for the
remaining broadening and is consistent with a
temperature-limited linewidth. Furthermore,
the observed line is extremely stable, with a
fitted inhomogeneous broadening of 31 =
0.4 MHz averaged for >3 hours (Fig. 3A). This
stability over time, narrowness, tunability,
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Fig. 4. Electrical and optical charge control of a single VV°. (A) Voltage and power dependence of
the photoluminescence of a single (kk) VV° with 975 nm excitation (top) and with additional 188 uW of
675 nm illumination (bottom), showing a sharp threshold under reverse bias. With high 975-nm power,
the two-photon ionization process dominates and the PL signal is low. (B) By controlling the voltage in
time (blue), the emission from the single (kk) defect is switched on and off (red). (C) Top: Model of
rapid ionization and recapture at zero electric field (top). Middle: Two-photon ionization and formation

of a depletion region under reverse bias. Bottom: Charge reset under applied electric field using red light
(bottom). All data were obtained at T = 5 K. kcts, kilocounts.
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and photostability demonstrates the effec-
tiveness of engineering the charge environ-
ment with doped semiconductor structures
for creating ideal and indistinguishable quan-
tum emitters.

At zero bias, the linewidth in our samples is
much higher than in bulk material (~1 GHz;
Fig. 2A). We attribute this to a greater pres-
ence of traps and free carriers (under illumi-
nation). Thus, in these samples, the observed
narrowing corresponds to an improvement in
the linewidth by a factor of >50. We speculate
that a combination of this charge-depletion
technique with lower sample temperatures, a
lower-impurity material, and further anneal-
ing could enable measurement of consistent
transform-limited linewidths (13, 48). This use
of charge depletion for creating spectrally nar-
row optical interfaces (Fig. 3D) could be wide-
ly applicable to other experiments in SiC or to
other solid-state emitters such as quantum
dots (49, 50). Indeed, by applying the same
techniques developed here to intrinsic SiC
materials, lines as narrow as ~21 MHz have
been observed (40). Crucially, these results
demonstrate that depleting local charge envi-
ronments can transform a very noisy electric
environment into a clean one, turning mate-
rials containing unwanted impurities into ideal
hosts for quantum emitters.

Charge gating and photodynamics of
single defects

Our observation of large Stark shifts and line-
width narrowing relies on understanding and
controlling charge dynamics under electric
fields. To achieve this, we studied the stability
of the observed single defects under electrical
bias. This allowed a careful investigation of the
charge dynamics of single VV° under illumi-
nation, from which we developed an efficient
charge-reset protocol. In our experiments, we
observed that with 975 nm off-resonant light,
the PL drops substantially once the reverse
bias is increased past a threshold voltage
(Fig. 4A). This threshold varies between de-
fects, which is expected given differences in
the local electric field stemming from var-
iations in position, depth, and local charge-
trap density. We attribute the PL reduction to
photoionization to an optically “dark” charge
state (I18). We used this effect to create an
electrically gated single-photon source (51-53)
in which emission is modulated in time with
a gate voltage (Fig. 4B) (10). The threshold
voltage has a slight hysteresis (fig. S4) and
laser power dependence (Fig. 4A), suggest-
ing that trapped charges may play a role
(9, 54). The electric field dependence of the
photoionization could also be used to extend
sensitive electrometry techniques (46) to the
single-defect regime, and controlled ioniza-
tion of the spin can extend the coherence of
nuclear registers (27). The threshold for Stark
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shifts (Fig. 2A) corresponds approximately
to the same voltage where significant photo-
bleaching occurs when using off-resonant
excitation. This links the sharp photoioniza-
tion threshold in Fig. 4A to the presence of
moderate electric fields and the onset of car-
rier depletion.

A possible explanation for this voltage-
dependent PL is that at zero electric field, il-
lumination constantly photoionizes the VV°
and other nearby traps. However, the divacan-
cy rapidly captures available free carriers, re-
turning it to the neutral charge state. Under
applied field, carrier drift depletes the illumi-
nated region of charges. Thus, when a VV°
photoionization event occurs in this depleted
environment, no charges are available for fast
recapture, resulting in a long-lived dark state
(Fig. 4C).

Past studies have shown that PL is en-
hanced in ensembles by repumping the charge
with higher-energy laser colors (18, 55, 56). We
extended this work to the single-defect regime
by applying various illumination energies and
studying single-defect photodynamics at 90 V
of reverse bias (past the threshold voltage of
~75 V of reverse bias for this defect). We ob-
served under resonant illumination that PL
quickly dropped to zero and did not recover,
indicating that 1131 nm (1.09 eV) light [reso-
nant with the ZPL of a (k%) VV°] ionizes the
defect, but does not reset the charge state.
However, after applying higher-energy light
(e.g., 688 nm), the charge was returned to a
bright state even with <1 nW of applied power.
This “repump” of the defect charge state is
vital for restoring PL for ionized or charge
unstable VV° in SiC (Fig. 4A) and is essential
to observe the effects discussed in the previous
sections (Fig. 4C).

When both near-infrared (NIR) resonant
(1131 nm) and red (688 nm, 1.8 eV) light were
applied to the defect, alternating between the
bright (VV°) and dark (VV* or VV°) charge
states resulted in a blinking behavior. From
this blinking (fig. S5), we extract photoioni-
zation and repumping rates of the defect (57).
We first examined the ionization rate of a
single VV° (Fig. 5A) and observed that the
power dependence was quadratic below de-
fect saturation (exponent m = 2.05 = 0.2)
and linear at higher powers (/m = 0.99 + 0.07).
Our observed data provide evidence for a two-
photon process to VV~ (32) suggested in pre-
vious ensemble studies (I8, 56) and are less
consistent with a recently proposed three-
photon model converting to VV* (35, 55). Thus,
we conclude that the dark state caused by
NIR resonant excitation is VV'. Further study
of the spin dependence of this ionization may
lead to the demonstration of spin-to-charge
conversion in VV°,

Similarly, we studied the charge-reset kinet-
ics by varying the power of the repumping
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error. (A) and (B) were taken at 90 V of reverse
bias. (C) Repumping rate as a function of illumina-
tion wavelength at 270 V of reverse bias with a
Lorentzian fit centered around 710 nm. With wave-
lengths longer than 905 nm (and at these powers),
no PL is observed and the defect is “dark.” All
error bars represent 95% confidence intervals from
the fit of the raw data from a single (kk) VV°. All
data were obtained at T = 5 K.

laser. We found a near-linear power law with
m = 0.98 + 0.02 (Fig. 5B). This linear depen-
dence of the repumping rate can be described
by two potential models. One possibility is
that the dark charge state is directly one-
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photon ionized by repump laser. The other
possible explanation is that nearby traps are
photoionized by this color and the freed charges
are captured by the divacancy to convert back
to the bright state. By varying the color of this
reset laser, we found repumping to be most
efficient at ~710 nm (1.75 eV), suggesting a
particular trap-state energy or a possible de-
fect absorption resonance (58, 59) (Fig. 5C).
Overall, we observed negligible ionization
from the optimal red repump laser and no
observable reset rate from the resonant laser.
This results in fully deterministic optical con-
trol of the defect charge state [for discussion,
see (32)], allowing for high-fidelity charge-
state initialization for quantum-sensing and
communications protocols.

Conclusions and outlook

The electrical tuning of the environment de-
monstrated here constitutes a general method
that could be applicable to various quantum
emitters in semiconductors in which spec-
tral diffusion or charge stability is an issue
(60) or electric field fluctuations limit spin co-
herence (25, 32). Furthermore, using our p-i-n
diode as a testbed to study charge dynamics,
we have developed a technique to perform de-
terministic optical control of the charge state
of single divacancies under electric fields (61).

The techniques presented here will be vital
to achieving single-shot readout and entangle-
ment in VV° by enabling charge control and
enhancing photon indistinguishability, sug-
gesting doped semiconductor structures as
ideal quantum platforms for defects. This
work also enables high-sensitivity measure-
ment of nanoscale electric fields and charge
distributions in working devices (43) and fa-
cilitates spin-to-charge conversion (19) for
enhanced quantum-sensing and electrical read-
out protocols (20). Finally, the introduction
of VV° into classical SiC semiconductor de-
vices such as diodes, MOSFETSs (metal-oxide-
semiconductor field-effect transistors), and
APDs (avalanche photodiodes), for example,
may enable the next generation of quantum
devices.
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Divacancies in a diode

Solid-state defects hold great promise as the building blocks for quantum computers. Most research has focused
on defects in diamond, which are difficult to integrate with existing semiconductor technologies. An alternative
two-vacancy neutral defect in silicon carbide (SiC) has a long coherence time but suffers from broad optical linewidths
and charge instability. Anderson et al. fabricated these defects in a diode made out of commercially available SiC.
Reverse voltage created large electric fields within the diode, tuning the frequencies of the defect's transitions by
hundreds of gigahertz. The electric fields also caused charge depletion, leading to a dramatic narrowing of the
transitions. The technique should be readily generalizable to other quantum defects.
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