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Abstract—As the integrated circuits (IC) technology continues
to scale, resolution enhancement techniques (RETs) are manda-
tory to obtain high manufacturing quality and yield. Among
various RETSs, sub-resolution assist feature (SRAF) generation
is a key technique to improve the target pattern quality and
lithographic process window. While model-based SRAF insertion
techniques have demonstrated high accuracy, they usually suffer
from high computational cost. Therefore, more efficient tech-
niques that can achieve high accuracy while reducing runtime
are in strong demand. In this work, we leverage the recent
advancement in machine learning for image generation to tackle
the SRAF insertion problem. In particular, we propose a new
SRAF insertion framework, GAN-SRAF, which uses generative
adversarial networks (GANs) to generate SRAFs directly for any
given layout. Our proposed approach incorporates a novel layout
to image encoding using multi-channel heatmaps to preserve
the layout information and facilitate layout reconstruction. Our
experimental results demonstrate ~14.6x reduction in runtime
when compared to the previous best machine learning approach
for SRAF generation, and ~144 x reduction compared to model-
based approach, while achieving comparable quality of results.

Index Terms——DFM, Sub-Resolution Assist Feature, Gener-
ative Adversarial Learning, Domain Transfer

I. INTRODUCTION

While the integrated circuits technology node continues
to scale, the photolithography techniques are supposed to
keep up the pace and cope with the ever shrinking feature
size. In fact, low image contrast and complex target pattern
shapes make it extremely difficult for low—k1 lithography, the
mainstream technique, to achieve desired lithographic process
windows [2], [3]. Hence, resolution enhancement techniques
have been the major strategy to improve lithographic process
window.

Among these techniques, Sub-Resolution Assist Feature
(SRAF) generation is used to improve the lithographic process
window of target patterns. These assist features are not
actually printed; instead, the SRAF patterns would deliver
light to the positions of target patterns at proper phase which
can improve the robustness of target printing to lithographic
variations [4]. In practice, the process variation band is
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typically used as a measure of such robustness, where the
goal is to achieve the minimum possible band [4].

In literature, different SRAF generation approaches have
been proposed and adopted. On one hand, the rule-based
approach can achieve acceptable accuracy within short ex-
ecution time for simple designs and regular target patterns
[2], [5], [6]. However, the rule-based approach cannot handle
complex shapes as it requires significant pre-processing engi-
neering efforts. On the other hand, two trends of model-based
SRAF generation methods have been proposed and these
can be categorized based on the lithographic computations
involved. The first trend uses simulated aerial images to seed
the SRAF generation [2], [3], while the other applies inverse
lithography technology (ILT) and computes the image contour
to guide the SRAF generation [7]. Despite better lithographic
performance compared to the rule-based approach, the model-
based SRAF generation is very time-consuming and it is
difficult to achieve the same SRAFs around the same layout
configuration, i.e., not consistent [4].

Recently, machine learning has been proposed to tackle
the problem of SRAF insertion to reduce the computational
cost associated with model-based methods [4], [8]. The pro-
posed method relies on SRAF features extraction with local
sampling scheme to obtain the optimal SRAF map. The key
idea is to use a 2D grid plane where a classification model
is trained to predict the probability of existence of SRAF
in each grid based on the extracted features. Although this
approach has demonstrated significant speedup compared to
model-based approaches while achieving comparable results
in terms of process variation band, there is still significant
room for improvement as we will show in this paper.

Motivated by the recent advancement in the field of image
processing in computer vision [9]-[13], we elect in this work
to address the SRAF generation problem from a new per-
spective. In fact, a layout in its essence can be simply viewed
as an image; hence, machine learning techniques developed
for image related tasks can come in handy. Moreover, it has
been shown that using convolutional neural networks has
demonstrated superior runtime and performance compared to
local decision based approaches when dealing with visual
data. Specifically, Generative Adversarial Networks (GANs)
have been leveraged to perform a wide-range of domain
transfer tasks where image translation is the most infamous.
In other words, given related images in two different domains,
models can be trained to translate images from one domain
to another [9], [10], [14]. Examples of such applications
include, among others, image colorization and aerial to map
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and edge to photo translations [10]. In addition, GANs have
been recently adopted to tackle different problems in IC
design [15] such as enhancing the optical proximity correction
manufacturing [16], end-to-end lithography simulation [17],
mask modeling [18] and physical design [19], [20].

In this work we propose to use two GAN schemes to
address the SRAF generation task. In the first, we propose
to use Conditional Generative Adversarial Network (CGAN)
for SRAF generation by casting the problem into an image
translation task where the two images domains are: (i) original
layout and (ii) layout with SRAFs. Hence, generating an
SRAF scheme for a particular layout can be seen as trans-
lating the layout image from the first domain (i.e., original
layout) to the second domain (i.e., layout with SRAFS).
Towards this goal, a set of paired images (i.e. original layout
with no SRAF paired with the corresponding layout after
SRAF insertion) is provided for the network to learn the
desired translation.

While this approach is adequate for cases where paired
data is available, we also propose an alternative GAN scheme
that handles the case where data is available but is not
necessarily paired. In practice, the availability of adequate
training datasets is one of the major challenges facing ma-
chine learning models. Therefore, and knowing that paired
data may not be available especially at the early stages
in IC technology nodes, we propose an SRAF insertion
scheme featuring an unpaired image-to-image translation. Our
proposed model, inspired by the Cycle Generative Adversarial
architecture (CyGAN) [14] learns simultaneously a two-way
image translation using unpaired data. Unlike the CGAN
scheme where paired data is used to learn a one-way trans-
lation, CyGAN - as the name implies - uses a double cycle
scheme to learn two-way translation using unpaired data. In
practice, two parallel translation models are trained where
the objective is to reconstruct an image after undergoing two
translations: (i) from native domain to the other domain, then
(i1) back to the native domain. Such reconstruction will be
accurate for both domains when both translation tasks are
accurate. Hence, this learning scheme uses a cycle translation
to learn the mapping using unpaired images.

Both of the proposed GAN schemes require casting the lay-
out information into image format. Therefore, layout files are
mapped into images in a novel encoding scheme that captures
the layout details. This scheme incorporates a multi-channel
heatmap encoding of different layout objects into different
layers of an image [21]-[24]. Additionally, this encoding is
accompanied by a fast GPU-accelerated decoding scheme to
recover layout schemes from images generated by CGAN and
CyGAN. With our proposed encoding/decoding framework,
CGAN and CyGAN models are trained to generate layouts
with SRAF inserted using a paired and unpaired data set
respectively. Once trained, the models can take an original
layout image as an input and generate a new image with
SRAFs inserted. These generated images can be eventually
mapped back to layout files.

In this SRAF generation framework, our main contributions
are summarized as follows:

o Generative Adversarial Networks are used for the first

time for SRAF generation.

o We cast the SRAF generation problem as an image-to-
image translation task where the layout is translated from
its original domain to layout with SRAFs domain.

o« A CGAN-based SRAF generation scheme is proposed
for the scenario with paired dataset.

o Alternatively, a CyGAN-based SRAF generation scheme
is proposed for the case of unparaied dataset.

e A novel multi-channel heatmap encoding/decoding
scheme is used to map layouts to images suitable for
GAN training while preserving the layout details.

e Our proposed framework achieves ~14.6x speed-up
with comparable lithographic performance when com-
pared with state-of-art machine learning based approach
and ~144x speed-up over the model-based approach
in commercial tool Mentor/Calibre [4] while achieving
comparable results.

The remainder of this paper is organized as follows. In
Section II we review the technical background and then
present the two proposed approaches in Section III. Section
IV presents numerical results demonstrating the efficacy of
our method, and conclusions are presented in Section V.

II. PROBLEM FORMULATION

The objective of the SRAF generation framework is to
insert SRAFs on any given layout in a manner that mimics
the SRAF scheme generated from model-based techniques.
Practically, the input is a layout clip with target patterns only
as shown in Fig. la, and the expected output is a new layout
clip similar to the one shown in Fig. 1b where SRAFs are
generated to aid the printing of target patterns. In other words,
the objective is to train a GAN to translate images from the
target domain, D4, (Fig. 1a) to the SRAF domain, Dsrar,
(Fig. 1b).

In the CGAN training phase, each training sample consists
of a pair of images representing the original layout in D,
and its corresponding layout in Dgr 4. Based on the training
data, the CGAN model is trained to map images from Dr,.g¢
to Dgrar. On the other hand, in the CyGAN training phase,
each sample consists of two unpaired images in the two
domains and the CyGAN model is trained to perform two-
ways mapping; i.e., from Dr,g¢ t0 Dsrar and from Dggpar
t0o Dryg¢. Then, the trained model can be used to generate
SRAFs from layouts with target patterns. However, two
challenges should be addressed here. The first is that proper
image encoding/decoding is needed to aid the GAN training
scheme. Secondly, the generated SRAF scheme may violate
some of the manufacturing rules; hence, a post-processing
step is needed to generate a final layout with SRAFs while
abiding by the specified rules.

To evaluate our proposed SRAF generation method, we
use two metrics to assess the performance of the mask
optimization results: (i) process variation (PV) band and (ii)
edge placement error (EPE). These metrics are defined in a
way analogous to the definitions used in [4].

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2020 at 02:22:58 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2995338, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(a) (b
Bl Target Pattern WM SRAF

Fig. 1:  SRAF generation task can be cast as an image
translation problem where layout with target contacts (a) are
translated to ones with SRAF generated (b) .

III. SRAF INSERTION USING GENERATIVE
ADVERSARIAL NETWORKS

In this section we present our proposed SRAF generation
approach using generative adversarial networks. As a first
step, the data preparations process, which is a key-enabler for
the reformulation of SRAF generation as an image translation
task, is introduced. Next, we introduce the two GAN schemes
for SRAF generation: (i) CGAN scheme for paired datasets,
and (i) CyGAN scheme for unpaired datasets. Then, a fast
GPU-accelerated decoding scheme to map images back to
layout files is introduced.

A. Data Preparation using Heatmap Encoding

As shown in Fig 1, the layouts from both domains Dry.g¢
and Dgrar can be treated directly as images. However,
this direct image representation is not suitable for the SRAF
generation using GANs because the expected output cannot
be directly mapped to layout files due to two major limita-
tions. First, the trained GAN is not guaranteed to generate
‘clean’ rectangular shapes for the SRAFs. In practice, images
generated from GANSs tend to be blurry and GANs exhibit
inherent limitation in detecting sharp edges [13]. In addition,
and even under the assumption that the GAN models can
generate sharp-edged rectangles for the SRAFs, extracting
the SRAF information from the image to be mapped back to
the layout file can be prohibitively expensive. Such mapping
requires obtaining both SRAF locations and sizes from the
image generated by the model. Hence, the direct image
representation similar to that shown is Fig. 1 is ill-equipped
for SRAF generation using GANSs.

With this in mind, we propose using a special encoding
scheme, typically used in keypoint estimation [21]-[24], that
can overcome the aforementioned limitations. The proposed
scheme is based on multi-channel heatmaps which associates
each object type with one channel in the image [23], [24].
Specifically, a multi-channel image is a simple representation
where the number of channels is equal to that of the object
types in the problem. On each particular channel, the first
step is to obtain the locations of its corresponding objects in
the original image. Next, a Gaussian noise circle is centered
at the obtained locations on the channel [23], [24].

To elaborate on this, we consider the example shown in Fig.
2 where an original layout is shown in Fig. 2a and the multi-
channel heatmap representation is shown in Fig. 2b. In this
example, we limit the number of channels to 3 to visualize

(@ (b)

Fig. 2:  The multi-channel heatmaps encoding process is
demonstrated where (a) shows an original layout representa-
tion and (b) shows the encoded representation.

the encoded representation through a red-green-blue (RGB)
image. These three types are : (i) target patterns (in red), (ii)
horizontal SRAFs (in green) and (ii) vertical SRAFs (in blue).
Similar encoding can be done for images in Dr,4; where only
one non-empty channel contains the target patterns.

The representation shown in Fig. 2 has two main ad-
vantages. First, learning sharp edges, which is a hard task
in GAN:gs, is not needed. Instead, training-friendly Guassian
objects are used to encode the objects in the original image.
Secondly, and most importantly, with this representation the
images generated by the GAN models can be easily mapped
back to layout files. In practice, since each channel represents
a well-defined type of SRAFs, it suffices to detect the location
of excitations in the channel to get the locations of SRAFs
of this particular type in the layout file.

Therefore, prior to the model training step, images in
the training set are all encoded into multi-channel heatmap
representation. In such mapping, the number of channels is
equal to M + 1 where M is the number of SRAF types and
one additional channel is used to encode the target patterns.
Here, an SRAF type is simply defined as containing SRAFs
with specific dimensions (e.g. [0.04,0.09]).

B. CGAN Model

In their essence, GANs were proposed as generative models
that learn a mapping from a random noise vector z to output
image y, G : z — y [12]. Later, different versions of GANSs,
tailored towards specific domains and applications, were
proposed. Among those are the CGANs which, in contrast
with original GANS, learn a mapping from an observed image
x and random noise vector z, to y, G : {z,z} — y. As in
the case of most GAN structure, the architecture of a CGAN
is composed of two main components: the generator and the
discriminator. The generator G is trained to produce images
in Dsrar, based on an input image in D74, that cannot be
distinguished from “real” images by an adversarially trained
discriminator, D, which is trained to do as well as possible at
detecting the generator “fakes”. The overview of the training
procedure is described in Fig. 3 [9], [10]. In this work we
adopt the CGAN structure proposed in [10] for the image
translation task.

Mathematically, the loss function used for training the
CGAN can be given as [9], [10]:
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Fig. 3: An overview of the CGAN functionality is shown.

Lccan(G, D) = E, y[log D(x,y)]
+Em,z[log (1 —D(CU,G(CU,Z)))] (D
+ An1Es 2y lly — G(w, 2)|[1]-

In (1), the first two terms represent the traditional GAN
loss function where G tries to minimize the objective against
an adversarial D that tries to maximize it [9], [10], [12]. The
third term in the equation affects only the generator whose
objective is, not only to fool the discriminator, but also to
generate images close to the ground truth. Here, L; —norm is
used because it encourages less blurring when compared to
Lo—norm [10].

Hence, the optimal Generator can be obtained by solving
for the following objective:

G* = arg mén mia)x Leaan(G, D). )

In practice, experiments shown in [10], [25] have demon-
strated that the noise z is typically ignored by the generator.
Hence, noise is instead introduced through dropout on several
layers of the generator in both the training and inference
stages.

In the next subsections, the details of both the generator and
discriminator used in image to image translation CGAN are
shown in addition to the training and inference process. These
implementations are adapted from the deep convolutional
generative adversarial networks framework proposed in [26].

1) Generator: The conventional generator in a GAN is ba-
sically an encoder-decoder scheme where the input is passed
through a series of layers that progressively downsample the
input (i.e, encoding), until a bottleneck layer, at which point
the process is reversed (i.e, decoding) [9], [10], [12], [26].
This process is shown in Fig. 2a where the gray (white) layers
form the encoder (decoder) respectively.

For image translation tasks using CGAN, a significant
amount of information is shared between the input and the
output, and it would be desirable to shuttle this information
directly across the net without passing through the bottleneck
layer. Towards this goal, skip connections are added following
the general shape of a “U-Net” [10], [27]. As shown in Fig.
2a, skip connections are added between each layer ¢ and layer

Layer D.O utp l‘l.t Channels
imension Gutput
Input 256x256 3 Layer Di . Channels
imension
Convl 128x128 64
Input 256x256 6
Conv2 64x64 128
Convl 128x128 64
Conv3 32x32 256
Conv2 64x64 128
Conv4 16x16 512
Conv3 32x32 256
Conv5 8x8 512
Conv4 16x16 512
Conv6 4x4 512 FC 1 |
Conv7 2x2 512
Convd | Ixl 512 TABLE II: The details of
TABLE I: The details of the | the discriminator network
encoder network in the gener- | are presented.
ator are presented.

Input Output

Input Output

(b)

Fig. 4: Two generator network schemes are shown: (a) shows
the conventional approach while (b) shows the Unet scheme
with skips [10], [27]

L — i, by simply concatenating all channels at layer ¢ with
those at layer L — i, where L is the total number of layers.

Table I lists the characteristics of the layers in the encoder
[10]. In all convolutions layers (Conv1-8), (5 x 5) filters are
used with stride 2, and leaky relu is used as an activation
function [9], [10], [26]. On the other hand, the decoder is
simply a mirrored image of the encoder with deconvolutional
layers replacing the convolutional layers. Besides, the down-
sampling process of the encoder is demonstrated in the net-
work architecture in Fig. 5 where each block shows the tensor
properties after undergoing convolution and activation. The
notation ch @ d X d corresponds to tensor with ch channels
each with dimensions [d, d]. Moreover, the tuple (¢, s) above
each arrow shows the transition operation corresponding to a
convolutional operation with filter (¢ x ¢) and a stride s. On
the other hand, the decoder has a mirrored architecture with
convolutions replaced by deconvolution at each layer.

2) Discriminator: Practically, the discriminator is a convo-
lutional neural network whose objective is to classify “fake”
and “real” images. Hence, its structure differs from that of
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Fig. 5: The network architecture for the encoder of the CGAN model is shown. Each block, denoted with ch @ d x d
represents a tensor with ch channels with dimensions [d, d]. Arrows represent the convolution-activation operation with (c, )

denoting the size of the convolutional filter and the stride.

the generator. Table II summarizes the different layers of
the discriminator which constitutes of 4 convolutional layers
(Conv1-4) and one fully connected layer (FC) whose output is
the binary classification results [10]. Similar to the generator,
all convolutional filters are of size (5 x 5) with stride 2.

3) CGAN Training and Inference: Training a CGAN
model follows the typical procedure used for training GAN
with mini-batch Stochastic Gradient Descent (SGD) and
Adam solver [12], [28]. The training alternates between one
gradient descent step on the discriminator, and then one step
on the generator. During inference, the generator net is used
in the same manner as during the training phase. Indeed, the
dropout steps introduced in the layers of the decoder are also
used during the inference time. Moreover, batch normalization
is applied using the statistics of the test batch where a batch
size of 4 is used for the SRAF generation task.

C. CYGAN Model

In some scenarios, and especially at the early stages of
new technologies, no enough paired samples are available to
train a CGAN model. Hence, we propose using the CyGAN
approach that does not require paired samples for the training
process. Unlike the CGAN model that learns a one-way
translation task, the CyGAN model learns a two-way mapping
between the two domains [14]. As illustrated in Fig. 6, our
model includes two mappings G : y — z and Gy : v — y.
In addition, we introduce two adversarial discriminators Dis,,
and Dis, , where Dis, aims to distinguish between images
in {«} and translated images G, (D,); in the same way, Dis,,
aims to discriminate between {y} and Gy (D,). This scheme,
shown in Fig. 6, can be viewed as training two auto-encoders
[14], [29]: we learn one auto-encoder G, oG, : x — x jointly
with another G, o G, : y — y. However, these auto-encoders
each have special internal structures: they map an image to
itself via an intermediate representation that is a translation of
the image into another domain [14]. In the training process,
the objective contains two types of terms: adversarial losses
for matching the distribution of generated images to the
data distribution in the target domain; and cycle consistency
losses to prevent the learned mappings G, and G, from

contradicting each other [14]. In Fig. 6, the two translation
cycles are highlighted in two different colors: the green arrows
represent the path Dsrar — Drrgt — Dsrar, and the red
arrows represent the other path Dr,g¢ — Dsrar — Drrge.

Mathematically, the loss adversarial for a single mapping
function in CyGAN is similar to that for the CGAN and can
be given as [14]:

Lcan(Gy, Disy) = Ey[log Dis,(y)]
+ E,[log (1 — Disy(Gy(z)))]

A similar loss function is considered for the mapping
function x — = with G, and Dis, [14].

In theory, such an adversarial loss helps in learning the
mappings G, and G, that produce outputs according to the
distributions of x and y respectively. However, adversarial
losses alone cannot guarantee that the learned function can
map an individual input z; to a desired output y;. To address
this, the learned mapping functions should be cycle-consistent
as shown in Fig. 6. This means that for each image x from,
the image translation cycle should be able to bring x back
to the original image, i.e., x — Gy(z) = G.(Gy(z)) = .
Similarly, for each image y , G and G, should also satisfy
backward cycle consistency: y — G, (y) = Gy (G2 (y)) =~ y.
Mathematically, this can be expressed as [14]:

3)

Leye(Gy, Ga) = B[z — Go(Gy (@) 1]
+Ey[lly = Gy(Gaw))lla]

Ultimately, the two loss terms in eq. (3) and (4) are
combined to train the CyGAN model. In the next subsections,
the details of both the generator and discriminator used in
image to image translation CyGAN are shown [14].

1) Generator: The core architecture for the CyGAN gener-
ator is similar to that of a CGAN in the sense that it comprises
an encoder-decoder scheme. Fig. 7 shows the details of the
generator architecture where notation follows that used in 5.
Beside the encoder and decoder, a set of 9 transformer blocks
are used at the core of the domain transfer blocks [14], [30].
These 9 blocks are Resnet blocks where a residue of input
is added to the output in each of them [31]. This is done

“4)
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Fig. 6: An overview of the CGAN functionality is shown.
Output

Layer Dimension Channels

Input 256x256 6

Convl 128x128 64

Conv2 64x64 128

Conv3 32x32 256

Conv4 16x16 512

Conv5 16x16 1

TABLE III: The details of the discriminator network for the

CyGAN model are presented.

to ensure that the properties of input of previous layers are
available for later layers as well, so that the their output do not
deviate much from original input, otherwise the characteristics
of original images will not be retained in the output and
results will be very abrupt [14]. Since the primary aim of
the task is to retain the native characteristic of original input
like the size and location of the objects, residual networks are
a great fit for these kind of transformations [14].

2) Discriminator: The discriminartor in the CyGAN
model has the same task as that in the CGAN; its objective
is to classify “fake” and “real” images. In this model, a
70 x 70 PatchGAN to classify whether 70 x 70 images
patches are “real” or “fake” [32]. Such a patch-level dis-
criminator architecture has fewer parameters than a full-image
discriminator and can work on arbitrarily-sized images in a
fully convolutional fashion [32]. Table III summarizes the
different layers of the discriminator. which constitutes of 5
convolutional layers (Convl-4) whose output is a 16 x 16
tensor [14]. The final decision made by the discriminator
is the average of all elements in the output tensor. All
convolutional filters are of size (4 x 4) with stride 2, except
for the last layer which has a stride of 1.

3) CyGAN Training and Inference: The training process
for the CyGAN is similar to that of the CGAN model
summarized in Section III-B3.

D. Results Decoding: Heatmap to Layout

The output of the GAN for SRAF generation is a layout
image in a multi-channel heatmap representation as in the
example of Fig. 2b. Hence, a decoding step is required to
extract the SRAF information from the encoded image. Here,
it is important to note that the choice of the encoding scheme

was made with this SRAF extraction task in mind. The
objective of this step is to extract both the types (i.e, sizes)
and locations of the SRAF to be generated on the layout. As
described in Section III-A, the SRAF scheme is encoded such
that each channel of the image contains one type of SRAFs.
Hence, for each channel, it suffices to get the locations of
excitations on the heatmap to get locations of the SRAFs of
a particular type. Therefore, the task reduces to detecting the
excitations on each channel.

Towards the goal of parsing the heatmap, we start from
conventional methods used in parsing heatmaps in the field
of keypoint estimation [21], then tailor these methods to the
SRAF generation task at hand. Knowing that the encoding
scheme uses a Gaussian circle centered at each keypoint
location, it is expected that the exact SRAF location possess
the highest magnitude compared to its neighbors. Therefore,
on each channel, a fixed size window is swept over all non-
zero pixels on the map where the value of the center pixel is
compared to that of all other pixels in the window. The center
pixel is considered an SRAF location only if it possess the
highest magnitude among all pixels in the window. This step
constitutes the core of the decoding procedure. In addition,
two filtering stages are used to reduce the effect of noise and
false alarms.

In the first step, and before performing the window sweep-
ing operation, the image generated from the GAN is passed
through a filtering stage with a fixed threshold that sets all
pixels with values below the threshold to zero. This step helps
reduce the effect of noise present in the generated image.
On the other hand, a checking step accompanies the core
window screening step mentioned above to discard isolated
pixels. In other words, if a single pixel in a window has a
non-zero value, it is more likely a noise pixel than a legit
SRAF location. This is mainly because SRAF locations are
expected to be encoded through a Gaussian circle, not a single
pixel excitation. When the center pixel in a window possess
the highest value compared to other pixels, the number of its
immediate non-zero neighbors is examined. If a majority of
the neighboring pixels are non-zeros, the pixel is considered
a legitimate SRAF; otherwise, the pixel is considered an
isolated pixel and hence a false alarm. As an illustration,
a synthetic example is shown in Figure 8. Figure 8a shows
a synthetic heatmap example similar to those produced by
the GAN models. In the figure, the scale goes from white to
red in an increasing order. Figure 8b shows the results of the
thresholding step. The search for excitations in the map results
in two candidate locations as shown in Figure 8c; however,
only one of the two locations is a valid SRAF location as
shown in Figure 8d.

The decoding scheme is summarized in Algorithm 1. The
input is a multi-channel heatmap encoded image I generated
from the GAN model with the channel carrying the target
pattern dropped. Algorithm 1 also requires the size of the
scanning window as an input in addition to the two threshold
values €; and €5 that are used for the filtering stage and the
neighborhood check respectively. As a first step, thresholding
is done using €; (line 2). Next, for each channel in the image,
all pixels are scanned, and at each location three conditions
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Fig. 7: The network architecture for the generator of the CyGAN model is shown. Each block,
denoted with ch @ d x d represents a tensor with ch channels with dimensions [d, d]. Arrows
represent the convolution-activation operation with (¢, s) denoting the size of the convolutional

filter and the stride.
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Fig. 8: A synthetic example showing the heatmap decoding
process is shown. (a) shows an original heatmap, (b) shows
the results after applying thresholding and representation. The
map screening results in two tentative SRAF positions as
shown in (c). Finally, by checking the neighborhood only one
of the locations is considered a valid SRAF location, while
the other is discarded.

are checked: (i) if the value of the pixel is nonzero, (ii) if
the number of its non-zero (nnz) neighbors is greater than
€o (line 6) and if its value is the maximum in the window
(line 7). If all three conditions are satisfied at a particular
(4,4, m) location, the coordinates (7, j) are added to 2,,,. The
Algorithm returns the sets {{2,, : m = 1,..., M}, where each
set {2, contains the locations of SRAFs of type m. These
sets contain all necessary information to generate a layout
clip similar to the one in Fig. 2a. In practice, Algorithm 1
can be significantly accelerated with massive parallelization,
since each pixel can be checked independently. Therefore,
we develop a custom CUDA accelerator for this process and
integrate it to GAN-SRAF.

Algorithm 1 GAN Results Decoding

Require: An image I with dimensions (N x N x M), a
widow size w, €1 and €y
1: Initialize {Q,, + 0:m=1,2,..., M}
2: Set all pixels less than ¢; in I to 0
3: form=1,2,...,M do
4 for i =w,w+1,...,N —w do
5: for j=w,w+1,...,N —w do
6
7
8
9

if Ii,ij > (0 and HIIZ(I7;¥17]'¥1J,L) > ¢ then
if Ii,j,m = max Iin,jIw,m. then
Qi < Qi U (4, 5)

: end if
10: end if
11: end for
12: end for
13: end for

14: return {Q,, :m=1,2,...,M}.

E. Post Processing

The decoding procedure in Algorithm 1 generates a prop-
erly formatted layout clip. However, this clip is not guaranteed
to follow all SRAF manufacturing rules such as minimum
spacing [4]. Hence, a final legalization step is employed to
ensure that all design rules are satisfied. In this work, we
adopt the same greedy simplification scheme proposed in [4]
to accommodate the mask manufacturing rules. The key idea
is to shrink rectangular SRAF shapes to abide by the rules.

This post processing step is applied to the layout obtained
from Algorithm 1 to arrive at the final rules-abiding layout.
The step is applied to both SRAF insertion schemes using
CGAN and CyGAN.

IV. EXPERIMENTAL RESULTS

In this section, we show the experimental results that
demonstrate the efficacy of our proposed SRAF generation
approach using generative adversarial learning. First, data
preparation using heatmap encoding along with model train-
ing are presented. Then, a comparison with state-of-the-art
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Fig. 9:  The distribution of SRAF sizes in the dataset is

shown.

approaches is shown which demonstrates the superior perfor-
mance of out proposed GAN-based approach. The proposed
framework for SRAF generation is implemented in Python
with the TensorFlow library [33] and validated on a Linux
server with 3.3GHz Intel i9 CPU and Nvidia TITAN Xp GPU.

A. Training Data Description and Models Training

To train both the CGAN and CyGAN models, a training
dataset containing 1620 layout clips is obtained from a setup
that corresponds to memory design and is used for contact
generation. In practice, this setup matches closely intel’s
14nm process (for P1272-CPU) with minimum spacing and
minimum width for contacts set to 70nm (pitch=140nm). The
area of the layouts ranges between 0.5 and 10 wm?, and the
number of contacts per layout is between 1 and 25. From
each clip, two 256 x 256 images are created using the multi-
channel heatmap encoding presented in Section III-A. The
first image is in D7, where only target patterns are present,
while the second is in Dg where both target patterns and
SRAFs are present. When mapping the layouts to images,
all layout clips in the dataset, irrespective of their area, are
mapped using the same scale. In other words, the largest clip
is scaled to a 256 x 256 image using a scaling factor which is
used universally for all other clips. With such scaling, smaller
clips will occupy a portion of the 256 x 256 image. This is
done to ensure that contacts and SRAFs are seen by the model
at a uniform scale.

The SRAFs in the layout clips are generated using model-
based SRAF generation in Mentor-Calibre with the same
setup as [4] and are considered the golden solution when
training the GAN models. For the CGAN model, the images
are used in pairs while they are randomly used without pairing
for the CyGAN setup.

One critical factor in the encoding process is the number
of SRAF types to consider since this will decide upon the
total number of channels in the encoded images. Here, an
SRAF type is defined by the SRAF polygon shape as a
tuple of two dimensions. In other words, each unique SRAF
shape can be regarded as one type. The encoding scheme in
Section III-A depicts that each SRAF type is encoded on one
channel of the image; hence, there exists a trade-off between
the number of SRAF types to consider and the image size.
In our experiments, it was clear that a few SRAF shapes
have significantly higher frequency than the remaining ones
as shown in Fig. 9 which presents the distribution of SRAF
shapes in the training dataset.

Parameter Lez:;zng Bapanm | # of epochs | Batch size | Arj

value 0.0002 0.5 100 4 100

TABLE IV: A summary of GAN training parameters is
shown.

In fact, SRAFs with sizes (0.04,0.09), (0.09,0.04), and
(0.04,0.04) are evidently dominant. Therefore, assigning a
separate channel to encode each of the total 101 unique shapes
will be too expensive and of small return. Hence, it makes
more sense to map all shapes to a small set of categories based
on the most dominant ones. By examining the distribution in
Fig. 9, three major categories can be intuitively obtained based
on the three dominant shapes.

However, keeping in mind that the target contact will
occupy one channel in the image, we desire to restrict the
SRAF types to two for the evident reason that a 3-channel
image can be easily visualized. In fact, we observe that the
(0.04,0.04) SRAF shapes were originally either (0.04,0.09)
or (0.09,0.04); however, due to the legalization step in the
post processing phase, these original objects were pruned to
the size of (0.04,0.04) to satisfy mask constraints. Moreover,
we observe that even with only (0.04,0.09) and (0.09, 0.04)
SRAF shapes, the final SRAF solutions after post-processing
could still contain SRAFs of size (0.04,0.04) to satisfy
the mask constraints. Hence, we choose to map SRAFs in
the layout clips to two types (shapes) only: (i) (0.09,0.04)
denoted as horizontal and (ii) (0.04, 0.09) denoted as vertical.
All other shapes are mapped to one of these values based on
their similarity. For the square patterns, they are mapped to
one of the two categories randomly. It is important to note
that the proposed encoding scheme can be extended to include
more SRAF types at the cost of additional channels in the
input image.

In total, three channels are used to encode each clip
in the given dataset where one channel is used to encode
target patterns and the other two represent the two types of
SRAFs. However, note that the proposed approach is general,
and the number of channels to be used can be set by the
user depending on the data. The GAN models introduced in
Section III are trained using the prepared dataset. The details
of the training setup for both GAN models are summarized
in Table IV.

B. Testing Data Description

The testing data set contains 404 layout clips from which
the input layout images are obtained using the multi-channel
heatmap encoding presented in Section III-A. These layouts
are generated using the same setup as that for the training
dataset presented in Section IV-A. The histograms in Figs. 10
and 11 show the distribution of the layout area (in um?) and
the contacts count per layout for the 404 layouts used in the
testing dataset.

C. SRAF Generation

To demonstrate the efficacy of our proposed approach, we
compare the layouts generated from our CGAN and CyGAN
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Fig. 11: The distribution of contact count per layout in the
testing dataset.

with (i) those obtained from the local sampling scheme
approach presented in [4] where Support Vector Machine is
used as the classification model (denoted LS_SVM) and (ii)
those obtained from model-based SRAF generation (denoted
MB). The performance of the four different methods, under
the same setup, can be visualized in Fig. 12 which shows
the result for SRAF generation using MB,LS_SVM, CGAN
and CyGAN for two layout clips in the testing dataset. For
each clip, the first column shows the layout with no SRAF
(denoted Target) and the results for SRAF generation using
MB approach. The other three columns show the results for
LS_SVM, CGAN, and CyGAN respectively where the first
row shows the result before the legalization step described in
III-E; i.e., direct output of the models. The SRAF schemes
after legalization are shown in the second row.

By examining the results in Fig. 12, and recalling that
CGAN, CyGAN and LS_SVM are trained against the model-
based SRAF results as the golden solution, one can easily
conclude that the generated SRAFs from CGAN and CyGAN
mimic the MB results much better than the SRAFs from
LS_SVM even before legalization. Moreover, comparing the
legalized SRAFs obtained from the GAN models and the MB
results shows that, although the results do not match exactly,
both CGAN and CyGAN have captured the systematic way of
generating the SRAFs in a model-based approach. In addition,
one can notice a relatively small difference between the
predicted SRAFs and final SRAFs for the case of CGAN and
CyGAN when compared to those of LV_SVM. This is due
to the fact that the GAN generated SRAF schemes are very
close to the legal layout; hence, minimal changes are needed
in the post processing stage. On the other hand, LS_SVM
generates a clip of clustered SRAFs which requires intensive
post-processing before obtaining a legal layout.

D. Lithography Compliance Check

To validate the lithography compliance of our proposed
approach, we integrate the SRAF generation with a complete

No SRAF MB LS_SVM | CGAN | CyGAN
(*O}an?ilg) 3.354 2.845 3.009 2.916 2.773
PV band ratio 1 0.848 0.897 0.869 0.827
EPE (nm) 3.9287 0.5270 0.5067 0.5410 0.5721
EPE ratio 1 0.134 0.129 0.138 0.146
Runtime (sec) - 6910 700 48 45

TABLE V: The comparison of evaluation metrics and run
time across different SRAF generation schemes is shown.

mask optimization flow using Mentor Calibre. The four differ-
ent generation schemes are compared in terms of PV band and
EPE. For each contact, the PV band value is measured, and
the EPE value at the center of the edges at nominal conditions
is considered. Table V summarizes the mean absolute values
of the two metrics. The table also includes the PV band and
EPE evaluations with no SRAFs to better demonstrate the
performance gain achieved through SRAF. In practice, the
most important metric of evaluation is the PV band (smaller
is better) [4], and as demonstrated by the results, both CGAN
and CyGAN can achieve better PV band when compared to
LS_SVM [4] which demonstrates a superior performance in
terms of SRAF insertion quality. Moreover, the table shows
that the CyGAN scheme can achieve a PV band value which
is even better than the MB approach. This is in fact consistent
with our observation in Section IV-C where SRAF schemes
generated from the GAN models can better mimic the MB
generated schemes. On the other hand, despite the fact that
LS_SVM can achieve better results in terms of EPE, EPE
can be further improved with better OPC [34]; hence, it is
not the best metric used to judge upon the quality of SRAF
generation [4]. In general, the four SRAF generation schemes
-MB, LS_SVM, CGAN and CyGAN- achieve comparable
results in terms of lithography evaluation metrics with CGAN
demonstrating superior results compared to LS_SVM, and
CyGAN achieving better PV results compared to MB . This
can be better seen when examining the histograms in Figs.
13 and 14 showing the distribution of EPE and PV band
respectively across all clips in the testing dataset. The figures
clearly show that the GAN performance is comparable to that
of LS_SVM and MB, and at the same time, there exists a
significant difference in the metrics between the case with no
SRAF and the those with SRAF generated.

E. Runtime

Most importantly, considering the overall runtime for gen-
erating SRAFs (including post processing time) for all clips in
Table V, GAN models can achieve ~14.6x runtime reduction
when compared to LS_SVM while achieving better PV band,
and ~144x when compared to model based approach while
achieving comparable results when compared to the model
based approach and the state-of-the-art machine learning
based approach in [4].

F. CGAN vs CyGAN

In this section, we present an analysis of the two proposed
models, CGAN and CyGAN, in terms of performance, run-
time and robustness.
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Fig. 12: The results of SRAF generation using the four approaches for two sample clips in the test dataset is shown. For each
clip, the first column contains the target layout and the layout with SRAF inserted using the MB approach. For the other three
columns, the first row shows the direct results from LS_SVM, CGAN, and CyGAN. The second row contains the legalized

layouts for these three approaches.
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Fig. 13: The comparison of EPE distribution across different
SRAF generation schemes is shown.

0 2

1) Performance: By examining the normalized results of
PV band and EPE in Table V, one can clearly notice that the
four different SRAF insertion approaches achieve comparable
results when compared to the case with no SRAF. However,
results also show better results for CyGAN in terms of PV
band.

Based on the model description in Section III-C, it is
clear that the CyGAN model is a more complex one with
multiple residual blocks at the bottleneck layer which give
more learning capacity for the model when compared to the

s VB B CyGAN B NO SRAF
CGAN B LS SVM
3000 1
2000 1
1000 1
. . . ||
0.0024 0.0026 0.0028 0.0030 0.0032 0.0034 0.0036
Fig. 14:  The comparison of PV band distribution across

different SRAF generation schemes is shown.

vector latent space representation in CGAN. In fact, image
translation models targeting high definition images, such as
pix2pixHD [35], have adopted such residual block scheme
due to its better performance in capturing spatial information.
Besides, the cycle consistency loss can also be viewed as
a form of regularization. By enforcing cycle consistency,
CycleGAN framework prevents generators from excessive
hallucinations and mode collapse, which typically cause loss
of information and thus increase in cycle consistency loss
[36]. Hence, these facts contribute to better generality of
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CyGAN and the superior performance demonstrated in Table
V.

On the other hand, both Table V and the histogram shown
in Fig. 13 indicate that, when taking the no SRAF case
as a reference, the four SRAF insertion approaches achieve
comparable EPE results. Here again, LS_SVM shows a slight
advantage in terms of EPE. However, it is important to note
that EPE is not the best metric used to judge upon the
quality of SRAF generation. While it is still an important
issue to address, one can rely on other techniques to improve
EPE after SRAF insertion such as OPC. This can be also
accelerated with machine learning based techniques such as
GAN-OPC [16].

2) Runtime: The runtime values reported in Table V show
a slight advantage for CyGAN over CGAN. It is important to
note here that this runtime includes both the model inference
time and post-processing time including the decoding process
described in Section III-D and writing out GDSII files. In
practice, the inference time for both models does not exceed
30% of the overall time reported in Table V with 10 and 12.5
secs for CGAN and CyGAN, respectively. This difference can
be attributed to the difference in model complexities where
CyGAN has a more complicated structure.

Despite the slight advantage of CGAN in terms of inference
time, its overall runtime, which is still governed by the post-
processing steps, is higher than that of CyGAN. This is
mainly due to the fact that, unlike the inference time, the
post-processing time is data dependent. In other words, the
number of SRAFs generated by the model affects the process
of mapping to GDSII layout file. For the testing dataset at
hand, CGAN generated 7% more SRAF objects than CyGAN
which resulted in slightly longer post-processing time, and
hence overall time.

However, when comparing to both baseline approaches
LS_SVM and MB, the runtime values of both CGAN and
CyGAN are in the same order and achieve similar speedup
with 14 — 15x and 144 — 150x comparing to LS_SVM and
MB, respectively.

3) Robustness: In general, CGAN is regarded as a more
stable model, from a training perspective, due to its more strict
supervision when compared to the cycle consistency loss in
CyGAN which can result in issues related to training con-
vergence and generalization such as information hiding [37].
But such issues were not encountered in our experiments.

In practice, the path from Dg to Dp is the one prone
to information hiding. However, generated images in Dy
throughout our experiments had excitations on the red channel
only, with some occasional random noise on other channels
at the edges of the red excitations. This is consistent with
the encoding scheme, and it reflects the stability of learning
for both paths in the cycle. Moreover, any information hiding
can be detected when testing the SRAF insertion model. In
the test mode, only one path of the cycle is used from Dy
to Dg where the input images in Dr are golden images
and not generated by the model; hence, they cannot carry
any hidden information. Therefore, if the desired path was
relying on hidden information embedded in the generated D
images during the cycle training, it should fail when such

information is not present during testing. However, as shown
by our experimental results above, the model was generalizing
well to the testing data where the cycle is not complete.

On the other hand, the concern of non-unique mapping
between input and output is always present in supervised
learning schemes and can be an issue for CGAN training. This
can happen when the same sample in D7 has several possible
MB results in Dg which are present in the training data. In
our experiments, the training data was randomly generated
with multiple levels of random variations (e.g., the size of
layout, number of contacts, contact grid locations, random
shift from the grid for each contact, etc.) which make the
probability of having the exact same design repeated very low.
In an ideal case, the mapping should be 1-to-1 in the training
dataset. In our setup, and while no pre-screening was done,
the probability of having exactly identical masks is very low
such that it does not jeopardize the training process. The main
concern here is related to the convergence of the model. When
non-unique mappings exist, their frequency plays a major
role in assessing their impact. In the low frequency case, the
model tends to adopt the mapping that is best aligned with
the other samples in the training data while ignoring the other
redundant mapping since this would result in minimizing the
training loss function. However, as the frequency of such case
increases, the model might face a convergence issue since the
mini-batch gradient descent method can result in oscillation
between the different mappings if they are of equal influence.
Therefore, in general, it is important to account for this factor
when preparing the training dataset, since the uniqueness of
mapping is always desired to avoid convergence issues.

V. CONCLUSION

In this paper, a novel SRAF generation framework, GAN-
SRAF, is presented based on generative adversarial neural
networks. The proposed approach casts the SRAF generation
problem into an image to image translation task where GAN
has demonstrated impressive capabilities. Two GAN schemes,
namely CGAN and CyGAN, were presented to tackle SRAF
insertion with paired and unpaired data respectively. We
propose an effective encoding scheme to represent the layout
information using a multi-channel heatmaps and a GPU-
accelerated decoding scheme for extraction of SRAF solu-
tions. The experimental results demonstrate that GAN-SRAF
achieves ~14.6x reduction in computational cost compared
to state-of-art machine learning SRAF generation approaches,
and ~144x when compared to model-based approach, while
achieving comparable quality.
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