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Abstract—Lithography simulation is one of the key steps in
physical verification, enabled by the substantial optical and resist
models. A resist model bridges the aerial image simulation
to printed patterns. While the effectiveness of learning-based
solutions for resist modeling has been demonstrated, they are
considerably data-demanding. Meanwhile, a set of manufactured
data for a specific lithography configuration is only valid for the
training of one single model, indicating low data efficiency. Due
to the complexity of the manufacturing process, obtaining enough
data for acceptable accuracy becomes very expensive in terms
of both time and cost, especially during the evolution of technol-
ogy generations when the design space is intensively explored.
In this paper, we propose a new resist modeling framework
for contact layers, utilizing existing data from old technology
nodes and active selection of data in a target technology node, to
reduce the amount of data required from the target lithography
configuration. Our framework based on transfer learning and
active learning techniques is effective within a competitive range
of accuracy, i.e., 3x-10x reduction on the amount of training
data with comparable accuracy to the state-of-the-art learning
approach.

Index Terms—Active learning, convolutional neural networks
(CNNgs), lithography modeling, machine learning, residual neural
networks (ResNet), transfer learning.

I. INTRODUCTION

UE TO the continuous semiconductor scaling from

10-nm technology node (N10) to 7-nm node (N7) [1],
[2], the prediction of printed pattern sizes is becoming increas-
ingly difficult and complicated due to the complexity of man-
ufacturing process and variations. However, complex designs
demand accurate simulations to guarantee functionality and
yield. Resist modeling, as a key component in lithography
simulation, is critical to bridge the aerial image simulation
to manufactured wafer data. Rigorous simulations that per-
form physics-level modeling suffer from large computational
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overhead, which are not suitable when used extensively. Thus,
compact resist models are widely used in practice.

Fig. 1(a) shows the process of lithography simulations
where the aerial image is computed from the input mask pat-
terns and the optical model, and the output pattern is computed
from the aerial image and the resist model. As the aerial
image contains the light intensity map, the resist model needs
to determine the slicing thresholds for the output patterns as
shown in Fig. 1(b). With the thresholds, the critical dimensions
(CDs) of printed patterns can be computed, which need to
match CDs measured from manufactured patterns. In practice,
various factors may impact a resist model such as the physi-
cal properties of photoresist, design rules of patterns, process
variations. CD usually refers to the smallest dimension on
a lithography level that must be accurately controlled when
fabricating a device. Here, CDs refer to the sizes of printed
patterns.

Accurate lithography simulation like rigorous physics-based
simulation is notorious for its long computational time,
while simulation with compact models suffers from accu-
racy issues [3], [4]. On the other hand, machine learning
techniques are able to construct accurate models and then
make efficient predictions. These approaches first take train-
ing data to calibrate a model and then use this model
to make predictions on testing data for validation. The
effectiveness of learning-based solutions has been studied
in various lithography related areas including aerial image
simulation [5], hotspot detection [6]-[16], optical proxim-
ity correction (OPC) [17]-[20], subresolution assist features
(SRAF) [21], [22], resist modeling [3], [4], etc. In resist
modeling, a convolutional neural network (CNN) that predicts
slicing thresholds in aerial images is proposed [4]. The neu-
ral network consists of three convolution layers and two fully
connected layers. Since the slicing threshold is a continuous
value, learning a resist model is a regression task rather than
a classification task. Around 70% improvement in accuracy
is reported compared with calibrated compact models from
Mentor Calibre [23]. Shim er al. [3] proposed an artificial
neural network with five hidden layers to predict the height
of resist after exposure. Significant speedup is reported with
high accuracy compared with a rigorous simulation.

Although the learning-based approaches are able to achieve
high accuracy, they are generally data-demanding in model
training. In other words, big data is assumed to guarantee
accuracy and generality. Furthermore, one data sample can
only be used to train the corresponding model under the
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Fig. 1. (a) Process of lithography simulation with optical and resist models.
(b) Thresholds for aerial image determine simulated CD, which should match
manufactured CD.

same lithography configuration, indicating a low data effi-
ciency. Here data efficiency evaluates the accuracy a model can
achieve given a specific amount of data, or the amount of data
samples are required to achieve target accuracy. Nevertheless,
obtaining a large amount of data is often expensive and time-
consuming, especially when the technology node switches
from one to another and the design space is under active explo-
ration, e.g., from N10 to N7. The lithography configurations
including optical sources, resist materials, etc., are frequently
changed for experiments. Therefore, a fast preparation of mod-
els with high accuracy is urgently desired. In addition, it
remains to be a question that what are the best designs for
building a model. Typical practice of regular array patterns
or random patterns may not be representative enough to cali-
brate accurate and generic models. Thus, effective techniques
to recognize representative designs will also be beneficial to
improving data efficiency.

Different from the previous approaches, in this paper, we
assume the availability of large amounts of data from the
previous technology generation with old lithography config-
urations and small amounts of data from a target lithography
configuration. We focus on increasing the data efficiency by:
1) reusing those from other lithography configurations and
transfer the knowledge between different configurations and
2) active selection of data samples in the target configura-
tion, also known as active learning. The objective is to achieve
accurate resist models with significantly fewer data to a tar-
get configuration. The major contributions are summarized as
follows.

1) We propose a high performance resist modeling tech-

nique based on the residual neural network (ResNet).

2) We propose a transfer learning scheme for ResNet that
can reduce the amount of data with a target accuracy by
utilizing the data from other configurations.

3) We propose an active learning scheme based on K-
Medoids algorithm with theoretical insights for both
CNN and ResNet.

4) The experimental results demonstrate 3x—10x reduc-
tion in the amount of training data to achieve
accuracy comparable to the state-of-the-art learning
approach [4].

The rest of this paper is organized as follows. Section II
illustrates the problem formulation. Section III explains the
details of our approach. The effectiveness of our approach
is verified in Section IV and the conclusion is drawn in
Section V.

1901

y Intensity
EEE T
_»:I:

(@) (b)

Intensity

‘888 Ye

— L, Y = Yc
(© (@

Fig. 2. (a) Design target of three contacts and (b) light intensity plot of
aerial image. Assume that RETs such as SRAF and OPC have been already
applied to the contacts before optical simulation. (c) Dotted line horizontally
crosses the centers at y = y. and the circles denote the contours of printed
patterns. (d) Light intensity profiling along the dotted line at y = y,. extracted
from the aerial image and different slicing thresholds for each contact.

II. PRELIMINARIES

In this section, we will briefly introduce the background
knowledge on lithography simulation and resist modeling.
Then the problem formulation is explained. We mainly focus
on contact layers in this paper, but our methodology shall be
applicable to other layers. For simplicity, we use the word
label to represent the target value for prediction, e.g., thresh-
old, given a data sample; we also use the phrase unlabeled
data to denote data samples whose labels are unknown.

A. Lithography Simulation

Lithography simulation is generally composed of two
stages, i.e., optical simulation and resist simulation, where
optical and resist models are required, respectively. In the
optical simulation, an optical model, characterized by the illu-
mination tool, takes mask patterns to compute aerial images,
i.e., light intensity maps. Then in the resist simulation, a resist
model finalizes the resist patterns with the aerial images from
the optical simulation. Generally, there are two types of resist
models. One is a variable threshold resist model in which the
thresholds vary according to aerial images, and the other is a
constant threshold resist model in which the light intensity is
modulated in an aerial image. We adopt the former since it is
suitable to learning-based approaches [4].

Fig. 2 shows an example of lithography simulation for a
clip with three contacts. We assume that proper resolution
enhancement techniques (RETs) such as OPC and SRAF have
been applied before the computation of the aerial image [24].
The optical simulation generates the aerial image, as shown
in Fig. 2(b). Resist simulation then computes the thresholds in
the aerial image to predict printed patterns. If we want to mea-
sure the widths of contacts along the dotted line in Fig. 2(c),
the light intensity profiling can be extracted from the aerial
image along the line and calculates the CDs for each contact
with the thresholds.

B. Historical Data and Transfer Learning

Since the lithography configurations evolve from one gen-
eration to another with the advancement of technology nodes,
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TABLE I
LITHOGRAPHY CONFIGURATIONS FOR N10 AND N7

N7
N0 R TN,
Design Rule A B B
Optical Source A B B
Resist Material A A B

() (b)

Fig. 3. Optical sources (yellow) for (a) N10 and (b) N7.

there are plenty of historical data available for the old gen-
eration. As mentioned in Section I, accurate models require
a large amount of data for training or calibration, which
are expensive to obtain during the exploration of a new
generation. If the lithography configurations have no fun-
damental changes, the knowledge learned from the histori-
cal data may still be applicable to the new configuration,
which can eventually help to reduce the amount of new data
required.

Transfer learning represents a set of techniques to trans-
fer the knowledge from one or multiple source domains to
a target domain, utilizing the underlying similarity between
the data from these domains. Various studies have explored
the effectiveness of knowledge transfer in image recogni-
tion and robotics [25]-[27], while it is not clear whether
the knowledge between different resist models is transferable
or not.

In this paper, we consider the evolution of the contact layer
from the cutting edge technology node N10 to N7 [1], [2]. A
large amount of available N10 data are assumed. During the
evolution to N7, different design rules for mask patterns, opti-
cal sources, and resist materials for lithography are explored.
Table I shows the lithography configurations considered for
N10 and N7. Differences in letters A, B represent different con-
figurations of design rules, optical sources, or resist materials.
One configuration for N10 is considered, while two configu-
rations are considered for N7, i.e., N7,, N7,, with two kinds
of resist materials (about 20% difference in the slopes of dis-
solution curves). From N10 to N7, both the design rules and
optical sources are changed. For N10, we consider a pitch of
64-nm with double patterning lithography, while for N7, the
pitch is set to 45 nm with triple patterning lithography [1].
The width of each contact is set to half pitch. The lithography
target of each contact is set to 60 nm for both N10 and N7.
Optical sources calibrated with industrial strength for N10 and
N7 are shown in Fig. 3, with the same type of illumination
shapes.

Various combinations of knowledge transfer can be
explored from Table I, such as N10—N7, N7,—N7;, and
N10+N7;—N7;, where i # j, i,j € {a, b}.
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Fig. 4. (a) Thresholds for the middle of the four edges of the center contact
are predicted. (b)—(e) Clip window is shifted such that the target position lies
in the center of the clip.

C. Active Learning for Regression

Active learning assumes unlabeled data samples exist in a
pool or can be generated. Querying for data labels is very
expensive and the amount of queries should be minimized.
Thus, selecting the proper and limited portion of data samples
for querying is essential to modeling accuracy.

We define the problem of pool-based active learning as:
given a pool of unlabeled data samples, select k samples to
query for labels and train a model to maximize the accu-
racy across the entire dataset. Be aware that the selection of
data samples should not depend on data labels since labels
are unknown before querying. Hence, active learning is very
effective in improving data efficiency without the requirement
of any additional labeled data.

There are extensive studies for active learning in classifica-
tion for CNN and SVM [28]-[31]. A few studies have explored
active learning for support vector regression and multilayer
perception [32], [33]. Most techniques are categorized into
confidence level or clustering approaches. Confidence level
approaches tend to choose data samples with low prediction
confidence, and clustering approaches choose representative
subset of data samples among an entire dataset. There are
also successful applications of active learning in VLSI CAD
related areas [34]-[36].

However, practical studies on active learning techniques for
regression tasks with CNN or ResNet are lacking, and its
performance when combined with transfer learning is unclear.
It is often difficult to evaluate the confidence level with large
and complicated models like CNN or ResNet, while clustering
approaches only rely on the general properties of data samples
and models. Therefore, we explore effective clustering strate-
gies for active selection of data samples, which are suitable to
regression tasks with CNN and ResNet.

D. Learning-Based Resist Modeling

The thresholds of positions near the contacts are of signif-
icant importance since they usually determine the boundaries
of printed contacts. Hence we consider the middle of the left,
right, bottom, and top edges for each contact, as shown in
Fig. 4(a), where the positions for prediction are highlighted
with black dots. As the threshold is mainly influenced by the
surrounding mask patterns, resist models typically compute the
threshold using a clip of mask patterns centered by a target
position. To measure the thresholds in Fig. 4(a), we select a
clip where the target position lies in its center, as shown in
Fig. 4(b)—(e). The task of a resist model is to compute the
thresholds for these positions of each contact [4]. For each
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clip with its aerial image and threshold, Fourier interpolation
can be used to recover the printed patterns.

Learning-based resist modeling consists of two phases, i.e.,
training and testing. In the training phase, training dataset
with both aerial images and thresholds are used to calibrate
the model, while in the testing phase, the model predicts
thresholds for the aerial images from the testing dataset.

E. Problem Formulation

The accuracy! of a model is evaluated with root mean
square (RMS) error defined as follows:

&)

where N denotes the amount of samples, y denotes the golden
values, and y denotes the predicted values. We further define
relative RMS error

2

where a relative ratio of error from the golden values can be
represented. Both metrics can refer to errors in either CD or
threshold. Although during model training, the RMS error of
threshold is generally minimized due to easier computation,
the eventual model is often evaluated with the RMS error of
CD for its physical meaning to the patterns. The RMS errors
in threshold and CD essentially have almost the same fidelity,
and usually yield consistent comparison. For convenience, we
report relative RMS error in threshold (e}h) for comparison
of different models since it removes the dependency to the
scale of thresholds, and use RMS error in CD (eCD) for data
efficiency related comparison.

Definition 1 (Data Efficiency): The amount of target
domain data required to learn a model with a given accuracy.

Given a specific amount of data from a target domain, if
one can learn a model with a higher accuracy than another, it
also indicates higher data efficiency. Thus, improving model
accuracy benefits data efficiency as well.

The resist modeling problem is defined as follows.

Problem 1 (Learning-Based Resist Modeling): Given a
dataset containing information of aerial images and thresholds
at their centers, train a resist model that can maximize the
accuracy for the prediction of thresholds.

In practice, accuracy is not the only objective. The amount
of training data should be minimized as well due to the high
cost of data preparation. Therefore, we propose the problem
of data efficient resist modeling as follows.

Problem 2 (Data Efficient Resist Modeling): Given a
labeled N10 dataset containing aerial images and thresholds,
and an unlabeled N7 dataset containing aerial images only,
train a resist model for target dataset N7; that can achieve
high accuracy and meanwhile query labels for as few N7;
data samples as possible, where i € {a, b}.

Note that the accuracy we talk about in this paper refers to the accuracy
at end of lithography flow including all RETs.
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Fig. 6. Flow of data preparation.

Minimizing the times of label querying is equivalent to min-
imizing the cost of data preparation, since the most expensive
part is to obtain the labels, i.e., thresholds, through either
manufactured wafer data or rigorous simulation.

III. ALGORITHMS

In this section, we will explain the structure of our models
and then the details regarding the transfer learning and active
learning schemes. Fig. 5 shows the overall training flow. We
first leverage labeled source domain data to train a source
domain model. Then before training the target domain model,
active learning is applied for active selection of data sam-
ples for label querying. The target domain model is eventually
trained with selected data samples and knowledge trans-
ferred from the source domain model. Data augmentation in
Section ITI-A2 is applied before training of both source and
target models.

A. Data Preparation

Fig. 6 gives the flow of data preparation. We first generate
clips and perform SRAF insertion and OPC. The aerial images
are then computed from the optical simulation, and at the same
time, the golden thresholds need to be computed from either
the rigorous simulation or the manufactured data. Each data
sample consists of an aerial image and the threshold at its
center.

1) Clip Generation: Following the design rules such as
minimum pitch of contacts, we generate three types of 2 x
2 pm clips. It is necessary to ensure that there is a contact
in the center of each clip since that is the target contact for
threshold computation.

Contact Array: All possible m x n arrays of contacts within
the dimensions of clips are enumerated. The steps of the
arrays can be multiple times of the minimum pitch p, i.e.,
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Fig. 7. (a) Clip of 3 x 3 contact array. (b) Clip of 3 x 3 randomized contact
array. (c) Clip of contacts with random positions.
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Fig. 8. Combinations of rotation and flipping. (a) Original. (b) Rotate 90°.
(c) Rotate 180°. (d) Rotate 270°. (e) Flip. (f) Flip and rotate 90°. (g) Flip
and rotate 180°. (h) Flip and rotate 270°.

p,2p, 3p, ..., in horizontal or vertical directions. An exam-
ple of 3 x 3 contact array with a certain pitch is shown in
Fig. 7(a). It needs to mention that the same 3 x 3 contact
array with different steps should be regarded as different clips
due to discrepant spacing.

Randomized Contact Array: The aforementioned contact
arrays essentially distribute contacts on grids and fill all the
slots in the grid maps. The randomization of contact arrays
is implemented by a random distribution of contacts in those
grid maps. Fig. 7(b) shows an example of randomized contact
array from the 3 x 3 contact array in Fig. 7(a). Various distri-
bution of contacts can be generated even from the same grid
maps.

Contacts With Random Positions: Contacts in this type of
clips do not necessarily align to any grid map, as their posi-
tions are randomly generated, while the design rules are still
guaranteed. An example is shown in Fig. 7(c). No matter how
the surrounding contacts change, the contact in the center of
the clip should remain the same.

2) Data Augmentation: Due to the symmetry of optical
sources in Fig. 3, data can be augmented with rotation and flip-
ping, improving the data efficiency [37]. Eight combinations of
rotation and flipping are shown in Fig. 8, where new data sam-
ples are obtained without new thresholds. Data augmentation
inflates datasets to obtain models with better generalization.

B. Convolutional Neural Networks

CNNs have demonstrated impressive performance on mask
related applications in lithography such as hotspot detec-
tion and resist modeling [4], [12]. The structure of CNN
mainly includes convolution layers and fully connected layers.
Features are extracted from convolution layers and then clas-
sification or regression is performed by fully connected layers.
Fig. 11(a) illustrates a CNN structure with three convolution
layers and two fully connected layers [4]. The first convolu-
tion layer has 64 filters with dimensions of 7 x 7. Although
not explicitly shown most of the time, a rectified linear unit
(ReLU) layer for activation is applied immediately after the
convolution layer, where the ReLU function is defined as

Al ikl >0
0, otherwise.

fah = { 3)
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Then the max-pooling layer performs down-sampling with a
factor of 2 to reduce the feature dimensions and improve the
invariance to translation [37]. After three convolution layers,
two fully connected layers are applied where the first one
has 256 hidden units followed with a ReLU layer and a 50%
dropout layer, and second one connects to the output.

C. Residual Neural Networks

One way to improve the performance of CNN is to increase
the depth for a larger capacity of the neural networks.
However, the counterintuitive degradation of training accuracy
in CNN is observed when stacking more layers, preventing the
neural networks from better performance [38]. An example of
CNNs with five and ten layers is shown in Fig. 9, where the
deeper CNN fails to converge to a smaller training error than
the shallow one due to gradient vanishing [39], [40], eventu-
ally resulting in the failure to achieve a better testing error
either. The study from He et al. [38] reveals that the under-
lying reason comes from the difficulty of identity mapping.
In other words, fitting a hypothesis H(x) = x is considerably
difficult for solvers to find optimal solutions. To overcome this
issue, ResNet, which utilizes shortcut connections, are adopted
to assist the convergence of training accuracy.

The building block of ResNet is illustrated in Fig. 10,
where a shortcut connection is inserted between the input
and output of two convolution layers. Let the function F(x)
be the mapping defined by the two convolution layers. Then
the entire function for the building block becomes F(x) + x.
Suppose the building block targets to fit the hypothesis H(x).
The residual networks train F(x) = H(x) — x, while the
convolution layers without shortcut connections like that in
CNN try to directly fit F(x) = H(x). Theoretically, if H(x)
can be approximated with F(x), then it can also be approxi-
mated with F(x) +x. Despite the same nature, comprehensive
experiments have demonstrated a better convergence of
ResNet than that of CNN for deep neural networks [38]. We
also observe a better performance of ResNet with the transfer
learning schemes than that of CNN in our problem, which
has never been explored before.

The ResNet is shown in Fig. 11(b) with eight convolu-
tion layers and two fully connected layers. Different from
the original setting [38], we add a shortcut connection to
the first convolution layer by broadcasting the input tensor of
64 x 64 x 1 to 64 x 64 x 64. This minor change enables better
empirical results in our problem. For the rest of the networks,
three building blocks for ResNet are utilized.

D. Transfer Learning

Transfer learning aims at adapting the knowledge learned
from data in source domains to a target domain. The trans-
ferred knowledge will benefit the learning in the target domain
with a faster convergence and better generalization [37].
Suppose the data in the source domain has a distribution P and
that in the target domain has a distribution P;. The underlying
assumption of transfer learning lies in the common factors that
need to be captured for learning the variations of Py and Py,
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Fig. 9. Counterintuitive (a) training and (b) testing errors for different depth
of CNN with epochs.

Fig. 10. Building block of ResNet.

so that the knowledge for P is also useful for P;. An intu-
itive example is that learning to recognize cats and dogs in
the source task helps the recognition of ants and wasps in
the target task, especially when the source task has signifi-
cantly larger dataset than that of the target task. The reason
comes from the low-level notions of edges, shapes, etc., shared
by many visual categories [37]. In resist modeling, different
lithography configurations can be viewed as separate tasks
with different distributions.

Typical transfer learning scheme for neural networks fixes
the first several layers of the model trained for another domain
and finetune the successive layers with data from the target
domain. The first several layers usually extract general fea-
tures, which are considered to be similar between the source
and the target domains, while the successive layers are classi-
fiers or regressors that need to be adjusted. Fig. 12 shows an
example of the transfer learning scheme. We first train a model
with source domain data and then use the source domain model
as the starting point for the training of the target domain.
During the training for the target domain, the first k layers
are fixed, while the rest layers are finetuned. We denote this
scheme as TFj, shortened from “Transfer and Fix,” where k
is the parameter for the number of fixed layers.

In this paper, we focus on the impacts of transfer learning
and do not consider various preprocessing steps like scaling
and normalization. In other words, raw aerial images are fed to
the neural networks. The benefits of scaling and normalization
are left to future work.

E. Active Learning With Clustering

Although transfer learning is potentially able to improve the
accuracy of the target dataset using knowledge from a source
dataset, selection of representative target data samples may
further improve the accuracy. Let D be the unlabeled dataset in
the target domain and s be the set of selected data samples for
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Fig. 11. (a) CNN and (b) ResNet structure.
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Fig. 12. Transfer learning scheme with the first k layers fixed when training
for target domain, denoted as TFy.

label querying, where |s| < k and k is the maximum number
of data samples for querying. For any (x;,y;) € D, x; is the
feature, e.g., aerial image, and y; is the label, e.g., threshold,
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where y; is unknown for D. Consider a loss function /(x;, y;; w)

parameterized over the hypothesis class (w), e.g., parameters

of a learning algorithm. The objective of active learning is to

minimize the average loss of dataset D with a model trained
from s

n

min _ —
s:|s|<k,seD n i1

1(xi, yis wg) 4

where n = |D|, and wg represents the parameters of a model
trained from s.

We present an upper bound of (4) for any Lipschitz loss
function and Lipschitz estimator. Then we show that both
CNN and ResNet with nonlinear ReLU activations are actu-
ally Lipschitz continuous. We also assume the training loss
can drop to zero, which is likely to be achieved with large
enough models.

Definition 2: Let g(-;-) : R x R — R, we say g is
L;-Lipschitz continuous with respect to g(x; -) if

lgGe; w) — gxs w)| < Ly - |lx —x|.

We also write g(x; w) as g, (x). We use Frobenius norm for
norm of a matrix here, i.e., ||-|.

Definition 3: Let f(-,-; ) : R x R x R2 — R>o, we say
f is Lp-Lipschitz continuous with respect to f(x, *; -) if

e, ysw) —f@, ysw) <Ly (lx—x'l + 1y =YD
Vx € Rdl,\?’y,y/ cR,Vw e R%,

We also write f(x, y; w) as fi, (x,y).
We state the following theorem.
Theorem 1: Given n independent and identically distributed
(independent identically distributed) random samples as D =
{xi, yi}ie(1,2,....n}> and a set of selected points s. If the following
properties hold.
1) Loss function [(x, y; w) is )J-Lipschitz continuous with
respect to (x, y).

2) The ground truth of label y = f(x) + € has the property
that f(-) is A -Lipschitz continuous and random noise
e ~N(0,0%). A

3) f (+) in the prediction function y = f (x) is A/-Lipschitz.

4) U(xj,yj;; ws) = 0,Vj € s, where wy is the weights of
the trained model with samples s, then we have the
following inequality:

1(5f ki
%Zl(xi,yi;ws) < @ZZ ‘

ieD jes i=1

+ 22 el (5)

ieD

. x¢
xi — x|

where k; is the number of samples whose closest sample
in s is xj'?; le;| is a sample from an independent ran-

dom half-normal distribution with mean (o +/2 /+/7) and
variance o2(1 — [2/7]).

The left-hand side of the inequality is the average loss across
the entire dataset. The right-hand side, i.e., the upper bound of
the average loss, is correlated to the objective of a K-Medoids
Clustering problem [41], where K is the number of labeled
data samples for training (K = |s|). K-Medoids clustering
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Fig. 13.  Example of (a) bad data selection and (b) K-Medoids clustering
selection in 2-D space. Three selected points are highlighted. Circles denote
three clusters centered by selected points.

problem is required to return K clusters from a set of points
as well as K centers for each cluster. Therefore, minimizing
> jes Zf’: 1 |xi = x;j| helps to bound the left-hand side.
Fig. 13 provides an intuition for the K-Medoids clustering in
a 2-D space. Random selection may result in biased coverage
of the entire dataset, causing significant overfitting of model
training. K-Medoids clustering is able to select medoids (data)
evenly from the space for training such that most unselected
data samples are close to their nearest medoids.
Theorem 1 requires both the loss function and the estimator
to be Lipschitz continuous.
Lemma 1: If the following conditions hold:
1) Vi e D, (x;,y;) satisfies |lx;| < b, |yil < ba;
2) fws (x) is A/ -Lipschitz continuous with respect to x;
3) 3(xp,yo) such that fws (x0) = yo + &, where § is a
bounded constant, then square loss function /, (x,y) =
(v — fws (x))? is Al-Lipschitz continuous, where y is the
label and fws () is the learned function with parameter
wy (also denoted as f () for brevity)

A = (4)\%1 + 4y + 2|5|) : max(l, )\f). 6)

In practice, the three assumptions are not difficult to hold.
Consider the physical meaning of x and y, both |x| and |y|
are numerically small in this paper. Lemma 2 proves that
CNN/ResNet is Lipschitz continuous. If the training error for
CNN/ResNet is small, which is mostly true, (xg, yo) can be
selected from the training dataset and then |§] is also small.

Lemma 2: A CNN/ResNet for regression with n. convo-
lution layers (with max-pooling and ReLU) and ny fully
connected layers is (1 + a+/N)" " -Lipschitz.

Detailed proofs for Theorem 1, Lemma 1, and Lemma 2
can be found in the Appendix.

K-Medoids clustering is a variation of K-Means cluster-
ing. Different from K-Medoids clustering, the centroids of
K-Means clustering may not be the data points in the dataset.
Despite several K-Medoids clustering algorithms [42], [43],
there are stable implementations available for K-Means clus-
tering [44], [45]. To leverage the existing implementation of
K-Means clustering and reduce the development overhead, we
find the nearest data points to the centroids as the medoids
for the K-Medoids clustering. The algorithm is described in
Algorithm 1. Empirically we observe comparable clustering
costs to the dedicated K-Medoids clustering algorithm [43].

IV. EXPERIMENTAL RESULTS

Our framework is implemented with Tensorflow [46] and
validated on a Linux server with 3.4 GHz Intel i7 CPU
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Algorithm 1 K-Medoids Clustering Using K-Means Engine

Require: A set of points D and an integer k.
Ensure: Select a set of medoids s (|s|] = k) with minimum

cost.

1: Solve K-Means clustering and obtain k centroids denoted
as Cc1,C2,...,Ck,

2: 5 <

3: fori=0,1,...,k do

: Find data point j (j € D) with minimum distance to
Cis

5: s < sU{j};

6: end for

7: return §

and Nvidia GTX 1080 GPU. The K-Medoids clustering algo-
rithm uses the K-Means clustering engine in scikit-learn [45].
We observe that this approach provides better and more
stable objectives of K-Medoids clustering than does dedi-
cated K-Medoids clustering solver in PyClust package in our
experiments.

Around 980 mask clips are generated according to
Section III-A for N10 and N7 separately following the design
rules in Section II-B, respectively. N7, and N7, use the same
set of clips, but different lithography configurations. SRAF,
OPC, and aerial image simulation are performed with Mentor
Calibre [23]. The golden CD values are obtained from rigorous
simulation using Synopsys Sentaurus Lithography models [47]
calibrated from manufactured data for N10, N7,, and N7,
according to Table I. Then golden thresholds are extracted.
Each clip has four thresholds as shown in Fig. 4. Hence
the N10 dataset contains 3928 samples and each N7 dataset
contains 3916 samples, respectively. The data augmentation
technique in Section III-A2 is applied, so the training set and
the testing set will be augmented by a factor of 8 indepen-
dently. For example, if 50% of the data for N10 are used for
training, then there are 3928 x 50% x 8 = 15712 samples.
It needs to mention that always the same 50% portions are
used during the validation of a dataset for fair comparison of
different techniques. The batch size is set to 32 for training
accommodating to the large variability in the sizes of training
datasets. Adam [48] is used as the stochastic optimizer and
maximum epoch is set to 200 for training.

The training time for one model takes 10 to 40 min accord-
ing to the portions of a dataset used for training, and prediction
time for an entire N10 or N7 dataset takes less than 10 s,
while the rigorous simulation takes more than 15 h for each
N10 or N7 dataset. Thus, we no longer report the prediction
time which is negligible compared with that of the rigorous
simulation. Each experiment runs ten different random seeds
and averages the numbers.

A. CNN and ResNet

We first compare CNN and ResNet in Fig. 14(a). Column
“CNN-5" denotes the network with five layers shown in
Fig. 11(a). Column “CNN-10" denotes the one with ten layers
that has the same structure as that in Fig. 11(b) but without
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Fig. 14. (a) Comparison on testing accuracy of CNN-5, CNN-10, and ResNet
on N10. (b) Testing accuracy of CNN with active learning on N10. (c¢) Testing
accuracy of ResNet with active learning on N10. (d) Impact of depth on the
testing accuracy of ResNet.

shortcut connections. Column “ResNet” denotes the one with
ten layers shown in Fig. 11(b). When using 1% to 20% train-
ing data, ResNet shows better average relative RMS error €
than CNN-10, but CNN-5 provides the best error. We will
show later that ResNet on the contrary outperforms CNN-5
when transfer learning is incorporated.

We then show the performance of active learning for CNN
and ResNet in Fig. 14(b) and (c), denoted as “CNN-5+AL” and
“ResNet+AL,” respectively. The beneficial amount of train-
ing data for active data selection is from 10% to 40%. For
example, for 20% training data, it provides 11.6% accuracy
improvement for CNN and 12.5% for ResNet; for 30% train-
ing data, it provides 11.4% improvement for CNN and 11.3%
for ResNet [49]. The benefit of active learning is not signif-
icant for extremely small training dataset, e.g., 1% and 5%.
When there are very few training data, it is more likely for
randomly selected data samples to distribute quite some dis-
tance away than to squeeze as small clusters. Although active
selection of data can avoid corner cases of extremely poor
sampling, e.g., all data samples squeezing as a small cluster,
while it is difficult to demonstrate the benefit of active learn-
ing in ordinary cases. On the other hand, when the amount of
training data increases, the benefit from active learning drops
due to sufficient coverage. The rightmost points take all 50%
training data and thus show the same accuracy as that without
active learning.

The impacts of depth on the performance of ResNet are
further explored in Fig. 14(d), where we gradually stack more
building blocks in Fig. 10 before fully connected layers. The
x-axis denotes total number of convolution and fully connected
layers corresponding to different numbers of building blocks.
For instance, 0 building block leads to four layers and three
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building blocks result in ten layers [Fig. 11(b)]. The testing
error decreases to lowest value at ten layers and then starts
to increase, indicating potential overfitting afterwards [37].
Therefore, we use ten layers for the ResNet in the experiment.

B. Knowledge Transfer From N10 to N7

We then compare the testing accuracy between knowledge
transfer from N10 to N7 and directly training from N7 datasets
in Fig. 15(a). In this example, the x-axis represents the per-
centage of training dataset for the target domain N7,, while
the percentage of data from the source domain N10 is always
50%. Similar trends are also observed for N7;. Curve “CNN”
denotes training the CNN of five layers in Fig. 11(a) with data
from target domain only, i.e., no transfer learning involved.
Curve “CNN TFj” denotes the transfer learning scheme in
Section III-D for the same CNN with zero layer fixed. Curve
“ResNet TF(y” denotes applying the same scheme to ResNet.
The most significant benefit of transfer learning comes from
small training dataset with a range of 1% to 20%, where there
are around 52% to 18% improvement in the accuracy from
CNN. Meanwhile, ResNet TF( can achieve an average of 13%
smaller error than CNN TF.

Fig. 15(b) further compares the results of fixing different
numbers of layers during transfer learning. In this case, ResNet
TFo and ResNet TF4 have the best accuracy, while the error
increases with more layers fixed. It is indicated that the tasks
NI10 and N7 are quite different and both feature extraction
layers and regression layers need finetuning.

In Fig. 15(c), we enable transfer learning plus active learn-
ing, which provides 7% to 11% additional accuracy improve-
ment for 10% to 40% amount of training data from the target
domain.

C. Knowledge Transfer Within N7

The transfer learning between different N7 datasets, e.g.,
from N7, to N7, is also explored in Fig. 16. The x-axis rep-
resents the percentage of training dataset for the target domain
N7, while the percentage of data from the source domain N7,
is always 50%. Compared with the knowledge transfer from
N10 to N7, we achieve even higher accuracy between 1% and
20% training datasets in Fig. 16(a). For example, with 1%
training dataset, there is around 65% improvement in accuracy
from CNN, and with 20% training dataset, the improvement is
around 23%. ResNet TF; keeps having lower errors than that
of CNN TF as well, with an average benefit around 15%.

The curves in Fig. 16(b) show different insights from that
of the knowledge transfer from N10 to N7. The accuracy of
ResNet TFy can be further improved with more layers fixed,
e.g., ResNet TFg, by around 28% to 14%. This is reasonable
since N7, and N7, have the same design rules and illumina-
tion shapes, and the only difference lies in the resist materials.
Therefore, the feature extraction layers are supposed to remain
almost the same. With the sizes of the training dataset increas-
ing to 15% and 20%, the differences in the accuracy become
smaller, because there are enough data to find good configura-
tions for the networks. Since knowledge transfer is remarkably

IResults for active learning extended from [49].
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Fig. 15. Testing accuracy of transfer learning from NI10 to N7,.
(a) Comparison between CNN and transfer learning. (b) Comparison between
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Fig. 16. Testing accuracy of transfer learning from N7, to N7p.
(a) Comparison between CNN and transfer learning. (b) Comparison between
transfer learning schemes where different numbers of layers are fixed.

effective with ResNet TFg, we do not see the room for further
improvement with active learning. Thus we did not plot the
curves for that.

D. Impact of Various Source Domains

In transfer learning, the correlation between the datasets of
source and target domains is critical to the effectiveness of
knowledge transfer. Thus, we explore the impacts of source
domain datasets on the accuracy of modeling for the tar-
get domain. Fig. 17 plots the testing errors of learning N7,
using ResNet TF( with various source domain datasets. Curves
“N10°0%” and “N73°%” indicate that 50% of the N10 or the
N7, dataset is used to train source domain models, respec-
tively. Curve “N10°°% 4 N7tll%” describes the situation where
we have 50% of the N10 dataset and 1% of the N7, dataset
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TABLE II
RELATIVE THRESHOLD RMS ERROR AND CD RMS ERROR FOR N7, WITH DIFFERENT SOURCE DOMAIN DATASETS

Source 50% 50% 50% 5% 50% 10%
Datasets 0 N10 N73 N1059% 4 N75% | N105°% 4 N7L
Nl::\::;]l(g CNN CNN TF, ResNet TFy | ResNet TFo+AL> CNN TF, ResNet TFo ResNet TF, ResNet TFo
B CD el CD et €D et €D ek €D et €D et €D By €D
(10—2) (1072) (1072) (10—2) (1072) (1072) (10—2) (1072)
1% 4.44 4.76 2.34 2.48 2.29 2.39 1.95 2.09 1.69 1.79 1.52 1.60 1.94 2.03 1.82 1.91
5% 2.78 2.96 1.73 1.86 1.60 1.70 1.58 1.70 1.53 1.64 1.34 1.43 1.67 1.78 1.57 1.67
N7y 10% 1.92 2.04 1.63 1.76 1.47 1.57 1.36 1.48 1.50 1.60 1.30 1.38 1.50 1.60 1.51 1.61
15% 1.72 1.84 1.56 1.68 1.39 1.47 1.23 1.32 1.48 1.55 1.27 1.35 1.41 1.50 1.43 1.52
20% 1.60 1.71 1.50 1.61 1.31 1.39 1.16 1.24 1.44 1.55 1.23 1.31 1.32 1.41 1.34 1.43
[ ratio [ 100 | 1.00 | 077 [ 077 ] 070 [ 069 [ 063 | 064 | 069 [ 069 | 060 [ 060 | 069 | 069 | 060 | 068 |
B CNN [ CNN TF, Bl ResNet TFy [ ResNet TFo+AL?
2.5 —h— N10°0% 3
. )
o]
e N750% 40 % 40 %
< 2 50% 1% Y
Bh —&— N10>"" + N7, =
¢ L, e £20% 20%
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Fig. 17. Testing accuracy of ResNet TF( for N7; from different source (a) (b)
domain datasets.
Fig. 19. Amount of training data required for N7; given target CD RMS
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Fig. 18. Transfer learning from 50% of N10 dataset and 1% of N7, dataset
(i.e., N10°0% 4 N71%) to N7), with x% of N7, dataset.

for training. In this case, as shown in Fig. 18, we first use
the 50% N10 data to train the first source domain model; then
train the second source domain model using the first model as
the starting point with the 1% N7, data; in the end, the target
domain model for N7, is trained using the second model as
the starting point with N7, data. Curves “N10°0% +N7(51%” and
“N10°9% 4 N7[1,0%” are similar, simply with different amounts
of N7, data for training.

The knowledge from N75°% is the most effective for N7,
due to the minor difference in resist materials between two
datasets. For the rest curves, the accuracy of N10°0% 4 N72%
and N10°°% 4-N7 6110% is in general better than or at least com-
parable to that of N10°°%. This indicates that having more
data from closer datasets to the target dataset, e.g., N7,, is
still helpful.

E. Improvement in Data Efficiency

Table II presents the accuracy metrics, i.e., relative thresh-
old RMS error (e}h) and CD RMS error (€°P), for learning
N7, from various source domain datasets. Since we consider
the data efficiency of different learning schemes, we focus
on the small training dataset for N7,, from 1% to 20%.
Situations such as no source domain data (¥), only source
domain data from N10 (N10°9%), only source domain data

errors when (a) 50% N10 dataset is available or (b) 50% N7, dataset is
available.

from N7, (N720%), and combined source domain datasets, are
examined. As mentioned in Section II, the fidelity between
relative threshold RMS error and CD RMS error is very con-
sistent, so they share almost the same trends. Transfer learning
with any source domain dataset enables an average improve-
ment of 23% to 40% from that without knowledge transfer. In
small training datasets of N7,, ResNet also achieves around
8% better performance on average than CNN in the trans-
fer learning scheme. Enabling active learning together with
transfer learning allows additional 5% accuracy improvement
on average compared with transfer learning only for ResNet.
At 1% of N7,, combined source domain datasets have bet-
ter performance compared with N10°°% only, but the benefits
vanish with the increase of the N7, dataset.

In real manufacturing, models are usually calibrated to
satisfy a target accuracy or target CD RMS error. Fig. 19
demonstrates the amount of training data required in the target
domain for learning the N7, model. Curve “CNN” does not
involve any knowledge transfer, while curves “CNN TF,” and
“ResNet TFy” utilize transfer learning in CNN and ResNet,
respectively. The curves in Fig. 19(a) assume the availabil-
ity of N10 data. Consider the CD RMS error from 1.5 nm to
2.5 nm, which is around 10% of the half pitch for N7 contacts.
This range of accuracy is also comparable to that of the state-
of-the-art CNN [4]. ResNet TF, requires significantly fewer
data than both CNN and CNN TFy. For instance, when the
target CD error is 1.75 nm, ResNet TF, demands 5% train-
ing data from N7;, while CNN requires 20% and CNN TF,
requires 15%. By enabling active learning, ResNet TFy+AL
further reduces data requirement from ResNet TF, e.g., 1.5x
and 4x fewer training data than ResNet TFy and CNN for
1.5 nm, respectively. Fig. 19(b) considers the transfer from
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N7, to N7,. Both ResNet TFy and CNN TF; only require
1% training data from N7, for most target CD RMS errors,
where CNN TFj cannot achieve the accuracy unless given 30%
data. Overall, ResNet TFq can achieve 3x—10x reduction of
training data within this range compared with CNN. It needs
to mention that 1% of dataset only correspond to fewer than
40 samples owing to the data augmentation, indicating only
thresholds of 40 clips are required.

V. CONCLUSION

A transfer learning framework with a clustering-based active
data selection on ResNets is proposed for resist modeling.
The combination of transfer learning and active learning for
ResNet is able to achieve high accuracy with very few data
from the target domain, under various situations for knowledge
transfer, indicating high data efficiency. Extensive experiments
demonstrate that the proposed techniques can achieve 3 x—10x
reduction according to various requirements of accuracy com-
parable to the state-of-the-art learning approach. It is shown
that the performance of transfer learning differs from dataset to
dataset and is worth exploring to see the correlation between
datasets. Active selection of data samples is also useful to
guide the generation of mask designs for model calibration in
manufacturing. Examining the quantitative relation between
the correlation of datasets and performance of transfer learn-
ing is valuable in the future. There is still room to improve the
effectiveness of knowledge transfer from N10 to N7 datasets.
Therefore, in the future, we will actively explore other learning
techniques to further improve the accuracy, such as preprocess-
ing steps like scaling and normalization, various regularization
techniques, and semi-supervised learning.

APPENDIX
Proof of Lemma 1: We first bound Lf(x,-)

| = oo + [fe - Fexo|
< Iyol + 181 + ¥ llx; — xol

< by + 18] + ¥ (Ix: 1l + llxol)
< by+ 18| +2¥by. (7)

Then prove the Lipschitz-continuity of square loss function

[ iy 3i) = by (35 33) |
= ‘()’i —f‘(xi))2 - (v —f(x,-))2
i =y =1 +7 )|y + 3y = Fxd =7 ()|
< (=l + [fen = 7))
x (vl + [yl + | + 7))
< (|yi =l + 7 xi — 5] ) (462 + 2181 + 4378y )
< (4,\f‘b1 +4by + 2|3|) : max(l, ,\f‘)

X (|yi =yl + |Jxi = x;]))- (8)
| |

=
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Proof of Lemma 2: We assume the output after a series
of convolution and fully connected layers is the prediction of
the CNN for regression. Consider two inputs x and x’, with
their representation x@ and x'¥. We first show the Lipschitz
property of convolution layers and fully connected layers. Any

convolution or fully connected layer can be denoted as xj@ =
D wgi)x§d_l). By assuming ) ; |w§§)| < a,Vi,j,d, we can

state

sl o] o

Let n be the dimension of x(@, which is bounded by N

2
o] = [ =)
i

< \/n@g?|x@-D — x@-1 ||2

< avn@ Hx(d—l) _x/(d—l)H

< a\/NHx("*U _y@-D H (10)

We then consider ReLU and max-pooling layers. For any
ReLU layer, it is straightforward to verify the following
inequality:

| max (0, a) — max (0, b)| < |a — b|.

(1)

Any max-pooling layer can be viewed as a convolution layer
in which only one weight is 1 and others are 0. Thus, we can
state for ReLU and max-pooling layers

T S
Combining the Lipschitz property of all layers of CNN

|CNN(Gx: w) — CNNG's w) | < (@/Ny"et

x—=x| (13

where w is the weights for CNN.

For ResNet, a shortcut connection can be viewed as a
layer d which takes input from layer d — 1 and layer d’,
ie., x@ = x@d-D +x(d/), where d — 1 > d’. Then we can
state

H £ @ _ @ H H @D 4 (@) _ prd=1) _ ()

< H xd=n _ x/(d—l)H i H @) _ )
< (@VNI T 4 1) |¢ ) —

< +a«/ﬁ)d_d/_1Hx(d/) Y@ H (14)

Therefore, combining all layers of ResNet
|ResNet(x; w) — ResNet(x; w) |
< (1 + an/N)'etrse ”x —x ”

We combine (13) and (15) for generalization to both CNN
and ResNet. |
Proof of Theorem 1:

15)

(@)
b, .30 = b (572 39) | = (i =] + i = x5]). 16)
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Inequality (a) uses the Lipschitz property of the loss function
i =y = [fGe) + & —f(xp) — ¢
< [f@) —fxp)| + leil + |¢

®)
< Mxi — x| + leil + €| (17)

Inequality (b) uses the Lipschitz property of the ground truth
function f.
Combine previous two inequalities (16) and (17), we have

|y 2. 3i) = by (7. 3)) |
<3 (3 s = x1] + lel + g + i — ]
= (¥ + 1) x| + 4l +lgl). a8)

Denote the selected data samples as (x;, y]?), Vj € s. Then
assign each point i of the entire dataset to a cluster centered
by its nearest selected data sample j, and suppose that there
are k; points within the cluster. Then the average loss of all
data points is bounded as follows:

1
- E by (xi, yi)
n

ieD
= —Zzlws(xn)’t
jes i=l1
() 1 ¢
2 LS ) e~ 5
jes i=1
@ 1 b
< ZZ( + lws(xi’yi)_le<x;’y;))
-
© 1
e
R0+ )] 2+ )
N ies i1
AMOS+1 5
D S ] 2 T+ )
n jes i=1 s
A )»f 1 ki
) S e
n jes i=1
3l
+;Z|€z|+ Zk|€|
ieD i€s
/\f+
— P — X H + — Zal|€l
jes i=1
1, ieD\s
where o; = .
ki+ 1, 1es

f !
(f))» (W +1 ZZHxl_x +%Zai2|6i|

jes i=1 ieD ieD

ﬂZm (19)

Inequality (c) utilizes the fact that a—b < ||a — b||. Inequality
(d) uses the zero loss assumption. Inequality (e) embeds

© Al (> MO +1)
—x

jes i=1

(18). We assume ¢; and €{ follow the same normal distri-
bution, because they come from the same dataset. Inequality
(f) leverages the fact that >, a;b; < Y ;a; ) b;, Va;, bi > 0.
Inequality (g) cancels out n by > ;.o = 2n, where |¢;| is a
sample from an independent random half-normal distribution
with mean o/(2/7) and variance o%(1 — [2/7]).
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