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SUMMARY 15

Envelopes have been proposed in recent years as a nascent methodology for sufficient dimension
reduction and efficient parameter estimation in multivariate linear models. We extend the classical
definition of envelopes in Cook et al. (2010) to incorporate a nonlinear conditional mean function
and a heteroscedastic error. Given any two random vectors X ∈ Rp and Y ∈ Rr, we propose two
new model-free envelopes – called the Martingale Difference Divergence Envelope (MDDE) and 20

the Central Mean Envelope (CME) – and study their relationships with the standard envelope in
the context of response reduction in the multivariate linear models. The MDDE effectively captures
the nonlinearity in the conditional mean without imposing any parametric structure or requiring any
tuning in estimation. Heteroscedasticity, or the non-constant conditional covariance of Y | X , is
further detected by the CME based on a slicing scheme for the data. We reveal the nested structure 25

of different envelopes: (1) the CME contains the MDDE, with equality when Y | X has a constant
conditional covariance; and (2) the MDDE contains the standard envelope, with equality when Y | X
has a linear conditional mean. We further develop an estimation procedure that obtains the MDDE first
and then estimates the additional envelope components in the CME. We establish consistency in enve-
lope estimation of MDDE and CME without stringent model assumptions. Simulations and real data 30

analysis demonstrate the advantages of MDDE and CME over standard envelope in dimension reduction.

Key Words: Envelope Models; Heteroscedasticity; Multivariate Linear Model; Nonlinear Dependence;
Sufficient Dimension Reduction.
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1. INTRODUCTION35

The first envelope model was proposed by Cook et al. (2010), in the context of multivariate linear
model of multivariate response Y ∈ Rr on predictor X ∈ Rp,

Yi = α+ βXi + εi, i = 1, . . . , n, (1)

where α ∈ Rr, β ∈ Rr×p, and εi ∼ N(0,Σ), Σ > 0, is independent ofXi. The goal of envelope method-
ology is to increase efficiency in estimating the regression coefficient β. An envelope is essentially a
targeted dimension reduction subspace that contains the material variation in the data for the goal of40

estimating β. Envelope models and methods have been recently developed in a series of regression prob-
lems, see Cook (2018) for an overview, and in general multivariate analysis (Cook & Zhang, 2015a).

The multivariate linear model (1) has restrictive assumptions on the conditional mean and covariance:
(i) E(Y | X = x) = α+ βx is linear in x, and (ii) cov(Y | X = x) = Σ does not depend on x. Most
of the existing envelope methods in multivariate linear model rely on these two assumptions (e.g., Cook45

et al., 2010, 2013; Cook & Zhang, 2015b; Khare et al., 2017). As a result, these methods may suffer
severely from any violation of the two assumptions. Whilst most existing envelope methods concentrate
on parametric settings, particularly for the multivariate linear models, we aim to address nonlinearity
and heteroscedasticity by revisiting model-free envelope pursuit in a more flexible dimension reduction
setting that is similar to Cook et al. (2007).50

The response envelope in Cook et al. (2010) is constructed as the smallest subspace S ⊆ Rr such that

(i) QSY | X ∼ QSY, (ii) PSY ⊥⊥ QSY | X, (2)

where PS is the projection onto S, and QS = Ir − PS is the projection onto the orthogonal complement
of S, i.e. S⊥. The two statements in (2) imply that the distribution of QSY is not affected by X and
QSY is conditionally independent of PSY given X . Therefore, QSY is immaterial because it does
not contain useful information about β but only brings extraneous variation in estimation. Under the55

multivariate linear model (1), the conditions in (2) are equivalent to the following parametric conditions,

(i) span(β) ⊆ S, (ii) Σ = PSΣPS +QSΣQS , (3)

where span(β) ⊆ Rr is the subspace spanned by the column vectors of β ∈ Rr×p. The first statement in
(3) implies that, by varying x, the changes in the conditional mean function E(Y | X = x) = α+ βx

lie within the subspace S; and the second statement in (3) implies that, given X , we have conditionally
uncorrelated components by projecting the response onto S and onto its orthogonal complement S⊥.60

The smallest such subspace is called the Σ-envelope of span(β) and is formally defined as follows.

DEFINITION 1. (Cook et al., 2010) A subspace S ⊆ Rr is said to be a reducing subspace of Σ ∈ Rr×r

if S decomposes Σ as Σ = PSΣPS +QSΣQS . The Σ-envelope of B ≡ span(β), denoted by EΣ(B) or
EΣ(β), is the intersection of all reducing subspaces of Σ that contain B.

By definition, the existence, uniqueness and minimal dimensionality of EΣ(β) are guaranteed (Cook65

et al., 2010, Proposition 2.1). The idea of envelope methodology is to employ this dimension reduction
subspace EΣ(β) to improve estimation and prediction. Moreover, the envelope establishes a parametric
link between the parameter of interests β, and the nuisance parameter Σ.
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From the basic properties of conditional independence (Dawid, 1979), (2) is equivalent to QSY ⊥⊥
(PSY,X). A natural approach for estimating such S without assuming model (1) is to optimize over 70

all subspaces S ⊆ Rr such that the distance covariance (Székely et al., 2007; Székely & Rizzo, 2009)
between QSY and (PSY,X) are minimized. This idea shares the same spirit of some recent advances
in sufficient dimension reduction with distance covariance (e.g., Sheng & Yin, 2016; Matteson & Tsay,
2017; Vepakomma et al., 2018). However, we consider an alternative approach to achieve a less ambi-
tious goal that is more relevant to regression analysis. 75

Our proposal is inspired by the notion of the central mean subspace in dimension reduction (Cook
& Li, 2002), which focuses on the conditional mean function E(Y | X) instead of the whole condi-
tional distribution Y | X when considering reduction of X . Analogous to the central mean subspace, we
consider reduction of Y under the envelope model framework such that our focus is on prediction and
inference from the conditional mean function. In particular, we replace the parametric envelope model 80

assumptions in (3) with the more general mean dependence and conditional covariance reduction in the
following. We define the central mean envelope (CME) as the smallest subspace S ⊆ Rr such that,

(i) E(QSY | X) = E(QSY ), (ii) cov(QSY, PSY | X) = 0. (4)

The above notion of CME nicely bridges the gap between the response reduction in (2) and the para-
metric response envelope in (3): (2) implies (4); (4) implies (3); and the three are equivalent under the
multivariate linear model. Moreover, because the definition of CME is model-free, we employ a non- 85

parametric measure called the martingale difference divergence matrix (Lee & Shao, 2018) to capture
the general dependence in mean. We also allow the conditional covariance cov(Y | X = x) = Σ(x) to
depend on x, and re-define Σ as Σ = E{cov(Y | X)} = E{Σ(X)}, which reduces to the same Σ in the
multivariate linear model (1). While the CME reduces all Σ(x), a weaker condition than (4) leads to the
martingale difference divergence envelope (Definition 3), which is the reducing subspace of Σ. 90

Whilst most existing envelope methods concentrate on parametric models, our work differs obviously
by tackling a more challenging problem of model-free envelope estimation without linearity and constant
covariance assumptions in linear models. Such an extension is far from trivial, and new techniques are
required throughout our development. As such, our development for the central mean envelope enriches
the dimension reduction techniques for conditional mean in regression (e.g., Cook & Li, 2002) and 95

dimension reduction techniques in general. It complements the distance covariance type solutions (e.g.,
Sheng & Yin, 2016; Matteson & Tsay, 2017; Vepakomma et al., 2018). Moreover, the new definitions
of central mean envelope (CME) and martingale difference divergence envelope (MDDE) are consistent
with the standard envelope and bridges the gap between the standard envelopes in multivariate linear
model and the general conditional independence in sufficient dimension reduction: the CME implies 100

conditional independence of QSY ⊥⊥ (PSY,X) if Y | X is normally distributed; the CME contains
the MDDE with equality when Y | X has a constant conditional covariance; the MDDE contains the
standard envelope with equality when Y | X has a linear conditional mean. It is also worth mentioning
that the notion of CME is completely generic for any two random vectorsX and Y . Parallel to the recent
developments of standard envelopes, our framework of CME are not restricted to response reduction in 105

regression; it can be extended straightforwardly to predictor reduction (Cook et al., 2013), simultaneous
reduction (Cook & Zhang, 2015b) and even to tensor envelopes (Zhang & Li, 2017; Li & Zhang, 2017).
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2. A BRIEF REVIEW OF MARTINGALE DIFFERENCE DIVERGENCE MATRIX

Lee & Shao (2018) introduced the martingale difference divergence matrix (MDDM), which can be
viewed as an extension of martingale difference divergence (Shao & Zhang, 2014; Park et al., 2015)110

from a scalar to a matrix, and further applied it to the dimension reduction of a stationary multivariate
time series. For two real-valued random vectors Y ∈ Rr and X ∈ Rp, if E(‖Y ‖2 + ‖X‖) <∞, then

MY |X ≡ MDDM(Y | X) = −E
[
{Y − E(Y )}{Y ′ − E(Y ′)}T ‖X −X ′‖

]
, (5)

where (Y ′, X ′) is an independent copy of (Y,X). We introduced the notation MY |X as the abbreviation
of MDDM(Y | X) in Lee & Shao (2018). From (5), MY |X ∈ Rr×r is a real, symmetric and positive
semi-definite matrix. We assume E(‖Y ‖2 + ‖X‖) <∞ in our exposition unless otherwise specified.115

The span of MY |X is closely related to the mean dependence: For two random vectors X and Y , we
sayX is independent of Y in mean if E(X | Y ) = E(X). Clearly, dependence in mean is not symmetric,
X is independent of Y in mean does not imply Y is independent of X in mean.

As a direct consequence of Theorem 1 in Lee & Shao (2018), we have the following result.

LEMMA 1. For all values of x ∈ Rp in the support of X , we have E(Y | X = x)− E(Y ) ∈120

span(MY |X). Moreover, span[cov{E(Y | X)}] = span(MY |X).

The above lemma suggests that we can simply eigen-decompose the matrix MY |X and use the non-
trivial eigenvectors to span the subspace S such that QSY is independent of X in mean, i.e. E(QSY |
X) = E(QSY ) in (4). Given a random sample (Xi, Yi)

n
i=1 from the joint distribution of (X,Y ), the

sample version of MY |X can be straightforwardly calculated as M̂Y |X = − 1
n2

∑n
k,l=1(Yk − Y n)(Yl −125

Y n)T ‖Xk −Xl‖ where Y n = 1
n

∑n
i=1 Yi.

3. THE CENTRAL MEAN ENVELOPE

3.1. Formal definition and properties

In multivariate regression of Y on X , we are primarily interested in the conditional mean func-
tion E(Y | X). So we naturally want to know the subspace S ⊆ Rr such that E(Y | X) = E(PSY |130

X) + E(QSY | X) = E(PSY | X) + E(QSY ), and restrict our attention to E(PSY | X). The imma-
terial part QSY is mean independent of X and thus the variability in QSY can not be reduced by re-
gressing on X . As we stated in (4), we also want to have cov(QSY, PSY | X) = 0 so that the variation
in QSY also does not affect the regression analysis of PSY | X through correlation.

The next Lemma guarantees the existence of the smallest subspace S that satisfies (4).135

LEMMA 2. If S1 ⊆ Rr and S2 ⊆ Rr both satisfy (4), then their intersection S1 ∩ S2 also satisfies (4).

The formal definition of the central mean envelope (CME) in the following.

DEFINITION 2. The central mean envelope of Y ∈ Rr on X ∈ Rp, denoted as EE(Y |X) ⊆ Rr, is de-
fined as the intersection of all subspaces S ⊆ Rr that satisfy (4).

By construction, the CME EE(Y |X) always exists and is unique. It also generalizes the classical def-140

inition of envelopes in multivariate linear models: the definition is a generic definition of two random
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vectors and thus model-free; the mean function may no longer have linear form; and the conditional
covariance may depend on x.

Moreover, the CME also connects to the parametric form of envelopes in Definition 1.

PROPOSITION 1. The CME of Y on X reduces Σ(x). Moreover, EE(Y |X) =
∑

x EΣ(x)(MY |X). 145

From the above proposition, the CME can be seen as a subspace that contains span(MY |X) and also
jointly reduces all Σ(x) for different values of x. Unlike the standard envelopes in multivariate linear
model, the CME does not have to be associated with a parameter subspace such as span(β) in response
reduction or span(βT ) in predictor reduction. However, directly estimating the CME as the sum of
subspaces

∑
x EΣ(x)(MY |X) is difficult without any additional structural assumptions or simplification. 150

Therefore, we introduce the martingale difference divergence envelope (MDDE) to facilitate the estima-
tion of CME.

3.2. Martingale difference divergence envelope: a portion of the central mean envelope

Even when the covariance cov(Y | X = x) = Σ(x) is non-constant, it is helpful to first model the
mean function E(Y | X) without fully considering Σ(x) for all x. We introduce the following defi- 155

nition of martingale difference divergence envelope (MDDE) based on the expectation of conditional
covariance Σ = E{cov(Y | X)}.

DEFINITION 3. The martingale difference divergence envelope of Y ∈ Rr on X ∈ Rp, denoted
as EΣ(MY |X), is the intersection of all reducing subspaces of Σ = E{cov(Y | X)} that contain
span(MY |X) = span[cov{E(Y | X)}]. 160

Because of ΣY ≡ cov(Y ) = cov{E(Y | X)}+ E{cov(Y | X)} = cov{E(Y | X)}+ Σ, we have the
following important property of MDDE.

PROPOSITION 2. The martingale difference divergence envelope EΣ(MY |X) = EΣY
(MY |X) and is

the intersection of all S ⊆ Rr such that (i) E(QSY | X) = E(QSY ), and (ii) cov(QSY, PSY ) = 0.

The MDDE is more intuitive from this proposition. Comparing to the CME defined by (4), the only dif- 165

ference is in their second statement: while the CME requiresQSY and PSY to be conditionally uncorre-
lated given X , the MDDE requires them to be marginally uncorrelated. Then the following proposition
establish the more explicit connection between the MDDE and the CME.

PROPOSITION 3. The MDDE is contained in the CME, EΣ(MY |X) ⊆ EE(Y |X), where the equality is
attained if cov(Y | X) does not depend on X . 170

This proposition implies that the MDDE and the CME are identical in the multivariate linear regression
setting (1): EΣ(β) = EΣ(MY |X) = EE(Y |X). Also, we can improve the estimation of the CME by focus-
ing on MDDE first. The MDDE is itself of substantial interests, since it fully captures the potentially
nonlinear dependence in mean and also maintains the marginal uncorrelated material and immaterial
information. More importantly, unlike the estimation of CME in general, the estimation of MDDE is 175

rather straightforward and does not require slicing or clustering.
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3.3. Coordinate representation and visualization

To gain more intuition, we use a simulated regression example to visualize the CME and the MDDE.
Consider the following regression of multivariate response Yi ∈ Rr on univariate predictor Xi ∈ R1,

Yi = m(Xi) + Σ(Xi) · εi, i = 1, . . . , n, (6)

where m(X) = E(Y | X), Σ(X) = cov(Y | X) and ε ∼ N(0, Ir) is independent of X .180

Then the CME, which satisfies (4), is the smallest subspace S ⊆ Rr that contains m(X) ∈ Rr and re-
duces Σ(X) ∈ Rr×r. Let Γ ≡ (γ1, γ2, · · · , γu) ∈ Rr×u be a semi-orthogonal basis matrix for the CME
and (Γ,Γ0) ∈ Rr×r be an orthogonal matrix, then we have the coordinate representation as,

m(X) = Γf(X), Σ(X) = ΓΩ(X)ΓT + Γ0Ω0(X)ΓT
0 , (7)

where f(X) ∈ Ru is the lower-dimensional latent function that reflects the non-linear mean change of Y
captured within the CME, and Ω(X) ∈ Ru×u and Ω0(X) ∈ R(r−u)×(r−u) are symmetric matrices that185

reflect the heteroscedastic errors in the CME and those orthogonal to the CME.
We consider n = 1000 samples simulated from the above regression model where the response di-

mension is r = 20 and the CME dimension is u = 2. Predictor X follows Uniform(−1, 1) distri-
bution and Y is generated as in (6) and (7). We set f(X) = (exp(|X|/4), 0)T ∈ R2, Ω(X) ∈ R2×2

to be 0.2|X| on diagonal and 0.15X off diagonal, and Ω0 to be constant matrix with eigenvalues190

{exp(−1)/10, . . . , exp(−18)/10}. Because E(Y | X) = exp(|X|/4) · γ1 is symmetric around the ori-
gin, linear regression coefficient β = 0 and the standard envelope EΣ(β) = span(β) = ∅ fails to cap-
ture anything useful. In this example, the MDDE is EΣ(MY |X) = span(MY |X) = span(γ1) because
E(Ω(X)) is a diagonal matrix and span(γ1) is a reducing subspace of Σ.

In Figure 1, we plot the estimated central mean envelope components Γ̂TY = (γ̂T1 Y, γ̂
T
2 Y )T ∈ R2

195

versus the univariate predictor X , where γ̂1 is also the estimated basis matrix for MDDE. Due to the
nonlinearity, the standard envelope component β̂TY fails to detect any meaningful information. On the
other hand, the first CME component captures the clear nonlinearity, while the second CME component
demonstrates the heteroscedasticity. The estimation procedure is introduced in the following.

4. ESTIMATION PROCEDURES200

4.1. Estimating the MDDE

Recall from Proposition 2 that the MDDE EΣ(MY |X) = EΣY
(MY |X). Since the marginal covariance

ΣY = cov(Y ) is much easier to estimate than Σ = E{cov(Y | X)} in nonlinear regression, the form
EΣY

(MY |X) is more constructive in estimation. Given the dimension u1 = dim{EΣY
(MY |X)}, we pro-

pose the following optimization for estimating the MDDE as span(Ĝ),205

Ĝ = arg min
GTG=Iu1

log |GT (Σ̂Y + M̂Y |X)−1G|+ log |GT Σ̂YG|, (8)

where M̂Y |X is the sample MDDM and Σ̂Y is the sample covariance of Y .
The above objective function can be viewed as the partially optimized pseudo-likelihood of model-free

envelope estimation (Zhang & Mai, 2018, Section 3.1). Since M̂Y |X and MY |X are both symmetric pos-
itive semi-definite matrix, we can writeMY |X = V V T and M̂Y |X = V̂ V̂ T for some V, V̂ ∈ Rr×r. Then
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Fig.1.Estimatedenvelopecomponentsofamultivariate
responseversusaunivaraitepredictorfromasimulated
data.Thethreeplotsvisualizesstandardenvelope(left)and
thecentralmeanenvelope(middleandright)components.

span(V)=span(MY|X).Theparameterofinterest(ΣY,MY|X)isnowreparameterizedas(ΣY,V). 210

Assuch,thepseudo-log-likelihoodfunctionforjointestimatingΣYandVcanbewrittenas

n(ΣY,V)=−
n

2
log|ΣY|+trace(Σ

−1
Y ΣY)+trace{(V−V)

TΣ−1Y (V−V)}, (9)

whichistobeoptimizedovertheconstrainedparameterspace:ΣY=GΦG
T+G0Φ0G

T
0andV=Gη

forsomeG∈Rr×u1,span(G)=EΣY(MY|X)=EΣY(V).ByLemma3.1ofZhang&Mai(2018),the

unconstrainedmaximizationof(9)leadstothesamplecovarianceΣYandsampleMDDMMY|X,while

themaximumof(9)underenvelopeconstraintsisattainedatthesolutionof(8). 215

Anintuitiveexplainationof(9)isasfollows:Thefirsttwotermsisthenegativelog-likelihoodfor

ΣYundernormality,andthelasttermcharacterizesthemeanfunctionm(x)=E(Y|X=x)−E(Y).

AnalogoustothesquaredMahalanobisdistanceof{m(x)−m(x)}TΣ−1Y {m(x)−m(x)},wereplaced

m(x)andm(x)forallvaluesofxwithmatricesVandV.Therefore,thelasttermin(9)isanoverall

discrepancybetweentheconstrainedV=GηandtheunconstrainedsampleestimatorV. 220

Theproposedobjectivefunctionin(8)forMDDEandthecorrespondingpseudo-likelihoodin(9)are

closelyrelatedtothenormallikelihood-basedestimationinthestandardenvelope.InCooketal.(2010),

theestimationofEΣ(β)isderivedfromtheconditionalnormalassumptionofY|X∼N(βX,Σ).

ComparingEΣ(β)=EΣ(βΣXβ
T)andEΣY(MY|X),weseetheanalogybetweenthefittedvalueco-

varianceβΣXβ
T=cov{E(Y|X)}=ΣYXΣ

−1
X ΣXY ≡ΣfitandtheMDDMMY|X.Moreover,aswe 225

replaceΣYandMY|Xin(8)withthesampleleastsquaresestimates(Σ,Σfit),themaximumlikelihood

estimatorofEΣ(β)isreproducedbythesameoptimization.Ouroptimization(8)andpseudo-likelihood

argument(9)fallintheenvelopeestimationframeworkofCook&Zhang(2016)andtheenvelopedimen-

sioninferentialframeworkofZhang&Mai(2018),respectively.Therefore,weadoptthe1Dalgorithm

(Cook&Zhang,2016)and1Ddimensionselectionprocedure(Zhang&Mai,2018). 230
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4.2. Estimating the CME: some intuitions

From Propositions 1, EE(Y |X) =
∑

x EΣ(x)(MY |X). In estimation, we approximate Σ(x) for all val-
ues of x with a finite number of covariance matrices: Σh, h = 1, . . . ,H, H ≥ 2. Each Σh represents
the conditional covariance of cov{Y | X ∈ Rh}, where R1, . . . ,RH is a partition of the support of X .
For univariate X , we partition the range of X into H fixed non-overlapping slices similar to the sliced235

inverse regression procedure (SIR; Li, 1991). For multivariate X , similar to the idea of K-means inverse
regression (Setodji & Cook, 2004) that extends SIR from univariate response to multivariate, we con-
struct H clusters of X by the K-means clustering algorithm. As such, we can obtain sample covariance
matrices Σ̂h based on the nh samples in the h-th slice/cluster, where

∑H
h=1 nh = n.

If we assume normality and constant mean function within each slice/cluster Rh, then the con-240

ditional distribution of Y | X is characterized by Y | (X ∈ Rh) ∼ N(µh,Σh), h = 1, . . . ,H . The
CME EE(Y |X) becomes the smallest subspace that reduces all Σh and contains the mean subspace
span(µ1 − E(X), . . . , µH − E(X)). Similar envelope structure has been studied in groupwise regres-
sion (Su & Cook, 2013; Park et al., 2017) as well as in quadratic discriminant analysis (Zhang & Mai,
2019). It can be estimated from the following likelihood-based optimization,245

Γ̂ = arg min
ΓT Γ=Iu

log |ΓT Σ̂−1
Y Γ|+

H∑
h=1

nh
n

log |ΓT Σ̂hΓ|, (10)

which is used in Park et al. (2017) and Zhang & Mai (2019). However, since we can estimate MDDE
straightforwardly and accurately, there is no need to approximate E(Y | X) by µ1, . . . , µH . As such, we
propose a more accurate and practical estimation procedure for the CME in the next section.

Similar to Su & Cook (2013) and Park et al. (2017), in order to derive the likelihood-based estimation
(10), we have implicitly assumed that the CME satisfies250

Σh = ΓΩhΓT + Γ0Ω0ΓT
0 , (11)

where the immaterial variation Γ0Ω0ΓT
0 is static over h. This is because that we want to fully capture

the heteroscedasticity by the CME. Following Proposition 3 of Zhang & Mai (2019), we know that (11)
and (10) are in fact targeting at an upper bound of the CME. This targeting subspace, called envelope
discriminant subspace, reduces all Σh and contains the mean subspace span(µ1 − E(X), . . . , µH −
E(X)) as well as the inverse covariance subspace

∑H
h=2 span(Σ−1

h − Σ−1
1 ), which is of interest in255

quadratic discriminant analysis. Without loss of generality, we henceforth assume that CME satisfies
(11), or more generally, satisfies Σ(X) = ΓΩ(X)ΓT + Γ0Ω0ΓT

0 . When this assumption fails, we are
effectively targeting at a bigger subspace without loss of information on heteroscedasticity. To model
the heterogeneity among covariance matrices, Cook & Forzani (2008a) and Wang et al. (2019) proposed
related subspace models, and Cook & Forzani (2009, Proposition 1) developed properties of sufficient260

dimension reduction subspaces.

4.3. Estimating the CME: a novel two-part estimation

From Proposition 3, we know that the MDDE is always a portion of the CME: EΣ(MY |X) ⊆ EE(Y |X).
Suppose we know the dimensions u = dim{EE(Y |X)} and u1 = dim(EΣ(MY |X)), where u1 ≤ u.

When EΣ(MY |X) = EE(Y |X), or equivalently, u1 = u, the estimation procedures in Sections 4.1 and265

4.2 are different and generally produce different estimators for the same subspace. Note that even when
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Σ(x) is not constant, the two subspaces may be the same although they come from different definitions.
To address this issue, we propose the two-part estimation approach of first obtaining the MDDE and
then obtaining the unique part in CME that is not in MDDE. The two-part estimator of the CME reduces
to the same estimator of MDDE in Section 4.1 if EΣ(MY |X) = EE(Y |X). For u1 < u, we develop the 270

two-part estimation procedure of the CME as follows.
First, we estimate EΣ(MY |X) as span(Ĝ) from (8). Next, we estimate the difference D ≡ span{v :

v ∈ EE(Y |X), v /∈ EΣ(MY |X)}. Let (Ĝ, Ĝ0) ∈ Rr×r be an orthogonal matrix then D is estimated as
span(Ĝ0Ĥ), where Ĥ ∈ R(r−u1)×u2 and u2 = dim(D) = u− u1. Specifically, Ĥ is estimated as

Ĥ = arg min
HTH=Iu2

log |HT (ĜT
0 Σ̂−1Ĝ0)H|+

H∑
h=1

nh
n

log |HT (ĜT
0 Σ̂hĜ0)H|, (12)

which is inspired by the following Lemma. Finally, the two-part estimation of EE(Y |X) is span(Ĝ, Ĝ0Ĥ). 275

LEMMA 3. Let Σh ∈ Rr×r, h = 1, . . . ,H ,H ≥ 2, be a series of symmetric positive definite matrices,
and let Σ =

∑H
h=1 πhΣh, where πh > 0 and

∑H
h=1 πh = 1. Assume E ≡ span(Γ) ⊆ Rr is the smallest

subspace such that Σh = ΓΩhΓT + Γ0Ω0ΓT
0 holds for all h for some Ωh and Ω0, and that dim(E) = u,

then E = span(Ĝ), where Ĝ is defined as follows,

Ĝ = arg min
G∈Rr×u, GTG=Iu

{log |GTΣ−1G|+
H∑

h=1

πh log |GTΣhG|}. (13)

The above Lemma suggests a more effective objective function than the objective function in (10). 280

Specifically, we have made a simple but important change in (10) to get (13). We replaced the marginal
covariance ΣY by the conditional covariance Σ. Lemma 3 implies that both objective functions estimate
the CME consistently, however, the motivations are different. As mentioned earlier, (10) is motivated
from the likelihood for estimating the CME, while the new objective function (13) focuses more on the
heterogeneity of covariance matrices Σh since Σ is the weighted average of all Σh’s. This is indeed 285

much more desirable in the two-part estimation because the first part, the MDDE, already contains the
conditional mean function. In practice, we have observed that the two-part estimation based on (13) is
more accurate than that based on (10).

In our experience, the two-part estimation procedure of the CME is almost always better than the
direct estimation from (10) or (13). This is due to the fact that the MDDE part is easier to estimate, as 290

the sample matrix M̂Y |X in (8) is more accurately estimated than Σ̂h in (10) and (13), especially when
the sample size nh is small for some slices/clusters. Moreover, the optimization in (8) is more feasible
than the optimization in (10) and (13). As we have mentioned earlier, the objective function in (8) can
be solved using more specialized envelope algorithms (e.g., Cook & Zhang, 2016, 2018) that are much
faster and more accurate than using standard optimization methods with orthogonality constraints (e.g., 295

Absil et al., 2009; Wen & Yin, 2013). As such, we use the two-part estimation of the CME in all our
numerical studies.
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4.4. Consistency

We establish the
√
n-consistency of our estimator span(Ĝ) from (8) for the MDDE and the two-part

estimator span(Ĝ, Ĝ0Ĥ) from (8) and (12) for the CME. Since the subspaces are uniquely defined by300

the projection matrices onto them, the asymptotic results are stated in terms of projection matrices.
For all the asymptotic results, we require no model or distributional assumption. Instead, we assume

Σ̂Y , Σ̂h and M̂Y |X are
√
n-consistent estimators for their population counterparts ΣY > 0, Σh > 0,

h = 1, . . . ,H , and MY |X ≥ 0. This is a mild assumption that can be easily satisfied: the sample co-
variance matrices Σ̂Y and Σ̂h are

√
n-consistent when Y and Y | X have finite fourth moments;

√
n-305

consistency of the sample MDDM M̂Y |X is established in Lee & Shao (2018). The consistency of the
MDDE estimation is obtained by applying Proposition 3 in Cook & Zhang (2016).

PROPOSITION 4. Let Ĝ ∈ Rr×u1 be any minimizer of (8), then P
Ĝ

is
√
n-consistent for the projection

onto EΣ(MY |X).

We can speed up the computation by adopting the 1D algorithm (Cook & Zhang, 2016) that sequen-310

tially estimates one direction at a time for the MDDE. The resulting estimator, Ĝ1D ∈ Rr×u1 , is no
longer an minimizer of (8) but the

√
n-consistency in Proposition 4 still holds if we replace Ĝ with Ĝ1D

and apply the Proposition 6 from Cook & Zhang (2016). Moreover, the 1D algorithm is also coupled
with a model-free envelope selection criterion (Zhang & Mai, 2018) that estimates the envelope dimen-
sion consistently. That is, Pr(û1 = u1)→ 1 as n→∞. We will demonstrate this dimension selection315

procedure in our numerical studies.
For the second part estimation of the CME, we need the following coverage condition on the slicing

scheme. Specifically, the central mean envelope is covered as,

∑
x

EΣ(x)(MY |X) =

H∑
h=1

EΣh
(MY |X). (14)

Let G ∈ Rr×u1 be a basis matrix for EΣ(MY |X), and G0 ∈ Rr×(r−u1) be its orthogonal completion. We
show the consistency of the first part EΣ(MY |X) from (8), and the second part D from (12).320

PROPOSITION 5. Let Ĝ ∈ Rr×u1 be any minimizer of (8) and Ĥ ∈ R(r−u1)×u2 be any minimizer of
(12). If (14) is true, then P

Ĝ0Ĥ
is
√
n-consistent for the projection ontoD. Moreover, the projection onto

span(Ĝ, Ĝ0Ĥ) is
√
n-consistent for the projection onto EE(Y |X).

The assumption of (14) is a very mild condition and is easily satisfied when Σ(x) is a smooth function
of x. For example, this condition holds for any slicing scheme with h ≥ 2 in the example of Section 3.3.325

In practice, one can combine different slicing/clustering schemes to achieve a more robust and accurate
estimator. See Cook & Zhang (2014) for more background on the effect of slicing and constructing fused
estimator from different slicing schemes. The fused estimator in Cook & Zhang (2014) can be directly
applied to our optimization in (12), and in a way also circumvents the issue of choosing optimal slicing
scheme and weakens the assumption (14).330
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5. SIMULATIONS

5.1. Comparison

In this section, we study the finite-sample performance of our two-part estimation of the CME. We
compare with two closely related methods: the standard envelope estimator in Cook et al. (2010) and
the dimension reduction method by decomposing the MDDM directly (Lee & Shao, 2018). In pres- 335

ence of nonlinear mean function, the standard envelope model based on (1) and EΣ(β) is mis-specified.
However, since EΣ(β) = EΣ(ΣY X), the standard envelope is still a well-defined subspace in all of our
simulation examples but ineffective in detecting nonlinear and heteroscedastic envelope components.
The MDDM method performs eigen-decomposition of M̂Y |X and targets directly at the mean subspace
span(MY |X) = span{E(Y | X = x)− E(Y ) : ∀x}. In comparison, the proposed two-part estimator, 340

specifically the MDDE part from (8), has more advantage when Y are highly correlated.
In addition, we also compare with three popular sufficient dimension reduction methods by inter-

changing the role of X and Y : the sliced inverse regression (SIR; Li, 1991), the sliced average vari-
ance estimation (SAVE; Cook & Weisberg, 1991), and the principal fitted components (PFC; Cook &
Forzani, 2008b). When studying the regression of a univariate response Y ∈ R1 on a multivariate predic- 345

torX ∈ Rp, these sufficient dimension reduction methods are aiming at the central subspace SY |X ⊆ Rp.
Let β ∈ Rp×d be some basis matrix of the central subspace SY |X , then Y | X ∼ Y | βTX . The central
subspace are then estimated as Σ−1

X span(MSIR
X|Y ), Σ−1

X span(MSAVE
X|Y ), and Σ−1

X span(MPFC
X|Y ), for some

p× p symmetric positive semi-definite matrices MSIR
X|Y , MSAVE

X|Y and MPFC
X|Y . By removing the Σ−1

X term
in these dimension reduction methods (e.g. removing the standardization step in estimation), and in- 350

terchanging the roles of X and Y , the targeting subspace of these methods is a subset of the CME.
Therefore, to be fairly compared with envelope methods, we estimate span(MSIR

X|Y ), span(MSAVE
X|Y ) and

span(MPFC
X|Y ) from these sufficient dimension reduction methods.

In the simulation studies, we set the dimension r = 15 and the sample size n = 200 or 600. For
each example, we replicate the simulation 100 times and compute the Frobenius norm of the differ- 355

ence between the projection matrices onto the true and estimated subspaces, i.e. ‖PΓ − PΓ̂
‖F . We

also compute the principal angles between each CME directions and the estimated subspace, i.e.
θj = cos−1{(γTj PΓ̂

γj)
1/2}, j = 1, . . . , u, where Γ = (γ1, . . . , γu). The values for θj are bounded be-

tween 0 and 90, where θj = 0 indicates that γj is contained in span(Γ̂) and θj = 90 indicates that γj
is orthogonal to span(Γ̂). For SIR, SAVE and the second part estimation of CME, the number of slices 360

H = 5; and for PFC, the function basis is the cubic polynomials (x, x2, x3)T .

5.2. The standard envelope coincides with the CME

We first consider the following four models where the standard envelope, the MDDE, and the CME
are all the same in population. Therefore, the two-part CME estimator is identical to the MDDE esti-
mator based on (8). Similar to the data generating process in Section 3.3, the CME basis is randomly 365

generated and orthogonalized: Γ = (γ1, . . . , γu) ∈ Rr×u; and the predictor X follows Uniform(−1, 1)

distribution unless otherwise specified. The errors are generated as Ei = 0.1 · Σ1/2(Xi) · εi, where εi’s
are i.i.d. N(0, Ir) and Σ(x) = ΓΩ(x)ΓT + Γ0Ω0ΓT

0 is specified as follows. We use Ok ∈ Rk×k to de-
note an arbitrarily generated orthogonal matrix.
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Models n SIR SAVE PFC MDDM Standard MDDE

I 200 0.07 (0.02) 0.07 (0.3) 0.07 (0.2) 0.07 (0.2) 0.04 (0.2) 0.05 (0.2)
600 0.04 (0.2) 0.04 (0.1) 0.04 (0.1) 0.04 (0.1) 0.03 (0.1) 0.03 (0.1)

II 200 0.07 (0.3) 0.25 (1.7) 0.07 (0.3) 0.07 (0.3) 0.58 (6.7) 0.05 (0.2)
600 0.04 (0.1) 0.15 (0.7) 0.04 (0.2) 0.04 (0.2) 0.53 (6.7) 0.03 (0.1)

III 200 0.57 (2.6) 0.21 (0.6) 0.75 (3.6) 0.41 (1.8) 0.15 (2.6) 0.11 (1.4)
600 0.56 (2.7) 0.13 (0.4) 0.73 (3.4) 0.41 (2.3) 0.06 (0.2) 0.06 (0.2)

IV 200 0.12 (0.4) 0.14 (0.5) 0.12 (0.4) 0.12 (0.4) 1.08 (5.9) 0.06 (0.2)
600 0.07 (0.2) 0.09 (0.3) 0.07 (0.2) 0.07 (0.2) 0.88 (6.8) 0.04 (0.1)

Table 1. Estimation error ‖PΓ − PΓ̂‖F averaged over 100 replicates, where the standard errors are
also included in the paratheses after multiplied by 100. The SIR, SAVE, PFC, MDDM, Standard, and
MDDE refer to the methods in Li (1991), Cook & Weisberg (1991), Cook & Forzani (2008b), Lee &
Shao (2018), Cook et al. (2010), and the proposed estimator from (8), respectively.

r Model (I). Linear mean, constant covariance: Y = γ1X + Ei, Γ = γ1 ∈ Rr×1, Ω0 =370

Or−1diag{exp(3.0), exp(2.5), . . . , exp(−3.5)}OT
r−1 and Ω = exp(5).r Model (II). Nonlinear mean, constant covariance: Y = γ1X + γ2 exp(2|X|) + Ei, Γ = (γ1, γ2) ∈

Rr×2, Ω0 = Or−2diag{exp(3.0), exp(2.5), . . . , exp(−3.0)}OT
r−2 and [Ω]ij = 0.5|i−j| · exp(5).r Model (III). Linear mean, nonconstant covariance: Y = γ1X + 0.1 · Σ1/2(Xi) · εi, where Γ and Σ =

E{Σ(X)} are the same as in Model (II) but the off-diagonal of Ω(x) is Ω12(x) = |x| · exp(5).375 r Model (IV). Nonlinear mean, nonconstant covariance. The nonlinear mean function is the same as in
Model (II); and the nonconstant covariance is the same as in Model (III).

In all the simulations, the standard envelope becomes EΣ(ΣY X) = EΣ(γ1) because the second direction
γ2 either appears only in the covariance or appears with a nonlinear mean function γ2 exp(2|X|) that is
uncorrelated with X ∼Uniform(−1, 1).380

We summarize the results in Table 1, where we compare each methods in terms of overall estimation
error ‖PΓ − PΓ̂

‖F . The MDDE estimator based on (8) is always the best except for Model (I), where
the standard envelope is the maximum likelihood estimator and has a slight advantage. In constant co-
variance scenarios, i.e. Models (I) and (II), the MDDE has similar performance as the better one of the
standard envelope and the MDDM estimators. This is because that the MDDE estimation is essentially385

a hybrid of the envelope estimation (that incorporates covariance structural information of Σ) and the
MDDM (that is effective in capturing nonlinear means). In nonconstant covariance scenarios, i.e. Models
(III) and (IV), the MDDE has better performance than both the standard envelope and the MDDM.

For Models with two-dimensional subspace, we further compute the principal angles between the
second CME direction γ2 and the estimated subspace, i.e. θ2 = cos−1{(γT2 PΓ̂

γ2)1/2}. For Model (III),390

the second direction is only estimable from the nonconstant covariance but does not appear in the mean
function. Therefore, SIR, PFC and MDDM fail to estimate γ2 accurately, while SAVE, standard enve-
lope, and the proposed estimator perform well. For Model (II) and (IV), the second direction appears
in both the (nonlinear) mean and the covariance. Therefore, the nonlinear methods, SIR, SAVE, PFC,
MDDM, and MDDE all work well, while the standard envelope method becomes ineffective. Overall,395

the MDDE estimator is the most reliable one.
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Models n SIR SAVE PFC MDDM Standard MDDE

II 200 0.21 (0.01) 0.11 (0.01) 0.10 (0.01) 0.12 (0.01) 35.10 (4.40) 0.09 (0.01)
600 0.11 (0.01) 0.05 (0.01) 0.05 (0.01) 0.06 (0.01) 32.39 (4.34) 0.04 (0.01)

III 200 23.38 (1.27) 6.82 (0.26) 33.89 (2.13) 15.81 (0.84) 4.69 (0.86) 3.43(0.44)
600 23.87 (1.30) 4.35 (0.15) 33.26 (1.91) 16.77 (1.11) 1.69 (0.06) 1.69 (0.06)

IV 200 1.65 (0.06) 1.59 (0.05) 1.49 (0.05) 1.52 (0.05) 59.02 (3.36) 1.35 (0.05)
600 1.04 (0.04) 0.99 (0.03) 0.92 (0.03) 0.95 (0.04) 47.61 (3.76) 0.79 (0.03)

Table 2. Estimation error of the second direction θ2 = cos−1{(γT2 PΓ̂γ2)1/2}

Models n SIR SAVE PFC MDDM Standard CME

V 200 57.46 (2.7) 27.41 (1.0) 74.17 (3.5) 39.66 (1.7) 141.50 (0.1) 8.44 (0.3)
600 55.74 (2.8) 24.72 (1.1) 73.56 (3.4) 39.68 (2.0) 141.45 (0.1) 4.79 (0.1)

VI 200 58.26 (2.9) 25.33 (1.1) 71.15 (3.5) 65.67 (3.5) 182.27 (3.2) 7.27 (0.2)
600 54.77 (2.9) 23.81 (0.9) 67.26 (3.3) 60.92 (3.1) 175.19 (3.4) 4.13 (0.1)

VII 200 65.29 (2.9) 34.66 (1.3) 61.05 (3.2) 21.04 (0.9) 181.66 (3.2) 9.26 (1.9)
600 61.05 (2.87) 34.39 (1.5) 62.32 (3.0) 20.05 (0.8) 183.01 (2.7) 3.98 (0.1)

Table 3. Estimation error ‖PΓ − PΓ̂‖F averaged over 100 replicates, where the standard errors are
also included in the paratheses after multiplied by 100. The SIR, SAVE, PFC, MDDM, Standard, and
CME refer to the methods in Li (1991), Cook & Weisberg (1991), Cook & Forzani (2008b), Lee & Shao
(2018), Cook et al. (2010), and the proposed two-part estimation, respectively.

5.3. The standard envelope and the MDDE are proper subsets of the CME

In this section, we consider the following three models where EΣ(ΣY X) = EΣ(γ1) ⊆ EΣ(MY |X) ⊂
EE(Y |X) = span(Γ). The CME estimator is now based on two-part estimation in Section 4.2.

r Model (V). Linear mean, nonconstant covariance: same as Model (III) except that we change the 400

off-diagonal of Ω(X) is from |X| · exp(5) to X . Thus EΣ(γ1) = EΣ(MY |X) = span(γ1) ⊂ EE(Y |X).r Model (VI). Nonlinear mean, nonconstant covariance. Same as Model (V), except that the mean
function is γ2 · exp(2|X|) and is linearly independent of X . Thus EΣ(γ1) ⊂ EΣ(MY |X) ⊂ EE(Y |X).r Model (VII). Nonlinear mean, nonconstant covariance and multivariate predictor. Similar to Model
(IV), we have nonlinear mean function γ2 · {exp(2|X1|) + exp(|X2|+ |X3|) + exp(|X4|+ |X5|)}, 405

where the multivariate predictor is five-dimensional X = (X1, . . . , X5)T and each coordinate is uni-
formly distributed from −1 to 1. The covariance structure is the same as the previous two models
except for Ω12(X) = X4 +X5. We have EΣ(γ1) ⊂ EΣ(MY |X) ⊂ EE(Y |X).

Similar to Section 5.2, we summarize the overall estimation error ‖PΓ − PΓ̂
‖F in Table 3, and sum-

marize second CME direction γ2 estimation error θ2 = cos−1{(γT2 PΓ̂
γ2)1/2} in Table 4. For these more 410

challenging models, the proposed CME estimator is much more accurate than the competitors, especially
in estimating the second direction that comes from nonlinearity and heteroscedastic error.

Moreover, we tried different numbers of slices/clusters, H = 2, 5, 10, 15, for Models (V)–(VII). The
results are indistinguishable from the results in Tables 3 and 4, where we have used H = 5. The overall
performance of the two-parts estimation is very encouraging. 415



14

Models n SIR SAVE PFC MDDM Standard CME

V 200 23.93 (1.39) 9.52 (0.43) 33.33 (2.05) 15.34 (0.77) 82.91 (0.58) 2.58 (0.10)
600 23.83 (1.42) 9.38 (0.48) 33.79 (2.04) 16.25 (0.92) 86.33 (0.31) 1.44 (0.05)

VI 200 25.32 (1.50) 10.17 (0.46) 32.50 (1.98) 29.74 (1.95) 76.35 (3.07) 2.59 (0.10)
600 23.88 (1.52) 9.66 (0.39) 30.57 (1.90) 27.15 (1.74) 79.58 (2.74) 1.44 (0.05)

VII 200 25.72 (1.50) 13.01 (0.60) 23.80 (1.59) 8.38 (0.36) 75.31 (3.16) 4.06 (1.16)
600 24.17 (1.31) 12.92 (0.65) 25.39 (1.56) 8.11 (0.32) 80.64 (2.65) 1.46 (0.05)

Table 4. Estimation error of the second direction θ2 = cos−1{(γT2 PΓ̂γ2)1/2}.

Models Standard Envelope CME
û < u û = u û > u û < u û = u û > u

n 200 600 200 600 200 600 200 600 200 600 200 600
II 54 55 44 45 2 0 0 0 100 100 0 0
III 8 0 84 98 8 2 35 0 65 100 0 0
IV 75 77 23 22 2 1 0 0 100 100 0 0
V 86 98 13 2 1 0 0 0 56 50 44 20
VI 94 99 6 1 0 0 0 0 53 82 47 18

Table 5. Percentages of correctly selected dimension, under-selection, and over-selection over 100 repli-
cates for each model setting based on the dimension selection procedure in Zhang & Mai (2018).

5.4. Selecting the envelope dimensions

We applied the model-free information criteria of envelope dimension selection proposed by Zhang
& Mai (2018) to select the envelope dimensions (i.e. for standard envelope, MDDE, and CME). Im-
plementation details is included in Section S2 of the Supplementary Materials. Table 5 summarizes the
dimension selection results for the CME under the previous simulation models. For Models (II)–(IV),420

because the standard envelope coincides with the CME, both methods should be able to determine the
true dimension consistently when n→∞. Clearly, the CME method has much better finite sample per-
formance. For Models (V) and (VI), the standard envelope fails to detect the second CME components,
and, not surprisingly under-selected the dimension. The CME dimension selection has reasonable results
for these two very challenging models. There is also a significant improvement of accuracy when the425

sample size is increased from 200 to 600.

6. REAL DATA ILLUSTRATION

We demonstrate the advantages of the central mean envelope over standard envelope in prediction
and subspace estimation. The riboflavin data set from Bühlmann et al. (2014) contains 71 samples of
the riboflavin production rate and the expression level of 4,088 genes. We use the logarithm of the430

riboflavin production rate as the predictor and the logarithm of the gene expression as the response.
Similar to Bühlmann et al. (2014), and due to the high dimensionality, we focus the top 50 genes that
selected by the martingale difference correlation Shao & Zhang (2014). We applied the same dimension
selection procedures as in Section 5.4 for the standard envelope and the CME. For the standard envelope,
the selected dimension is u = 1. For the CME, the selected dimensions are u1 = 1 for the first part435

(nonlinear mean) and u2 = 0 for the second part (heteroscedastic error). In the Supplementary Materials,



15

Prediction Estimation
Linear Kernel m = 71 m = 150

Standard envelope 37.57 (0.50) 37.22 (0.50) 0.37 (0.014) 0.34 (0.021)
Proposed envelope 35.83 (0.38) 35.30 (0.33) 0.25 (0.007) 0.17 (0.004)

Table 6. Comparison of envelope methods in prediction (prediction mean squared error) and in es-
timation (subspace bootstrap variability). The standard envelope and proposed envelope refer to the
estimators from Cook et al. (2010) and from optimization (8), respectively.

the nonlinearity in E(γ̂TY | X) is clearly demonstrated in Figure S1, where γ̂ is the estimated CME,
which has dimension one and is the same as the MDDE.

For numerical comparison, we divide the data into training and testing sets by randomly choose 56
samples as training data and the remaining 15 as testing data. Then we compute the prediction mean 440

squared error based on either linear or kernel regression of the material part of response on predictor,
Ê(γ̂TY | X), while the immaterial part of the response is predicted by its unconditional mean Ê(Γ̂T

0 Y ).
Specifically, for the kernel regression, we use Gaussian kernel with the optimal bandwidth from the “ksr”
function in Matlab. We repeat this procedure for 100 times and present the average and standard deviation
of the prediction mean squared error in Table 6. The improvement is significant. To evaluate the sub- 445

space estimation accuracy, we consider the bootstrap variability of subspaces B−1
∑B

b=1 ‖PŜ − PŜb‖F ,
where Ŝ is the estimated subspace on the original data and Ŝb, b = 1, . . . , B, is the estimated subspace
on m bootstrap samples from B = 200 bootstrap replicates. This is a commonly used criterion in suf-
ficient dimension reduction literature (for example, Ye & Weiss, 2003; Luo & Li, 2016). We consider
m = 71 bootstrap samples, then the covariance may occasionally become ill-conditioned and we hence 450

add 0.01Ir to the sample covariance Σ̂Y . Alternatively, we also consider m = 150. From Table 6, the
proposed method has improved the subspace estimation significantly.

7. DISCUSSION

Although our focus is on multivariate response reduction in regression, the two new envelope struc-
tures, MDDE and CME, are model-free and can be used beyond regression models. For example, in 455

the Supplementary Materials Section S4, we also apply our method on a handwritten digit recognition
data and illustrate the CME as a useful data visualization tool in discriminant analysis and classification.
Moreover, by interchanging the roles of X and Y , the MDDE EΣX

(MX|Y ) or the CME EE(X|Y ) can
serve as an upper bound of the central subspace SY |X in sufficient dimension reduction (Cook, 1998; Li,
2018) and potentially improve standard sufficient dimension reduction methods. Two future research di- 460

rections are to extend our framework to simultaneous predictor and response reduction, and to stationary
multivariate time series. The former would be an extension of the simultaneous envelope in multivariate
linear model (Cook & Zhang, 2015b), while the latter can be achieved by using the cumulative version
of M̂Y |X (Lee & Shao, 2018). Properties of such extensions are yet to be studied.

ACKNOWLEDGEMENT 465

The authors are grateful to the Editor, Associate Editor and two referees for insightful comments that
have led to significant improvements of this paper; and would like to thank Professor R. Dennis Cook



16

from the University of Minnesota for his comments and suggestions on the manuscript. Research for this
paper was partly supported by U.S. National Science Foundation.

REFERENCES470

ABSIL, P.-A., MAHONY, R. & SEPULCHRE, R. (2009). Optimization algorithms on matrix manifolds. Princeton University
Press.

BÜHLMANN, P., KALISCH, M. & MEIER, L. (2014). High-dimensional statistics with a view toward applications in biology.
Annual Review of Statistics and Its Application 1, 255–U809.

COOK, R., HELLAND, I. & SU, Z. (2013). Envelopes and partial least squares regression. Journal of the Royal Statistical475

Society: Series B (Statistical Methodology) 75, 851–877.
COOK, R. D. (1998). Regression Graphics: Ideas for Studying Regressions Through Graphics, vol. 318. John Wiley & Sons.
COOK, R. D. (2018). Principal components, sufficient dimension reduction, and envelopes. Annual Review of Statistics and

Its Application 5, 533–559.
COOK, R. D. & FORZANI, L. (2008a). Covariance reducing models: An alternative to spectral modelling of covariance480

matrices. Biometrika 95, 799–812.
COOK, R. D. & FORZANI, L. (2008b). Principal fitted components for dimension reduction in regression. Statistical Science

23, 485–501.
COOK, R. D. & FORZANI, L. (2009). Likelihood-based sufficient dimension reduction. Journal of the American Statistical

Association 104, 197–208.485

COOK, R. D. & LI, B. (2002). Dimension reduction for conditional mean in regression. The Annals of Statistics 30, 455–474.
COOK, R. D., LI, B. & CHIAROMONTE, F. (2007). Dimension reduction in regression without matrix inversion. Biometrika

94, 569–584.
COOK, R. D., LI, B. & CHIAROMONTE, F. (2010). Envelope models for parsimonious and efficient multivariate linear

regression. Statistica Sinica , 927–960.490

COOK, R. D. & WEISBERG, S. (1991). Comments on "sliced inverse regression for dimension reduction" by kc li. Journal of
the American Statistical Association 86, 328–332.

COOK, R. D. & ZHANG, X. (2014). Fused estimators of the central subspace in sufficient dimension reduction. Journal of
the American Statistical Association 109, 815–827.

COOK, R. D. & ZHANG, X. (2015a). Foundations for envelope models and methods. Journal of the American Statistical495

Association 110, 599–611.
COOK, R. D. & ZHANG, X. (2015b). Simultaneous envelopes for multivariate linear regression. Technometrics 57, 11–25.
COOK, R. D. & ZHANG, X. (2016). Algorithms for envelope estimation. Journal of Computational and Graphical Statistics

25, 284–300.
COOK, R. D. & ZHANG, X. (2018). Fast envelope algorithms. Statistica Sinica 28, 1179–1197.500

DAWID, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society. Series B
(Methodological) , 1–31.

KHARE, K., PAL, S. & SU, Z. (2017). A bayesian approach for envelope models. The Annals of Statistics 45, 196–222.
LEE, C. E. & SHAO, X. (2018). Martingale difference divergence matrix and its application to dimension reduction for

stationary multivariate time series. Journal of the American Statistical Association 113, 216–229.505

LI, B. (2018). Sufficient dimension reduction: Methods and applications with R. Chapman and Hall/CRC.
LI, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association 86,

316–327.
LI, L. & ZHANG, X. (2017). Parsimonious tensor response regression. Journal of the American Statistical Association 112,

1131–1146.510

LUO, W. & LI, B. (2016). Combining eigenvalues and variation of eigenvectors for order determination. Biometrika 103,
875–887.

MATTESON, D. S. & TSAY, R. S. (2017). Independent component analysis via distance covariance. Journal of the American
Statistical Association 112, 623–637.

PARK, T., SHAO, X. & YAO, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics 9, 1492–1517.515

PARK, Y., SU, Z. & ZHU, H. (2017). Groupwise envelope models for imaging genetic analysis. Biometrics 73, 1243–1253.
SETODJI, C. M. & COOK, R. D. (2004). K-means inverse regression. Technometrics 46, 421–429.
SHAO, X. & ZHANG, J. (2014). Martingale difference correlation and its use in high-dimensional variable screening. Journal

of the American Statistical Association 109, 1302–1318.
SHENG, W. & YIN, X. (2016). Sufficient dimension reduction via distance covariance. Journal of Computational and520

Graphical Statistics 25, 91–104.
SU, Z. & COOK, R. D. (2013). Estimation of multivariate means with heteroscedastic errors using envelope models. Statistica

Sinica , 213–230.
SZÉKELY, G. J. & RIZZO, M. L. (2009). Brownian distance covariance. The Annals of Applied Statistics , 1236–1265.



17

SZÉKELY, G. J., RIZZO, M. L., BAKIROV, N. K. et al. (2007). Measuring and testing dependence by correlation of distances. 525

The Annals of Statistics 35, 2769–2794.
VEPAKOMMA, P., TONDE, C., ELGAMMAL, A. et al. (2018). Supervised dimensionality reduction via distance correlation

maximization. Electronic Journal of Statistics 12, 960–984.
WANG, W., ZHANG, X. & LI, L. (2019). Common reducing subspace model and network alternation analysis. Biometrics

75, 1109–1120. 530

WEN, Z. & YIN, W. (2013). A feasible method for optimization with orthogonality constraints. Mathematical Programming
142, 397–434.

YE, Z. & WEISS, R. E. (2003). Using the bootstrap to select one of a new class of dimension reduction methods. Journal of
the American Statistical Association 98, 968–979.

ZHANG, X. & LI, L. (2017). Tensor envelope partial least-squares regression. Technometrics 59, 426–436. 535

ZHANG, X. & MAI, Q. (2018). Model-free envelope dimension selection. Electronic Journal of Statistics 12, 2193–2216.
ZHANG, X. & MAI, Q. (2019). Efficient integration of sufficient dimension reduction and prediction in discriminant analysis.

Technometrics 61.


