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A B S T R A C T

We present an analysis of the sensitivity of three key crops (alfalfa, barley and winter wheat) produced in the

northwestern United States to climatic and agricultural market anomalies using widely used standardized in-

dices. Rather than investigating sensitivity of crop yields (production per unit area), we focus on agricultural

production (yield * harvested area) anomalies, which captures both variations in yield and the effect of decision-

making factors such as allocation of cropping area. We used two well-known standardized precipitation and

reference evapotranspiration (ETo) indices (SPI and EDDI, respectively) and a standardized crop value index in a

multivariate linear regression analysis to determine the characteristic timing and time-scales of precipitation and

ETo anomalies that best explain annual crop production anomalies. Since climatic and market factors are

standardized, regression coefficients are interpreted as a sensitivity measure that captures the relative effect of

climatic and agricultural markets on agricultural production. Results show that alfalfa production was most

sensitive climatic anomalies while barley and wheat production was more responsive to crop prices. Sensitivity

to precipitation anomalies followed gradients in precipitation, temperature, and soil moisture regimes across the

study area where drier and warmer climates were associated with increased sensitivity to climatic anomalies. We

found that irrigation decoupled alfalfa production from climatic variability, but the effect of irrigation on de-

coupling barley production was less clear. Winter wheat production was most sensitive to price anomalies, and

alfalfa was least sensitive. Omitting agricultural market conditions and other farmer incentives may introduce

biases in our understanding of how drought and climate change impact agricultural production.

1. Introduction

Climate variability in agricultural regions affects soil moisture and

available energy (Salinger et al., 2000), increasing the risk farmers take

when they make resource-use decisions such as how much land they

allocate to the crops they choose to grow and where to distribute scarce

irrigation water. Farmer's perception of risk affects this decision-

making, with potential consequences for regional agricultural produc-

tion (yield * harvested area) and food security (Lawrence et al., 2018).

Concerns about rural well-being, economic development and food

security have led to an increasing number of studies investigating the

sensitivity of crop yield (production per unit area) and production to

climate variability with concentration on drought (Iizumi and

Ramankutty, 2015a; Lobell and Asner, 2003; Lobell and Field, 2007;

Peña-Gallardo et al., 2018b). From the many environmental stresses

that affect crop production (e.g., soil salinity, frost, soil erosion),

drought is one of the most prevalent (Porter and Semenov, 2005; Shao

et al., 2009). In terms of agriculture, crop sensitivity to the different

constituents of drought varies by cultivation and over the growth cycle

of a given crop. Cereal crops, for example, may experience reduced
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productivity due to unusually high temperatures during the grain filling

period, even though precipitation deficits are not present (Lobell et al.,

2012). Alternatively, unusually high temperatures at the beginning of

the growing season may increase cereal crop productivity by allowing

for earlier sowing dates (Lanning et al., 2010).

Several drought indices based upon meteorology have been devel-

oped specifically for agriculture (Heim, 2002; Mukherjee et al., 2018).

The most widely used climate index is the Palmer Drought Severity

Index (PDSI), based upon precipitation, temperature, available soil

water, runoff, and atmospheric water demand (Palmer, 1965). McKee

et al. (1993) developed the Standardized Precipitation Index (SPI),

which provides a definition of drought severity accumulated over dif-

ferent time-scales using precipitation alone. Hobbins et al. (2016) de-

veloped the Evaporative Demand Drought Index (EDDI) which provides

a definition of drought severity accumulated over different time-scales

based on potential evapotranspiration. Vicente-Serrano et al. (2010)

developed the Standardized Precipitation Evapotranspiration Index

(SPEI) to describe drought conditions accumulated over different time-

scales based on precipitation and the atmospheric evaporative demand.

An alternative index that captures drought from the point of view of the

atmospheric demand is the Standardized Evapotranspiration Deficit

Index (SEDI), which uses the difference between potential and actual

evapotranspiration to describe drought conditions (Kim and Rhee,

2016; Vicente-Serrano et al., 2018). Drought indices with the ability to

capture drought conditions accumulated over different time-scales have

been shown to perform better for predicting crop production or yields

than traditional ’static’ indices such as the PDSI (Peña-Gallardo et al.,

2018a; Vicente-Serrano et al., 2012).

Most meteorology based indices used to characterize agricultural

drought focus on the impact of climate factors on agricultural yields.

However, to investigate drought impacts on land use, on rural liveli-

hoods and on food security it is better to focus on total production

because growers can compensate for yield reductions and maintain

profitability by increasing the planted area. Total crop production is an

important metric that captures both the efficacy of agricultural prac-

tices and the impact of climate conditions, as well as the response of

farmers in terms of land allocated to particular crops based on their

perception of risk and the impact of other external factors such as

agricultural markets and policy incentives (Iizumi and Ramankutty,

2015b). Therefore, while crop yield alone is certainly an important

component of annual crop production, focusing on yields alone fails to

capture farmer response and the compensatory effects that the re-

allocation of land may have on total food production. This may con-

tribute to an overemphasis on the role of climate variability for food

security.

Farmers are not only sensitive to climate conditions but also react to

other factors such as crop prices and may choose to allocate resources to

maintain agricultural production even under more adverse climate if

market conditions are favorable or were favorable the previous year.

Therefore, crop price should also be considered in crop production

models (Lobell et al., 2011). Throughout this paper, we refer to the

prices the farmer receives for their produce (farmgate prices) as crop

price. Crop price can impact both crop yield and crop production in

complex ways, and the two are not always directly related (Miao et al.,

2016). Higher crop prices could reasonably be associated with mono-

culture of a better returning crop, which would increase production but

has been associated with decreased yields over the long term

(Hennessy, 2006). Alternatively, higher crop price for a given crop may

encourage different crop rotations to improve soil quality, which would

be associated with lower productivity but greater yields in the long

term (Hennessy, 2006). The expectation of higher crop price may also

result in a greater allocation of inputs (i.e., fertilizer, higher quality

seed, pest management, etc.) accompanied by an increase in cropping

area that contribute to increases in both yield and production. There-

fore, although the expectation may be that crop prices mostly affect

land allocation, it likely plays an important role in inter-annual

variability of both crop yield and crop production.

This study investigates annual crop production anomalies in relation

to three factors: precipitation anomalies (atmospheric supply anoma-

lies), reference evapotranspiration (ETo) anomalies (atmospheric de-

mand anomalies), and anomalies in the price that farmers receive for

their crops the year prior to production. We focus on the northern re-

gion of the USA, which is an important wheat, barley and alfalfa pro-

ducer and is representative of the agriculture of the US Northern Great

Plains and US Rocky Mountain front. The objectives of this study were

threefold: 1) Quantify the sensitivity of alfalfa, barley, and winter

wheat production to precipitation, ETo and to price anomalies (as re-

presented by SPI, EDDI and a standardized crop value index) at the

county scale; 2) Compare production sensitivities to these anomalies

between crops; 3) Cluster (i.e., group) counties based on spatial pat-

terns of sensitivities of annual crop production to precipitation, ETo,

and price and identify the regions most vulnerable to drought condi-

tions.

2. Methods

2.1. Study area

The study focused on crop production anomalies in Idaho, Montana,

North Dakota, South Dakota, and Wyoming, all located in the inland

northwest of the US (Fig. 1a). The study region encompasses the por-

tions of the intermountain west and the northern great plains region,

and includes significant longitudinal physiographic and climate gra-

dients associated with proximity to the Pacific Ocean and Gulf of

Mexico (Salley et al., 2016). Topography further enhances climate

gradients through orographic effects, where Idaho, western Montana,

and western Wyoming are mountainous areas associated with the

northern Rocky Mountain region, while eastern Montana, South Da-

kota, North Dakota, and eastern Wyoming are flat prairies associated

with the Northern Great Plains (Fig. 1b). Generally, a precipitation

gradient exists moving west to east, with some areas in Idaho receiving

an average of 1000mm/yr of precipitation, and some areas in Wyoming

and South Dakota receiving <200mm/yr (Fig. 1c). Rain-fed produc-

tion of the three crops within the study area was limited to areas re-

ceiving at least 300mm of average annual precipitation over the study

period, and primarily irrigated production starts in areas receiving at

least 200mm/yr. Temperature generally follows a similar gradient,

with cooler temperatures in the Rocky Mountains and warmer tem-

peratures in the Northern Great Plains (Fig. 1d).

Agricultural crop production is a key industry within the study area,

however five or six major crops dominate total area under production.

Three of these major crops, alfalfa, barley, and winter wheat, were

chosen due to adequate period record and economic significance in the

region, and because they are commonly produced across the study area.

States in the study area are important contributors to the national

production of these three crops. Idaho, Montana, and South Dakota

were ranked second, third, and fourth in US alfalfa production, re-

spectively, between 2015 and 2017 (USDA NASS). Idaho, North Dakota,

Montana, and Wyoming ranked first, second, third, and fifth in the US

for barley production. Montana and Idaho ranked sixth and seventh in

the US for winter wheat production between 2015 and 2017 (USDA

NASS). Farmers in Idaho, western Montana, and western Wyoming

benefit from widespread irrigation infrastructure, while crop produc-

tion in eastern Montana, North Dakota, South Dakota, and eastern

Wyoming is primarily rain-fed (USDA NASS).

2.2. Data analysis and preprocessing

To investigate the response of anomalies in the annual crop pro-

duction of alfalfa, barley, and winter wheat to anomalies in precipita-

tion, ETo and crop price we used survey data for the period of

1979–2016. Crop production and crop price data were obtained from
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the US Department of Agriculture National Agricultural Statistics

Service (USDA NASS). Production data is available at the county scale,

while information on price received is available for each crop at the

state scale. We only included counties in our analysis with at least 20

years of record. We also retrieved the annual irrigated production of

each crop when available in the USDA NASS survey. We used the ratio

of total irrigated production of a given crop to the total production of

that crop over the study period in each county as a metric of the pre-

valence of irrigation in each county. Counties with <40% irrigated

total production were considered primarily rain-fed and counties with

>60% irrigated total crop production was classified as primarily irri-

gated. Counties with between 40% and 60% total irrigated production

were not used in the comparison of sensitivity to precipitation and ETo

between rain-fed and irrigated counties.

Gridded precipitation and ETo data were obtained from the

University of Idaho Gridded Surface Meteorological Dataset,

METDATA. This dataset uses information from the PRISM (Parameter

elevation Relationships on Independent Slopes Model) (Daly et al.,

2008) and the NLDAS-2 (NASA Land Data Assimilation System version-

2 (Mitchell, 2004) to generate a downscaled daily meteorological da-

taset at 4 km resolution for the continental US Abatzoglou (2013). The

ETo grids included in METDATA are calculated using the American

Society of Civil Engineering Penman-Monteith formulation with

downscaled minimum and maximum temperature, vapor pressure

deficit, wind speed, and downward shortwave radiation. Precipitation

and ETo data were spatially averaged to the county scale and then

temporally averaged to monthly time steps. Meteorological, price and

agricultural production time series for each county were detrended

using linear regression prior to the calculation of anomalies (S-1

through S-4).

Precipitation anomalies were described using the Standardized

Precipitation Index (SPI), which characterizes drought by accumulating

standardized anomalies over prescribed time-scales (McKee et al.,

1993). We calculated 15 SPI time series for each county from monthly

detrended precipitation information across the growing season (be-

ginning in March and ending in September) using SPI timescales from 1

to 15 months. The SPI was fitted using a gamma distribution (Vicente-

Serrano et al., 2010). Precipitation anomalies (SPI) are hence referred

to as precipitation.

ETo anomalies were described using the Evaporative Demand

Drought Index (EDDI) (Hobbins et al., 2016). Like the SPI, EDDI

characterizes drought over user defined timescales of accumulated

anomalies. In this study we calculated EDDI over different time-scales

using the empirical probability of ranked ETo values summed across the

time-scales of interest (Hobbins et al., 2016), and then used inverse

normal approximation described by Vicente-Serrano et al. (2010). We

again developed 15 EDDI time series for each county across the growing

season using 1 to 15 months EDDI time-scales from detrended historic

ETo data. ETo anomalies are hence referred to as just ETo.

To calculate the time series of production and price anomalies, we

followed the same methodology of the SPI calculations but on de-

trended time series of annual production for each county and crop, and

of annual crop price for each state and crop. The time series of crop

prices was lagged one year to reflect the assumption that farmers react

to prices received the previous year (Miao et al., 2016). Another al-

ternative is to assume that farmers react to commodity price futures for

the current production year, however one-year lagged prices and crop

price futures are highly correlated and can be used interchangeably

with limited impacts on the analysis (Miao et al., 2016). We found that

the distribution of standardized time series of crop productions and

prices were best fitted using a log- logistic distribution instead of the

gamma distribution recommended for precipitation. We refer to the

resulting index of production anomalies as the Standardized Crop

Production Index (SCPI), and the index of lagged price anomalies as the

Standardized Crop Value Index (SCVI). The SCPI and SCVI were cal-

culated for each county with a time-scale of one year. Since crop prices

are only available at the state scale, the SCVI is identical for the

counties in each state. Annual crop production anomalies are hence

referred to as just production, and price received anomalies are referred

to as just price.

The use of different lags for the meteorological indices is essential

because we do not know a priori the characteristic time-scale of climate

anomalies to which crop production responds. Strong differences have

been recorded in response to different drought time-scales in natural

vegetation (Pasho et al., 2011; Vicente-Serrano et al., 2013) and crops

(Peña-Gallardo et al., 2018; Zipper et al., 2016). Identifying the correct

time-scale is important to determine the inertia of crop production to

climate variability.

2.3. Models

We assume that the incremental response of production is described

by a linear combination of climate and price anomalies. These are re-

duced-form models in the sense that they describe collinearity between

precipitation or ETo, price, and production anomalies, but they do not

describe the underlying mechanisms that generate production in those

Fig. 1. (a) Location of the study area within the contiguous United States. (b) Location of each state within the study area and the topography. (c) 30 year mean

annual precipitation from 1979–2010 (Daly et al., 2008). (d) 30 year mean July temperature from 1981–2010 (Daly et al., 2008).

P. Wurster, et al. Agricultural and Forest Meteorology 280 (2020) 107778

3



counties. The relationship between meteorological and production

anomalies appears to be linear or at least not strongly nonlinear ac-

cording to our data (S-5). Linear models have been used by other stu-

dies to relate different measures of production with climatological

factors (Steduto et al., 2007; Vicente-Serrano et al., 2006).

Instead of building a linear model with the SPI, EDDI and SCVI as

independent variables, we chose to develop two different linear models

to describe annual production anomalies, one based on precipitation

and price (SPI and SCVI) and another based on ETo and price (EDDI and

SCVI). The motivation was to avoid issues related to the correlation

between SPI and EDDI and to reduce the number of variables that

needed to be estimated in the final models. A single multiple regression

including SPI and EDDI would be possible using a regularization

method such as LASSO or ridge regression to handle the collinearity

between SPI and EDDI. However, previous analysis by our team found

that LASSO regression will zero out the EDDI coefficient resulting in an

equivalent model to Eq. (1). We also found in cross validation analysis

that Ridge Regression produces unstable and biased coefficients very

dependent on the amount of ridging applied. The linear models are:

= + +SCPI α SPI β SCVI γi j
p

i j m k m k j i j
p

s i i j m k
p

, , , , , , , , , , , (1)

= + +SCPI δ EDDI β SCVI γi j
e

i j m k m k j i j
e

s i i j m k
e

, , , , , , , , , , , (2)

where SCPI is the annual production anomaly, α is the fraction of

precipitation anomaly that translates to the production anomaly, δ is

the fraction of ETo that translates to production anomaly, β is the

fraction of price anomaly that translates to production anomaly, and γ

is the intercept, which absorbs the effect of errors and the effect of other

factors not explicitly included in the model. Subscripts indicate that the

variables change with crop, i; state. s; county, j; month, m; and SPI or

EDDI time scale, k. The superscript p or e differentiate the coefficients

for the precipitation model (Eq. (1)) or the ETo model (Eq. (2)).

We used a hierarchical linear regression (HLR) approach (Gelman

et al., 2013; McMahon and Diez, 2007) to determine the model re-

gression coefficients. We assumed t-distributed crop production data

errors (Gelman et al., 2013, p. 435 ff) to increase robustness and reduce

the risk that outliers in the crop production dataset could bias the in-

ference of the coefficient values. We included as a calibration parameter

the degrees of freedom of the t-distribution that control the tails of the

distribution (i.e., ν shown in Fig. 2). To identify the optimal SPI and

EDDI time-scales and the most sensitive month of the growing season

for each county, we first ran a maximum likelihood method to de-

termine prediction errors from Eq. (1) and (2) using each combination

of time-scale and month of the growing season of the SPI and EDDI time

series. For each combination of time-scale and month we recorded the

root mean square error (RMSE) of the prediction and selected the time-

scale and month combination with the lowest RMSE for each county as

the characteristic SPI or EDDI timescale and month. We then de-

termined confidence intervals of the regression coefficients associated

with the characteristic SPI and EDDI time series determined for each

county by sampling the HLR model coefficients using a Markov chain

Monte Carlo (MCMC) method.

A HLR method was employed to increase the regression robustness

and augment the datasets with group level (state) information. In

Bayesian HLR, a set of hyperparameters at the higher level (state level)

are sampled from prescribed state-level distributions, which are sub-

sequently used to inform the prior distribution of county-level regres-

sion parameters (Gelman et al., 2013). HLR also accommodated the fact

that crop prices data also was only available at the state scale. A

schematic of the MCMC robust hierarchical regression algorithm shown

presented in Fig. 2. A common problem in hierarchical regression is

that when the sampler of the group variance (upper level) is exploring

regions close to zero, the sampling at the individual level (lower level)

become very inefficient because the probability that the chain can take

a long step and explore away from the group mean is small. To solve

this we use a linear transform that uses values sampled from the stan-

dard normal distribution (αoffsets i j, , , βoffsets i j, , , γoffsets i j, , in Fig. 2) to offset the

hyperparameters away from the group means (for details see

Betancourt and Girolami, 2015, p. 80ff). The HLR model was im-

plemented in python using the pyMC3 library (Salvatier et al., 2015).

The posterior distribution of county-scale regression coefficients sam-

pled by the MCMC HLR was used to identify the 95% confidence in-

tervals. Statistical analysis of coefficients was limited to only those

determined to be significant at the 95% confidence interval (p=0.05).

2.4. Clustering analysis

The different patterns of spatial variation of agricultural production

to climatic and price drivers make it very difficult to visually identify

regions exhibiting similar characteristics. We used a clustering analysis

to establish groups of counties representing strong, average, and weak

relationships between climate, crop price and production anomalies.

Fig. 2. Kruschke style diagram of the Markov chain Monte Carlo hierarchical robust linear regression model showing the probability distributions used in Eq. (1). The

same model structure was used for Eq. (2), except the EDDI index was used as the independent climatic variable.
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Fig. 3. RMSEs from the best time-scale and month combination for each county produced by the SPI-SCVI model (Eq. (1)) for alfalfa (a), barley (b) and winter wheat

(c), along with examples of heat maps for a few selected counties illustrating the model performances for all combinations of considered monthly time-scales and

months during the growing season.
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Fig. 4. Same as Fig. 3 but for the EDDI-SCVI model (Eq. (2)).
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This type of analysis allowed us to classify counties where annual crop

production anomalies exhibited similar sensitivity to precipitation, ETo

or price, revealing spatial patterns due to climatic or economic simi-

larities.

We chose a K-means cluster analysis (Hartigan and Wong, 1979) to

classify counties with similar crop production sensitivities to pre-

cipitation, ETo, and price for each crop under study as reflected in the

mean of the model coefficient distribution approximated by the MCMC

simulations. For the clustering analysis, all mean climatic and price

coefficients were used, regardless of their significance. We determined

an optimal number of 3 clusters using silhouette plots (Rousseeuw,

1987). Violin plots were used to display the mean and distribution of

coefficients that characterize each cluster for each crop.

3. Results

3.1. Response time-scale of crop production

The characteristic climatic time-scale and the most sensitive month

that best explained crop production anomalies varied per county and

per crop. Figs. 3 and 4 present performance maps for our two models

(RMSEs from the best time-scale and month combination for each

county) along with examples of heat maps for a few selected counties

illustrating the model performances for all combinations of considered

time scales and months. The heat maps show that specific SPI or EDDI

time-scales for specific months explained production anomalies better

than others, as measured by the RMSE (Figs. 3 and 4; S-6 and S-7). In

general, the SPI-SCVI model (Eq. (1)) performed best for alfalfa pro-

duction in counties in eastern Montana and western North and South

Dakota, where precipitation is the lowest in the domain (Fig. 3a). For

this region of the study area, the model typically shows very low per-

formance at any time-scale for the months of March to April, but has a

sharp increase in model performance in May or June (Fig. 3a, heat map

insets). This indicates that while production was sensitive to anomalies

accumulated 5 to 11 months prior to the beginning of the growing

season, it had low sensitivity to precipitation anomalies ending before

May or to anomalies with long time scales. Eq. (1) explained better

barley production anomalies for counties in central Montana and winter

wheat production anomalies in central Montana, central North Dakota

and western South Dakota (Fig. 3b and c). The EDDI-SCVI model (Eq.

(2)) explained best alfalfa production anomalies in northern Idaho and

western and eastern Montana (Fig. 4a) and explained better wheat and

barley anomalies in the central and western parts of North and South

Dakota (Fig. 4b and c).

Some counties showed similar sensitivities to a wide range of time-

scales and months. Furthermore, in some counties we detected the

existence of autocorrelation in the SPI and EDDI time-scale series,

which is reflected as diagonal banding structures of low RMSE, clearly

visible for example in 3c. This correlation is produced when model

configurations correlating months in the growing season maintain

performance for increasing time-scales that incorporate the effect of

climate anomalies occurring at earlier critical months. These issues can

complicate the accurate identification of the characteristic time scales

and months for the climatic variables. To reduce the noise in the re-

presentation of spatial patterns generated by the interaction between

the timing and time-scale of the anomalies, we use time-scale brackets

of short (1–5 months), moderate (6–10 months) and long

(11–15 months) time-scales, and timing brackets of early (March-May),

middle (June-July) and late (August-September) growing season.

Alfalfa production in eastern Montana, eastern Wyoming and the

Dakotas, where Eq. (1) and Eq. (2) models performed well, responded

at moderate to long SPI and EDDI time-scales (Fig. 4a and b). Response

time-scales were shorter westward in central and western Montana and

Idaho, where precipitation is higher, ETo is lower, and alfalfa produc-

tion was less responsive to climatic anomalies. Barley production re-

sponded to a wide range of SPI time-scales throughout the year (see

insets in Fig. 4c) and more counties had production sensitive to mod-

erate and long time-scales than in the case of alfalfa. Counties with long

time-scale response were mostly concentrated in central and eastern

Montana and southern Idaho, where SPI-SCVI model (Eq. (1)) best

explained production anomalies (Fig. 4c). The EDDI response time-

scales of barley production showed spatial patterns that were less clear

(Fig. 4d). Like barley production, winter wheat also responded to a

wide range of SPI and EDDI time-scales (between 1 and 15 months)

throughout the year (see insets, Fig. 3c). Winter wheat production in

southeastern Montana and South Dakota were most sensitive to SPI at

medium and long time-scales, while North Dakota winter wheat pro-

duction responded to shorter time-scales (Fig. 4e). Once more, sensi-

tivities at long time-scales are concentrated in counties for which the

SPI-SCVI model performed best. The spatial pattern of EDDI time-scales

for winter wheat production were less informative (Fig. 4f) and some-

what similar to the spatial patterns of the barley time-scales. Generally,

counties where crop production was most sensitive to precipitation

were so at time-scales greater than 7 months, while counties where crop

production was most sensitive to ETo were so at EDDI time-scales less

than 6 months for the three crops. As discussed in the next section, the

sensitivity of barley and winter wheat production to climatic factors

was lower than for alfalfa and the role of price was more prominent in

explaining production anomalies. This probably contributed to less

structured spatial patterns of time-scales.

3.2. Region-wide production sensitivity

Since SPI, EDDI and SCVI are standardized indices, the coefficients

of the statistical models provide a comparative measure of the sensi-

tivity of crop production to precipitation and ETo. In general, and as

expected, production for all crops was positively correlated with pre-

cipitation anomalies and inversely correlated with ETo anomalies

(Fig. 5), although with exceptions for some crops and counties mostly in

eastern Montana and North Dakota, as discussed later. Alfalfa produc-

tion had the highest region-wide sensitivity to precipitation (mean SPI

coefficient α= 0.53) and ETo (mean EDDI coefficient δ=−0.51) with

a relatively wide spatial variation (Fig. 5a). Barley and winter wheat

production exhibited similar average sensitivities to precipitation

(mean SPI coefficients α = 0.34 and α = 0.37, respectively) and ETo

anomalies (mean EDDI coefficients δ= 0.32 and δ= 0.2, respectively).

However, the sensitivity of barley production to climatologic drivers

was more uniform across counties than winter wheat (Fig. 5b and c).

Climate was the primary driver of alfalfa production anomalies with

market prices having a much smaller influence. Surprisingly, the mean

SCVI (price) coefficients in both the SPI and EDDI models were nega-

tive, although in both cases the variation of these coefficients among

counties was relatively large and spanned a range of positive and ne-

gative values (Fig. 5a). Crop market prices played a much larger role on

barley and winter wheat production, where the effect of price was on

par with the effect of climate. Like with climate factors, the variation of

SCVI factors in the study region was smaller for barley than for winter

wheat (Fig. 5b and c). Notice the similarity of SCVI coefficients iden-

tified independently for each crop using Eq. (1) and Eq. (2), which

indicates that the crop value and the climatologic indices are in-

dependent and shows the robustness of the models in identifying the

unique influence of these indices on crop production variability.

We expected that crop irrigation practices had an effect on the

sensitivity of crop production to precipitation and ETo variations,

which would be reflected in the model coefficients and in the amount of

production variance they can explain. To evaluate this expectation, we

plotted the best performing model coefficients of each county against

the amount of SCPI variance they explain and the fraction of irrigated

production in the county (Fig. 6). The sensitivity of alfalfa production to

climatic drivers is reflected in the clear direct correlation between the

amount of the SCPI variance explained by the Eq. (1) and the magni-

tude of the SPI coefficient (Fig. 6a), and the clear inverse correlation
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Fig. 5. Boxplots of significant coefficients for the study area for alfalfa (a); barley (b), and; winter wheat production (c).

Fig. 6. Explained variance of crop production anomalies vs. climatic coefficients vs. fraction of irrigated production for Eq. (1) (left) and Eq. (2) (right) for alfalfa (a

and b), barley (c and d), and winter wheat (e and f). Cooler colors indicate greater irrigated production for the study period. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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between the amount of the SCPI variance explained by Eq. (2) and the

magnitude of the EDDI coefficient (Fig. 6b). In these figures it is clear

that counties with a higher percentage of irrigated alfalfa had a lower

sensitivity to the climatic drivers and a smaller fraction of the pro-

duction variance explained by the models. This illustrates that irriga-

tion to a large extent decouples alfalfa production from the climatic

conditions. Primarily irrigated counties had a mean SPI coefficient of

α = 0.40 and a mean EDDI coefficient of δ = −0.40 and, on average,

explained about 26% of the production variance respectively. This

contrasts with the substantially higher sensitivity of primarily rain-fed

counties (mean SPI coefficient α = 0.60 and mean EDDI coefficient

δ = −0.52) and the ability of the models to explain production

variability (mean R2 = 47 with Eq. (1) and mean R2 = 33 with Eq.

(2)).

The situation is different for barley and winter wheat. The amount

of explained variance in barley production is less correlated with the

climatic coefficients (Fig. 6c and d) than in the alfalfa case, which also

indicates that barley production is to some extent decoupled from the

climatic drivers, and the reduced sensitivity of production to climatic

fluctuations were caused by the effect of crop prices and not the effect

of irrigation. Heavily irrigated counties were found along the entire

range of model performances and coefficients for both the SPI and EDDI

based models. There was little difference between precipitation coeffi-

cients in primarily irrigated counties and primarily rain-fed counties

(α = 0.34 and 0.31, respectively). The EDDI based model produced

similar mean R2 value in primarily irrigated counties (17%) to pri-

marily rain-fed counties (16%). This indicated that barley production

benefited less from irrigation than alfalfa other than some protection

from fluctuations in ETo. Winter wheat also exhibited low correlation

between the climatic coefficients and the amount of variance explained

by the models. Similar to barley, the lower sensitivity of wheat pro-

duction to climatic drivers was also caused by the compensatory effect

of wheat market prices. Irrigation of winter wheat is uncommon in the

region, which did not permit to evaluate the buffering effect that irri-

gation had on this crop.

3.3. Spatial patterns of production response

The analysis of results presented in the previous section can be

extended to investigate the existence of spatial patterns of sensitivity

and production response. Fig. 7 shows the spatial distribution of the

optimal SPI (α) and EDDI (β) coefficients for alfalfa, barley, and winter

wheat. SPI coefficients for alfalfa production were significant in 138 of

the 182 counties that reported alfalfa production, with most non-sig-

nificant coefficients associated with counties in southern Idaho and

western Wyoming.

Maximum sensitivity of alfalfa production to precipitation anoma-

lies occurred in the dryer and rain-fed counties of eastern Montana,

eastern Wyoming, western North Dakota, and western South Dakota

(Fig. 7a). The highest SPI coefficient (α = 0.93) was found in counties

in western North Dakota. For these counties the SPI-SCVI model (Eq.

(1)) explained around 75% of the variance in alfalfa production. The

sensitivity of alfalfa production then decreased again further east into

the rain-fed but wetter eastern half of North Dakota, where precipita-

tion anomalies explained only between 25% and 30% of the production

variance. The spatial patterns of sensitivity of alfalfa production to ETo

variations were similar to those of precipitation; alfalfa production was

most sensitive in the driest counties of the study area located in eastern

Montana, eastern Wyoming, North and South Dakota. In these counties,

ETo anomalies explained about 67% of the variations in alfalfa pro-

duction. Sensitivity was lowest in Idaho, where irrigated production

dominates, and in eastern North Dakota where climate transitions to

the rainy conditions of the US Midwest US region. In these counties

with low sensitivity the EDDI-SCVI (Eq. (2)) model explained about

30% of the variance of alfalfa production.

The sensitivity of barley production to precipitation and ETo was

more spatially homogeneous (Fig. 7c and d). Although the α pre-

cipitation coefficients were statistically significant for 120 out of the

190 counties that reported barley production, the coefficients did not

reveal clear spatial patterns of variation. This is consistent with the

findings mentioned earlier that the larger importance of crop market

drivers reduced the sensitivity of barley production to precipitation

variability. The relatively flat spatial distribution of the precipitation

coefficients may be a result of crop prices being spatially invariant at

the state scale and also a result of the marginal benefits that irrigation

has on barley production. Finally, significant ETo coefficients were

mostly concentrated in the counties of North Dakota, with little varia-

tion between them.

SPI coefficients reflecting the sensitivity of winter wheat production

to precipitation anomalies were significant in 138 out of the 185

counties that reported winter wheat in the study region (Fig. 7e).

Counties in south-central South Dakota and eastern Wyoming exhibited

the highest sensitivity to precipitation (α > 0.6) and in these counties

the SPI-SCVI model (Eq. (1)) explained about 40% of the production

variance. On the other hand, winter wheat production in North Dakota

showed the lowest sensitivity. The regions where production was most

sensitive to variations in precipitation also showed the highest inversely

proportional sensitivity to EDDI (more ETo decreased production). In

these counties, δ coefficients reached −0.6 and Eq. (2) explained up to

51% of the variance. However, production in Northern and Eastern

North Dakota, which exhibited low sensitivity to precipitation varia-

bility, showed a positive response to EDDI (more ETo improved pro-

duction (Fig. 7f). For the counties where production had positive cor-

relation with EDDI, Eq. (2) explained between 12% and 20% of the

production index variance.

Crop prices influence farmer decision-making and can reduce the

apparent effect of climatic anomalies on crop production. The spatial

variations in the modulating effect of commodity prices on crop pro-

duction is shown in Fig. 8. Alfalfa production did not show significant

sensitivity to prices in most counties, so the figure only shows the

distribution of the β SCVI sensitivity factors for barley and winter

wheat. In all cases, the coefficients estimated by Eq. (1) and (2) were

very similar both spatially an in magnitude (Fig. 8), which indicates

that the crop price dynamics used in the SCVI are statistically in-

dependent of the precipitation and ETo dynamics represented by the

SPI and EDDI.

SCVI coefficients for barley obtained from Eq. (1) and (2) indicated

that barley production increased with the crop price received by

farmers the previous year in most counties in Montana, Idaho and

Wyoming and that this sensitivity was somewhat higher in the western

part of Montana and in Idaho (most clearly noticeable in Fig. 8b), where

irrigated production was most dominant, and in some of the eastern-

most counties of North Dakota. Although mostly statistically non-sig-

nificant, both Eq. (1) and (2) agreed that barley production in most

counties in central and western North Dakota and in South Dakota had

an inverse relationship with prices received the previous year. On the

other hand, winter wheat production was most sensitive to price, par-

ticularly in central North Dakota and northeastern Montana (Fig. 8c

and d). In these counties crop prices had more weight on production

than SPI and EDDI, particularly in North Dakota.

3.3.1. Clustering analysis

Fig. 9a shows the classification of counties with respect to the

sensitivity of alfalfa production to precipitation, climate and crop price.

The violin plots (Fig. 9b) provide information on the combination of

factors that characterize each cluster. Cluster 1 (blue) groups counties

where alfalfa production was most sensitive to variations in precipita-

tion and ETo the lowest sensitivity to price. Counties in Cluster 1 were

primarily rain-fed and located in North Dakota, South Dakota, north-

east Wyoming, and eastern Montana, the regions with lowest average

precipitation in the study area. Cluster 2 (green) are counties with more

moderate sensitivity to climate but some positive response to crop
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price. Counties in this cluster are mostly located in central and western

Montana. Cluster 3 (gold) groups counties with the highest resiliency to

precipitation and ETo variability, and also an inverse relationship with

crop price. Counties in this cluster are mostly located in Idaho,

Wyoming, eastern North Dakota, and South Dakota, which are regions

with the highest precipitation rates in the domain. In the case of Idaho

and western Wyoming, most of the alfalfa production is irrigated.

The distribution of clusters for barley is different than for alfalfa

(Fig. 10a). Cluster 1 is associated with counties that had a direct re-

sponse to precipitation anomalies and an inverse response to ETo

anomalies and a relatively variable but positive sensitivity to crop price

(Fig. 10b). Cluster 1 includes counties in the mountainous regions of

western Montana, Idaho and Wyoming as well as in South Dakota.

Cluster 2 is characterized by counties where barley production had a

relatively low and variable sensitivity to precipitation, moderate sen-

sitivity to ETo and a negative response to price. Counties in Cluster 2

Fig. 7. Spatial distribution of pre-

cipitation coefficients, α (left column)

and ETo coefficients, δ (right column)

for alfalfa (a) and (b), barley (c) and

(d), and winter wheat (e) and (f). The

scale describes the relative sensitivity

of climatic anomalies, where warmer

colors indicate a negative response of

crop production to negative precipita-

tion anomalies or positive ETo

anomalies (i.e., negative response to

drought), and cooler colors indicate a

positive response in crop production

anomalies to negative precipitation

anomalies or positive ETo anomalies

(i.e., positive response to drought). The

diagonal lines across counties indicate

non-significant sensitivity factors. (For

interpretation of the references to color

in this figure legend, the reader is re-

ferred to the web version of this ar-

ticle.)

Fig. 8. Spatial distribution of price sensitivity coefficients derived from Eq. (1) (left column) and Eq. (2) (right column) for barley (a) and (b) and winter wheat (c)

and (d). The scale shows the relative sensitivity of crop production to price, where purples indicate a negative response of crop production anomalies to positive price

anomalies and greens indicate a positive response of crop production anomalies to positive price anomalies. Diagonal lines across counties indicate non-significant

coefficients. Price coefficients for alfalfa (not shown) were non-significant in most counties.
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are largely located in central and western North Dakota. Cluster 3 is

unique in that it is characterized by counties that had a relatively high

positive response to precipitation and crop price anomalies (like Cluster

1) but also had a positive response to ETo anomalies (i.e. production

increased with increased ETo). Counties in this cluster were mostly

located in central and eastern Montana.

Finally, the classification of winter wheat counties is shown in

Fig. 11a. Cluster 1 are counties where production is minimally im-

pacted by climatic or price factors, and are mostly found across much of

Idaho and near the wetter eastern borders of North Dakota and South

Dakota. Cluster 2 is mostly characterized by high sensitivity to crop

price, but also to a positive response both precipitation and ETo

anomalies. Clusters 2 is mostly composed of counties in Eastern Mon-

tana and much of North Dakota. Cluster 3 are the counties most vul-

nerable to precipitation and ETo anomalies, with a relatively lower

response to price. Counties with these characteristics occupy central

and western North Dakota, eastern Wyoming, and central Montana.

4. Discussion

Our study characterized the sensitivity of agricultural production to

these two major climatic drivers, while controlling for the effect that

crop prices have on farmer decisions. This is a key aspect that is often

ignored in studies seeking to assess drought impacts on food production

and food security. Farmers not only respond to climatic factors, but are

also sensitive to economic drivers and may choose to maintain pro-

duction by increasing acreage even under adverse climatic conditions if

markets are favorable (Maneta et al., 2009; Miao et al., 2016). We

showed that crop prices reduced the sensitivity of production to cli-

mate, inducing compensatory effects on production that reduce the

local impact of climate fluctuations (Fig. 11b, cluster 2). Ignoring the

effect of economic drivers on farmer choices may introduce biases in

the share of observed production declines attributed to drought. How-

ever, it should be recognized that climate external to the region can

impact crop prices within the region (Adams et al., 1998). Our regional

focus provides different insights compared to findings from previous

studies that have focused on characterizing drought impacts on yields

(Hlavinka et al., 2009; Peña-Gallardo et al., 2018b; Zipper et al., 2016).

The focus on production was motivated by the idea that integrating

agricultural yield and area in production is a better immediate measure

of food security than yield because it captures the decisions farmers

make both at the intensive margin (resource allocation to increase

yield) and at the extensive margin (land reallocation).

Comparing our results with previous studies, we found that the

climatic time-scales at which yield responds are generally shorter than

those of production. Zipper et al. (2016) reported that maize and soy

yield anomalies in the US were most correlated with drought conditions

occurring during July and August over time-scales of 1–3 months, or

about 1–2 months prior to harvest. Vicente-Serrano et al. (2006) re-

ported that wheat and barley yields in Spain were most responsive to

SPI time scales between 1 and 3 months in February, which is 4 months

prior to harvest, and reflects the importance of delayed processes that

affect crop development such as the timing of soil moisture recharge

and of crop water use. More recently, Peña-Gallardo et al. (2018b)

applied the SPEI to analyze the yield response to drought for the major

crops in the US. The results for barley and winter wheat indicated a

Fig. 9. (a) County classifications based sensitivity of alfalfa produc-

tion to SPI, EDDI and SCVI; (b) violin plots with distribution of pre-

cipitation sensitivity coefficients (left), ETo sensitivity coefficient,

(middle), and price sensitivity coefficients (right) for clusters 1 (blue),

2 (green) and 3 (orange). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this

article.)

Fig. 10. Same as Fig. 10 but for barley. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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response at a wide range of time-scales, often longer than three months.

The time-scales identified in our study are generally longer than that

reported for yields. This is likely due to our focus on production which

is a function of both yield and cropping area. The longer characteristic

time scales indicate that crop production has more inertia and responds

more slowly than yield to climate fluctuations. This is because farmers

consider not only short term climate conditions, but also other types of

information such as seasonal forecasts, traditional knowledge, or crop

market values in their decision making months before the crops are

sown.

This relatively long time scale of farmer decision making is con-

sistent with studies looking at farmer behavior. For instance, (Haigh

et al., 2015) found that over 80% of farmers in the US Corn Belt decided

on cropping area between mid-fall and late-winter, and that over 50%

of the same farmers used current, monthly or seasonal drought forecasts

to aid in their decisions. However, other factors not related to farmer

decision making such as specific crop cultivars, varieties and other

physiological processes can also play a role in these time scales.

(Vicente-Serrano et al., 2013) showed that longer time-scales were as-

sociated with semiarid or subhumid regions possibly because of phy-

siological adaptations to drought.

The spatial patterns of sensitivity exhibited by each crop reflects

what crops and regions are more driven by precipitation and ETo and

thus exposed to drought and which ones are more decoupled from

climatic conditions. Alfalfa was mostly sensitive to precipitation

anomalies, slightly less to ETo, and had little sensitivity to price (Fig. 5).

Unlike wheat and barley, ranchers grow alfalfa to feed cattle and con-

tinue producing it regardless of the price. In addition, alfalfa is a per-

ennial crop that is usually not rotated at least until the stand is de-

pleted, often not before 4–5 years. As a consequence, land allocation to

alfalfa tends to be more stable through time than land allocated to

wheat or barley. These factors may contribute to the observed low

sensitivity of alfalfa production to price. The spatial distribution of

sensitivity to precipitation or ETo (Fig. 7) generally coincided with

gradients in precipitation (Fig. 1c), temperature (Fig. 1d), and the

prevalence of irrigation across the study area. Crop yields in warmer

regions are generally more sensitive to climatic variability than cooler

regions (Lobell et al., 2011), and this affects the sensitivity of produc-

tion even if the amount of land allocated to this crop remains constant.

Barley and winter wheat cultivated in the region, on the other hand,

are annual crops often rotated in the same field. The land allocated to

these crops are more variable year to year and subject to farming de-

cisions based on both climatic and market factors. This aspect was

clearly captured by the relatively high sensitivity of these crops to crop

price (Fig. 8). The spatial patterns of sensitivity of barley and winter

wheat production to climatic factors did not clearly follow the spatial

gradients of precipitation or temperature, and the sensitivity was not

affected by the amount of irrigation in the county (Fig. 6c and d). It is

possible that variations in soil water retention properties, shallow

groundwater, farming practices and other variables not considered in

the model exert a larger influence on production than climate and

dominate the spatial distribution of sensitivities. Using county level

yield data, Li and Troy (2018) and Troy et al. (2015) found that winter

wheat yields in the US Northern Rockies and Northern Plains showed

limited response to growing season precipitation, and that for a variety

of crops, the benefit of irrigation in terms of yield gains was often

limited. Although they did not specifically analyze barley, we could

speculate that given the prevalence of rain-fed production, soil moisture

recharge during spring and growing season from precipitation is suffi-

cient to obtain barley yields close to the potential. This would explain

why the sensitivity of barley production to the SPI was similar for

counties with different levels of irrigated production.

The spatial distribution of barley and winter wheat production

sensitivities to EDDI brought forward some interesting patterns. Winter

wheat production over north and eastern North Dakota (Fig. 7f), and

barley production over north central Montana showed a somewhat

positive response to increased atmospheric water demand (Fig. 7d).

This positive crop production response to high ETo anomalies observed

in this study for barley and winter wheat was also observed by Lobell

and Asner (2003) and Zipper et al. (2016) for corn and soybean yields,

where increased crop yields occurred during periods of below average

precipitation or above average atmospheric water demand. Zipper et al.

(2016) attributed this positive sensitivity to drought conditions to

shallow groundwater and poorly drained soils, or the presence of irri-

gation. The positive response to high ETo in our study area occurred in

counties were minimal irrigation of barley and winter wheat was pre-

sent. However, the transition between the dry western US and the wet

midwest occurs roughly north to south through western North Dakota

where annual precipitation equals ETo (Salley et al., 2016). In the case

of North Dakota, waterlogging and poor field drainage is often an issue

and production may benefit from increased ETo. However, unlike the

rest of the western US, eastern Montana and North Dakota are experi-

encing a reduction in atmospheric vapor pressure deficit (Ficklin and

Novick, 2017) and an increase in summer precipitation (Holden et al.,

2018), which may result in barley and winter wheat production de-

clines based on the positive production response to lower precipitation

and increased ETo observed in this study. Further work concerning

historic sensitivity to climatic anomalies in conjunction with historic

Fig. 11. Same as Fig. 9 but for winter wheat. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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trends in atmospheric water supply and demand would provide useful

insights into how the equilibrium between crop production and climate

variability could shift in the future.

The use of drought indices to characterize the sensitivity of crop

production or yield is providing important insights that are helping

understand the risk of climate change on agriculture (Peña-Gallardo

et al., 2018b; Wang et al., 2014; Yamoah et al., 2000; Zipper et al.,

2016). Most of these studies focus on the impact of precipitation

anomalies using the SPI or use the SPEI, which incorporates the si-

multaneous effect of precipitation and ETo anomalies. We developed

different models using the SPI and EDDI to study the sensitivity of

precipitation and ETo separately. This elucidates the individual effects

of these climatic drivers, but does not capture the interactions between

the two. Our analysis revealed that the sensitivity of production to both

constituents of climatic extremes were similar but opposite in sign,

particularly for alfalfa and barley but also for winter wheat (Fig. 5).

This symmetry of precipitation and ETo about zero sensitivity indicates

that these drivers are correlated and play similar roles in driving ter-

restrial processes, which supports the hypothesis proposed by Vicente-

Serrano et al. (2010) in their development of the SPEI. SPEI has often

been found to produce higher correlations between climatic conditions

and vegetation production than other drought indices (Beguería et al.,

2014; Peña-Gallardo et al., 2018a; Vicente-Serrano et al., 2012), de-

monstrating the added value of this metric and its ability to capture

synergistic interactions between precipitation and ETo. However, our

research showed that while the impacts of precipitation and ETo on

production are similar in magnitude and upholds one of the premises

embedded in the SPEI, the timing and time-scales at which the pre-

cipitation or ETo are most correlated with production are often not the

same. Production tends to be correlated with precipitation anomalies at

longer time-scales and responds to ETo at shorter time-scales. This in-

formation is lost if the SPEI is used alone and shows that the SPI and

EDDI or SEDI may provide complementary information if used in

conjunction with the SPEI.

5. Conclusion

Alfalfa and barley for stockfeed and wheat production are major

contributors to the economy of the Northern Great Plains region of the

US. These three crops comprise the largest regional share of agricultural

land and are important to maintain the food supply of the country and

of the globe. How- ever, limited crop diversification and the prevalence

of dryland production makes this region vulnerable to drought and crop

market downturns. Evaluating agricultural resilience is key to identi-

fying what regions may require strategies to promote adaptation and

mitigate the negative impacts of drought or regional climate shifts. Our

analysis contributes to understanding agricultural sensitivity to climate

in a novel way for two reasons: First, it simultaneously considers the

impacts of climatic and agricultural market anomalies on crop pro-

duction; and second it focuses on production rather than on crop yield

to captures both the biophysical response of the crop and the land al-

location and harvesting choices farmers make, which is important for

resiliency analysis.

In general, for the region, we identified that agricultural production

was most vulnerable to drought in eastern Montana and western North

and South Dakota, especially for alfalfa. The intermountain western

region (western Montana and Idaho) and the wetter eastern part of the

Dakotas showed more resiliency to precipitation shortfalls. Alfalfa

production was most sensitive to climate, and the spatial pattern of

sensitivity followed the spatial distribution of precipitation and tem-

perature. Sensitivity of alfalfa production to EDDI was secondary to SPI,

while barley and winter wheat production had a larger relative sensi-

tivity to EDDI and to market prices. This sensitivity to prices illustrates

that farmers may choose to sustain production by increasing the land

allocated to specific products even under suboptimal climatic condi-

tions if crop prices in previous years have been favorable. The analysis

also shows that evaluations of the impact of climate on agricultural

production can be biased if crop prices and other farmer incentives are

not taken into account.

We also detected that agricultural production had a longer inertia to

climatic variations compared to yields, as reflected by the longer op-

timal climatic time-scales we found compared to these reported by yield

studies using similar indices. This is an additional indication that

farmers choices can sustain production under unfavourable conditions

by increasing the level of inputs (e.g. fertilizer, labor) or increasing land

allocation, which increases the resiliency of crop production. Finally,

while in most cases the sensitivity of production to precipitation and

ETo was similar in magnitude, time-scales of SPI were longer than the

time scales of EDDI. We interpreted that the SPI reflects the effect of

moisture supply to plants, which is mediated by the soil and therefore

has relatively longer response time scales. EDDI on the other hand re-

flects the effect of atmospheric moisture demand, which introduces a

more immediate physiological response on the crop, and this is re-

flected in the shorter EDDI time-scales.

Acknowledgments

This work has been supported by the United States Department of

Agriculture, USDA-NIFA research grant 2016-67026-25067, and by the

NASA EPSCoR program research grant 80NSSC18M0025. P.W. also

acknowledges partial support from the NSF EPSCoR cooperative agree-

ment EPS-1101342.

Supplementary material

Supplementary material associated with this article can be found, in

the online version, at doi:10.1016/j.agrformet.2019.107778.

References

Abatzoglou, J.T., 2013. Development of gridded surface meteorological data for ecolo-

gical applications and modelling. Inter. J. Clim. 33, 121–131. https://doi.org/10.

1002/joc.3413.

Adams, R., Hurd, B., Lenhart, S., Leary, N., 1998. Effects of global climate change on

world agriculture: an interpretive review. Clim. Res. 11, 19–30. https://doi.org/10.

3354/cr011019.

Beguería, S., Vicente-Serrano, S.M., Reig, F., Latorre, B., 2014. Standardized precipitation

evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration

models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023.

https://doi.org/10.1002/joc.3887.

Betancourt, M., Girolami, M., 2015. Hamiltonian Monte Carlo for hierarchical models. In:

Upadhyay, S.K., Singh, U., Dey, D., Loganathan, A. (Eds.), Current Trends in Bayesian

Methodology with Applications. CRC Press, Boca Raton, FL, pp. 79–97.

Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J.,

Pasteris, P.P., 2008. Physiographically sensitive mapping of climatological tem-

perature and precipitation across the conterminous United States. Int. J. Climatol. 28,

2031–2064. https://doi.org/10.1002/joc.1688.

Ficklin, D.L., Novick, K.A., 2017. Historic and projected changes in vapor pressure deficit

suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res.

122, 2061–2079. https://doi.org/10.1002/2016JD025855.

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2013.

Bayesian Data Analysis, 3rd ed. CRC Press, Boca Raton, FL.

Haigh, T., Takle, E., Andresen, J., Widhalm, M., Carlton, J.S., Angel, J., 2015. Mapping

the decision points and climate information use of agricultural producers across the

U.S. Corn. Belt. Clim. Risk Manag. 7, 20–30. https://doi.org/10.1016/j.crm.2015.01.

004.

Hartigan, J.A., Wong, M.A., 1979. Algorithm as 136: A K-Means clustering algorithm.

Appl. Stat. 28, 100. https://doi.org/10.2307/2346830.

Heim, R.R., 2002. A review of Twentieth- Century Drought indices used in the United

States. Bull. Am. Meteorol. Soc. 83, 1149–1165. https://doi.org/10.1175/1520-

0477(2002)083<1149:AROTDI>2.3.CO;2.

Hennessy, D.A., 2006. On monoculture and the structure of crop rotations. Am. J. Agric.

Econ. 88, 900–914. https://doi.org/10.1111/j.1467-8276.2006.00905.x.

Hlavinka, P., Trnka, M., Semerádová, D., Dubrovský, M., Žalud, Z., Možný, M., 2009.

Effect of drought on yield variability of key crops in Czech Republic. Agric. For.

Meteorol. 149, 431–442. https://doi.org/10.1016/j.agrformet.2008.09.004.

Hobbins, M.T., Wood, A., McEvoy, D.J., Huntington, J.L., Morton, C., Anderson, M., Hain,

C., 2016. The evaporative demand drought index. Part I: linking drought evolution to

variations in evaporative demand. J. Hydrometeorol 17, 1745–1761. https://doi.org/

10.1175/JHM-D-15-0121.1.

Holden, Z.A., Swanson, A., Luce, C.H., Jolly, W.M., Maneta, M., Oyler, J.W., Warren,

P. Wurster, et al. Agricultural and Forest Meteorology 280 (2020) 107778

13



D.A., Parsons, R., Affleck, D., 2018. Decreasing fire season precipitation increased

recent western US forest wildfire activity. Proc. Natl. Acad. Sci. 201802316. https://

doi.org/10.1073/pnas.1802316115.

Iizumi, T., Ramankutty, N., 2015a. How do weather and climate influence cropping area

and intensity? Glob. Food Sec. 4, 46–50. https://doi.org/10.1016/j.gfs.2014.11.003.

Iizumi, T., Ramankutty, N., 2015b. How do weather and climate influence cropping area

and intensity? Glob. Food Sec. 4, 46–50. https://doi.org/10.1016/j.gfs.2014.11.003.

Kim, D., Rhee, J., 2016. A drought index based on actual evapotranspiration from the

bouchet hypothesis. Geophys. Res. Lett. 43, 10277–10285. https://doi.org/10.1002/

2016GL070302.

Lanning, S.P., Kephart, K., Carlson, G.R., Eckhoff, J.E., Stougaard, R.N., Wichman, D.M.,

Martin, J.M., Talbert, L.E., 2010. Climatic change and agronomic performance of

hard red spring wheat from 1950 to 2007. Crop. Sci. 50, 835. https://doi.org/10.

2135/cropsci2009.06.0314.

Lawrence, P.G., Maxwell, B.D., Rew, L.J., Ellis, C., Bekkerman, A., 2018. Vulnerability of

dryland agricultural regimes to economic and climatic change. Ecol. Soc. 23. https://

doi.org/10.5751/ES-09983-230134.

Li, X., Troy, T., 2018. Changes in rainfed and irrigated crop yield response to climate in

the western US OPEN ACCESS changes in rainfed and irrigated crop yield response to

climate in the western US. Environ. Res. Lett. 13.

Lobell, D.B., Asner, G.P., 2003. Climate and management in U.S. agricultural yields.

Science 299, 1032. https://doi.org/10.1126/science.1078475.

Lobell, D.B., Field, C.B., 2007. Global scale climate-crop yield relationships and the im-

pacts of recent warming. Environ. Res. Lett. 2. https://doi.org/10.1088/1748-9326/

2/1/014002.

Lobell, D.B., Ortiz-Monasterio, J.I., Sibley, A.M., Sohu, V.S., 2012. Satellite detection of

earlier wheat sowing in India and implications for yield trends. Agric. Syst. 115,

137–143. https://doi.org/10.1016/j.agsy.2012.09.003.

Lobell, D.B., Schlenker, W., Costa-Roberts, J., 2011. Climate trends and global crop

production since 1980. Science 333, 616–620. https://doi.org/10.1126/science.

1204531.

Maneta, M.P., Torres, M.O., Wallender, W.W., Vosti, S., Howitt, R., Rodrigues, L., Bassoi,

L.H., Panday, S., 2009. A spatially distributed hydroeconomic model to assess the

effects of drought on land use, farm profits, and agricultural employment. Water

Resour. Res. 45. https://doi.org/10.1029/2008WR007534.

McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and

duration to time scales. In: AMS 8th Conf. Appl. Climatol..

McMahon, S.M., Diez, J.M., 2007. Scales of association: hierarchical linear models and

the measurement of ecological systems. Ecol. Lett. 10, 437–452. https://doi.org/10.

1111/j.1461-0248.2007.01036.x.

Miao, R., Khanna, M., Huang, H., 2016. Responsiveness of crop yield and acreage to

prices and climate. Am. J. Agric. Econ. 98, 191–211. https://doi.org/10.1093/ajae/

aav025.

Mitchell, K.E., 2004. The multi-institution North American Land Data Assimilation

System (NLDAS): utilizing multiple GCIP products and partners in a continental

distributed hydrological modeling system. J. Geophys. Res. 109, D07S90. https://doi.

org/10.1029/2003JD003823.

Mukherjee, S., Mishra, A., Trenberth, K.E., 2018. Climate change and drought: a per-

spective on drought indices. Curr. Clim. Chang. Rep. 4, 145–163. https://doi.org/10.

1007/s40641-018-0098-x.

Palmer, W.C., 1965. Meteorological Drought. U.S. Dep. Commer Weather Bur. Res.

Pap. 45.

Pasho, E., Camarero, J.J., de Luis, M., Vicente-Serrano, S.M., 2011. Impacts of drought at

different time scales on forest growth across a wide climatic gradient in north-eastern

Spain. Agric. For. Meteorol. 151, 1800–1811. https://doi.org/10.1016/j.agrformet.

2011.07.018.

Peña-Gallardo, M., Vicente-Serrano, S., Domínguez-Castro, F., Quiring, S., Svoboda, M.,

Beguería, S., Hannaford, J., 2018. Effectiveness of drought indices in identifying

impacts on major crops over the USA. Clim. Res. https://doi.org/10.3354/cr01519.

Peña-Gallardo, Mrina, Vicente-Serrano, S.M., Domínguez-Castro, F., Quiring, S., Svodoba,

M., Beguería, S., Hannaford, J., 2018a. Effectiveness of drought indices in identifying

impacts on major crops across the USA. Clim. Res. 75, 221–240. https://doi.org/10.

3354/cr01519.

Peña-Gallardo, Marina, Vicente-Serrano, S.M., Quiring, S., Svoboda, M., Hannaford, J.,

Tomas-Burguera, M., Martín-Hernández, N., Domínguez-Castro, F., El Kenawy, A.,

2018b. Response of crop yield to different time-scales of drought in the United States:

spatio-temporal patterns and climatic and environmental drivers. Agric. For.

Meteorol. 264, 40–55. https://doi.org/10.1016/j.agrformet.2018.09.019.

Porter, J.R., Semenov, M.A., 2005. Crop responses to climatic variation. Philos. Trans. R.

Soc. B Biol. Sci. 360, 2021–2035. https://doi.org/10.1098/rstb.2005.1752.

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. J. Comput. Appl. Math. 20, 53–65. https://doi.org/10.1016/0377-

0427(87)90125-7.

Salinger, M.J., Stigter, C.J., Das, H.P., 2000. Agrometeorological adaptation strategies to

increasing climate variability and climate change. Agric. For. Meteorol. 103,

167–184. https://doi.org/10.1016/S0168-1923(00)00110-6.

Salley, S.W., Sleezer, R.O., Bergstrom, R.M., Martin, P.H., Kelly, E.F., 2016. A long-term

analysis of the historical dry boundary for the great plains of North America: im-

plications of climatic variability and climatic change on temporal and spatial patterns

in soil moisture. Geoderma 274, 104–113. https://doi.org/10.1016/j.geoderma.

2016.03.020.

Salvatier, J., Wiecki, T., Fonnesbeck, C., 2015. Probabilistic programming in python using

PyMC 1–24. 10.7717/peerj-cs.55.

Shao, H.B., Chu, L.Y., Jaleel, C.A., Manivannan, P., Panneerselvam, R., Shao, M.A., 2009.

Understanding water deficit stress-induced changes in the basic metabolism of higher

plants-biotechnologically and sustainably improving agriculture and the ecoenvir-

onment in arid regions of the globe. Crit. Rev. Biotechnol. 29, 131–151. https://doi.

org/10.1080/07388550902869792.

Steduto, P., Hsiao, T.C., Fereres, E., 2007. On the conservative behavior of biomass water

productivity. Irrig. Sci. 25, 189–207. https://doi.org/10.1007/s00271-007-0064-1.

Troy, T.J., Kipgen, C., Pal, I., 2015. The impact of climate extremes and irrigation on US

crop yields. Environ. Res. Lett. 10, 054013. https://doi.org/10.1088/1748-9326/10/

5/054013.

Vicente-Serrano, S., Cuadrat-Prats, J.M., Romo, A., 2006. Early prediction of crop pro-

duction using drought indices at different time-scales and remote sensing data: ap-

plication in the Ebro Valley (north-east Spain). Int. J. Remote Sens. 27, 511–518.

https://doi.org/10.1080/01431160500296032.

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought

index sensitive to global warming: the standardized precipitation evapotranspiration

index. J. Clim. 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.

Vicente-Serrano, S.M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J.J., López-Moreno,

J.I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., Sanchez-Lorenzo, A., 2012.

Performance of drought indices for ecological, agricultural, and hydrological appli-

cations. Earth Interact. 16, 1–27. https://doi.org/10.1175/2012EI000434.1.

Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Begueria, S., Trigo, R., Lopez-Moreno,

J.I., Azorin-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Moran-Tejeda, E.,

Sanchez-Lorenzo, A., 2013. Response of vegetation to drought time-scales across

global land biomes. Proc. Natl. Acad. Sci. 110, 52–57. https://doi.org/10.1073/pnas.

1207068110.

Vicente-Serrano, S.M., Miralles, D.G., Domínguez-Castro, F., Azorin-Molina, C., El

Kenawy, A., Mcvicar, T.R., Tomás-Burguera, M., Beguería, S., Maneta, M., Peña-

Gallardo, M., 2018. Global assessment of the standardized evapotranspiration deficit

index (SEDI) for drought analysis and monitoring. J. Clim. 31, 5371–5393. https://

doi.org/10.1175/JCLI-D-17-0775.1.

Wang, Q., Wu, J., Lei, T., He, B., Wu, Z., Liu, M., Mo, X., Geng, G., Li, X., Zhou, H., Liu, D.,

2014. Temporal-spatial characteristics of severe drought events and their impact on

agriculture on a global scale. Quat. Int. 349, 10–21. https://doi.org/10.1016/j.

quaint.2014.06.021.

Yamoah, C.F., Walters, D.T., Shapiro, C.A., Francis, C.A., Hayes, M.J., 2000. Standardized

precipitation index and nitrogen rate effects on crop yields and risk distribution in

maize. Agric. Ecosyst. Environ. 80, 113–120. https://doi.org/10.1016/S0167-

8809(00)00140-7.

Zipper, S.C., Qiu, J., Kucharik, C.J., 2016. Drought effects on US maize and soybean

production: spatiotemporal patterns and historical changes. Environ. Res. Lett. 11,

094021. https://doi.org/10.1088/1748-9326/11/9/094021.

P. Wurster, et al. Agricultural and Forest Meteorology 280 (2020) 107778

14


	Characterizing the impact of climatic and price anomalies on agrosystems in the northwest United States
	Introduction
	Methods
	Study area
	Data analysis and preprocessing
	Models
	Clustering analysis

	Results
	Response time-scale of crop production
	Region-wide production sensitivity
	Spatial patterns of production response
	Clustering analysis


	Discussion
	Conclusion
	Acknowledgments
	Supplementary material
	References


