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ARTICLE INFO ABSTRACT

We present an analysis of the sensitivity of three key crops (alfalfa, barley and winter wheat) produced in the
northwestern United States to climatic and agricultural market anomalies using widely used standardized in-
dices. Rather than investigating sensitivity of crop yields (production per unit area), we focus on agricultural
production (yield * harvested area) anomalies, which captures both variations in yield and the effect of decision-
making factors such as allocation of cropping area. We used two well-known standardized precipitation and
reference evapotranspiration (ETo) indices (SPI and EDDI, respectively) and a standardized crop value index in a
multivariate linear regression analysis to determine the characteristic timing and time-scales of precipitation and
ETo anomalies that best explain annual crop production anomalies. Since climatic and market factors are
standardized, regression coefficients are interpreted as a sensitivity measure that captures the relative effect of
climatic and agricultural markets on agricultural production. Results show that alfalfa production was most
sensitive climatic anomalies while barley and wheat production was more responsive to crop prices. Sensitivity
to precipitation anomalies followed gradients in precipitation, temperature, and soil moisture regimes across the
study area where drier and warmer climates were associated with increased sensitivity to climatic anomalies. We
found that irrigation decoupled alfalfa production from climatic variability, but the effect of irrigation on de-
coupling barley production was less clear. Winter wheat production was most sensitive to price anomalies, and
alfalfa was least sensitive. Omitting agricultural market conditions and other farmer incentives may introduce
biases in our understanding of how drought and climate change impact agricultural production.
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security have led to an increasing number of studies investigating the
sensitivity of crop yield (production per unit area) and production to

1. Introduction

Climate variability in agricultural regions affects soil moisture and
available energy (Salinger et al., 2000), increasing the risk farmers take
when they make resource-use decisions such as how much land they
allocate to the crops they choose to grow and where to distribute scarce
irrigation water. Farmer's perception of risk affects this decision-
making, with potential consequences for regional agricultural produc-
tion (yield * harvested area) and food security (Lawrence et al., 2018).
Concerns about rural well-being, economic development and food
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climate variability with concentration on drought (lizumi and
Ramankutty, 2015a; Lobell and Asner, 2003; Lobell and Field, 2007;
Pena-Gallardo et al., 2018b). From the many environmental stresses
that affect crop production (e.g., soil salinity, frost, soil erosion),
drought is one of the most prevalent (Porter and Semenov, 2005; Shao
et al., 2009). In terms of agriculture, crop sensitivity to the different
constituents of drought varies by cultivation and over the growth cycle
of a given crop. Cereal crops, for example, may experience reduced
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productivity due to unusually high temperatures during the grain filling
period, even though precipitation deficits are not present (Lobell et al.,
2012). Alternatively, unusually high temperatures at the beginning of
the growing season may increase cereal crop productivity by allowing
for earlier sowing dates (Lanning et al., 2010).

Several drought indices based upon meteorology have been devel-
oped specifically for agriculture (Heim, 2002; Mukherjee et al., 2018).
The most widely used climate index is the Palmer Drought Severity
Index (PDSI), based upon precipitation, temperature, available soil
water, runoff, and atmospheric water demand (Palmer, 1965). McKee
et al. (1993) developed the Standardized Precipitation Index (SPI),
which provides a definition of drought severity accumulated over dif-
ferent time-scales using precipitation alone. Hobbins et al. (2016) de-
veloped the Evaporative Demand Drought Index (EDDI) which provides
a definition of drought severity accumulated over different time-scales
based on potential evapotranspiration. Vicente-Serrano et al. (2010)
developed the Standardized Precipitation Evapotranspiration Index
(SPEI) to describe drought conditions accumulated over different time-
scales based on precipitation and the atmospheric evaporative demand.
An alternative index that captures drought from the point of view of the
atmospheric demand is the Standardized Evapotranspiration Deficit
Index (SEDI), which uses the difference between potential and actual
evapotranspiration to describe drought conditions (Kim and Rhee,
2016; Vicente-Serrano et al., 2018). Drought indices with the ability to
capture drought conditions accumulated over different time-scales have
been shown to perform better for predicting crop production or yields
than traditional ’static’ indices such as the PDSI (Pena-Gallardo et al.,
2018a; Vicente-Serrano et al., 2012).

Most meteorology based indices used to characterize agricultural
drought focus on the impact of climate factors on agricultural yields.
However, to investigate drought impacts on land use, on rural liveli-
hoods and on food security it is better to focus on total production
because growers can compensate for yield reductions and maintain
profitability by increasing the planted area. Total crop production is an
important metric that captures both the efficacy of agricultural prac-
tices and the impact of climate conditions, as well as the response of
farmers in terms of land allocated to particular crops based on their
perception of risk and the impact of other external factors such as
agricultural markets and policy incentives (lizumi and Ramankutty,
2015b). Therefore, while crop yield alone is certainly an important
component of annual crop production, focusing on yields alone fails to
capture farmer response and the compensatory effects that the re-
allocation of land may have on total food production. This may con-
tribute to an overemphasis on the role of climate variability for food
security.

Farmers are not only sensitive to climate conditions but also react to
other factors such as crop prices and may choose to allocate resources to
maintain agricultural production even under more adverse climate if
market conditions are favorable or were favorable the previous year.
Therefore, crop price should also be considered in crop production
models (Lobell et al., 2011). Throughout this paper, we refer to the
prices the farmer receives for their produce (farmgate prices) as crop
price. Crop price can impact both crop yield and crop production in
complex ways, and the two are not always directly related (Miao et al.,
2016). Higher crop prices could reasonably be associated with mono-
culture of a better returning crop, which would increase production but
has been associated with decreased yields over the long term
(Hennessy, 2006). Alternatively, higher crop price for a given crop may
encourage different crop rotations to improve soil quality, which would
be associated with lower productivity but greater yields in the long
term (Hennessy, 2006). The expectation of higher crop price may also
result in a greater allocation of inputs (i.e., fertilizer, higher quality
seed, pest management, etc.) accompanied by an increase in cropping
area that contribute to increases in both yield and production. There-
fore, although the expectation may be that crop prices mostly affect
land allocation, it likely plays an important role in inter-annual
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variability of both crop yield and crop production.

This study investigates annual crop production anomalies in relation
to three factors: precipitation anomalies (atmospheric supply anoma-
lies), reference evapotranspiration (ETo) anomalies (atmospheric de-
mand anomalies), and anomalies in the price that farmers receive for
their crops the year prior to production. We focus on the northern re-
gion of the USA, which is an important wheat, barley and alfalfa pro-
ducer and is representative of the agriculture of the US Northern Great
Plains and US Rocky Mountain front. The objectives of this study were
threefold: 1) Quantify the sensitivity of alfalfa, barley, and winter
wheat production to precipitation, ETo and to price anomalies (as re-
presented by SPI, EDDI and a standardized crop value index) at the
county scale; 2) Compare production sensitivities to these anomalies
between crops; 3) Cluster (i.e., group) counties based on spatial pat-
terns of sensitivities of annual crop production to precipitation, ETo,
and price and identify the regions most vulnerable to drought condi-
tions.

2. Methods
2.1. Study area

The study focused on crop production anomalies in Idaho, Montana,
North Dakota, South Dakota, and Wyoming, all located in the inland
northwest of the US (Fig. 1a). The study region encompasses the por-
tions of the intermountain west and the northern great plains region,
and includes significant longitudinal physiographic and climate gra-
dients associated with proximity to the Pacific Ocean and Gulf of
Mexico (Salley et al., 2016). Topography further enhances climate
gradients through orographic effects, where Idaho, western Montana,
and western Wyoming are mountainous areas associated with the
northern Rocky Mountain region, while eastern Montana, South Da-
kota, North Dakota, and eastern Wyoming are flat prairies associated
with the Northern Great Plains (Fig. 1b). Generally, a precipitation
gradient exists moving west to east, with some areas in Idaho receiving
an average of 1000 mm/yr of precipitation, and some areas in Wyoming
and South Dakota receiving <200 mm/yr (Fig. 1c). Rain-fed produc-
tion of the three crops within the study area was limited to areas re-
ceiving at least 300 mm of average annual precipitation over the study
period, and primarily irrigated production starts in areas receiving at
least 200 mm/yr. Temperature generally follows a similar gradient,
with cooler temperatures in the Rocky Mountains and warmer tem-
peratures in the Northern Great Plains (Fig. 1d).

Agricultural crop production is a key industry within the study area,
however five or six major crops dominate total area under production.
Three of these major crops, alfalfa, barley, and winter wheat, were
chosen due to adequate period record and economic significance in the
region, and because they are commonly produced across the study area.
States in the study area are important contributors to the national
production of these three crops. Idaho, Montana, and South Dakota
were ranked second, third, and fourth in US alfalfa production, re-
spectively, between 2015 and 2017 (USDA NASS). Idaho, North Dakota,
Montana, and Wyoming ranked first, second, third, and fifth in the US
for barley production. Montana and Idaho ranked sixth and seventh in
the US for winter wheat production between 2015 and 2017 (USDA
NASS). Farmers in Idaho, western Montana, and western Wyoming
benefit from widespread irrigation infrastructure, while crop produc-
tion in eastern Montana, North Dakota, South Dakota, and eastern
Wyoming is primarily rain-fed (USDA NASS).

2.2. Data analysis and preprocessing

To investigate the response of anomalies in the annual crop pro-
duction of alfalfa, barley, and winter wheat to anomalies in precipita-
tion, ETo and crop price we used survey data for the period of
1979-2016. Crop production and crop price data were obtained from
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Fig. 1. (a) Location of the study area within the contiguous United States. (b) Location of each state within the study area and the topography. (c) 30 year mean
annual precipitation from 1979-2010 (Daly et al., 2008). (d) 30 year mean July temperature from 1981-2010 (Daly et al., 2008).

the US Department of Agriculture National Agricultural Statistics
Service (USDA NASS). Production data is available at the county scale,
while information on price received is available for each crop at the
state scale. We only included counties in our analysis with at least 20
years of record. We also retrieved the annual irrigated production of
each crop when available in the USDA NASS survey. We used the ratio
of total irrigated production of a given crop to the total production of
that crop over the study period in each county as a metric of the pre-
valence of irrigation in each county. Counties with <40% irrigated
total production were considered primarily rain-fed and counties with
>60% irrigated total crop production was classified as primarily irri-
gated. Counties with between 40% and 60% total irrigated production
were not used in the comparison of sensitivity to precipitation and ETo
between rain-fed and irrigated counties.

Gridded precipitation and ETo data were obtained from the
University of Idaho Gridded Surface Meteorological Dataset,
METDATA. This dataset uses information from the PRISM (Parameter
elevation Relationships on Independent Slopes Model) (Daly et al.,
2008) and the NLDAS-2 (NASA Land Data Assimilation System version-
2 (Mitchell, 2004) to generate a downscaled daily meteorological da-
taset at 4 km resolution for the continental US Abatzoglou (2013). The
ETo grids included in METDATA are calculated using the American
Society of Civil Engineering Penman-Monteith formulation with
downscaled minimum and maximum temperature, vapor pressure
deficit, wind speed, and downward shortwave radiation. Precipitation
and ETo data were spatially averaged to the county scale and then
temporally averaged to monthly time steps. Meteorological, price and
agricultural production time series for each county were detrended
using linear regression prior to the calculation of anomalies (S-1
through S-4).

Precipitation anomalies were described using the Standardized
Precipitation Index (SPI), which characterizes drought by accumulating
standardized anomalies over prescribed time-scales (McKee et al.,
1993). We calculated 15 SPI time series for each county from monthly
detrended precipitation information across the growing season (be-
ginning in March and ending in September) using SPI timescales from 1
to 15 months. The SPI was fitted using a gamma distribution (Vicente-
Serrano et al., 2010). Precipitation anomalies (SPI) are hence referred
to as precipitation.

ETo anomalies were described using the Evaporative Demand
Drought Index (EDDI) (Hobbins et al., 2016). Like the SPI, EDDI
characterizes drought over user defined timescales of accumulated
anomalies. In this study we calculated EDDI over different time-scales

using the empirical probability of ranked ETo values summed across the
time-scales of interest (Hobbins et al., 2016), and then used inverse
normal approximation described by Vicente-Serrano et al. (2010). We
again developed 15 EDDI time series for each county across the growing
season using 1 to 15 months EDDI time-scales from detrended historic
ETo data. ETo anomalies are hence referred to as just ETo.

To calculate the time series of production and price anomalies, we
followed the same methodology of the SPI calculations but on de-
trended time series of annual production for each county and crop, and
of annual crop price for each state and crop. The time series of crop
prices was lagged one year to reflect the assumption that farmers react
to prices received the previous year (Miao et al., 2016). Another al-
ternative is to assume that farmers react to commodity price futures for
the current production year, however one-year lagged prices and crop
price futures are highly correlated and can be used interchangeably
with limited impacts on the analysis (Miao et al., 2016). We found that
the distribution of standardized time series of crop productions and
prices were best fitted using a log- logistic distribution instead of the
gamma distribution recommended for precipitation. We refer to the
resulting index of production anomalies as the Standardized Crop
Production Index (SCPI), and the index of lagged price anomalies as the
Standardized Crop Value Index (SCVI). The SCPI and SCVI were cal-
culated for each county with a time-scale of one year. Since crop prices
are only available at the state scale, the SCVI is identical for the
counties in each state. Annual crop production anomalies are hence
referred to as just production, and price received anomalies are referred
to as just price.

The use of different lags for the meteorological indices is essential
because we do not know a priori the characteristic time-scale of climate
anomalies to which crop production responds. Strong differences have
been recorded in response to different drought time-scales in natural
vegetation (Pasho et al., 2011; Vicente-Serrano et al., 2013) and crops
(Pena-Gallardo et al., 2018; Zipper et al., 2016). Identifying the correct
time-scale is important to determine the inertia of crop production to
climate variability.

2.3. Models

We assume that the incremental response of production is described
by a linear combination of climate and price anomalies. These are re-
duced-form models in the sense that they describe collinearity between
precipitation or ETo, price, and production anomalies, but they do not
describe the underlying mechanisms that generate production in those
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counties. The relationship between meteorological and production
anomalies appears to be linear or at least not strongly nonlinear ac-
cording to our data (S-5). Linear models have been used by other stu-
dies to relate different measures of production with climatological
factors (Steduto et al., 2007; Vicente-Serrano et al., 2006).

Instead of building a linear model with the SPI, EDDI and SCVI as
independent variables, we chose to develop two different linear models
to describe annual production anomalies, one based on precipitation
and price (SPI and SCVI) and another based on ETo and price (EDDI and
SCVI). The motivation was to avoid issues related to the correlation
between SPI and EDDI and to reduce the number of variables that
needed to be estimated in the final models. A single multiple regression
including SPI and EDDI would be possible using a regularization
method such as LASSO or ridge regression to handle the collinearity
between SPI and EDDI. However, previous analysis by our team found
that LASSO regression will zero out the EDDI coefficient resulting in an
equivalent model to Eq. (1). We also found in cross validation analysis
that Ridge Regression produces unstable and biased coefficients very
dependent on the amount of ridging applied. The linear models are:

SCPIl‘z = ‘xi,j,m,kSPIm,k,j + ﬁl’[;SC‘/Is,l + yilj’,m,k (€))
SCPI{; = 81mi EDDLyjcj + BESCVEi + 7S, @

where SCPI is the annual production anomaly, a is the fraction of
precipitation anomaly that translates to the production anomaly, § is
the fraction of ETo that translates to production anomaly, f is the
fraction of price anomaly that translates to production anomaly, and y
is the intercept, which absorbs the effect of errors and the effect of other
factors not explicitly included in the model. Subscripts indicate that the
variables change with crop, i; state. s; county, j; month, m; and SPI or
EDDI time scale, k. The superscript p or e differentiate the coefficients
for the precipitation model (Eq. (1)) or the ETo model (Eq. (2)).

We used a hierarchical linear regression (HLR) approach (Gelman
et al., 2013; McMahon and Diez, 2007) to determine the model re-
gression coefficients. We assumed t-distributed crop production data
errors (Gelman et al., 2013, p. 435 ff) to increase robustness and reduce
the risk that outliers in the crop production dataset could bias the in-
ference of the coefficient values. We included as a calibration parameter
the degrees of freedom of the t-distribution that control the tails of the
distribution (i.e., » shown in Fig. 2). To identify the optimal SPI and
EDDI time-scales and the most sensitive month of the growing season

halt-normal normal by
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for each county, we first ran a maximum likelihood method to de-
termine prediction errors from Eq. (1) and (2) using each combination
of time-scale and month of the growing season of the SPI and EDDI time
series. For each combination of time-scale and month we recorded the
root mean square error (RMSE) of the prediction and selected the time-
scale and month combination with the lowest RMSE for each county as
the characteristic SPI or EDDI timescale and month. We then de-
termined confidence intervals of the regression coefficients associated
with the characteristic SPI and EDDI time series determined for each
county by sampling the HLR model coefficients using a Markov chain
Monte Carlo (MCMC) method.

A HLR method was employed to increase the regression robustness
and augment the datasets with group level (state) information. In
Bayesian HLR, a set of hyperparameters at the higher level (state level)
are sampled from prescribed state-level distributions, which are sub-
sequently used to inform the prior distribution of county-level regres-
sion parameters (Gelman et al., 2013). HLR also accommodated the fact
that crop prices data also was only available at the state scale. A
schematic of the MCMC robust hierarchical regression algorithm shown
presented in Fig. 2. A common problem in hierarchical regression is
that when the sampler of the group variance (upper level) is exploring
regions close to zero, the sampling at the individual level (lower level)
become very inefficient because the probability that the chain can take
a long step and explore away from the group mean is small. To solve
this we use a linear transform that uses values sampled from the stan-
dard normal distribution (ac®etsij, gofetsij yoffietsij in Fig. 2) to offset the
hyperparameters away from the group means (for details see
Betancourt and Girolami, 2015, p. 80ff). The HLR model was im-
plemented in python using the pyMC3 library (Salvatier et al., 2015).
The posterior distribution of county-scale regression coefficients sam-
pled by the MCMC HLR was used to identify the 95% confidence in-
tervals. Statistical analysis of coefficients was limited to only those
determined to be significant at the 95% confidence interval (p = 0.05).

2.4. Clustering analysis

The different patterns of spatial variation of agricultural production
to climatic and price drivers make it very difficult to visually identify
regions exhibiting similar characteristics. We used a clustering analysis
to establish groups of counties representing strong, average, and weak
relationships between climate, crop price and production anomalies.
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Fig. 2. Kruschke style diagram of the Markov chain Monte Carlo hierarchical robust linear regression model showing the probability distributions used in Eq. (1). The
same model structure was used for Eq. (2), except the EDDI index was used as the independent climatic variable.
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This type of analysis allowed us to classify counties where annual crop
production anomalies exhibited similar sensitivity to precipitation, ETo
or price, revealing spatial patterns due to climatic or economic simi-
larities.

We chose a K-means cluster analysis (Hartigan and Wong, 1979) to
classify counties with similar crop production sensitivities to pre-
cipitation, ETo, and price for each crop under study as reflected in the
mean of the model coefficient distribution approximated by the MCMC
simulations. For the clustering analysis, all mean climatic and price
coefficients were used, regardless of their significance. We determined
an optimal number of 3 clusters using silhouette plots (Rousseeuw,
1987). Violin plots were used to display the mean and distribution of
coefficients that characterize each cluster for each crop.

3. Results
3.1. Response time-scale of crop production

The characteristic climatic time-scale and the most sensitive month
that best explained crop production anomalies varied per county and
per crop. Figs. 3 and 4 present performance maps for our two models
(RMSEs from the best time-scale and month combination for each
county) along with examples of heat maps for a few selected counties
illustrating the model performances for all combinations of considered
time scales and months. The heat maps show that specific SPI or EDDI
time-scales for specific months explained production anomalies better
than others, as measured by the RMSE (Figs. 3 and 4; S-6 and S-7). In
general, the SPI-SCVI model (Eq. (1)) performed best for alfalfa pro-
duction in counties in eastern Montana and western North and South
Dakota, where precipitation is the lowest in the domain (Fig. 3a). For
this region of the study area, the model typically shows very low per-
formance at any time-scale for the months of March to April, but has a
sharp increase in model performance in May or June (Fig. 3a, heat map
insets). This indicates that while production was sensitive to anomalies
accumulated 5 to 11 months prior to the beginning of the growing
season, it had low sensitivity to precipitation anomalies ending before
May or to anomalies with long time scales. Eq. (1) explained better
barley production anomalies for counties in central Montana and winter
wheat production anomalies in central Montana, central North Dakota
and western South Dakota (Fig. 3b and c). The EDDI-SCVI model (Eq.
(2)) explained best alfalfa production anomalies in northern Idaho and
western and eastern Montana (Fig. 4a) and explained better wheat and
barley anomalies in the central and western parts of North and South
Dakota (Fig. 4b and c).

Some counties showed similar sensitivities to a wide range of time-
scales and months. Furthermore, in some counties we detected the
existence of autocorrelation in the SPI and EDDI time-scale series,
which is reflected as diagonal banding structures of low RMSE, clearly
visible for example in 3c. This correlation is produced when model
configurations correlating months in the growing season maintain
performance for increasing time-scales that incorporate the effect of
climate anomalies occurring at earlier critical months. These issues can
complicate the accurate identification of the characteristic time scales
and months for the climatic variables. To reduce the noise in the re-
presentation of spatial patterns generated by the interaction between
the timing and time-scale of the anomalies, we use time-scale brackets
of short (1-5 months), moderate (6-10 months) and long
(11-15 months) time-scales, and timing brackets of early (March-May),
middle (June-July) and late (August-September) growing season.

Alfalfa production in eastern Montana, eastern Wyoming and the
Dakotas, where Eq. (1) and Eq. (2) models performed well, responded
at moderate to long SPI and EDDI time-scales (Fig. 4a and b). Response
time-scales were shorter westward in central and western Montana and
Idaho, where precipitation is higher, ETo is lower, and alfalfa produc-
tion was less responsive to climatic anomalies. Barley production re-
sponded to a wide range of SPI time-scales throughout the year (see
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insets in Fig. 4c¢) and more counties had production sensitive to mod-
erate and long time-scales than in the case of alfalfa. Counties with long
time-scale response were mostly concentrated in central and eastern
Montana and southern Idaho, where SPI-SCVI model (Eq. (1)) best
explained production anomalies (Fig. 4c). The EDDI response time-
scales of barley production showed spatial patterns that were less clear
(Fig. 4d). Like barley production, winter wheat also responded to a
wide range of SPI and EDDI time-scales (between 1 and 15 months)
throughout the year (see insets, Fig. 3c). Winter wheat production in
southeastern Montana and South Dakota were most sensitive to SPI at
medium and long time-scales, while North Dakota winter wheat pro-
duction responded to shorter time-scales (Fig. 4e). Once more, sensi-
tivities at long time-scales are concentrated in counties for which the
SPI-SCVI model performed best. The spatial pattern of EDDI time-scales
for winter wheat production were less informative (Fig. 4f) and some-
what similar to the spatial patterns of the barley time-scales. Generally,
counties where crop production was most sensitive to precipitation
were so at time-scales greater than 7 months, while counties where crop
production was most sensitive to ETo were so at EDDI time-scales less
than 6 months for the three crops. As discussed in the next section, the
sensitivity of barley and winter wheat production to climatic factors
was lower than for alfalfa and the role of price was more prominent in
explaining production anomalies. This probably contributed to less
structured spatial patterns of time-scales.

3.2. Region-wide production sensitivity

Since SPI, EDDI and SCVI are standardized indices, the coefficients
of the statistical models provide a comparative measure of the sensi-
tivity of crop production to precipitation and ETo. In general, and as
expected, production for all crops was positively correlated with pre-
cipitation anomalies and inversely correlated with ETo anomalies
(Fig. 5), although with exceptions for some crops and counties mostly in
eastern Montana and North Dakota, as discussed later. Alfalfa produc-
tion had the highest region-wide sensitivity to precipitation (mean SPI
coefficient o = 0.53) and ETo (mean EDDI coefficient § = —0.51) with
a relatively wide spatial variation (Fig. 5a). Barley and winter wheat
production exhibited similar average sensitivities to precipitation
(mean SPI coefficients a = 0.34 and a = 0.37, respectively) and ETo
anomalies (mean EDDI coefficients § = 0.32 and § = 0.2, respectively).
However, the sensitivity of barley production to climatologic drivers
was more uniform across counties than winter wheat (Fig. 5b and c).

Climate was the primary driver of alfalfa production anomalies with
market prices having a much smaller influence. Surprisingly, the mean
SCVI (price) coefficients in both the SPI and EDDI models were nega-
tive, although in both cases the variation of these coefficients among
counties was relatively large and spanned a range of positive and ne-
gative values (Fig. 5a). Crop market prices played a much larger role on
barley and winter wheat production, where the effect of price was on
par with the effect of climate. Like with climate factors, the variation of
SCVI factors in the study region was smaller for barley than for winter
wheat (Fig. 5b and c). Notice the similarity of SCVI coefficients iden-
tified independently for each crop using Eq. (1) and Eq. (2), which
indicates that the crop value and the climatologic indices are in-
dependent and shows the robustness of the models in identifying the
unique influence of these indices on crop production variability.

We expected that crop irrigation practices had an effect on the
sensitivity of crop production to precipitation and ETo variations,
which would be reflected in the model coefficients and in the amount of
production variance they can explain. To evaluate this expectation, we
plotted the best performing model coefficients of each county against
the amount of SCPI variance they explain and the fraction of irrigated
production in the county (Fig. 6). The sensitivity of alfalfa production to
climatic drivers is reflected in the clear direct correlation between the
amount of the SCPI variance explained by the Eq. (1) and the magni-
tude of the SPI coefficient (Fig. 6a), and the clear inverse correlation
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between the amount of the SCPI variance explained by Eq. (2) and the
magnitude of the EDDI coefficient (Fig. 6b). In these figures it is clear
that counties with a higher percentage of irrigated alfalfa had a lower
sensitivity to the climatic drivers and a smaller fraction of the pro-
duction variance explained by the models. This illustrates that irriga-
tion to a large extent decouples alfalfa production from the climatic
conditions. Primarily irrigated counties had a mean SPI coefficient of
a = 0.40 and a mean EDDI coefficient of § = —0.40 and, on average,
explained about 26% of the production variance respectively. This
contrasts with the substantially higher sensitivity of primarily rain-fed
counties (mean SPI coefficient a = 0.60 and mean EDDI coefficient
8 = —0.52) and the ability of the models to explain production
variability (mean R2 = 47 with Eq. (1) and mean R2 = 33 with Eq.
).

The situation is different for barley and winter wheat. The amount
of explained variance in barley production is less correlated with the
climatic coefficients (Fig. 6¢c and d) than in the alfalfa case, which also
indicates that barley production is to some extent decoupled from the
climatic drivers, and the reduced sensitivity of production to climatic
fluctuations were caused by the effect of crop prices and not the effect
of irrigation. Heavily irrigated counties were found along the entire
range of model performances and coefficients for both the SPI and EDDI
based models. There was little difference between precipitation coeffi-
cients in primarily irrigated counties and primarily rain-fed counties
(o = 0.34 and 0.31, respectively). The EDDI based model produced
similar mean R2 value in primarily irrigated counties (17%) to pri-
marily rain-fed counties (16%). This indicated that barley production
benefited less from irrigation than alfalfa other than some protection
from fluctuations in ETo. Winter wheat also exhibited low correlation
between the climatic coefficients and the amount of variance explained
by the models. Similar to barley, the lower sensitivity of wheat pro-
duction to climatic drivers was also caused by the compensatory effect
of wheat market prices. Irrigation of winter wheat is uncommon in the
region, which did not permit to evaluate the buffering effect that irri-
gation had on this crop.

3.3. Spatial patterns of production response

The analysis of results presented in the previous section can be
extended to investigate the existence of spatial patterns of sensitivity
and production response. Fig. 7 shows the spatial distribution of the
optimal SPI (a) and EDDI (f) coefficients for alfalfa, barley, and winter
wheat. SPI coefficients for alfalfa production were significant in 138 of
the 182 counties that reported alfalfa production, with most non-sig-
nificant coefficients associated with counties in southern Idaho and
western Wyoming.

Maximum sensitivity of alfalfa production to precipitation anoma-
lies occurred in the dryer and rain-fed counties of eastern Montana,
eastern Wyoming, western North Dakota, and western South Dakota
(Fig. 7a). The highest SPI coefficient (o = 0.93) was found in counties
in western North Dakota. For these counties the SPI-SCVI model (Eq.
(1)) explained around 75% of the variance in alfalfa production. The
sensitivity of alfalfa production then decreased again further east into
the rain-fed but wetter eastern half of North Dakota, where precipita-
tion anomalies explained only between 25% and 30% of the production
variance. The spatial patterns of sensitivity of alfalfa production to ETo
variations were similar to those of precipitation; alfalfa production was
most sensitive in the driest counties of the study area located in eastern
Montana, eastern Wyoming, North and South Dakota. In these counties,
ETo anomalies explained about 67% of the variations in alfalfa pro-
duction. Sensitivity was lowest in Idaho, where irrigated production
dominates, and in eastern North Dakota where climate transitions to
the rainy conditions of the US Midwest US region. In these counties
with low sensitivity the EDDI-SCVI (Eq. (2)) model explained about
30% of the variance of alfalfa production.

The sensitivity of barley production to precipitation and ETo was
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more spatially homogeneous (Fig. 7c and d). Although the a pre-
cipitation coefficients were statistically significant for 120 out of the
190 counties that reported barley production, the coefficients did not
reveal clear spatial patterns of variation. This is consistent with the
findings mentioned earlier that the larger importance of crop market
drivers reduced the sensitivity of barley production to precipitation
variability. The relatively flat spatial distribution of the precipitation
coefficients may be a result of crop prices being spatially invariant at
the state scale and also a result of the marginal benefits that irrigation
has on barley production. Finally, significant ETo coefficients were
mostly concentrated in the counties of North Dakota, with little varia-
tion between them.

SPI coefficients reflecting the sensitivity of winter wheat production
to precipitation anomalies were significant in 138 out of the 185
counties that reported winter wheat in the study region (Fig. 7e).
Counties in south-central South Dakota and eastern Wyoming exhibited
the highest sensitivity to precipitation (a > 0.6) and in these counties
the SPI-SCVI model (Eq. (1)) explained about 40% of the production
variance. On the other hand, winter wheat production in North Dakota
showed the lowest sensitivity. The regions where production was most
sensitive to variations in precipitation also showed the highest inversely
proportional sensitivity to EDDI (more ETo decreased production). In
these counties, 8 coefficients reached —0.6 and Eq. (2) explained up to
51% of the variance. However, production in Northern and Eastern
North Dakota, which exhibited low sensitivity to precipitation varia-
bility, showed a positive response to EDDI (more ETo improved pro-
duction (Fig. 7f). For the counties where production had positive cor-
relation with EDDI, Eq. (2) explained between 12% and 20% of the
production index variance.

Crop prices influence farmer decision-making and can reduce the
apparent effect of climatic anomalies on crop production. The spatial
variations in the modulating effect of commodity prices on crop pro-
duction is shown in Fig. 8. Alfalfa production did not show significant
sensitivity to prices in most counties, so the figure only shows the
distribution of the B SCVI sensitivity factors for barley and winter
wheat. In all cases, the coefficients estimated by Eq. (1) and (2) were
very similar both spatially an in magnitude (Fig. 8), which indicates
that the crop price dynamics used in the SCVI are statistically in-
dependent of the precipitation and ETo dynamics represented by the
SPI and EDDL.

SCVI coefficients for barley obtained from Eq. (1) and (2) indicated
that barley production increased with the crop price received by
farmers the previous year in most counties in Montana, Idaho and
Wyoming and that this sensitivity was somewhat higher in the western
part of Montana and in Idaho (most clearly noticeable in Fig. 8b), where
irrigated production was most dominant, and in some of the eastern-
most counties of North Dakota. Although mostly statistically non-sig-
nificant, both Eq. (1) and (2) agreed that barley production in most
counties in central and western North Dakota and in South Dakota had
an inverse relationship with prices received the previous year. On the
other hand, winter wheat production was most sensitive to price, par-
ticularly in central North Dakota and northeastern Montana (Fig. 8c
and d). In these counties crop prices had more weight on production
than SPI and EDDI, particularly in North Dakota.

3.3.1. Clustering analysis

Fig. 9a shows the classification of counties with respect to the
sensitivity of alfalfa production to precipitation, climate and crop price.
The violin plots (Fig. 9b) provide information on the combination of
factors that characterize each cluster. Cluster 1 (blue) groups counties
where alfalfa production was most sensitive to variations in precipita-
tion and ETo the lowest sensitivity to price. Counties in Cluster 1 were
primarily rain-fed and located in North Dakota, South Dakota, north-
east Wyoming, and eastern Montana, the regions with lowest average
precipitation in the study area. Cluster 2 (green) are counties with more
moderate sensitivity to climate but some positive response to crop
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price. Counties in this cluster are mostly located in central and western
Montana. Cluster 3 (gold) groups counties with the highest resiliency to
precipitation and ETo variability, and also an inverse relationship with
crop price. Counties in this cluster are mostly located in Idaho,
Wyoming, eastern North Dakota, and South Dakota, which are regions
with the highest precipitation rates in the domain. In the case of Idaho
and western Wyoming, most of the alfalfa production is irrigated.

The distribution of clusters for barley is different than for alfalfa
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Fig. 7. Spatial distribution of pre-
cipitation coefficients, a (left column)
and ETo coefficients, 8§ (right column)
for alfalfa (a) and (b), barley (c) and
(d), and winter wheat (e) and (f). The
scale describes the relative sensitivity
of climatic anomalies, where warmer
colors indicate a negative response of
crop production to negative precipita-
tion anomalies or positive ETo
anomalies (i.e., negative response to
drought), and cooler colors indicate a
positive response in crop production
anomalies to negative precipitation
anomalies or positive ETo anomalies
(i.e., positive response to drought). The
diagonal lines across counties indicate
non-significant sensitivity factors. (For
interpretation of the references to color
in this figure legend, the reader is re-
ferred to the web version of this ar-
ticle.)
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(Fig. 10a). Cluster 1 is associated with counties that had a direct re-
sponse to precipitation anomalies and an inverse response to ETo
anomalies and a relatively variable but positive sensitivity to crop price
(Fig. 10b). Cluster 1 includes counties in the mountainous regions of
western Montana, Idaho and Wyoming as well as in South Dakota.
Cluster 2 is characterized by counties where barley production had a
relatively low and variable sensitivity to precipitation, moderate sen-
sitivity to ETo and a negative response to price. Counties in Cluster 2
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Fig. 8. Spatial distribution of price sensitivity coefficients derived from Eq. (1) (left column) and Eq. (2) (right column) for barley (a) and (b) and winter wheat (c)
and (d). The scale shows the relative sensitivity of crop production to price, where purples indicate a negative response of crop production anomalies to positive price
anomalies and greens indicate a positive response of crop production anomalies to positive price anomalies. Diagonal lines across counties indicate non-significant
coefficients. Price coefficients for alfalfa (not shown) were non-significant in most counties.
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are largely located in central and western North Dakota. Cluster 3 is
unique in that it is characterized by counties that had a relatively high
positive response to precipitation and crop price anomalies (like Cluster
1) but also had a positive response to ETo anomalies (i.e. production
increased with increased ETo). Counties in this cluster were mostly
located in central and eastern Montana.

Finally, the classification of winter wheat counties is shown in
Fig. 11a. Cluster 1 are counties where production is minimally im-
pacted by climatic or price factors, and are mostly found across much of
Idaho and near the wetter eastern borders of North Dakota and South
Dakota. Cluster 2 is mostly characterized by high sensitivity to crop
price, but also to a positive response both precipitation and ETo
anomalies. Clusters 2 is mostly composed of counties in Eastern Mon-
tana and much of North Dakota. Cluster 3 are the counties most vul-
nerable to precipitation and ETo anomalies, with a relatively lower
response to price. Counties with these characteristics occupy central
and western North Dakota, eastern Wyoming, and central Montana.

4. Discussion

Our study characterized the sensitivity of agricultural production to
these two major climatic drivers, while controlling for the effect that
crop prices have on farmer decisions. This is a key aspect that is often
ignored in studies seeking to assess drought impacts on food production
and food security. Farmers not only respond to climatic factors, but are
also sensitive to economic drivers and may choose to maintain pro-
duction by increasing acreage even under adverse climatic conditions if
markets are favorable (Maneta et al., 2009; Miao et al., 2016). We
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Fig. 9. (a) County classifications based sensitivity of alfalfa produc-
tion to SPI, EDDI and SCVI; (b) violin plots with distribution of pre-
cipitation sensitivity coefficients (left), ETo sensitivity coefficient,
(middle), and price sensitivity coefficients (right) for clusters 1 (blue),
2 (green) and 3 (orange). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)

showed that crop prices reduced the sensitivity of production to cli-
mate, inducing compensatory effects on production that reduce the
local impact of climate fluctuations (Fig. 11b, cluster 2). Ignoring the
effect of economic drivers on farmer choices may introduce biases in
the share of observed production declines attributed to drought. How-
ever, it should be recognized that climate external to the region can
impact crop prices within the region (Adams et al., 1998). Our regional
focus provides different insights compared to findings from previous
studies that have focused on characterizing drought impacts on yields
(Hlavinka et al., 2009; Pefia-Gallardo et al., 2018b; Zipper et al., 2016).
The focus on production was motivated by the idea that integrating
agricultural yield and area in production is a better immediate measure
of food security than yield because it captures the decisions farmers
make both at the intensive margin (resource allocation to increase
yield) and at the extensive margin (land reallocation).

Comparing our results with previous studies, we found that the
climatic time-scales at which yield responds are generally shorter than
those of production. Zipper et al. (2016) reported that maize and soy
yield anomalies in the US were most correlated with drought conditions
occurring during July and August over time-scales of 1-3 months, or
about 1-2 months prior to harvest. Vicente-Serrano et al. (2006) re-
ported that wheat and barley yields in Spain were most responsive to
SPI time scales between 1 and 3 months in February, which is 4 months
prior to harvest, and reflects the importance of delayed processes that
affect crop development such as the timing of soil moisture recharge
and of crop water use. More recently, Pena-Gallardo et al. (2018b)
applied the SPEI to analyze the yield response to drought for the major
crops in the US. The results for barley and winter wheat indicated a
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Fig. 10. Same as Fig. 10 but for barley. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Same as Fig. 9 but for winter wheat. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

response at a wide range of time-scales, often longer than three months.
The time-scales identified in our study are generally longer than that
reported for yields. This is likely due to our focus on production which
is a function of both yield and cropping area. The longer characteristic
time scales indicate that crop production has more inertia and responds
more slowly than yield to climate fluctuations. This is because farmers
consider not only short term climate conditions, but also other types of
information such as seasonal forecasts, traditional knowledge, or crop
market values in their decision making months before the crops are
sown.

This relatively long time scale of farmer decision making is con-
sistent with studies looking at farmer behavior. For instance, (Haigh
et al., 2015) found that over 80% of farmers in the US Corn Belt decided
on cropping area between mid-fall and late-winter, and that over 50%
of the same farmers used current, monthly or seasonal drought forecasts
to aid in their decisions. However, other factors not related to farmer
decision making such as specific crop cultivars, varieties and other
physiological processes can also play a role in these time scales.
(Vicente-Serrano et al., 2013) showed that longer time-scales were as-
sociated with semiarid or subhumid regions possibly because of phy-
siological adaptations to drought.

The spatial patterns of sensitivity exhibited by each crop reflects
what crops and regions are more driven by precipitation and ETo and
thus exposed to drought and which ones are more decoupled from
climatic conditions. Alfalfa was mostly sensitive to precipitation
anomalies, slightly less to ETo, and had little sensitivity to price (Fig. 5).
Unlike wheat and barley, ranchers grow alfalfa to feed cattle and con-
tinue producing it regardless of the price. In addition, alfalfa is a per-
ennial crop that is usually not rotated at least until the stand is de-
pleted, often not before 4-5 years. As a consequence, land allocation to
alfalfa tends to be more stable through time than land allocated to
wheat or barley. These factors may contribute to the observed low
sensitivity of alfalfa production to price. The spatial distribution of
sensitivity to precipitation or ETo (Fig. 7) generally coincided with
gradients in precipitation (Fig. 1c), temperature (Fig. 1d), and the
prevalence of irrigation across the study area. Crop yields in warmer
regions are generally more sensitive to climatic variability than cooler
regions (Lobell et al., 2011), and this affects the sensitivity of produc-
tion even if the amount of land allocated to this crop remains constant.

Barley and winter wheat cultivated in the region, on the other hand,
are annual crops often rotated in the same field. The land allocated to
these crops are more variable year to year and subject to farming de-
cisions based on both climatic and market factors. This aspect was
clearly captured by the relatively high sensitivity of these crops to crop
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price (Fig. 8). The spatial patterns of sensitivity of barley and winter
wheat production to climatic factors did not clearly follow the spatial
gradients of precipitation or temperature, and the sensitivity was not
affected by the amount of irrigation in the county (Fig. 6¢ and d). It is
possible that variations in soil water retention properties, shallow
groundwater, farming practices and other variables not considered in
the model exert a larger influence on production than climate and
dominate the spatial distribution of sensitivities. Using county level
yield data, Li and Troy (2018) and Troy et al. (2015) found that winter
wheat yields in the US Northern Rockies and Northern Plains showed
limited response to growing season precipitation, and that for a variety
of crops, the benefit of irrigation in terms of yield gains was often
limited. Although they did not specifically analyze barley, we could
speculate that given the prevalence of rain-fed production, soil moisture
recharge during spring and growing season from precipitation is suffi-
cient to obtain barley yields close to the potential. This would explain
why the sensitivity of barley production to the SPI was similar for
counties with different levels of irrigated production.

The spatial distribution of barley and winter wheat production
sensitivities to EDDI brought forward some interesting patterns. Winter
wheat production over north and eastern North Dakota (Fig. 7f), and
barley production over north central Montana showed a somewhat
positive response to increased atmospheric water demand (Fig. 7d).
This positive crop production response to high ETo anomalies observed
in this study for barley and winter wheat was also observed by Lobell
and Asner (2003) and Zipper et al. (2016) for corn and soybean yields,
where increased crop yields occurred during periods of below average
precipitation or above average atmospheric water demand. Zipper et al.
(2016) attributed this positive sensitivity to drought conditions to
shallow groundwater and poorly drained soils, or the presence of irri-
gation. The positive response to high ETo in our study area occurred in
counties were minimal irrigation of barley and winter wheat was pre-
sent. However, the transition between the dry western US and the wet
midwest occurs roughly north to south through western North Dakota
where annual precipitation equals ETo (Salley et al., 2016). In the case
of North Dakota, waterlogging and poor field drainage is often an issue
and production may benefit from increased ETo. However, unlike the
rest of the western US, eastern Montana and North Dakota are experi-
encing a reduction in atmospheric vapor pressure deficit (Ficklin and
Novick, 2017) and an increase in summer precipitation (Holden et al.,
2018), which may result in barley and winter wheat production de-
clines based on the positive production response to lower precipitation
and increased ETo observed in this study. Further work concerning
historic sensitivity to climatic anomalies in conjunction with historic
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trends in atmospheric water supply and demand would provide useful
insights into how the equilibrium between crop production and climate
variability could shift in the future.

The use of drought indices to characterize the sensitivity of crop
production or yield is providing important insights that are helping
understand the risk of climate change on agriculture (Pefia-Gallardo
et al.,, 2018b; Wang et al., 2014; Yamoah et al., 2000; Zipper et al.,
2016). Most of these studies focus on the impact of precipitation
anomalies using the SPI or use the SPEI, which incorporates the si-
multaneous effect of precipitation and ETo anomalies. We developed
different models using the SPI and EDDI to study the sensitivity of
precipitation and ETo separately. This elucidates the individual effects
of these climatic drivers, but does not capture the interactions between
the two. Our analysis revealed that the sensitivity of production to both
constituents of climatic extremes were similar but opposite in sign,
particularly for alfalfa and barley but also for winter wheat (Fig. 5).
This symmetry of precipitation and ETo about zero sensitivity indicates
that these drivers are correlated and play similar roles in driving ter-
restrial processes, which supports the hypothesis proposed by Vicente-
Serrano et al. (2010) in their development of the SPEIL. SPEI has often
been found to produce higher correlations between climatic conditions
and vegetation production than other drought indices (Begueria et al.,
2014; Pena-Gallardo et al., 2018a; Vicente-Serrano et al., 2012), de-
monstrating the added value of this metric and its ability to capture
synergistic interactions between precipitation and ETo. However, our
research showed that while the impacts of precipitation and ETo on
production are similar in magnitude and upholds one of the premises
embedded in the SPEI, the timing and time-scales at which the pre-
cipitation or ETo are most correlated with production are often not the
same. Production tends to be correlated with precipitation anomalies at
longer time-scales and responds to ETo at shorter time-scales. This in-
formation is lost if the SPEI is used alone and shows that the SPI and
EDDI or SEDI may provide complementary information if used in
conjunction with the SPEL

5. Conclusion

Alfalfa and barley for stockfeed and wheat production are major
contributors to the economy of the Northern Great Plains region of the
US. These three crops comprise the largest regional share of agricultural
land and are important to maintain the food supply of the country and
of the globe. How- ever, limited crop diversification and the prevalence
of dryland production makes this region vulnerable to drought and crop
market downturns. Evaluating agricultural resilience is key to identi-
fying what regions may require strategies to promote adaptation and
mitigate the negative impacts of drought or regional climate shifts. Our
analysis contributes to understanding agricultural sensitivity to climate
in a novel way for two reasons: First, it simultaneously considers the
impacts of climatic and agricultural market anomalies on crop pro-
duction; and second it focuses on production rather than on crop yield
to captures both the biophysical response of the crop and the land al-
location and harvesting choices farmers make, which is important for
resiliency analysis.

In general, for the region, we identified that agricultural production
was most vulnerable to drought in eastern Montana and western North
and South Dakota, especially for alfalfa. The intermountain western
region (western Montana and Idaho) and the wetter eastern part of the
Dakotas showed more resiliency to precipitation shortfalls. Alfalfa
production was most sensitive to climate, and the spatial pattern of
sensitivity followed the spatial distribution of precipitation and tem-
perature. Sensitivity of alfalfa production to EDDI was secondary to SPI,
while barley and winter wheat production had a larger relative sensi-
tivity to EDDI and to market prices. This sensitivity to prices illustrates
that farmers may choose to sustain production by increasing the land
allocated to specific products even under suboptimal climatic condi-
tions if crop prices in previous years have been favorable. The analysis
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also shows that evaluations of the impact of climate on agricultural
production can be biased if crop prices and other farmer incentives are
not taken into account.

We also detected that agricultural production had a longer inertia to
climatic variations compared to yields, as reflected by the longer op-
timal climatic time-scales we found compared to these reported by yield
studies using similar indices. This is an additional indication that
farmers choices can sustain production under unfavourable conditions
by increasing the level of inputs (e.g. fertilizer, labor) or increasing land
allocation, which increases the resiliency of crop production. Finally,
while in most cases the sensitivity of production to precipitation and
ETo was similar in magnitude, time-scales of SPI were longer than the
time scales of EDDI. We interpreted that the SPI reflects the effect of
moisture supply to plants, which is mediated by the soil and therefore
has relatively longer response time scales. EDDI on the other hand re-
flects the effect of atmospheric moisture demand, which introduces a
more immediate physiological response on the crop, and this is re-
flected in the shorter EDDI time-scales.
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