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Abstract

Terrestrial ecosystem gross primary productivity (GPP) is the largest land-atmosphere carbonflux

and the primarymechanismof photosynthetic fixation of atmospheric CO2 into plant biomass.

Anomalous rainfall events have been shown to have a great impact on the global carbon cycle.

However, less is known about the impact of these events onGPP, especially in Africa, where in situ

observations are sparse.Here, we use a suite of satellite and other geospatial data to examine the

responses ofmajor ecosystems inAfrica to anomalous rainfall events from2003 to 2017.Our results

reveal that higher-than-average groundwater storage in tropical ecosystems offsets the rainfall deficit

during the dry years.While the inter-annual variations inGPP in semi-arid ecosystems are controlled

by near surface soil water, deeper soilmoisture and groundwater control the inter-annual variability

of theGPP in dense tropical forests. Our study highlights the critical role of groundwater in buffering

rainfall shortages and continued availability of near-surface water to plants through dry spells.

1. Introduction

Plant response to climate variability and available

water vary according to their hydraulic traits and life

history strategies (McDowell et al 2008, Poorter et al

2010, Blackman et al 2019). In some tropical regions,

plants have evolvedmechanisms to cope with seasonal

drought, such as deep roots and hydraulic redistribu-

tion, enabling access to groundwater (Nepstad et al

1994, Jipp et al 1998). The availability of water from

deeper soil and groundwater sources enables plants in

humid climates to maintain photosynthetic activity

during the dry season characterized by lower rainfall

intervals (Gou et al 2015, Barbeta and Peñuelas 2017,

Koirala et al 2017, Pierret and Lacombe 2018), which

directly affects net terrestrial carbon uptake (Hum-

phrey et al 2018). However, plant productivity

response to total available water (soil moisture (SM) to

groundwater) and the way these pools regulate plant

productivity remains uncertain.

It is estimated that shallow groundwater influ-

ences 22%–32% of the global land area (Fan et al

2013), and this ecologically available water has been

shown to impact plant activity and vegetation struc-

ture (Orellana et al 2012, Rossatto et al 2012). While

the effects of rainfall on plant productivity especially

during El Niño–Southern Oscillation (ENSO) phases

are well studied (Adams and Piovesan 2005, Raupach

et al 2008, Phillips 2009, Phillips et al 2010, Zhao and

Running 2010, Liu et al 2017), there is still lack of
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understanding regarding the influence of total plant-

available water on ecosystem productivity during sig-

nificant meteorological conditions in drier climates

such as Africa, where seasonality in productivity is lar-

gely related to soil water content (Madani et al 2017a).

African ecosystems, including drylands that cover

the majority of the land area (Bastin et al 2017), have

received significant attention due to their influential

role in affecting inter-annual variability in global pro-

ductivity and the terrestrial carbon sink (Poulter et al

2014, Ahlström et al 2015), which has been attributed

to inter-annual rainfall fluctuations. While the impact

of rainfall anomalies on plant activity is well docu-

mented over South America, and to a lesser extent

over Southeast Asia (Phillips et al 2009, Wooster et al

2012, Doughty et al 2015), much less is known about

the response of African ecosystems, despite the impor-

tant role of African forests in the global carbon cycle

(Williams et al 2007, Williams et al 2008a, Ciais et al

2011).

In this research, we seek to investigate the response

of African forest gross primary productivity (GPP)

relative to variability in rainfall, with consideration of

the effect of SM and groundwater storage. While SM

influences canopy stomatal conductance and is essen-

tial for modelling plant responses to drought (Baldoc-

chi et al 2010), it is currently poorly constrained in the

majority of ecosystem models (Stocker et al 2018).

One exception is the level 4 carbon product (L4C) gen-

erated by the NASA Soil Moisture Active Passive

(SMAP)mission (Jones et al 2017). To clarify the influ-

ence of climate variability on the African ecosystem

productivity, we used the L4C GPP algorithm (see

methods) driven with model-based retrospective SM

inputs to estimate ecosystem GPP from 2003 to 2017.

Specifically, we examined the GPP response over three

years (2005, 2010 and 2015) with below- or above-

average annual rainfall across Africa and quantified

the role of available water on GPP. These events char-

acterized as ENSO, occurred at roughly five-year inter-

vals and significantly affected rainfall patterns

throughout the continent. In Africa, ENSO is not the

only factor affecting annual rainfall fluctuations. The

variability in sea surface temperature (SST) creates

complex climatic conditions affecting monsoons,

moisture convergence and convective activity (Wil-

liams et al 2008b, Ummenhofer et al 2009, Pomposi

et al 2018), consequently impacting rainfall and GPP

of terrestrial ecosystem across the continent. Rainfall

patterns in Africa are also sensitive to other landscape

factors such as vegetation cover, land surface albedo,

and SM (Koster et al 2004, Paeth and Frieder-

ichs 2004). It is expected that the improved L4C

model, which links GPPwith SM availability and other

environmental restrictions to growth, can help clarify

the productivity response of ecosystems relative to

changes in plant-available water.

The L4C framework uses a light use efficiency

(LUE)model to derive daily GPP using the fraction of

absorbed photosynthetically active radiation (FPAR)

(Myneni et al 2015) observed by the moderate resolu-

tion imaging spectroradiometer (MODIS) instrument

on NASA’s Terra satellite. Other LUE model inputs

include daily minimum air temperature, atmospheric

vapor pressure deficit (VPD), and photosynthetically

active radiation (PAR) from the MERRA-2 (Gelaro

et al 2017) global reanalysis, and daily root zone

(0–1 m depth) SM inputs from the SMAP Nature Run

dataset (Reichle et al 2017). The VPD and SM inputs to

the LUE model define respective atmospheric moist-

ure demand and soil water supply restrictions onGPP,

while the model environmental response character-

istics are calibrated from global FLUXNET observa-

tions (Jones et al 2017).

We used a number of other observational datasets

to analyze how water scarcity and availability at below

surface and deeper soil and groundwater storage can

affect inter-annual variability and seasonality of GPP

in Africa. These data are independent from the L4C

model and includedmonthly rainfall from the Climate

Hazards Group Infrared Precipitation with Station

(CHIRPS) product (Funk et al 2015), root zone SM

from the Famine Early Warning Systems Network

(FEWSNET) LandData Assimilation System (FLDAS;

McNally et al 2017), and terrestrial water storage

(TWS) from theGravity Recovery andClimate Experi-

ment (GRACE) satellite record (Zhao et al 2017). We

also used the ensemble mean GPP of five dynamic glo-

bal vegetation models (DGVMs) from the TRENDY-

v7 project (Sitch et al 2015, Quéré et al 2018), and

satellite-observed solar-induced chlorophyll fluores-

cence (SIF; Köhler et al 2015) as an additional remote

sensing indicator of ecosystem productivity to com-

parewith the L4CGPP results.

2.Methods

We used the SMAP L4C algorithm to estimate daily

ecosystem GPP from 2003 to 2017 at 9 km resolution

(Jones et al 2017). The L4C GPP model uses an LUE

model framework similar to NASA’s MODIS MOD17

(Running et al 2004, Zhao et al 2005), while including

an explicit water supply constraint on GPP derived

from below-surface to root zone (0–1 m depth) SM

information, and an improved model parameteriza-

tion and calibration using historical tower C-flux

measurements from global FLUXNET sites (Baldocchi

et al 2001). L4C GPP (gC m−2 d−1
) is modeled using

the following LUE approach:

( )e= ´ ´ ´ EGPP FPAR PAR 1max mult

where PAR represents photosynthetic active radiation,

FPAR (Myneni et al 2015) inputs are provided from

MODIS (MOD15 C6) to define vegetation and canopy

conditions, and emax is a fixed maximum LUE

parameter defined for different plant functional types

(PFTs) under non-limiting environmental conditions.

The Emult parameter is a scalar multiplier (0–1)
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representing land cover specific responses to environ-

mental limitations on plant growth that reduce the

estimated photosynthetic LUE from its potential emax

due to sub optimal VPD, T ,min and root zone SM, as

well as frozen temperature (FT) constraints (2). Emult

is defined as the product of equally weighted scalar

multiplier values for VPD,T ,min SMand FT:

( ) ( ) ( ) ( ) ( )= ´ ´ ´E f f T f fVPD SM FT 2mult min

To drive the L4C GPP algorithm, we used

2003–2017 daily meteorology inputs from the

MERRA-2 global reanalysis (Gelaro et al 2017), SM

inputs from the SMAP L4SM Nature Run (NRv4)

records (Reichle et al 2017), and FPAR inputs from the

MODIS (C6) observational record (Myneni et al

2015). The daily PAR data used for the L4CGPP calcu-

lations were obtained fromMERRA-2 and used to cal-

culate changes in incoming solar radiation forcing

over the study period. We also used MODIS 8 d FPAR

high-quality pixels to analyze the observed vegetation

greenness changes during the study period. The L4C

GPP data used in our analysis differs from NASA’s

SMAP L4C operational product by not incorporating

the land surface model assimilation of SMAP bright-

ness temperature retrievals, which are only available

from early 2015 to the present.

Monthly rainfall data were obtained from the

CHIRPS product (V.2; Funk et al 2015). The specific

product used in this research provides monthly 0.05

degree spatial resolution rainfall data based on satellite

derived (Tropical RainfallMeasuringMission Rau et al

1982 Multi-Satellite Precipitation Analysis V.7) rain-

fall estimates and interpolated gauge products over

Africa (Funk et al 2015). The monthly GRACE TWS

data used in the analysis are gridded to a consistent 3°

by 3° spatial resolution and extend from 2003 to 2016

(Zhao et al 2017). As an independent SM record, we

used the FEWS NET Land Data Assimilation System’s

(FLDAS; McNally et al 2017) 100–200 cm root-zone

monthly SM recordwith 0.1° spatial resolution.

We used simulations of five DGVMs from the

TRENDY v7 ensemble (CLM5, ISAM, OCN, LPJ, and

VISIT) with 0.5 to 1° spatial resolution for the period

2003–2017 (Sitch et al 2015, Quéré et al 2018). The

selected models account for climate, land use, and

CO2 forcing effects on ecosystem productivity. We

used global daily satellite observations of SIF from the

ESA GOME-2 satellite extending from 2007 to 2017

(Köhler et al 2015).We aggregated the daily SIF data to

a monthly 0.5° spatial resolution as an observational

GPP proxy for comparison with the L4C GPP record.

The GOME-2 SIF data have been shown to have high

correlation with plant photosynthetic activity (Guan-

ter et al 2014, Joiner et al 2014, Walther et al 2015,

Yang et al 2015, Madani et al 2017a), and provide an

independent validation of the effects of bioclimatic

factors on ecosystem productivity (Madani et al

2017a). SIF is an electromagnetic wave emitted during

plant photosynthesis in the 650–800 nm spectral range

and is based on the principle that PAR absorbed by the

leaf is re-emitted as light in the form of chlorophyll

fluorescence as a byproduct of photosynthesis (Max-

well and Johnson 2000). GOME-2 SIF observations

are known to experience artifacting in data retrieval

after mid-2012 due to sensor degradation (Zhang et al

2018). Tomitigate this problem, we corrected the drift

in time series data by matching the mean of observa-

tions after mid-2012 relative to values before that per-

iod. Here, GOME-2 SIF and TRENDY GPP are used

for comparison and diagnosis of L4CGPP results.

We calculated the anomalies in time series data by

subtracting the mean seasonal cycle, and removed the

trend using linear regression. We also aggregated the

monthly data to annual scales to assess inter-annual

variability. The temporal correlation between inter-

annual variability of GPP, SM, GRACE TWS and rain-

fall anomalies was assessed using Pearson’s correlation

(r) at pixel level over the study period and for three

major ecosystems defined by the PFT land cover classi-

fication (Sahel, southern savannas, and rainforests,

tropical and sub-tropical). A cross-correlation analysis

with 24-month time lag was performed to analyze the

memory effect of available water on the L4C-GPP time

series data.

In order to analyze the factors controlling inter-

annual variability in GPP we regressed the residuals of

the linear regression between L4C GPP and CHIRPS

rainfall with the independent FLDAS SM and GRACE

TWSdatasets.

We focused on three significant climate events

(Climate Center Prediction Team 2018) occurring

over the study domain in 2005, 2010, and 2015 and

estimated the associated annual GPP and climate

anomalies from the available datasets relative to their

total available length of record over the 2003–2017

period. The MODIS MOD12Q1 (Type-5) PFT land

cover classification (Friedl et al 2010) was used to ana-

lyze regional productivity anomalies within the major

vegetation classes relative to water supply changes

from SM, TWS and rainfall. In this regard, the grass-

lands (GRA) and shrub lands (SHR) classes were

merged into a broader savanna category to analyze the

GPP anomalies. Monthly SST records (Clayson and

Brown 2016), were used to clarify the influence of

regional SST anomalies on GPP over Africa, and for

additional insight on regional climate variability.

3. Results and discussion

3.1. Continental-scale rainfall and inter-annual

variability inGPP

The African continent receives highly variable rainfall

spatially and temporally, with an annual mean and

standard deviation of 660±80mm. Spatial variability

in rainfall is highest in SHR, where average annual

rainfall is 600±450 mm. On a temporal scale, the

highest annual rainfall in the study periodwas 690mm
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and occurred in 2010, categorized as a strong El Niño

year (figure 1(a)). In 2005 and 2015, annual rainfall

was low by 69 mm and 64 mm than the 2003–2017

average respectively. Annual rainfall variability in

Africa shows an inconsistent response to El Niño and

La Niña climate oscillations indicated by the Oceanic

Niño Index (ONI; Climate Center Prediction

Team 2018). In Africa, El Niño events and associated

SST anomalies are not the only factors that influence

rainfall variability. The Indian Ocean dipole, African

and tropical easterly jets, and the Saharan heat low also

influence atmospheric circulation patterns and rainfall

variability in Africa (Black 2005, Parhi et al 2016).

In 2005, the SST was lower than average over the

adjacent South Atlantic and Indian Oceans, resulting

in reduced rainfall across Africa (figure 1(b)). In 2010,

high SSTs over the South Atlantic Ocean coincided

with enhanced annual rainfall and productivity over a

majority of the vegetated area of Africa. In 2015, low

SSTs over the South Atlantic Ocean were associated

with reduced rainfall in the southern savannas of

Africa.

The L4C data record indicated that African ecosys-

tems contribute approximately 20% (26.5±0.8 Pg C
yr−1

) to the total annual global terrestrial GPP. The

TRENDYmodels estimated an annual GPP of 27.4 Pg

C yr−1, close to that of L4C GPP but with lower inter-

annual variability (±0.5 Pg C). The L4C GPP inter-

annual variability is closely related to rainfall patterns

(r2=0.45, p<0.05). The TRENDY GPP models

showed more agreement with annual rainfall patterns

(r2=0.57, p<0.05) than the L4C GPP estimates,

suggesting that rainfall plays a leading role in deter-

mining inter-annual variations in TRENDY model

GPP for African ecosystems. Unlike TRENDYmodels,

the L4C GPP uses the satellite-derived FPAR observa-

tions and describes the response of GPP to climate by

including water (both SM and VPD) and temperature

constraints to limit the LUE photosynthetic carbon

assimilation rate (seeMethods).

Figure 1.Effect of ENSOon annualGPP of African ecosystems. (a)Anomaly in cumulative annual GPP fromL4C (black line) and
TRENDYmodels (orange line; shading shows inter-model standard deviation) and annual rainfall (blue line) in Africa for the
2003–2017 study period. Overlaid is theOceanicNiño Index bar plot (Climate Center Prediction Team2018) showing the intensity
and status of El Niñowarmand LaNiña cool phases on amonthly basis. Values above 0.5 represent ElNiño and values lower than
−0.5 represent LaNiña events. (b) Spatial pattern of L4C annual GPP anomaly for ElNiño years 2005, 2010 and 2015, and the
associated regional SST anomalies.
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The L4C GPP anomalies showed that the largest

reduction in annual GPP for Africa occurred during

2005 (−1.06 Pg C), which was a relatively weak El

Niño year (Climate Center Prediction Team 2018;

figure 1(a)). In contrast, the 2010 El Niño event was

stronger, and coincided with positive rainfall anoma-

lies over much of Africa; 2010 was also the most pro-

ductive year of the study period (figure 1(b)). Our

analysis suggests that African ecosystems respond dif-

ferently to individual El Niño events (Asefi-Najafa-

bady and Saatchi 2013), with contrasting impacts on

the continental scale carbon balance. During 2010, we

found widespread increases in productivity except for

portions of southern Africa, the Horn of Africa and

eastern Sahel. In 2005 and 2015, reduction in rainfall

in southern savanna ecosystems represented by shrubs

and grass in the MODIS MOD12 PFT classification

substantially reduced GPP (figure 1(b)). In 2010, rain-

fall was on average 55 mm higher than the 2003–2017

annual mean, while TWS was higher by 21.9 mm,

FPAR was 0.9% higher and PAR was 1.2% lower than

corresponding 2003–2017 annual mean values. In

2004 and 2005, respective reductions in rainfall of 53

and 48mm coincided with an average 23.3mm reduc-

tion in TWS. This change in water availability is asso-

ciated with a ∼1.5% reduction in FPAR while PAR

increased by 2.5%.

Generally, GPP in African ecosystems appears to

follow rainfall anomalies and there are spatial patterns

in rainfall anomalies that affect the plant response to

water availability or scarcity (figures S1 and S2, avail-

able online at stacks.iop.org/ERL/15/034063/

mmedia). Partitioning the anomalies in L4C GPP and

rainfall by PFT revealed that in tropical ecosystems,

the reduction in GPP from 2003 to 2005 coincided

with lower-than-average rainfall prior to the year 2005

(figures 2(a), (c)). However, the significant rainfall

reduction in tropical ecosystems in 2015 had little

apparent effect on GPP, which remained near average

levels in the years following 2010 (figure 2(a)). In 2005,

L4C GPP for African tropical evergreen broadleaf for-

ests (EBF)was 6.39 Pg C yr−1, while in 2010, EBF GPP

increased to 6.82 Pg C yr−1. During the 2015 low rain-

fall conditions, EBF GPP was 6.51 Pg C yr−1, and thus

still 0.1 Pg C yr−1 higher than the 2003–2017 mean

value. African rainforests (as defined by the EBF classi-

fication) show two rainy season peaks, one from

March to May and the other from September to

November (figures S3 and S4). GPP tends to increase

during the wet season, consistent with previous

reports that productivity of African rainforests are

more water-limited than light-limited on a regional

basis (Guan et al 2015,Madani et al 2017a).

The GRACE TWS data for the year 2015 indicated

that the groundwater level in tropical rainforests of

Africa was 14.1mm above the average.Meanwhile, the

EBF canopy FPAR observed by the MODIS instru-

ment, was on average about 2% higher in 2015, even

though PAR was slightly lower than the aver-

age (∼1%).

Among the different biomes, grasslands in semi-

arid savanna ecosystems show a relatively rapid

response to changes in rainfall. In 2005, GPP of the

grassland biomes declined by 8% (−0.6 Pg C yr−1
),

while for the relatively wet year of 2010, GPP increased

by 5.8% (+0.49 Pg C yr−1
). GRAs show the highest

GPP variability, with an annual average of 7.97±0.9

Pg C yr−1. SHRs have higher GPP variability

(4.22±0.54 Pg C yr−1
) than the denser forest ecosys-

tems, including EBF (6.51±0.26 Pg C) and DBF

(4.1±0.27 Pg C yr−1
); whereas CROs show the low-

est productivity and annual variability (3.35±0.19 Pg

C yr−1
).

The TRENDY model GPP pattern for African

biomes follows regional rainfall anomalies and in gen-

eral agrees with the L4C GPP record, but with less

variability (figure 2(b)). However, the TRENDY mod-

els showed a 0.04 Pg yr−1 reduction in EBF GPP in

2015, suggesting that there are mechanisms in ecosys-

tem water availability modulated by groundwater that

are reflected in the L4C model, but missing from the

TRENDY models. The L4C and TRENDY models

show similar seasonal patterns, but with smaller

TRENDYGPP seasonal variation over tropical ecosys-

tems compared to satellite observations of SIF and the

modeled L4CGPP (For a comparison between season-

ality in the L4C and TRENDY GPP with SIF, FPAR,

PAR and environmental multipliers used in L4C LUE

model, refer to figure S3 in the supplementary

material).

3.2. Impact ofwater availability on regional GPP

To better understand the L4C GPP anomalies in

different biomes across Africa, we focused on three

major regions with different environmental condi-

tions and climate seasonality, including (i) tropical

and sub-tropical ecosystems with EBF and DBF PFTs

falling between 10o S and 10oN; (ii) the Sahel, which is

characterized by SHR and GRA PFTs; and (iii) south-

ern savannas with GRA and SHR PFTs falling below

25o S. We ignored CRO to eliminate the effect

managedwater on productivity.

In 2015, lower-than-average (2003–2017) rainfall

in tropical and sub-tropical regions was offset by

above-average TWS levels persisting from the net

anomalously wet conditions in the 5 preceding years

(figure 3). This reduced the negative impact of the

2015 rainfall deficit onGPP.While we observed a posi-

tive impact of deep soil water availability on plant pro-

ductivity, it has been reported that the plants’

increased photosynthetic activity can deplete the

groundwater storage (Koirala et al 2017). This may

explain the reduction of groundwater storage in tropi-

cal regions after the highly productive years of

2008–2010. Additionally, trees with conservative

water-use behavior may maintain a low productivity

5
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level in order to conserve groundwater and maintain

persistent productivity levels during drought events

(Teuling et al 2010). This behavior might also explain

the conservative tropical photosynthetic activity from

2014 to 2016, when TWS was above average. On the

other hand, the reduction in TWS between 2010 and

2012 might be attributed to plants’ increased evapo-

transpiration and productivity, suggesting that deep

soil water has been used by plants during this rather

dry period (Guan et al 2014, Tian et al 2018).

In the dry regions of the Sahel and southern savan-

nas, GPP inter-annual variability is strongly correlated

with rainfall patterns (Pearson correlation of 0.67 and

0.84, respectively). The southern savannas showed a

strong GPP response to inter-annual SM and rainfall

variability, even though TWS was also highly corre-

latedwith theGPP anomalies. GPP inter-annual varia-

bility in the southern savannas shows higher

correlation with SM compared to the Sahel region

(r=0.51 versus r=0.20), suggesting that in south-

ern savannas below-surface water has a great influence

on ecosystem GPP. As shrubs in water-limited envir-

onments can be deeply rooted (Jackson and Jack-

son 2002), GPP seasonality in southern savannas is

also well correlated (r=0.7) with groundwater

seasonality. As TWS includes both SM and ground-

water (Tapley et al 2004), the high correlation of

savanna inter-annual variability of GPP with TWS

may bemore related to variations in SM than to deeper

groundwater variations. Even though shrub domi-

nated southern savannas have access to groundwater,

the GPP in this region hasmore variability than that of

the grasslands of the Sahel. One explanation is that

plants inmore arid climates are closer to their limits of

climatic tolerance and show higher drought stress as

compared to vegetation in wetter environments

(Young et al 2017). In 2015 in the southern savannas,

the strong rainfall reduction by 145 mm coincided

with on average 3.5% less FPAR, while PAR increased

by about 0.4%. In 2010, FPAR in the Sahel was ∼2.4%

above-average and at its highest level for the study per-

iod. The FPAR increase coincided with 70 mm higher

than average rainfall in this region, which led to an

approximate 4% reduction in PAR.

To analyze how GPP is affected by water avail-

ability memory, we performed a lagged-correlation

analysis between water availability indicators and the

L4C GPP. Our results revealed that in tropical ecosys-

tems, annual GPP anomalies directly correlate with

inter-annual variation in TWS and SM (figure 4(a)).

Figure 2.Anomalies in annual GPP and rainfall by land cover class. (a)Anomaly in annual L4CGPP inAfrica for evergreen broadleaf
forests (EBF), deciduous broadleaf forests (DBF), shrub lands (SHR), grasslands (GRA) and croplands (CRO). (b)Anomaly in annual
GPP from ensemblemean offiveDGVMmodels from the TRENDYproject. (c)Annual rainfall anomaly inAfrica calculated for each
land cover class. (d) Land cover classification defined byMODIS-MOD12Q1 (Type-5)PFT land cover classification (Friedl et al 2010).
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However, the tropical GPP-rainfall correlations are

greater over a 16–20 months time-lag, which may

explain the 2015 increase in productivity despite sig-

nificant reduction in rainfall, as well as reduced pro-

ductivity in 2006 and 2017 despite greater rainfall in

those years. On the other hand, TWS shows direct cor-

relation with GPP, but there is a time-lag between

rainfall and TWS recharge (figure 3(a)). This time lag

may be attributed to two-way interactions between

GPP and TWS and loss of TWS as a result of increased

plant activity (Tian et al 2018). It has been shown that

plant use below surface SM and TWS tomaintain their

photosynthetic activity during the entire dry season

and rain-free periods (Guan et al 2014, Tian et al

2018). This water use strategy among tropical trees has

been documented, where they use the available water

to flush new leaves during the dry periods (Reich 1995,

Chapotin et al 2006, Tian et al 2018).

Savanna ecosystems in the Sahel, on the other

hand, show significant response to rainfall and SM

with no time lag. Southern savanna GPP also corre-

sponds to rainfall patterns with little or no time lag,

even though the variability in SM and groundwater

also plays a major role in explaining the annual

Figure 3.Regional analysis of changes in productivity and ecosystemwater balance. Anomalies in rainfall, GPP, root zone soil
moisture (SM), and total water storage (TWS) in threemajor ecosystems, including (a) tropical and sub-tropical forests, (b) the Sahel
and (c) southern savannas.
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variation in GPP (figures 4(b), (c)). Semi-arid lands

play a significant role in the global carbon cycle, as they

control inter-annual variability in global productivity

(Poulter et al 2014, Ahlström et al 2015, Haverd et al

2016). HigherGPP variability and sensitivity to rainfall

in savanna ecosystems is consistent with the strong

sensitivity of southern savannas to soil water content

(Madani et al 2017a).

The long-term variability in annual GPP relative to

annual variations in SM, groundwater and rainfall,

and the relative spatial pattern of the correlations, is

specified in an RGB map (figure 5). The partial corre-

lation results reveal that in the wet tropical regions

including central Africa, most of the variation in

annual GPP is related to changes in groundwater

storage. In southern Africa, variability in GPP is

strongly related to changes in annual rainfall, even

though groundwater and SM also have strong influ-

ence on GPP variability. In the Horn of Africa, eastern

coasts and central Sahel, GPP variation is highly corre-

lated with SM. The resulting pattern of regional influ-

ence shows that SM, groundwater, and rainfall interact

in complex ways to control the inter-annual variation

in productivity in Africa, even though the amount of

variation in productivity is higher and more pro-

nounced in semi-arid GRA and SHR regions.

Our analysis of the effect of rainfall on GPP

demonstrated that every ecosystem in Africa shows a

positive response to rainfall, except in some wet tropi-

cal regions covered by EBF where productivity

Figure 4.Cross-correlation analysis of time lag effects of TWS, SM, and rainfall onGPP. Time series anomaly inmonthlyGPP, SM,
and rainfall alongwithGRACETWS in threemajor ecosystems inAfricawere analyzed to define the time lag betweenwater availability
andGPP response. Blue dashed lines represent 95%confidence intervals.
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declines with additional rainfall (when rainfall exceeds

1800 mm yr−1
), likely due to reduced light availability

under greater cloud cover (figure S5). The total area of

the vegetated regions receiving more than 1800 mm

annual rainfall represents approximately 6.7% of the

total land area of Africa and falls within the rainforest

biome. The average rain use efficiency (GPP/rainfall)

in Africa is 1.44±0.08 gC mm−1 and varies con-

servatively across the different land cover types,

whereby dryland shrubs have the greatest efficiency

(1.55 gC mm−1
) and moist EBFs have the lowest effi-

ciency (1.39 gCmm−1;figure S6).

3.3. Below-surfacewater control on inter-

annualGPP

To further understand the response of African ecosys-

tems to plant-available water, we separated the effect

of rainfall on GPP variability by regressing the

residuals of the rainfall-GPP relationship withGRACE

TWS and FLDAS SM (figures S7(a), (b)) used as

independent proxies for available water. We also

looked at the same relationships between rainfall, SIF,

TWS and SM (figures S7(c), (d)). We found that in

central Africa (tropical and sub-tropical regions)

annual GPP variability, when separated from a rainfall

effect, strongly correlated with TWS and SM, while

groundwater still has a major role in explaining some

of the GPP variability in the southern savannas. The

SIF-TWS relationship shows similar patterns as GPP-

TWS even though there is somemismatch between the

two datasets, whichmay be due to the different periods

of record between GOME-2 SIF and GPP, and lower

resolution and higher noise in the SIF signal. The

spatial pattern examined indicated that below-surface

water and rainfall interact in complex ways to control

the inter-annual variation in GPP in Africa, withmore

pronounced variability in the semi-arid regions (GRA

and SHR).

In 68%of the vegetated area, the GPP inter-annual

variation is highly correlated with groundwater varia-

bility, making it the most important factor controlling

GPP in Africa. This is in line with previous reports that

the atmospheric CO2 growth rate is partly controlled

by anomalies in TWS (Humphrey et al 2018).

Figure 5.The effect of variability in different types of water resources onGPP annual anomaly inAfrica. The plot shows the relative
influence of soilmoisture (red), groundwater (green) and rainfall (blue) in each pixel within vegetated areas of Africa on inter-annual
variability of GPP. The interactions of different colors indicate the relative influence of two or threewater resources onGPP.
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The direct relationship between annual anomalies

in rainfall and TWS with GPP and SIF in tropical and

sub-tropical regions indicate that the GPP in these

regions is enhanced by greater rainfall and ground-

water availability (figure S8). However, when rainfall is

below average a positive signal in GPP is related to

higher than average TWS. SIF follows the same pattern

as GPP with the exception of reduction in SIF signal as

a result of high precipitation, highlighting the role of

groundwater storage in moderating the effect of

drought in the dense forests of Africa.

There have been increasing attempts to add

groundwater information to Earth system models

(Barbeta and Peñuelas 2017). Remote sensing-driven

LUE models can capture temporal information about

plant phenology and canopy photosynthetic capacity

with relatively high spatial resolution, which can indir-

ectly reflect the influence of available water on photo-

synthesis. The anomalous 2015 El Niño year in Africa

highlights the importance of soil water memory, as it

was detected by changes in remote sensing vegetation

indices and the fluorescence signal observed by

GOME-2 (figure S9(a)). The TRENDY ensemble

models describe the effect of rainfall reduction on

GPP, but do not show the effect of available soil water

as inferred from the satellite record (figure S9(b)). This

may also be due to oversensitivity of the models to

atmospheric CO2 concentrations (Smith et al 2016);

once we removed the seasonality and trend, the inter-

annual variability in TRENDY GPP was lower com-

pared to L4CGPP results.

Plants in humid tropics are less sensitive to climate

anomalies (Reich 1995, Zhang et al 2016). However,

significant changes in water balance can influence

plant phenology and productivity (Reich 1995, Guan

et al 2014), and here L4C GPP shows higher sensitivity

to changes in water balance than do Earth system

models. Our results also demonstrate differences in

the response to variations in water availability between

savanna and tropical forest ecosystems. While GPP

inter-annual variability in tropical forests is more cor-

related with deep soil water, savanna ecosystems exhi-

bit a mixed response to all water sources from SM to

groundwater (figure 5), which may be due to species

with diverse functional traits.

Savanna ecosystems of Africa are covered by grass

and tree species, while woody cover tends to decline

with more frequent yet less intense rainfall events

(Good and Caylor 2011). Here, we analyzed ecosys-

tems at regional scales; however, to better understand

different plant water use strategies, we recommend

monitoring plant species based on their key life history

traits. Plants exhibit different strategies in the face of

dry conditions. For example, anisohydric species are at

risk of hydraulic failure as a result of xylem cavitation

while isohydric species regulate stomata and thereby

maintain plant water potentials to avoid cavitation,

but are at risk of carbon starvation from depletion of

carbohydrate reserves (Sala et al 2012, Klein 2014,

Sankaran 2019). Here, we focused on periods where

annual rainfall was lower than its annual average and

not specifically on drought. Future studies could focus

on the response of ecosystems in savanna and tropical

regions during dry conditions with respect to total

available water and their life history traits and drought

tolerance strategies.

Overall, our results indicate that the anomaly in

TWS determines the net balance between water avail-

ability and water loss and highlight the critical role of

TWS in buffering rainfall shortages and ensuring con-

tinued availability of near-surface water to plants

through dry spells.

4. Conclusion

Our analysis showed that rainfall anomaly patterns in

Africa are different among El Niño years, and that

rainfall is not the only water supply factor controlling

inter-annual variability in GPP in Africa. In tropical

regions, persistent dry conditions may have greater

influence on GPP than reduced rainfall from a single

strong reduced rainfall event. Persistent drought may

also alter the forest structure (Zhou et al 2014). Our

results indicate that groundwater storage in tropical

forests of Africa can act as a buffer to compensate for

the potential productivity reductions from rainfall and

SMdrought.

Our results indicated that both the SIF observa-

tions and TRENDY GPP show similar seasonality, but

capturingGPP inter-annual variability fromEarth sys-

temmodels remains challenging. Interpretation of the

satellite SIF record is limited by relatively low signal-

to-noise levels and sensor degradation (Zhang et al

2018). Additionally, SIF data showed higher sensitivity

to rainfall than the L4C GPP; thus, SIF normalized by

PAR, might be a better proxy for slower response to

groundwater and rainfall. Remote sensing productiv-

ity models address some of the shortcomings of SIF by

having higher spatial-temporal resolution and utiliz-

ing near real time satellite observations though vegeta-

tion indices. However, the L4C model includes LUE

uncertainties contributed from underlying assump-

tions of PFT homogeneity in ecosystem processes

defined by global biome classifications (Madani et al

2014). We anticipate that improvements in LUEmod-

els, such as incorporating plant trait information and

SIF satellite observations to better represent plant phe-

nology and ecosystem heterogeneity, will result in sig-

nificant improvements in estimating global terrestrial

productivity and its inter-annual variability (Madani

et al 2017a, 2017b).

Here we only focused on ecosystem GPP and

showed a slight increase in tropical productivity dur-

ing the 2015 reduced rainfall condition, highlighting

the role of groundwater as a key environmental con-

trol on annual ecosystem productivity in Africa. The

scarcity of SM during dry conditions can increase
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human reliance on groundwater resources, thereby

intensifying water stress in natural ecosystems that rely

on groundwater to sustain productivity.

Acknowledgments

This research, carried out at the Jet Propulsion

Laboratory, California Institute of Technology, was

under a contract with the National Aeronautics and

Space Administration, © 2019 California Institute of

Technology. Study was conducted with funding pro-

vided by NASA (NNX14AI50G, NNH15ZDA001N,

NNX15AB59G) and the Earth Science Division Inter-

disciplinary Science (IDS) program. TT was funded by

SNSB (Dnr 95/16). We also acknowledge the

reviewers for their constructive comments and

suggestions.

Competing interests

The authors declare no competing interests.

Data availability

All data used in this research are publicly available

from the cited literature. The L4C-GPP data are freely

available for download from http://files.ntsg.umt.

edu/data/.

References

AhlströmA et al 2015The dominant role of semi-arid ecosystems in

the trend and variability of the landCO2 sink Science 348

895–9

Asefi-Najafabady S and Saatchi S 2013Response of African humid

tropical forests to recent rainfall anomaliesPhil. Trans. R. Soc.

B 368 1–8

BaldocchiDD,Ma S, Rambal S,Misson L,Ourcival JM,

Limousin JM, Pereira J andPapale D 2010On the differential

advantages of evergreenness and deciduousness in

mediterranean oakwoodlands: a flux perspective Ecol. Appl.

20 1583–97

BaldocchiD, Falge E andGuL 2001 FLUXNET: a new tool to study

the temporal and spatial variability of ecosystem-scale carbon

dioxide, water vapor, and energy flux densitiesBull. Am.

Meteorol. Soc. 82 2415–34

Barbeta A and Peñuelas J 2017Relative contribution of groundwater

to plant transpiration estimatedwith stable isotopes Sci. Rep.

7 1–10

Bastin J et al 2017The extent of forest in dryland biomes Science 638

1–5

Black E 2005The relationship between IndianOcean sea-surface

temperature and East African rainfall Phil. Trans. R. Soc.A

363 43–7

BlackmanC J et al 2019Drought response strategies and hydraulic

traits contribute tomechanistic understanding of plant dry-

down to hydraulic failureTree Physiol. 39 910–24

Chapotin SM,Razanameharizaka JH andHolbrookNM2006

Baobab trees (Adansonia) inMadagascar use storedwater to

flush new leaves but not to support stomatal opening before

the rainy seasonNewPhytol. 169 549–59

Ciais P, Bombelli A,WilliamsM, Piao S L, Chave J, RyanCM,

HenryM, Brender P andValentini R 2011The carbon

balance of Africa: synthesis of recent research studies Phil.

Trans. R. Soc.A 369 2038–57

ClaysonCAandBrown J 2016NOAA climate data record ocean

surface bundle (OSB) climate data record (CDR) of Sea

Surface Temperature—WHOI, Version 2 (accessed 6/

1/2019)

Climate Center Prediction Team2018OceanicNiño Index (ONI)

NOAA/Natl.Weather Serv. Natl. Centers Environ. Predict.

(http://origin.cpc.ncep.noaa.gov/products/analysis_

monitoring/ensostuff/ONI_v5.php)

DoughtyCE et al 2015Drought impact on forest carbon dynamics

andfluxes inAmazoniaNature 519 78–82

FanY, LiH andMiguez-MachoG 2013Global patterns of

groundwater table depth Science 339 940–3

FriedlMA, Sulla-MenasheD, Tan B, Schneider A, RamankuttyN,

Sibley A andHuangX 2010MODISCollection 5 global land

cover: algorithm refinements and characterization of new

datasetsRemote Sens. Environ. 114 168–82

FunkC et al 2015The climate hazards infrared precipitationwith

stations-a new environmental record formonitoring

extremes Sci. Data 2 1–21

Gelaro R et al 2017Themodern-era retrospective analysis for

research and applications, version 2 (MERRA-2) J. Clim. 30

5419–54

Good S P andCaylor KK2011Climatological determinants of

woody cover in AfricaProc. Natl Acad. Sci. USA 108 4902–7

Gou S, Gonzales S andMiller GR 2015Mapping potential

groundwater-dependent ecosystems for sustainable

managementGroundwater 53 99–110

GuanK et al 2015 Photosynthetic seasonality of global tropical

forests constrained by hydroclimateNat. Geosci. 8 284–9

GuanK,WoodE F,MedvigyD, Kimball J, PanM,Caylor KK,

Sheffield J, XuX and JonesMO2014Terrestrial hydrological

controls on land surface phenology of African savannas and

woodlands J. Geophys. Res. Biogeosci. 119 1–18

Guanter L et al 2014Global and time-resolvedmonitoring of crop

photosynthesis with chlorophyllfluorescence Proc. Natl

Acad. Sci. 111E1327–33

HaverdV, AhlströmA, Smith B andCanadell J G 2016Carbon cycle

responses of semi-arid ecosystems to positive asymmetry in

rainfallGlob. Change Biol. 23 793–800

HumphreyV, Zscheischler J, Ciais P, Gudmundsson L, Sitch S and

Seneviratne S I 2018 Sensitivity of atmospheric CO2 growth

rate to observed changes in terrestrial water storageNature

560 628–31

Jackson B and JacksonRB 2002Rooting depths , lateral root spreads

and below-ground / allometries of plants inwater-limited

J. Ecol. 90 480–94

Jipp PH,NepstadDC, Cassel DK andReis DeCarvalhoC 1998

Deep soilmoisture storage and transpiration in forests and

pastures of seasonally-dry AmazoniaClim. Change 39

395–412

Joiner J et al 2014The seasonal cycle of satellite chlorophyll

fluorescence observations and its relationship to vegetation

phenology and ecosystem atmosphere carbon exchange

Remote Sens. Environ. 152 375–91

Jones LA et al 2017The SMAP level 4 carbon product for

monitoring ecosystem land-atmosphere CO2Exchange IEEE

Trans. Geosci. Remote Sens. 55 6517–32

Klein T 2014The variability of stomatal sensitivity to leaf water

potential across tree species indicates a continuumbetween

isohydric and anisohydric behaviours Funct. Ecol. 28 1313–20

Köhler P, Guanter L and Joiner J 2015A linearmethod for the

retrieval of sun-induced chlorophyllfluorescence from

GOME-2 and SCIAMACHYdataAtmos.Meas. Tech. 8

2589–608

Koirala S et al 2017Global distribution of groundwater-vegetation

spatial covariationGeophys. Res. Lett. 44 4134–42

Koster RD et al 2004Regions of strong coupling between soil

moisture and precipitation Science 305 1138–40

Liu J et al 2017Contrasting carbon cycle responses of the tropical

continents to the 2015–2016 ElNiño Science 358 1–7

11

Environ. Res. Lett. 15 (2020) 034063



MadaniN, Kimball J S, AffleckDLR, Kattge J, Graham J,

VanBodegomPM,Reich PB andRunning SW2014

Improving ecosystemproductivitymodeling through

spatially explicit estimation of optimal light use efficiency

J. Geophys. Res. Biogeosci. 119 1755–69

MadaniN, Kimball J S, Jones LA, ParazooNC andGuanK 2017a

Global analysis of bioclimatic controls on ecosystem

productivity using satellite observations of solar-induced

chlorophyllfluorescenceRemote Sens. 9 1–16

MadaniN, Kimball J S andRunning SW2017b Improving global

gross primary productivity estimates by computing optimum

light use efficiencies using flux tower data J. Geophys. Res.

Biogeosci. 122 2939–51

Maxwell K and JohnsonGN2000Chlorophyll fluorescence—a

practical guide J. Exp. Bot. 51 659–68

McDowell N et al 2008Mechanisms of plant survival andmortality

during drought: why do some plants survive while others

succumb to drought?NewPhytol. 178 719–39

McNally A, Arsenault K, Kumar S, Shukla S, Peterson P,Wang S,

FunkC, Peters-Lidard CD andVerdin J P 2017A land data

assimilation system for sub-SaharanAfrica food andwater

security applications Sci. Data 4 1–19

Myneni R, Knyazikhin Y and Park T 2015MOD15A2HMODIS

Leaf Area Index/FPAR8-Day L4Global 500mSINGrid

V006.NASAEOSDIS Land ProcessesDAACLPDAACTerra

1 (https://doi.org/10.5067/MODIS/MOD15A2H.006)

NepstadDC,DeCarvalhoCR,Davidson EA, Jipp PH,

Lefebvre PA,NegreirosGH,Da Silva ED, Stone TA,

Trumbore S E andVieira S 1994The role of deep roots in the

hydrological and carbon cycles of Amazonian forests and

pasturesNature 372 666–9

Orellana F, Verma P, Loheide S P II andDaly E 2012Monitoring

andmodelingwater-vegetation interactions in groundwater-

dependent ecosystemsRev. Geophys. 50

PaethH and Friederichs P 2004 Seasonality and time scales in the

relationship between global SST andAfrican rainfallClim.

Dyn. 23 815–37

Parhi P, Giannini A, Gentine P and Lall U 2016Resolving

contrasting regional rainfall responses to ELNiño over

tropical Africa J. Clim. 29 1461–76

PhillipsO L et al 2009Drought sensitivity of the Amazon rainforest

Science 323 1344–7

PhillipsO L et al 2010Drought-mortality relationships for tropical

forestsNewPhytol. 187 631–46

Pierret A and LacombeG 2018Hydrologic regulation of plant

rooting depth: breakthrough or observational conundrum?

Proc. Natl Acad. Sci. 115E2669–70

Pomposi C, FunkC, Shukla S,Harrison L andMagadzire T 2018

Distinguishing southernAfrica precipitation response by

strength of ElNiño events and implications for decision-

making Environ. Res. Lett. 13 074015

Poorter L,McDonald I, AlarcónA, Fichtler E, Licona J C,

Peña-ClarosM, Sterck F, Villegas Z and Sass-KlaassenU 2010

The importance of wood traits and hydraulic conductance for

the performance and life history strategies of 42 rainforest

tree speciesNewPhytol. 185 481–92

Poulter B et al 2014Contribution of semi-arid ecosystems to

interannual variability of the global carbon cycleNature 509

600–3

QuéréC et al 2018Global CarbonBudget 2018Earth Syst. Sci. Data

10 2141–94

RauR, KonstantinidouD andBraunHD1982The TRMM

multisatellite precipitation analysis (TMPA): quasi-global,

multiyear, combined-sensor precipitation estimates atfine

scales J. Hydrometeorol. 33 683–7

RaupachMR,Canadell J G and LeQuéré C 2008Anthropogenic

and biophysical contributions to increasing atmospheric

CO2 growth rate and airborne fractionBiogeosciences 5

1601–13

Reich PB 1995 Phenology of tropical forests: patterns, causes, and

consequencesCan. J. Bot. 73 164–74

Reichle RH et al 2017Assessment of the SMAP level-4 surface and

root-zone soilmoisture product Using in situmeasurements

J. Hydrometeorol. 18 2621–45

RossattoDR, deCarvalho Ramos Silva L, Villalobos-Vega R,

Sternberg L, da S L and FrancoAC2012Depth of water

uptake inwoody plants relates to groundwater level and

vegetation structure along a topographic gradient in a

neotropical savannaEnviron. Exp. Bot. 77 259–66

Running SW,Nemani RR,Heinsch FA, ZhaoM,ReevesM and

HashimotoH2004A continuous satellite-derivedmeasure of

global terrestrial primary productionBioscience 54 547

Sala A,Woodruff DR andMeinzer FC2012Carbon dynamics in

trees: feast or famine?Tree Physiol. 32 764–75
SankaranM2019Droughts and the ecological future of tropical

savanna vegetation J. Ecol. 107 1531–49

Sitch S et al 2015Recent trends and drivers of regional sources and

sinks of carbon dioxideBiogeosciences 12 653–79

SmithWK,Reed SC,ClevelandCC, Ballantyne AP,

AndereggWRL,WiederWR, Liu YY andRunning SW2016

Large divergence of satellite and Earth systemmodel

estimates of global terrestrial CO2 fertilizationNat. Clim.

Change 6 306–10

Stocker BD, Zscheischler J, KeenanT F, Prentice I C, Peñuelas J and

Seneviratne S I 2018Quantifying soilmoisture impacts on

light use efficiency across biomesNewPhytol. 218 1430–49

Tapley BD, Bettadpur S, Ries J C, Thompson P F andWatkinsMM

2004GRACEmeasurements ofmass variability in the Earth

system Science 305 503–5

TeulingA J et al 2010Contrasting response of European forest and

grassland energy exchange to heatwavesNat. Geosci. 3 722–7

Tian F et al 2018Coupling of ecosystem-scale plantwater storage

and leaf phenology observed by satelliteNat. Ecol. Evol. 2

1428–35

Ummenhofer CC,Gupta A S, EnglandMHandReasonC JC 2009

Contributions of IndianOcean sea surface temperatures to

enhanced East African rainfall J. Clim. 22 993–1013

Walther S, VoigtM, ThumT,GonsamoA, Zhang Y, Koehler P,

JungM,VarlaginA andGuanter L 2015 Satellite chlorophyll

fluorescencemeasurements reveal large-scale decoupling of

photosynthesis and greenness dynamics in boreal evergreen

forestsGlob. Change Biol. 49 2979–96

WilliamsCA,HananNP, Baker I, CollatzG J, Berry J and

DenningA S 2008a Interannual variability of photosynthesis

across Africa and its attribution J. Geophys. Res. Biogeosci. 113

1–15

WilliamsC,HananN,Neff J, Scholes R, Berry J, DenningA S and

BakerD 2007Africa and the global carbon cycleCarbon

BalanceManage. 2 3

WilliamsC J R, KnivetonDR and Layberry R 2008b Influence of

south atlantic sea surface temperatures on rainfall variability

and extremes over SouthernAfrica J. Clim. 21 6498–520

WoosterM J, PerryGLWandZoumasA 2012 Fire, drought and El

Niño relationships on Borneo (Southeast Asia) in the pre-

MODIS era (1980–2000)Biogeosciences 9 317–40

YangX, Tang J,Mustard J F, Lee J, RossiniM, Joiner J,Munger JW,

Kornfeld A andRichardsonAD2015 Solar-induced

chlorophyllfluorescence that correlates with canopy

photosynthesis on diurnal and seasonal scales in a temperate

deciduous forestGeophys. Res. Lett. 142 1–11

YoungD JN, Stevens J T, Earles JM,Moore J, Ellis A, Jirka A L and

Latimer AM2017 Long-term climate and competition

explain forestmortality patterns under extreme drought Ecol.

Lett. 20 78–86

Zhang Y, Joiner J, Gentine P andZhou S 2018Reduced solar-

induced chlorophyll fluorescence fromGOME-2 during

Amazon drought caused by dataset artifactsGlob. Change

Biol. 2229–30

Zhang Y et al 2016 Precipitation and carbon-water coupling jointly

control the interannual variability of global land gross

primary production Sci. Rep. 6 39748

ZhaoMandGeruoA 2017A global gridded dataset of GRACE

drought severity index for 2002–14: comparisonwith PDSI

12

Environ. Res. Lett. 15 (2020) 034063



and SPEI and a case study of the AustraliaMillennium

drought J. Hydrometeorol. 18 2117–29

ZhaoM,Heinsch FA,Nemani RR andRunning SW2005

Improvements of theMODIS terrestrial gross and net

primary production global data setRemote Sens. Environ. 95

164–76

ZhaoMandRunning SW2010Drought-induced reduction in

global terrestrial net primary production from2000 through

2009 Science 329 940–3

Zhou L et al 2014Widespread decline of Congo rainforest greenness

in the past decadeNature 508 86–90

13

Environ. Res. Lett. 15 (2020) 034063


	1. Introduction
	2. Methods
	3. Results and discussion
	3.1. Continental-scale rainfall and inter-annual variability in GPP
	3.2. Impact of water availability on regional GPP
	3.3. Below-surface water control on inter-annual GPP

	4. Conclusion
	Acknowledgments
	Competing interests
	Data availability
	References

