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Abstract: High frequency and spatially explicit irrigated land maps are important for understanding
the patterns and impacts of consumptive water use by agriculture. We built annual, 30 m resolution
irrigation maps using Google Earth Engine for the years 1986-2018 for 11 western states within
the conterminous U.S. Our map classifies lands into four classes: irrigated agriculture, dryland
agriculture, uncultivated land, and wetlands. We built an extensive geospatial database of land
cover from each class, including over 50,000 human-verified irrigated fields, 38,000 dryland fields,
and over 500,000 km? of uncultivated lands. We used 60,000 point samples from 28 years to extract
Landsat satellite imagery, as well as climate, meteorology, and terrain data to train a Random Forest
classifier. Using a spatially independent validation dataset of 40,000 points, we found our classifier
has an overall binary classification (irrigated vs. unirrigated) accuracy of 97.8%, and a four-class
overall accuracy of 90.8%. We compared our results to Census of Agriculture irrigation estimates over
the seven years of available data and found good overall agreement between the 2832 county-level
estimates (2 = 0.90), and high agreement when estimates are aggregated to the state level (r? = 0.94).
We analyzed trends over the 33-year study period, finding an increase of 15% (15,000 km?) in irrigated
area in our study region. We found notable decreases in irrigated area in developing urban areas
and in the southern Central Valley of California and increases in the plains of eastern Colorado, the
Columbia River Basin, the Snake River Plain, and northern California.

Keywords: Irrigation; Landsat satellite; random forest

1. Introduction

In the Western U.S., over 80% of extracted freshwater is used for irrigation (i.e., artificial
application of water to crops by humans), 56% of which is consumed by crops (i.e., lost to the
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atmosphere) [1]. In this region, only one third of total cropland area is irrigated, yet irrigated
farmland accounted for nearly two thirds of total commodities revenue in 2012 [2]. Irrigation is
necessary to agricultural production in arid areas where precipitation is insufficient to grow food
crops. Irrigation increases yields and decouples crop yields from climatic constraints [3,4], buffers
against extreme weather events [5,6], and modifies temperature, humidity, and precipitation regimes
at local to regional scales [7-10] and evapotranspiration (ET) globally [11]. Irrigation may also cause
significant environmental impacts, including the draining or maintaining of wetlands [12,13], disrupted
sedimentation [14], increased soil salinity [15], altered stream temperatures [16], changes in water table
elevation [17,18], decreased stream flow [19], and changes in peak runoff rates and base flows [20,21].
Despite its economic and ecological importance, the extent and distribution of irrigation is poorly
mapped in the U.S.

The most robust accounting of irrigated area in the U.S. are county-level statistics included in the
Census of Agriculture, an effort undertaken since 1840 by the precursor to the U.S. Census Bureau,
and currently conducted and managed by the U.S. Department of Agriculture, National Agricultural
Statistics Service (NASS) [22]. NASS produces a semi-decadal estimate of per-county irrigated area
based on survey responses from agricultural producers. These data lack any explicit spatial information
indicating where irrigation occurs within each county. In addition, the irrigation survey is subject to
potential error resulting from undercoverage, nonresponse, and misclassification of farm operations.
One example of this potential error is from the 2012 census, which required an adjustment of the
estimated number of operating farms of nearly 35% to correct for undercoverage [23]. Irrigated areas
are self-reported and only required for farm operations meeting a revenue threshold, and therefore
exclude irrigation operations on non-revenue-generating agricultural operations. The infrequency and
lack of explicit spatial information of the Census of Agriculture creates a need for explicit spatial and
temporal estimates of irrigated areas to improve census statistics, consumptive water use estimates,
and agricultural, ecological, and water resource management.

Satellite remote sensing (SRS) is finding increasing use in approaches to identify and monitor
ecological and agricultural processes at global to local scales, utilizing a variety of instruments [24-26].
Researchers have found utility in SRS to monitor many surface and atmospheric phenomena, including
soil moisture [27], water quality [28], snow cover [29], and stream flow [30]. Advances in estimating
ET using SRS methods [31-34] have enabled explicit spatial and temporal accounting of consumptive
water use rates from irrigation, however lack of frequent, high-resolution maps of irrigated areas
has limited the ability to accurately estimate and summarize consumptive water use volumes from
irrigated areas. Volumes of consumptive water use are ultimately needed for improving natural
resource management, modeling, and prediction.

SRS is well suited for efficiently identifying irrigation in space and time due to the fact that
irrigated areas often have a distinct spectral signature when compared to surrounding natural
vegetation or unirrigated lands, and can be identified by orbiting satellites that acquire imagery at
regular and frequent intervals, and are free and open for scientific use [35-37]. Freely available satellite
data are subject to trade-offs among overpass frequency, period of record, and spatial resolution. For
example, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board Terra
and Aqua satellites have daily, morning and afternoon overpass frequency, but the 250-m spatial
resolution of the images makes identification of irrigation for individual fields difficult due to mixed
pixel and field edge effects [35]. The MultiSpectral Instrument (MSI) on board Sentinel 2a and 2b
satellites acquires images at 10 m spatial resolution, and has an overpass frequency of five days since
the launch of Sentinel 2b in 2017. While Sentinel’s short record limits the utility for mapping irrigation
history, it acquires data in comparable spectral bands to Landsat, and thus can be harmonized to map
historical irrigated areas into the future [38]. Landsat Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), Optical Land Imager (OLI), and Thermal Infrared Sensor (TIRS) observations
provide an unmatched consistent and continuous data record of optical and thermal imagery from 1984
to present at 8-16-day frequency, and at 30-m spatial resolution—a scale well suited for observing the
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spatial extent and variability of individual agricultural fields and associated volumes of consumptive
water use [39].

Previous SRS studies focused on mapping regional to global-scale irrigation often depend on
census estimates of irrigated land area or existing land-use and land-cover datasets to parameterize
irrigation models. Examples include the Global Irrigated Area Map (GIAM [40—42]), Landsat-based
irrigation dataset (LANID [43]), and the Moderate Resolution Imaging Spectroradiometer Irrigated
Agriculture Dataset for the U.S. (MIrAD-US [44,45]). These studies aim to reproduce the reported
irrigated extent with added spatial detail, often using a greenness index threshold in which pixels
are considered irrigated. While several studies produce annual irrigated lands data [46-51], to our
knowledge, none are available for the Western U.S. A significant advance in annual, high resolution
mapping of irrigated areas was recently achieved over the High Plains Aquifer (HPA) of the Central
U.S. by Deines et al. [50,51]. This approach used an independently developed dataset to train a
Random Forest (RF) model, a non-parametric ensemble decision tree classification and regression
algorithm [52]. They mapped historical irrigated lands annually from 1984 to 2017 at 30-m resolution
within a 625,000 km? study area with 91.4% overall accuracy. They used a novel approach to overcome
imagery gaps and commission errors, and parameterized their model with neighborhood greenness
indices and many ancillary datasets. Drivers of irrigated area [50] and projections of High Plains
Aquifer decline [51] were also studied.

RF has been successfully implemented in many SRS-based land classification studies on mixed
land types [53-55], and for classification of agricultural land uses [56—60]. RF has been shown to be a
reliable and fast algorithm for remote sensing applications, suited to handling high-dimensional and
colinear data, insensitive to overfitting, and explanatory of variable importance [61].

Here, we describe a Landsat-based irrigation detection RF model, IrrMapper, to map annual
irrigation status at 30-m resolution. We use a similar approach and build on the previous work of
Deines [50], by expanding the spatial scope and parameterizing the RF model with more extensive
training, climate, land use, and other geospatial datasets. IrrMapper produces irrigation status
wall-to-wall across the Western U.S., and is independent of USDA NASS irrigation statistics, allowing
for an independent comparison to Census of Agriculture data as described in the following sections.

2. Data and Methods

2.1. Methodological Overview

IrrMapper uses a RF modeling approach to predict four land classes of irrigated agriculture,
dryland agriculture (i.e., crops receiving water only from precipitation), uncultivated lands, and
wetlands at an annual time step, and at 30-m spatial resolution across the Western U.S. The RF
model is parameterized using a large set of training data of both the target class (i.e., irrigation) and
non-target classes (e.g., uncultivated), and numerous geospatial and climatic datasets. The training
data consist of manually developed Geographic Information System (GIS) field boundary polygons
and attributes of irrigation-equipped and unirrigated lands developed by numerous state and federal
agencies, and research institutions. Input parameter data are geospatial and climate datasets including
Landsat and aerial imagery, terrain and land use data, and precipitation, temperature, and evaporative
demand. We sampled 132 parameter values from geospatial and climate datasets at 60,000 randomly
distributed training points within our field polygon training dataset, and used them to train and apply
the RF algorithm to predict and perform accuracy assessment of irrigation status classes across the
Western U.S. We used Google Earth Engine (GEE [62]), a cloud-based geospatial analysis platform and
multi-petabyte catalog of geospatial data and satellite imagery to access all imagery used in training
data development, compile all model input data, to parameterize and train the RF model, to predict
land class, and to extract results and validation data. All services from GEE were free.
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2.2. Study Area

The study area consists of 11 Western U.S. states of Arizona, California, Colorado, Idaho, Montana,
New Mexico, Nevada, Oregon, Utah, Washington, and Wyoming, an area of 3.1 million km? (Figure 1).
This region is more arid than the eastern U.S. with exceptions in the Pacific Northwest and regions of
northern California. Annual precipitation in the study area ranges from a minimum of approximately
60 mm year ! in southeast California to over 3000 mm year~! in the Cascade Mountains of Washington.
Evaporative demand ranges from approximately 500 mm year~! in the Cascade Mountains of
Washington to over 2600 mm year~! in southern Nevada. The Southwest U.S. is dominated by summer
monsoonal precipitation, while the northern and Pacific zones receive the majority of precipitation in
the winter, much of it in the form of snow. In general, the climate transitions from Pacific coastal and
Mediterranean to continental, from west to east.

120°wW 110°wW 100°wW
1 | 1 - 50°N

—40°N

—30°N

0 500 1,000 km

Figure 1. The 11 states of the Western U.S. included in our study area displayed with the 186 Landsat
scene footprints from which imagery was used.

2.3. Landsat and Aerial Imagery

We extracted 132 parameters to use as input data to the model exclusively from datasets with
continuous coverage of the entire study region and study period. The 30 m resolution Landsat data
used in this work provides six optical bands collected from the Landsat TM, Landsat 7 ETM+, OLI
sensors: red, green, blue, near infrared, and two shortwave infrared bands. We used the Landsat
Collection 2 Surface Reflectance product, the highest level of processing currently available. Landsat
5 TM and Landsat 7 +ETM surface reflectance data have been corrected for atmospheric conditions
and viewing angle geometry using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS [63]) algorithm. Landsat 8 OLI surface reflectance data were processed using the Land
Surface Reflectance Code (LaSRC [64]). For each year, we calculated the mean surface reflectance
for each of the six optical bands for four periods: March 1-May 1; May 1- July 1; July 1-September
1; and September 1-November 1. We also calculated the maximum, minimum, and mean per-pixel
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Normalized Difference Vegetation Index (NDVI) for each year. We did not attempt to perform a
radiometric cross-calibration between Landsat instruments; differences between processed surface
reflectance images exist but are small [65].

Our study area consists of 186 Landsat path-row scenes (Figure 1), each of which was revisited
every 16 days by each Landsat mission during the study period. Simultaneous operation of Landsat 5
and 7 from 1999 to 2012 and Landsat 7 and 8 from 2013 yields an 8-day revisit time during 20 years
of our 33-year study period, a total of 269,241 available scenes. In May 2003, Landsat 7 suffered a
scan line corrector hardware failure (SLC-off) resulting in data gaps in image captures covering about
20% of the image area [66]. While the multiple concurrent Landsat operations during most of our
study period allowed for data collection everywhere, during the 2012 collection period, only Landsat 7
SLC-off data were available.

We used images from the U.S. Farm Service Agency National Aerial Imaging Program (NAIP) to
verify agricultural field boundary accuracy. NAIP provides 3- and 4-channel (i.e., Red-Blue-Green
and Red-Blue-Green—Near Infrared) imagery at various resolutions (0.6, 1, and 2 m) from 2003 to
present, offered on a state-by-state basis for multiple years. We used the latest available imagery for
each state in our data development process, see [67].

2.4. Meteorology and Climate Data

The University of Idaho Climatology Lab produced daily surface Gridded Meteorology (gridMet)
at 4-km resolution for the conterminous U.S. from 1979 to present [68]. We extracted mean temperature
and total precipitation from gridMet for the duration of the four growing season periods and for the
preceding water year (i.e., October 1-September 30) to the termination of each of the growing season
periods, for each year covered in our training data (28 years). We also extracted the 10th, 50th, and 90th
percentile annual minimum and maximum temperature, the annual total precipitation, and the annual
total potential evapotranspiration from gridMET. We extracted minimum, maximum, and average
monthly temperatures and monthly average precipitation for each month of the calendar year from
WorldClim, a 1 km resolution worldwide gridded climate product providing 30-year climate normals
based on the period 1970-2000 [69].

2.5. Terrain and Land Use Data

We extracted elevation, slope, and aspect from the USGS National Elevation Dataset % arc-second
resolution digital elevation model (DEM). Using the DEM we calculated the Topographic Position
Index at 150, 250, and 1250 m [70]. We used the USDA Crop Data Layer [71] and the the USGS National
Landcover Dataset [72] to generate binary crop mask and land cover layers.

2.6. Training Data

The training and validation datasets for IrrMapper were derived from polygon vector data
covering partial areas of each state, obtained from federal and state agencies, and research institutions
(Table 1). All data were stripped of attribution and joined into a database; only geometries were used.
Four land classes were represented in the training data: irrigated agricultural fields (Figure 2), dryland
agricultural fields, uncultivated lands, and wetlands (Figure 3).
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Table 1. Summary of geospatial training data by state.

6 of 23

State Source Irr. Inspected Coverage Irr. Dry. Uncult. *®  Wet. ©
AZ  USGsd 2001, 2003, 2004, Features 133 1843 437 4711
2007, 2016
Hand-drawn Area (km?) 49949 49 29,301 289
CA CACASA€¢ 1995, 1998, 2000, Features 6022 0 5812 20,822
2007, 2014, 2016
DRI f Area (km?) 3676 0 5876 472
CO CODWRS8 1998, 2003, 2006, Features 23919 3793 414 9012
2013, 2016
UsGs @ Area (km?) 4009 7468 29,204 200
cLuh
Hand-drawn
1D ID DWR ! 1986, 1988, 1997, Features 4196 82 8168 5004
1998, 2001, 2002,
2006, 2008
CcLuh Area (km?) 2355 73 105,838 82
Hand-drawn
MT MTDNRCI 2008, 2009, 2010, Features 4112 15,120 10,401 10,611
2011, 2012, 2013
Hand-drawn Area (kmz) 628 47 656 85,573 64
NM USsGsd 1987, 1988, 1989, Features 3563 615 455 6004
1994, 2001, 2002,
2004, 2009, 2010,
2014, 2016
NM WRRI ¥ Area (km?) 353 28 24,636 42
Hand-drawn
NV  DRI® 2001, 2002, 2003, Features 2346 0 1769 9496
2005, 2006, 2007,
2008, 2009
Area (km?) 518 0 122,591 442
OR ORDWR! 1994, 1996, 1997, Features 1009 0 612 9923
2001, 2011, 2013
CLUh Area (km?) 333 0 34,348 393
Hand-drawn
UT UTDWR™ 1998, 2003, 2006, Features 2323 5327 726 5399
2013, 2016
Area (km?2) 518 1175 47,196 147
WA WSDA™ 1988, 1996, 1997, Features 4828 16,960 10,067 9764
1998, 2001, 2006
Area (km?) 1833 14,225 15,239 167
WY WYWDO®° 1998, 2003, 2006, Features 916 77 529 9553
2013, 2016
Hand-drawn Area (km?) 387 21 38,331 139

a, United States Forest Service; [73]; b, United States National Wilderness Preservation System; [74]; ¢, United
States Fish and Wildlife Service; [75]; d, United States Geological Survey; [76]; e, California Agricultural
Commissioners and Sealers Association; [77]; f, Desert Research Institute; [78]; g, Colorado Department of
Water Resources, Colorado Water Conservation Board; [79]; h, United States Department of Agriculture,
Common Land Unit; [80]; i, Idaho Department of Water Resources; [81]; j, Montana Department of Natural
Resources and Conservation; [82]; k, New Mexico Water Resources Research Institute; [83]; 1, Oregon
Department of Water Resources; [84]; m, Utah Division of Water Resources; [85]; n, Washington State
Department of Agriculture; [86]; o, Wyoming Water Development Office; [87];
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Figure 2. Training data from the irrigated class used to train IrrMapper. Table 1 shows the number of
polygons and total irrigated training area from each class in each of the 11 Western States.

We assumed the dryland agriculture, wetlands, and uncultivated lands were constant throughout
our study period of 1986-2018. We attributed irrigation to irrigation-equipped fields during specific
years to account for the possibility that irrigation-equipped fields were fallowed during some years
(Table 1).

= Wetlands
1 Dryland Agriculture
1 Uncultivated Lands

0 500 1,000 km 0 10 20 km

Figure 3. Training data from the unirrigated classes used to train IrrMapper (i.e., wetlands, dryland
agriculture, and uncultivated lands). Table 1 shows the number of polygons and total training area
from each class in each of the 11 Western States.
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Irrigation-equipped polygon datasets that had been developed for specific time periods were
verified for those years. Irrigation-equipped polygon datasets without temporal information were
generally developed for 4-6 years. These years were chosen to represent a range of climatic variability
within the study period found using the Climate at a Glance tool [88], with at least one year of below
normal water year precipitation, at least one year of above normal water year precipitation, and at
least one year of near-normal water year precipitation (Figure 4).

Arizona Idaho Oregon
0 800 1000
300 ! I
| 600 750 I I
250
California 600 Montana Utah
400
750
500 350 . |
500 -
] | |
400
480 Colorado I Nevada 1500 Washington
460 I 300 R
I T w 10001 T
440 200
New Mexico Wyoming

500

400 I
400 1

1990 1995 2000 2005 2010 2015 I I
Time 300

Figure 4. Precipitation during the years irrigation was verified for IrrMapper in millimeters; the bar
height shows difference from mean statewide precipitation (i.e., the horizontal axis). Precipitation
normals are the 100-year statewide average precipitation (1901-2000) during the 12 months ending in
September of the year specified. All subplots range 19862018, as shown in lower left.

Irrigation training data development consisted of two steps: (1) filtering the polygons by NDVI, a
common satellite-detected proxy for vegetation density and vigor; and (2) visual inspection. Our filter
kept the polygons containing pixels where the lower 15th percentile NDVI of pixels had maximum
NDVI greater than 0.5 during either the early or the late summer, May to July and July to October,
respectively. Polygons that did not meet the criteria of the filter were ignored. We inspected all
polygons resulting from the filtering process using NAIP aerial imagery and Landsat 5, 7, or 8, early,
late, and overall summer maximum NDVI. We compared the NDVI with the surrounding natural
vegetation and removed any polygons with only partially irrigated extent or where the field boundaries
were inaccurate. Our verified irrigation dataset consists of 101,875 features, each corresponding to
the year for which it was filtered and then inspected, of which 53,367 are unique agricultural field
boundaries covering 14,659 km? (1.9% of total training data area). The 48,508 duplicates are fields that
were found to be irrigated for more than one year during the years we selected for data development
in the state. To our knowledge, this represents an unprecedented collection of verified irrigated areas.

The dryland agriculture training data is almost entirely within the major wheat-growing regions
of CO, MT, and WA, with a small amount in the Upper Colorado River Basin in WY, UT, AZ, and CO.
The features represent cultivated lands lacking irrigation infrastructure. The dryland data consists of
38,259 fields covering 63,406 km? (10.4% of total training data area). These data were inspected for
general accuracy using NAIP imagery at several locations but were not systematically verified on a
field-by-field basis. The wetlands training data were collected from the U.S. Fish and Wildlife National
Wetlands Inventory [75]. We chose 99,697 features at random from the ‘Freshwater Emergent Wetland’,
"Freshwater Forested /Shrub Wetland’, and ‘Riverine’ classes, covering 2343 km? (0.4% of total training
data area). The uncultivated class was composed of the USDA Forest Service Roadless Areas Inventory
[73], the National Wilderness Preservation System wilderness inventory (comprised of wilderness
areas managed by the Bureau of Land Management, Fish and Wildlife Service, Forest Service and
National Park Service) [74], and sources of forestry and rangeland data gleaned from states. The
uncultivated dataset consists of 39,409 features covering 534,442 km? (87.4% of total training data area).
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As with the dryland data, the wetlands and uncultivated lands data were inspected to ensure general
accuracy, but not systematically verified. We used all the appropriate training data we were able to
obtain. The four classes of training data together cover 611,514 km?, about 20% of the study region.

2.7. Model Training and Classification

IrrMapper is trained using the Random Forest (RF) algorithm, a non-parametric ensemble decision
tree classification and regression algorithm. RF chooses random subsets of training samples to train
many decision trees and makes a classification based on the mode of the set of trees. In the IrrMapper RE,
model hyperparameters were tested using the Scikit-Learn Python implementation of the RF algorithm
on our training dataset [89]. We set the number of Rifle decision trees to 100, the number of variables
per split to 11, the minimum size of the terminal node to 1, and deactivated the out-of-bag mode in
favor of testing accuracy using cross-validation (see below). We then used our hyperparameters to run
the GEE implementation of RF.

To extract training data for IrrMapper, pixel sampling locations for 30,000 points within the
irrigated areas and 10,000 points within each unirrigated class were placed randomly within a 20-m
interior buffered extent of the vector coverage for each land class over the study area (Figure 5).
The points within the irrigated coverage were attributed with the year for which that field polygon
had been verified as irrigated, while the other classes were randomly assigned a year from the 28 years
we had irrigation training data. We used GEE to then create a composite image of both static (i.e., land
cover, terrain, and climate) and dynamic (i.e., Landsat, Landsat-derived indices, and meteorology)
gridded data. Each pixel value was extracted for each sample point and returned in a table for use in
training the RF algorithm. We trained the RF algorithm within GEE and predicted land class using
the 132-layer stack of input rasters over the entire study area each year 1986-2018. While IrrMapper
is trained and predicts using four land cover classes, in a final processing step, the three unirrigated
land classes are grouped into a general ‘unirrigated” class, to give a binary irrigated /unirrigated
classification result over the study region. To assess variable importance, we ran the Scikit-Learn
implementation of the RF model using our IrrMapper hyperparameters over ten iterations to extract
the average feature importance of our model parameters.

Training Points
* Irrigated
Dryland Agriculture ‘ﬁ
* Uncultivated Lands

° Wetlands 500 1,000 km 0 20 40 km

Figure 5. Training data sample points from the four classes used to train IrrMapper (i.e., irrigated,
wetland, dryland agriculture, and uncultivated). Points were randomly sampled from within a 20-m
interior buffer of the training data GIS polygons.
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2.8. Model Cross Validation

To validate our GEE-based IrrMapper RF model, we extracted a sample set of 60,000 points using
the same procedure as described above for training points extraction. Points located within a 60-m
buffer of the original training dataset were removed. A random subset of 10,000 points from each class
was then used to extract results from GEE and calculate a confusion matrix. Additionally, a random
subset of points, the number of which for each class was weighted according to the relative area of each
of the training classes, was selected for use in further assessment as discussed below. This provided a
dataset for a spatially independent cross-validation and allowed us to use the maximum quantity of
data in GEE to train the RF without holdouts.

2.9. Comparison with National Agricultural Statistics Service Data

For comparison purposes, we compiled Census of Agriculture data for 1987-2017 to find
semi-decadal, county-level irrigated area. We aggregated data for years 1987, 1992, and 1997 from [90]
and years 2002, 2012, and 2017 from Quick Stats [2]. To remove outliers in our comparison of NASS
data with IrrMapper, we masked any pixel location where irrigation was detected for less than five
years over the 33-year study period.

2.10. Calculation of Irrigated Area Change

To capture change in irrigated area over the course of the study period, we processed ‘early’ and
‘late’ irrigation-equipped masks. These masks represent areas where irrigation was detected during
at least two of the five-year periods at the beginning and the end of the study period. We resampled
these rasters to a 4-km resolution grid and calculated the change in irrigated area per 16 km? pixel.

3. Results

IrrMapper consists of 33 annual, 30-m resolution maps of the binary classification of irrigation
status of the western 11 states, 1986-2018. We used GEE to train the RF and predict over the entire
study region annually, producing a GEE Image Collection of 33 maps at 30 m resolution. Computation
time for training and prediction was about 60 h (Figure 6).

Status ‘4
Bl irrigated 2018 N
0 500

Figure 6. Irrigation status as predicted for the year 2018 by IrrMapper, at 30-m resolution.
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3.1. Model Accuracy

Using 40,000 points for cross validation, we found an overall binary classification accuracy of
97.8% for classification of irrigated vs. unirrigated lands at the validation point locations. False positive
prediction of unirrigated land as irrigated by IrrMapper dominated the model error, accounting for
88% of false classifications. IrrMapper has some limitations in discriminating between non-agricultural
classes and shows a high level of confusion between the wetland and uncultivated lands classes in the
validation data (Table 2). We found an overall accuracy of wetland vs. uncultivated classification by
IrrMapper of 88.2%. Wetlands classification in terms of producer’s accuracy was the lowest of the four
classes at 77.1%. IrrMapper discriminates with a high level of accuracy between irrigated and dryland
classes, however, and has an overall irrigated vs. dryland classification accuracy of 99.1%. IrrMapper
had producer’s accuracy of 98.9% and 96.6% for irrigated and dryland classes, respectively.

Table 2. Confusion matrix of the four-class cross validation dataset, comparing the spatially
independent, randomly sampled cross validation dataset of training data (i.e., ‘Actual’) and IrrMapper
inference (i.e., ‘Predicted’).

Predicted
Irrigated Dryland Uncultivated Wetland
Irrigated 9893 24 15 68
Dryland 149 9660 68 123
Actual 15 cultivated 76 131 9058 733
Wetland 555 432 1304 7708

The limitations of the IrrMapper training data caused by the limited geographic extent of irrigated
areas in our training data become apparent when the cross validation data are grouped into binary
classes (i.e., irrigated and unirrigated) and weighted for the relative area of each training dataset
(Table 3). While the overall accuracy of the weighted cross validation dataset is 98.6%, a small number
of false positive classifications of unirrigated lands led to a low producer’s accuracy of 57% for the
irrigated class.

Table 3. Confusion matrix of the binary cross validation dataset weighted according to areal extent of
the training data. The points are a spatially independent, randomly sampled cross validation dataset of
training data (i.e., “Actual’) and IrrMapper inference (i.e., ‘Predicted’).

Predicted
Irrigated Unirrigated
Irrigated 183 2
Actual (i rigated 136 9679

3.2. Variable Importance

Of the 132 parameters used in the study, the ten most important, in descending order, are CDL
classification, NLCD classification, late summer near infrared, mid-summer near infrared, calendar
year maximum NDVI, previous year maximum NDV], latitude, terrain slope, two year’s previous
maximum NDVI, and mid-summer red (Figure 7).
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Figure 7. The fractional importance of the top 10 variables from the IrrMapper Random Forest model
(0.40 accuracy contribution). Variable importance was calculated over ten iterations of model training
using a total of 132 data inputs.

3.3. Comparison with NASS Data

IrrMapper shows good agreement with the NASS agricultural statistics (Quick Stats) at the state
scale and for counties with high irrigated area (Figures 8 and 9). Counties with low NASS-reported
irrigated area have large relative differences with IrrMapper. Statewide estimates of irrigation matched
well with NASS reported statistics over the seven years of available data from NASS (r?> = 0.94).
The county NASS data and IrrMapper had a lower level of agreement (r* = 0.90). IrrMapper and NASS
show general agreement on the study area trends over the study period; both show relatively low
irrigated area at the beginning of the study, a peak in the late 1990s, and increasing irrigation toward
the end of the study (Figure 9).

IrrMapper tends to make lower estimates of irrigated area along the Pacific coast and in semi-arid
areas where irrigation density is low (Figure 10). IrrMapper tends to make higher estimates of irrigated
area in counties with urban centers and counties on the eastern plains. The best overall agreement
between IrrMapper and NASS was found in the states of Idaho and Utah.
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Figure 8. Comparison of NASS Census of Agriculture and IrrMapper estimates of county-level irrigated

area. Comparison is over the 412 counties within the study region.
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Figure 9. Comparison of NASS Census of Agriculture and IrrMapper estimates of irrigated area over
the study domain. IrrMapper roughly follows the same pattern in irrigated area as the semi-decadal
NASS estimates of total irrigated area.
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Figure 10. The normalized difference of IrrMapper and NASS county-wide Census of Agriculture
mean irrigated area estimates over the years of available NASS data (i.e., 1987, 1992, 1997, 2002, 2007,
2012, and 2017). Positive values indicate where IrrMapper made larger estimates than NASS.

3.4. Trends in Irrigation

IrrMapper detected a general increase in total irrigated area over the course of the study period
of 15.4%, from 97,100 km? in 1986 to 112,100 km? in 2018, with the maximum irrigated area reaching
116,100 km? in 1998, and the minimum irrigated area of 91,900 km? in 1992 (Figure 9). State-by-state
trends of normalized irrigated area show that Colorado and Montana had the largest fluctuations
in irrigated area with standard deviation of 2465 and 1494 km?, respectively (Figure 11). IrrMapper
detected a decrease in irrigated area among all states in the study region in 2012, potentially as a result
of using Landsat 7 SLC-off data.
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Figure 11. The statewide and study area sum of irrigated area predicted by IrrMapper over the 33-year

study period, normalized to one. Highlighted is the year 2012, the only year in which the only available

USGS atmospherically corrected Landsat surface reflectance data were impacted by the scan line

corrector hardware failure on the Landsat 7 ETM+ mission.

IrrMapper shows a general increase in irrigated area in the major arid and semi-arid agricultural
regions around the west, including the eastern Columbia River Basin, the Snake River Plain, eastern
Colorado and New Mexico, and southern Arizona (Figure 12). Notable decreases in detected irrigation
were found in the Treasure Valley of Idaho, the southern Central Valley in California, and the western
slope of the Columbia River Basin.
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Figure 12. Change in “irrigation equipped’ area over the course of the study period, where locations

with two or more years of detected irrigation in the periods 1986-1990 and 2014-2018 are considered
equipped.
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4. Discussion

Results of this study show IrrMapper classifies irrigated areas with a high degree of accuracy
when tested on a spatially independent validation dataset (Table 2). Overall accuracy of IrrMapper in
terms of irrigated vs. unirrigated classification (97.8%) is higher than comparable maps (MIrAD-US,
92%; LANID, 94%; and HPA, 91.4%). The skill of IrrMapper classification suggests the selected
input data has a strong correlation with each of the target classes, and demonstrates the suitability
of most predictive variables, i.e., land cover, Landsat satellite data, geographic location, and terrain
(Figure 7). Further, IrrMapper validation results (Table 2) suggest the inclusion of training data from a
vast representation of geographic locations, climate conditions, and meteorological scenarios enables
high-accuracy classification over the extremely varied spatiotemporal domain of our study.

When weighted by relative area of training data, validation results suggest over-prediction of
irrigation by IrrMapper (Table 3). The relative contribution of each unirrigated class to over-prediction
can be inferred from Table 2, where misclassification of unirrigated land as irrigated (i.e., false positive)
is much more common than the misclassification of irrigated as unirrigated (i.e., false negative).
This is likely a result of both the unbalanced area of training data from each class and the unclear
differentiation between irrigated areas and wetlands in the wetland training data. Over 97% of the total
training data area is composed of the uncultivated and dryland classes. As these land uses represent
the majority of both our training data and the study area as a whole, a low rate of false positives likely
leads to a small but significant contribution to total irrigated area from unirrigated lands. This is
evident in results over known uncultivated and dryland areas, where false positive classification of
single or small groups of pixels is noted. This problem may be mitigated by using a noise removal
technique in post-processing, as done by Deines [51]. While wetlands data represent a small fraction
of the training area, during model development we found the inclusion of those data to be critical
to IrrMapper’s discriminative power in riparian areas where adjacent wetlands and irrigation are
common and share a similar appearance. However, inspection of our wetland data reveals areas where
irrigation likely occurs as evidenced by simple diversions and ditch networks. It is often unclear in
NAIP imagery where areas supplied with irrigation water end and wetlands begin. In our training
data and in nature, the existence of wetlands and irrigation in the same place is possible, and therefore
both semantic and physical distinction between irrigated areas and wetlands is blurred. This problem
may be overcome by restricting the wetlands training data to areas where irrigation does not occur.

Comparison of county-level NASS irrigation survey data and IrrMapper results shows general
agreement (r* = 0.90) with the best agreement in areas with more irrigation and less agreement in
counties with low rates of irrigation (Figure 8). Large relative differences are expected in counties where
both estimates are a small fraction of total area (e.g., the northern counties of Arizona). In urban areas
with limited irrigated area, IrrMapper generally estimates greater irrigated area relative to NASS. This
can be explained in part by Census of Agriculture classification of farms, where only farms expected to
produce and sell more than $1000 of agricultural products are surveyed. This approach omits irrigation
by golf courses, hobby farms, and playing fields, areas which are detected by IrrMapper and may
represent a large portion of total irrigation in urban and desert landscapes. The bias toward false
positive classification of irrigation in IrrMapper likely also contributes to larger estimates by IrrMapper
in counties with extensive dryland and uncultivated lands. In areas of extensive irrigation, results are
in better agreement, likely due to higher contribution to irrigation from farms included in the Census
of Agriculture survey, and less unirrigated area in which IrrMapper may misclassify land type.

IrrMapper tends to make county-level estimates of irrigated area lower than NASS estimates
along the Pacific coast and in arid and semi-arid counties with low density of irrigation (Figure 10).
In the Pacific Northwest, the high relative contribution to crop water requirements from precipitation
may allow low irrigation intensity and thus low contrast in satellite images between irrigated and
unirrigated areas, and under-classification of irrigation by IrrMapper. Along the coast of Oregon
and California, underestimates may be attributable to lower density of IrrMapper training data and
under-classification as a result. The most notable region of generally higher IrrMapper estimates are
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the easternmost counties of the study area in Colorado and New Mexico. These areas likely have
significant rates of false positive classification of dryland agriculture as irrigated. This may be caused
by sub-annual cropping of dryland agriculture in areas where soil moisture is conserved through the
use of herbicides during fallow periods and where subsequent croppings result in a high NDVI relative
to adjacent, unirrigated land. Despite disagreement between the two methods, when aggregated over
the study area, IrrMapper and NASS show rough agreement on trends in the extent of irrigation; both
identify a peak in irrigated area in the mid-1990s, followed by a decline through the 2000s, and a
rise toward the end of the study period (Figure 9). This suggests that, in addition to its capacity to
accurately map irrigation at the local scale, IrrMapper also has the capacity to detect regional trends in
irrigation at higher temporal resolution relative to NASS.

Spatial trends in irrigation detected by IrrMapper are complex and are likely driven by many
factors, including changes in land use, timing of crop planting, crop type, water resource limitations,
and changes in irrigation efficiency, and also limitations in the IrrMapper approach (Figure 12).
While analysis of the drivers of changes in irrigation is outside the scope of this paper, we hypothesize
several factors that deserve further investigation. We suspect the areas around Phoenix, AZ; Denver,
CO; Portland, OR; Ellensburg and Yakima, WA; and Boise, ID have undergone suburban development
that has replaced formerly irrigated areas. We suspect demand for fresh winter agricultural produce
has driven a change in cropping time from summer to winter in southern California, a period for
which IrrMapper is not designed to detect irrigation (see below). We suspect demand for orchard and
vineyard crops has led to an increase in their extent. IrrMapper may not detect them due to bias in the
training data development toward selection of irrigated fields with high maximum summer NDVI
(see below), and that irrigation of vineyards and orchards may drive a weaker NDVI response due to
crop spacing. We suspect formerly irrigated areas in Nevada, Colorado, and New Mexico have been
retired due to legal and physical limits on water availability. Widespread increases in irrigated area
may be due to irrigation development, and use of more efficient irrigation application equipment and
thus expansion of irrigated area despite constant rates of water extraction. Deines et al. [50] studied
changes in irrigation over the High Plains Aquifer; previous-year commodity price was found to be
positively correlated to irrigated area, while irrigation volume and depth were negatively correlated
with precipitation. Such studies of the drivers and patterns of irrigation and water use in the Western
U.S. may be enabled in the future by IrrMapper.

IrrMapper limitations are likely due to its simple model parameterization and bias in the training
data development process. A central assumption of IrrMapper is that the irrigation occurs during
the March-November time period. The assumption that the growing season occurs between March 1
and November 31 may contribute to under-classification of irrigation in areas with a winter growing
season. This is apparent in areas such as the southern Central Valley and Imperial Valley in California
and Yuma, AZ, which have seen decreases in irrigated area according to IrrMapper (Figure 12). We ran
a sub-model ‘IrrMapper LCRB’ for the Lower Colorado River Basin, and found that when the growing
season is extended to the entire year, IrrMapper detects more irrigated fields. This suggests IrrMapper
may benefit from customized parameterization within specific regions. Further, IrrMapper does not
explicitly model the temporal dynamics of the Landsat spectral signal. IrrMapper uses the mean
surface reflectance for each growing season period and thus information on the spectral dynamics
of each location within that period is lost. Including temporal data associated with specific image
captures may improve IrrMapper’s ability to discriminate between land classes that experience distinct
temporal dynamics in spectral response through the year, but have similar spectral means.

While the geometry of the fields was created by experts, the filtering process depended only on a
set of NDVI statistics. This approach may systematically exclude areas that are sparsely irrigated and
show a weak NDVI response, adding bias to the model. An effort was made to represent various land
types, including those with weaker NDVI signal (e.g., vineyards and widely spaced orchards), but, in
some cases, irrigated fields were removed from the data because the field included areas that were not
reached by the irrigation equipment. The training data are thus biased toward intense irrigation, and
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likely fail to detect irrigation in areas with infrequent or low-intensity irrigation. The assumption of
static land cover in the unirrigated classes (i.e., dryland, wetland, uncultivated) may also introduce
error in the training data where land class has changed during the study period. The assumption
is probably best for the uncultivated class (e.g., national forest, roadless areas), and weakest for the
dryland class, where conversion to irrigation may occur. We suspect the locations where dryland was
converted to irrigated are likely limited in our training data because the geospatial data development
occurred recently.

IrrMapper is an improvement over previous mapping efforts in the Western U.S. given the large
geographic and temporal extent of both training data and our predictions. Further, our predictions
depend only on our independently verified training data, compared to many previous efforts where
irrigation models have depended on agricultural census data to parameterize models using spectral
thresholds (e.g., LANID, MIrAD-US). While these models effectively leverage the predictive power of
irrigated areas’ spectral signature, they rely on agricultural statistics and therefore incorporate both
the error in the survey and irrigated areas excluded from the tabulation according to the criteria of
the agricultural survey. Further, they may not be suited to generalization in time, as the conditions
during census years may not be representative of regional climatic variability. Models that ‘tune’ to the
agricultural statistics during only one or several growing seasons may mistake irrigation status when
the model is applied to the same place under different climate or economic scenarios [4,91]. As the
training data used in IrrMapper represent the wide range of climatic, spatial, and temporal variability
we observe in the West, the model can be relied on to make good predictions for years without training
data. Further, IrrMapper uses existing land use classification models (i.e., NLCD and CDL) as input
parameters, rather than as training data or as a mask for areas not considered agricultural land by
those model products (AIM-HPA, LANID, and MIrAD-US). This allows the model to determine the
relative importance of these parameters, rather than using them as a mask and thus incorporating the
error inherent in the land use data into the map. IrrMapper is created independently of the NASS
agricultural statistics, and can thus be used as an independent comparison to examine both existing
irrigation maps and historic agricultural census data.

5. Conclusions

Water resources management in the Western U.S. requires accurate, timely, and high resolution
irrigation maps. These maps are a critical resource in assessing the impact of irrigation on human
and ecological systems and quantifying irrigated water consumption. Despite the critical importance
of irrigation, the high spatial and temporal resolution mapping of its occurrence is currently lacking.
IrrMapper introduces the high resolution mapping of irrigation annually, 1986-2018, over the Western
U.S. Using IrrMapper, we found that irrigated area in our study region has ranged from 91,900
km? in 1992 to 116,100 km? in 1998. Irrigation increased by about 15% over the study period, from
97,100 km? in 1986 to 112,100 km? in 2018. We found that IrrMapper compares favorably with NASS
agricultural census data, especially in areas of high irrigation density. IrrMapper differs most from
NASS census data along the Pacific Coast, the eastern margin of the study area in Colorado and New
Mexico. IrrMapper demonstrates the ability of a RF-based method to accurately map irrigation at
a sub-continental scale. Future work should use a temporal parameterization and investigate the
underlying drivers of change in irrigated area in the Western U.S.

Data for this project is available at https://code.earthengine.google.com/
c5a2ce562c867e6a31216128ad159d96, and the code at https:/ /github.com /dgketchum /EEMapper/
tree/IrrMapper_RF.
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