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Abstract

The management of water resources among competing uses presents a complex technical and policy challenge.
Integrated hydro-economic models capable of simulating the hydrologic system in irrigated and non-irrigated
regions including the response of farmers to hydrologic constraints and economic and policy incentives, pro-
vide a framework to understand biophysical and socioeconomic implications of changing water availability.
We present a transformative hydro-economic model of agricultural production driven by multi-sensor satellite
observations, outputs from regional climate models, and socioeconomic data. Our approach overcomes the
limitations of current decision support systems for agricultural water management and provides policymakers
and natural resource managers with satellite data-driven, state-wide, operational models capable of antici-
pating how farmers allocate water, land, and other resources when confronted with new climate patterns,
policy rules, or market signals. The model can also quantify how farming decisions affect agricultural water
supplies. We demonstrate the model through an application in the state of Montana.

Keywords: hydro-economic models, positive mathematical programming, data assimilation, decision

support systems

Software availability

The Python modeling package presented in this work is available free of charge through the BitBucket

repository https://bitbucket.org/umthydromodeling/dawuap.git (version ().1beta). The data assim-
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ilation Water Use and Agricultural Productivity (daWUAP) package was developed by Marco Maneta
(marco.maneta@umontana.edu) and was made publicly available in April 2020. The package is written
in pure Python version 3.7 and has been tested within the Anaconda Python environment on Linux and Mac

OSX operating systems.

1. Introduction

Many productive agricultural regions in the world are characterized by highly variable inter-annual pre-
cipitation, groundwater supplies, and stream flows. This is already increasing, and expected to continue in
an upward trend as climate changes (Groisman and Easterling, 1994; Easterling et al., 2000; McCabe and
Clark, 2005; Mote, 2006; Long et al., 2013). Correspondingly, more frequent and intense droughts and more
severe storm and runoff events will present new challenges for water managers (Harou et al., 2006; Gorelick
and Zheng, 2015). As opportunities to develop new water supplies decline, managers will need to improve
the efficiency of the existing sources to satisfy growing demands (US Army Corps of Engineers and US Army
Corps of Engineers, 2012).

Agriculture has a long history of adapting to variability in local conditions (MeCarl, 2015; Rose, 2015).
Evidence to date suggests that farmers have met these challenges by changing their water allocations, crop
mix, and land use practices (Schuneider et al., 2000; Bryant et al., 2000; Menzel et al., 2006). However, little
is known about how farmer adaptation alters natural hydrologic systems, impacts water users downstream,
and how policy instruments encourage or impede adaptation (White et al., 2011).

Regional resource managers rely on modeling tools to inform decision making, including hydro-economic
models that simulate the balance between the regional water supply system and anticipated demands from
agricultural producers under a range of scenarios. Hydro-economic models are integrated tools that incor-
porate the realities of water management systems, including variable spatial impacts and dynamic demands
influenced by economic and policy drivers (Harou et al., 2009). These types of models have been a subject of
research since the late 1990s (Pulido-Velazquez et al.; Ward and Lynch, 1996; Cai et al., 2003; Ward et al.,
2006; Cai et al., 2008; Brouwer and Hofkes, 2008; Medellin-Azuara et al., 2011; Elbakidze et al., 2012, 2018),
and are one of the most promising tools for future integrated water management. The research applications
of these models capture the spatial and temporal inter-dependency between water supply and demand in a
hydro-economic system; in operational water management applications, however, they often do not incor-
porate these internal feedback mechanisms. Another limitation of current operational water management
models is that they typically neglect the spatially-explicit and dynamic nature of human actions, often as-
suming that the behavior of one farmer does not affect the choices of other farmers downstream. However,
upstream decision-making is likely to influence the availability of water for downstream uses and the ability
of downstream farmers to adapt to climate change (Maneta et al., 2009a,b).

Adaptive behavior and spatially-dynamic processes are rarely simulated because they are difficult to
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human behavior into hydro-economic models using a coustrained optimization approach with farmer response
functions calibrated to reflect previously observed decisions. This optimization approach is followed by models
calibrated using the Positive Mathematical Programming (PMP) method (Howitt, 1995). Models calibrated
using PMP have been widely applied to understand and optimize agricultural water allocation and for policy
analysis (Maneta et al., 2009b; Medellin-Azuara et al., 2008; Torres et al., 2011; Ghosh et al., 2014; Kahil
et al., 2015; Heckelei et al., 2012; Graveline and Merel, 2014; Connell-Buck et al., 2011; Medellin-Azuara et al.,
2011; US Bureau of Reclamation, 2011; Department of Water Resources, 2009; Cobourn and Crescenti, 2011),
and can represent farmer behavior at a fraction of the complexity and computational requirements of other
popular alternative approaches such as statistical, econometric or agent-based models (Wurster et al., 2019;
Ng et al., 2011; Weersink et al., 2002). An additional advantage of this approach is that the calibrated hydro-
economic models are more amenable to coupling with physically-based models that represent the distributed
regional hydrologic system. This coupling is key to tracing the effects of farmer adaptation on natural systems
over space and time.

PMP is a well-established method of calibrating hydro-economic models, but its predictive capability
hinges on the quality and quantity of the data that it uses to reflect observed farmer behavior. The popularity
of programming methods in operational hydro-economoic models has to some extent been limited by the
availability of high-quality data for calibration. which is often derived from survey data collected on producer
behavior. Due to the relatively high cost of administering surveys, data collection efforts necessary to calibrate
and refine hydro-economic models are often focused on specific watersheds, limiting the transferability and
utility of these models. Among other problems, if a surveyed sample of farmers or the specific year of the
survey are not representative of a broader set of producers and long-term conditions, the calibration may
have a bias toward a spatially- and temporally-narrow set of farm conditions. An opportunity to overcome
this limitation is to use satellite-based remote sensing observations of agricultural activity spanning multiple
years of recorded data. The increased availability of high spatial resolution, remotely-sensed time-series data,
allows for classification of crop types and land allocation trends (USDA NASS, 2015), retrieval of vegetation
productivity information including for specific crops (He et al., 2018; Mu et al., 2009), and estimation of
vegetation water use (Ie et al., 2019; Zhang et al., 2010; Allen et al., 2007) at a finer spatial and temporal
scale, and across a broader geographic scope, than has been possible to date using survey instruments.

Although remotely-sensed data are subject to greater noise than survey data, remote sensing retrievals
of agricultural activity provide continuous annual observations over a long period of time and over large
geographic extents. Stochastic recursive data assimilation methods provide a cost-effective opportunity to
estimate model parameters using uncertain but abundant remotely-sensed observations of land and water
allocated to crops (Maneta and Howitt, 2014). In this paper, we present and demonstrate a hydro-economic
modeling framework that can be calibrated and applied over large regions by using recent advances in remote
sensing and data assimilation methods to enable automatic model updates and calibration refinements. This

recurcive and stachastic nrocess i€ of interest becanse (1) it nermite calibration of model narameters with
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frequent but noisy observations from satellite-based remote sensors that are available free-of-charge at global
extents. This advance eliminates the cost of conducting expensive field surveys typically used for calibra-
tion, and it avoids biases introduced in calibration if producer surveys do not adequately represent regional
practices. (2) The process permits refinement of model parameterization when new information becomes
available without conducting a full batch (retrospective) calibration with the entire historical dataset. (3) In
addition, the need to permanently store the historical dataset is eliminated. (4) This process blends informa-
tion from old and new observations with the option of emphasizing the most recent measurements, making
the model parameterization more relevant for current conditions. (5) Last, the process provides an automatic
assessment of prediction uncertainty, thus avoiding the false sense of precision given by deterministic models.
These innovations overcome current limitations of hydro-economic models and allow for the development of
new insights into how farmers behave under resource and policy constraints. Herein, we demonstrate the im-
plementation of the hydro-economic model and define its accuracy for hydrologic and agricultural systems in
the State of Montana. These systems span a representative range of conditions in the western U.S., including

extensive dryland agriculture that is particularly vulnerable to climate variability.

2. Model description

2.1. General approach

Our modeling package links an aggregated economic model of agricultural production operating at a
seasonal scale, to a hyvdrologic model that simulates rainfall-runoff processes and water redistribution and
availability in the regional streamflow network at daily time scales. The hydrologic model provides physical
constraints on water availability and propagates the hyvdrologic impacts of agricultural activity and decision
making to downstream users. The linked model is embedded in a stochastic data assimilation framework
that facilitates adjustment of the economic model parameters when remote sensing observations of crop
mix, land use allocation, yield, evapotranspiration, and other ancillary and hydrometric information become
available (Figure 1). Once the model is calibrated, it can be used to simulate climatic and policy scenarios
and make spatially-explicit predictions of the impacts of these scenarios on land and water allocation, crop
yields, the opportunity cost of water, and on the hydrologic system. The data assimilation framework allows
us to use observations with high uncertainty (typical of remote sensing observations) and incorporate this
observational uncertainty in the probability distributions of economic model parameters. When the model
is used for scenario analysis, parameter uncertainty is propagated to produce the probability distribution of
the model predictions. Currently, only parameters and outputs from the economic component are treated as
stochastic variables. For computational reasons, the hydrologic component and all hydroclimatic inputs to

the economic component are deterministic.

2.2. Economic model of agriculture and farmer behavior

The backbone of the economic component is a nonlinear, constrained, optimization model calibrated to
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Figure 1: Overview of the hydro-economic modeling package. An economic model of agricultural production is linked to a

spatially explicit hydrologic model and embedded in a stochastic data assimilation framework. The data assimilation framework
adjusts the economic component parameters based on the ingestion of remote sensing observations of agricultural activity and
other hydrometric and ancillary data. Onee the model is calibrated, it can be used to predict probabilities of resource allocation

under designed climate and policy scenarios.

10 in the assumption that producers allocate resources, in our case land and water, to maximize their net

revenues subject to resource constraints:

max net = E {pi?Ti (-rhmrr'.:i- Lypateris His d!rr.'n.ri.i- d‘um#w',ur i b:r) — Cland,iCland,i — (-‘n.‘n.tr'f',J(-F\'J.!air"r'._i}
Lland,iTwater,i 3
i

subject to:
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i
Lland,i: Ywater,i 2 0

(1)

where net is net revenue, defined as revenue less the costs of land and water use; the index i = 1,....7
represents Crops; Tiand.i. Lwater,i represent land and water resource inputs for crop i, respectively; p; is the
price received for crop i; m; is a production function that maps resource inputs to total production of crop i;

us  and ¢und.is Cwaters are the unit costs associated with land and water use to produce crop i. The parameters
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the total land and water used for all crops in the region must be less than or equal to the total land L
and water W available for cultivation and that resource allocation has to be non-negative. Note that total
water available for cultivation refers to irrigation water, not precipitation. The total land and water available
for cultivation may be constrained by physical limits (e.g., streamflow) or by policy or other institutional
constraints (e.g., water rights or reservoir storage release policies).

Consistent with the recent economic literature on PMP (Mérel et al., 2011), we define the production
function in Eq. (1) using a generalized constant elasticity of substitution (CES) functional form:

5

Ja P . . ) B
Wi = W4 |:+j.irm.n’,f.-f-[u”d!.i =+ dﬂ.lr:f.u';-,i{J'-ura.f.r:r',-i + Lprecip,i }P::| (2)
A limitation of previous research in this area is that it has differentiated the production function in Eq. (2)
for irrigated and non-irrigated crops, requiring independent calibration of each function (e.g. Maneta et al.,
2009b). In this study, we streamline calibration by incorporating a production function that can handle
irrigated and non-irrigated cases. To do so, we separate the total amount of water available to support crop

growth into an exogenous component provided by natural sources like precipitation = ; (not controlled

PRI
by the farmer), and an endogenous component provided by supplemental irrigation, xqu¢er; (controlled by
the farmer). Precipitation therefore acts as an offset to the total irrigation water applied to a crop and is
not subject to the water availability constraint. This formulation also allows us to differentiate the costs

of providing water for crop production, which differ depending on whether a yvear has relatively wet or dry

conditions.

2.3. Hydrologic component

The hydrologic component provides water availability constraints to agricultural production. Precipitation
is transformed into runoff using a gridded version of the Hydrologiska Byrans Vattenbalansavdelning (HBV)
model (Bergstrom and Forsman, 1973; Bergstrom, 1995; Lindstrom et al., 1997). When runoff reaches the
channel it is routed through the stream network using the Muskingum-Cunge method Cunge (1969). The
HBV model and the Muskingum-Cunge method are well-known in the field of hydrology, and because of their
parsimonious nature, reliability, robustness, and performance they have been widely applied in many regions
of the world for hydrologic response analysis under climate change and drought (Driessen et al., 2010; Menzel
and Biirger, 2002).

HBYV is a precipitation-runoff model originally developed to assist in flood forecasting in Sweden (Bergstrom
and Forsman, 1973). The hydrologic system is conceptualized as a cascade of four compartments: snowpack,
soil, upper groundwater zone, and lower groundwater zone in each of the hydrologic response units (HRUs) in
which the user may divide the region (Appendix Appendix A). Water outputs from the soil and groundwater
compartments of each HRU are transformed into runoff by convolution with a triangular unit hydrograph.

We implemented this particular application as a partially-gridded version of the original model. The model
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aggregated (spatially-averaged) runoff response of the different subcatchments composing the study area.
Water ponded on the surface of pixel £ at time ¢ available for infiltration and for the generation of runoff
represents the integration of water input rates from snowmelt Melty ¢, rainfall Raing; and supplemental

irrigation Pf’(;) . if pixel k is in the set of pixels designated to be irrigated from water source j,

Pondy. s = Pondy 41 + (Melty s + Raing 4 + ::'E‘}')_t).ﬁt — ASM, 4 (3)

Infiltration (described in Appendix A) increases the water storage in the soil (ASM). ;) at pixel k and is
aggregated over all pixels k& within subcatchment . When water stored in the soil moisture compartment
of subcatchment / reaches a threshold, the excess water generates output or percolates to the groundwater
compartment. Outputs from the soil and groundwater compartments produce the integrated response of the
subcatchment. A comprehensive description of our particular implementation of the model is provided in
Appendix A. In total, the hydrologic model tracks four internal states in each of the subcatchments: snow
water equivalent, soil water storage, water storage in the upper groundwater compartment, and water storage
in the deep water compartment. The model has 12 parameters that can be potentially tuned. Details of the
model structure and implementation are provided in Appendix A.

The runoff response of each subcatchment becomes lateral water contributions into the stream reach con-
tained in the subeatchment. Lateral runoff and inflows from upstream subcatchments are routed through the
river network using the Muskingum-Cunge model. The Muskingum model uses a two-parameter constitutive
equation to relate storage (S) in a reach to its inflows (Q;,,) and outflows (Q,u): S = K [eQy, + (1 — €)Q i),
where K and e are the two function parameters. This constitutive relationship permits a mass balance equa-
tion for the reach as a function of streamflows and parameters. The Muskingum-Cunge method uses this

relationship to develop a finite difference approximation of the 1D diffusion equation:

QUM [K;(1 —e;) + 0.5A1 + Q41 [Kje; — 0.5At] (4)
= Q} [Kj(1—e;) — 0.5A] + Q1 [Kje; + 0.5At] (5)
+ (g5 — 4577 041) [K5 (1 — €5) + 0.5A8] (6)

Full details on the Muskingum-Cunge algorithm and its implementation are provided in Appendix A.

2.4. Model coupling

The hydrologic component of the model operates deterministically at daily time steps and at variable
spatial resolutions defined by the size of the HRUs. On the other hand, the economic component operates
stochastically at seasonal time steps and at spatial resolutions defined by counties, districts, or regions that

may or may not be coincident with the HRUs. To couple the two components, relevant information generated
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resolution of the receiving component, as described in this section. At the beginning of each simulated year,
the economic component is run for each economic unit within the domain and the simulated probabilistic
ensembles of land X, and irrigation water X,,qa¢¢r; allocated to each crop i for the growing season are
determined. The ensemble average of seasonal water allocations E[Xyater:| are temporally and spatially
disaggregated and combined with information on irrigation and conveyance efficiencies to obtain expected
daily diversion volumes from the hydrologic network and pixel-level water application rates.

The temporal disagegregation of simulated seasonal water allocation for each erop i [E][x.“__.um.__,g] to daily
water diversion rates from its source node j in the hydrologic network is achieved by redistributing the seasonal
water allocation to daily amounts over the growing season according to a fractional weight coefficient w; ;4

that reflects the growth stage of the crop at a given day:

irr JE[x'urrr.t J.r'.i] Wi t+1
95141 = }'.J'!'- . (7)
where:
Keii

(8)

Wi+l = m
where ‘fj'i?:t-f 1 is the water volume diverted for irrigation from river node j for crop i at day £ + 15 I gy, is an
irrigation and conveyance efliciency factor for crop i; and w; ¢+ is a weight factor that represents the fraction
of the total crop water requirement that correspond to day £+ 1. Factor w; ;1 is a function of crop coeflicients
K e that vary through the season from plant emergence to termination and reflect crop water requirements at
a given stage relative to the water requirement of a fully developed reference crop. We use crop coeflicients
and growth curve charts recommended by the U.S Burean of Reclamation for the Pacific Northwest Region
(Agrimet program?). Computed daily diverted volumes enter the hydrologic model through Eq. 4.

Daily diverted water from each source node q}“"f:i 11 18 subsequently spatially disaggregated and distributed
to pixels identified as irrigated agriculture within the economic unit supplied by the diversion node. Appli-
cation rates in each irrigated pixel are obtained by dividing daily diverted volumes by the irrigated area in

the economic unit:

P,&,-,- - Zi (1}.:;:,.‘#-{-1 9
KGN A2 )

where i"d) , is the supplemental irrigation applied at time 7 on pixel k from the set of pixels classified as
irrigated agriculture within the economic unit associated with diversion point j; Ny is the total number of
pixels classified as irrigated agriculture within the economic units; and Ax? is the pixel area. Computed

daily water application rates (P"") enter the hydrologic model as supplemental irrigation in Eq. 3. Since

“https://www.usbr.gov/pn/agrimet/cropcurves/crop_curves.html



the model spatial resolution is typically too coarse to resolve individual crops, irrigation is applied uniformly

over all pixels &k designed as irrigated crops within the corresponding economic unit

3. Calibration of the economic component

208 J.1. Positive Mathematical Programming

The PMP approach assumes that farmers allocate limited land and water resources with the objective
of maximizing net revenues, and thus past observations of land and water use by crop (Tiand.i- Twater,i) are
solutions to the problem in Eq. (1). During calibration, Eq. (1) is modified to constrain the maximization

problem to the observed levels of land and water allocation:

- Hl‘il];)( net = E {'1”-::?7:' ("’-‘!u-m.i_.i-. Lyater,is Pis ﬁ!uﬂd.:’f -’I.),'LL'(ALE‘J"J' i 5‘:'.) — Cland,iland,i — (-‘u.-u.!,c'r,ﬁ"’:wu!.c\f'._-i_}
land, i Fwater,i =
i

subject to:

Z Lland.i < I ﬁf:«!]

i
Tland: — Tﬂn-n.d.i P‘Io.n.d,.-’.]
Lwpater,i = Eu’uf.m',_i [Aﬂru.tr’.r,i]
Lland iy Pwater i =0

(10)

210 Equation (10) contains seven parameters per crop: five production function parameters ji;. 8ijand, Fi water, i, 0i,
and two Lagrange multipliers associated with the observed land and water-use constraints A; jand. Aiowaters
for a total of 7 unknown parameters to be calibrated based on observed decision making. An additional
parameter, Afq > 0 associated with the land resource constraint also needs to be calibrated. This param-
eter represents the shadow value for the total amount of land available for crop production. The PMP

as  methodology builds the system of optimality conditions associated with Eq. (10), however instead of solving
the maximization problem to find optimal land and water resource allocation, the method fixes these at
the observed allocation levels and solves the system of optimality conditions for the model parameters. In
essence, the PMP methodology finds the parameters that produce a response surface (net revenue function)
that is maximum at the observed resource allocation levels (Tiand.i. Twateri). Eq. 10 is differentiable and

220 traditionally solved using nonlinear programming methods. Necessary and sufficient optimality conditions
are given by the first order derivatives of Eq. 10 with respect to x4p45 and x40, ;, the Karush-Kuhn-Tucker
conditions to enforce constraints, and a few additional constraints to ensure the solution to the maximization
problem exists and is unique. A programming solution embedding the optimality conditions for Eq. 10,

proposed by Mérel et al. (2011) and used in this study, is provided in Appendix B. Additionally, we follow
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between modeled expenditures on inputs and expenditures implied by the observed use of inputs. This deter-
ministic program of optimality conditions can be arranged such as the observed quantities are grouped on the
left hand side (LHS), and the quantities that depend on model parameters (functions of model parameters)

are grouped on the right hand side (RHS):

—i T ﬁ1-’ir’,_1; - (f".?a'n.(ﬂ__i_ + /\fr;.n d,i + /\fh'f) Tianff,i — Dy ﬁf 61;
. — + ek
Pi T Tw,q — (r-'wu,{(_'r,'i =+ /\u'u'.ft:'r,'f.) Az water,i
by 5
o : A (1-4; Tiand,
T o 83 = 3145 ) , b= (”. _1)
1-9; E by . b T g i Ty
il &(1—s:) " 6;(5,— :'v“.-_‘-)
- = (";_ ﬁwo.\‘er_.l{Tumtm‘.t)‘r'i
TWi - & .-'?tu-nri.x' (Eiund.i)pi +|S\‘l'rl f.r-?‘.f'-(Emuixt‘r.-‘-)‘p? ~ (_]_1)
5
— , 22 : : __ R &
(P — Li | land, i\ Tland,i Puater,i\ Lwater,i *'ULI Pi
12 [Brand,i Tiand,i)™ + B (7 )
4 = —rm —m d3 X e )] 9= =
Z!‘:n (2 Lland,i Pi ﬁ;_“ WI[TZ] = Zi:l’l [_2(fflrr.1:.d,f + )\f.q!) (-'»(:fruui,'i.J + 2 Tland,i Pi T4 O‘-‘]
1 = 'Ij).fu'u:i,- B .iiu_rui,c-r,-
LHS RHS

During calibration the standard PMP solves this nonlinear program for the model parameters using a

standard root-finding algorithm.

3.2. Stochastic Recursive Parameter Estimation

In the stochastic approach, we embed Eq. (11) within a stochastic data assimilation framework that per-
mits the recursive calibration of the model parameters while taking into account the impact of observational
errors. The basic idea of the algorithm is to generate an ensemble of LHS quantities any time new obser-
vations are available by drawing samples from the probability distribution of the observations. This LITS
ensemble is compared with an ensemble of RIS quantities. The ensemble of RIS quantities is generated
by running the RH S functions using random samples from a model parameter distribution. The difference
between LHS and RHS is called the innovation, and is a diagnostic of optimality. Owver time, as more
observations are used, the data assimilation algorithm adjusts (updates) the model parameter distribution
to values that result in an innovation ensemble with mean zero. This condition indicates that the parameter
distribution satisfies the optimality conditions in the stochastic sense. The key in this process is the param-
eter update algorithm, which is presented in section 3.2.4. A schematic overview of the algorithm is shown
in Figure 2.

Maneta and Howitt (2014) describe a discrete Monte Carlo recursive Bayesian estimator that permits to
update the parameters as new observations become available at time k. In our application, time £ represents
a year because observations of agricultural activity are available yearly. The proposed methodology has three
important advantages: 1) its probabilistic nature permits to integrate noisy observations in the parameter

P S STORE A A S N P PRt [ (U~ Sp S04 Sy WS V. DRSS Gt (Ll SSrrey SR C- R ORIy ook et (U SRS YDA, Lt ¢ Iseser, SRS §. (. TR SOSCRR R, oy |
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Figure 2: Schematic overview ol the stochastic recursive parameter estimation of the positive mathematical programming (PMP)

methodology

calibration; 2) it provides a posterior parameter distribution that reflects the quality of the information used
for calibration; and 3) it integrates new and old information when new observations are available without
having to store or retrieve the old history of observations.

The equations of the estimator are based on the ensemble Kalman Filter, enKF (Evensen, 1994), where
the probability distribution of parameters, inputs and observations are represented by a Monte Carlo sample.
The exception is parameter p;, a function of ¢;, which controls the elasticity of substitution between land

and water. This parameter is fixed at a value p; = , with g; values typically in the range of 0.1 to

ai—1
o
0.6, which represents limited substitution between these two resources. The reason for fixing this parameter
is that elasticity of substitution has been found to be insensitive to aggregated observations and requires
more detailed experimental data for its identification. Therefore, our approach stochastically tracks seven
parameters, six parameters that need to be calibrated for each crop, and one unit-level resource constraint
parameter (-X_M). Specifically, the probability distribution of the model parameters 0 = {p. B1n4: Buwater: 6
Alands Mwaters A st t 1s represented by a random ensemble of M members m = 1..... M of 8. Except for A fals
the unit-level parameter, each bold parameter in the @ set is an array with rows representing parameter
values for each crop grown in a given economic unit (e.g. county, irrigation district) and each column is an
individual member of the ensemble. The parameters of the generalized CES production function must satisfy
the following constraints: g > 0, Brand > 0. Buwater > 0, 0 < d < 1, and A 7ot = 0. The parameters Aj,,q and
Awater are unrestricted. A positive value for the A parameters reflects an unobserved cost associated with the

use of an input, whereas a negative value reflects an unobserved benefit, as described by Mérel et al. (2014).
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3.2.1. Prior parameter distribution (parameter forecasts)

To set the filter equations, we treat model parameters as if they were the system states of the standard
enKF. The evolution of parameters (forecasts) from period k to k + 1 (periods when observations become
available, typically yearly) is produced by adding a random perturbation to each member of the ensemble.
The addition of artificial noise to each ensemble member to simulate time dynamies results in an overdispersed
ensemble that overestimates the parameter variance (West, 1993). This is because the intrinsic variance of
the ensemble is compounded by the noise added to each member to perform the random walk. Lin and West
(West, 1993) show that this can be corrected by using perturbations that are proportional to the ensemble
variance by a number I slightly smaller than one, and shrinking the ensemble toward its mean by a factor

a =+/1 — h. For a given crop i, the dynamics of members of the parameter ensemble with shrinkage is:

| Bland,i k1 —‘ o] | 0 _ _Cﬂ; | o~ B (ﬁiw:‘r"“‘f*’“)' L‘E(’G'?‘L“”"i""))
. T— 0 0 (B (Ppmser ~ B (ﬂ-f{ﬁium-,_k)-. bi Iu!w-,k})
(G ik Eluy] ik kN (U- WAVl + Vi,k)
m L=al omr lra-o | mer) 1l 1+ G~ N (0._ h2V[5H] + v;;_‘k)
Nond i k+1 ﬁ::uﬁ. E;A:ﬁm,i__k] CQEEM Cé}f”d ~N (U.- ?’-ZV!ALMJ,;«J + V3. ,,,,_,k.)
Waterd R Darenii EX g aterik] C;‘igmr Ci}f"’m ~N (0- hzv[/\latcr,i,k] 25 v;‘“.“”r,k)
Ry Xt ERvasl | |G Nt N (02 + Vs L)
9:7-1&4—1.

(12)
where superscript m over a a parameter indicates it is the rmth ensemble member at the time indicated by the
subseript k, and superseript + indicates the parameter is corrected (posterior) after data assimilation at time
k (see below); a and h are shrinkage and variance smoothing parameters, respectively; E[-] is the expectation
operator of the parameter ensemble (i.e. ensemble average for the given parameter and crop), operator
V[-] is the parameter ensemble variance and V* is a parameter-level background variance that represents
the parameter forecast processes noise. V', and h are important tuning parameter that permits to control
filter divergence and collapse. Parameters i, d. \jana. Awater and st; are sampled using normally distributed
noise, however the § parameters are bound to values in the range [0,1]. To sample the distribution of these
parameters at k + 1 we used a Beta distribution with two shape parameters, @.b centered at each ensemble
member. The parameters that center the distribution at each member are determined using the method of

moments from the mean and the variance of each individual ensemble member:

<A%>(1-< 87 >)
V[-ﬂt,k] + Vi &

bi(8) = (1— < BT >)au(B.4),

— 1

ai(8) =< B3 >
| (13)
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and < 87 > is the mean of the kernel locations and :

< B" >=af™ + (1 - a)E[B ] (14)

3.2.2. Generation of the observation (LHS) ensemble

Uncertainty in remote sensing observations of agricultural activity (land and water allocations, crop yield
and yield elasticity) as well as uncertainty in additional ancillary information (crop supply elasticity, crop
price, cost of operating land and cost of water) obtained at time &+ 1 is represented by an ensemble with M

observations of replicates obtained by sampling from a Normal distribution centered at the observation:
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where Tj5, 4 ;. Tiateri» TW,i: Tw,i, and 7;, are observations of land and water used by crops, elasticity of
production to water inputs, erop production, and elasticity of production to crop prices, respectively. Obser-
vations are scaled into a dimensionless quantity (see section 3.3).

Using these observation replicates, individual LHS; ensemble members of the stochastic system of opti-

mality condtions are produced:

=T Tw (1)
P T (2)
m (3)
i 0
LHSI = " (5) (16)
Z:-—n (2T P T T2 (6)
1 (7)
0 (8)
0 k+1 (9)

where the first two elements are part of the calculation of the marginal costs of production, the next two
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retrieved by remote sensing algorithms), respectively, the fifth element is the observations of crop production
and the last three elements are the left hand side of three constraints to facilitate sampling 3 parameters such
as Jland.i + Gwaters = 1. 8.; = 0. Since all inputs are normalized, the 3 parameters represent the fraction of
production shared by the corresponding input. The constraints on the 3 parameters form a convex sum of

inputs that ensure that the production function outputs are always within the range of historical observations.

3.2.3. Generation of the maodel prediction (RHS) ensemble
The RHS(6541) ensemble is a function of model parameters #; ;1. Using parameter and input repli-
cates, the right hand side equations are used to producean ensemble of model prediction counterparts to the

observations in LHS; p+1:
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The first two elements of LH S™ and RH S!" represent the difference between marginal costs of production
and marginal revenues with respect to land and water. Marginal costs and marginal revenues are equal at
the optimal point. The next two elements of RHS]". ., are model predictions of production elasticity to crop
price and production elasticity to crop water use, respectively; the fifth element is the observation of crop
production. The last three elements of LI S and RIS are constraints to facilitate sampling 7 parameters
within the unit simplex, such as 1 = Sjuna.i+ Gwateri- 5. = 0. The last two constraints are the non-negativity

conditions. Non-negative 3 samples only oceur if the difference between the sample and its absolute is zero,

which is the condition expressed by the last two equations.

3.2.4. Assimilation equations - Posterior parameter distribution
Assimilation of new observations obtained at time % + 1 to correct each member m of the parameter

ensemble is achieved using the update equations of the enKFE":

071 = Oy + Kot (LHSThyy — RHS(05,1)) .
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where 9:’}:_1 is the corrected (posterior) mth member of the model parameters, K .q is the Kalman gain

matrix that corrects the parameter trajectories; LI 91"}\ 41 18 the mth member of the ensemble of replicates
of the left hand side of the system of optimality conditions, which holds observation and other derived
quantities; RHS(6 ) is the mth member of the ensemble of replicates of the right hand side of the

optimality conditions, which is a function of model parameters, and holds predictions of the LHS; Cgle g

is the cross-covariance between the parameter ensemble and the RHS ensemble, Cé‘fls is the covariance of
the LHS ensemble and C E _ﬁg is the covariance of the RHS ensemble.

The quantity between brackets in the top equation of (18) is the innovation and holds the model prediction
errors. A property of Kalman filters is that when they are properly tuned, the ensemble of parameters produce
a sequence of innovations that is normally distributed with zero mean. Since LHS and RHS represent the left
and right hand sides of the optimality conditions, Iiq. 18 is in effect solving the maximization problem posed

in Eq. 1. The variance of the innovation is the total variance of the process associated with observation and

parameter uncertainty.

3.3. Sealing observations and inputs

If the 7 parameters are considered dimensionless share quantities, the constant elasticity of substitution
production function specified in Eq. (2) is dimensionally inconsistent and its results are not interpretable
in terms of processes unless inputs are scaled and transformed to dimensionless quantities. For a particular

season, the information needed to correct the model parameters for an economic unit include observations

obs
i

obs
water:

of land (2%, ., ha) and water (x mmha~1) used by crop i, crop price (p?®*, $t—1), the typical cost

Lland,i
of cultivating crop i per unit of land (¢§?%, $ha™!), the cost of applying a unit of water including fees,

Larud

obs abs

transportation, application costs, ete (¢0,.,. $/(mmha), average crop yield over the economic unit (yf"*,
tha 1), the elasticity of production to water (r"{’f’: dimensionless), and the elasticity of production to crop
abs

prices (n?"%, dimensionless).

The dimensionless observed quantities used in the data assimilation and parameter correction process are
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obtained by applying the following transformations:
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where y?"* is the mean observed yield in the economic unit (kgha="), a3t i 18 the estimated or expected

crop water use from natural water sources (e.g. from precipitation) in mm, and l::f 2. in ha, E'IT‘”' in mm,

p:_'f"" in $kg ! and -_.;r,;'""r in ke ha ! are long term mean land, used water, price and vield observations used

as reference scaling quantities for crop i. Note that the observed cost of water per unit volume (c2%%

wiater,i }
only applies to artificial irrigation but is normalized using total erop evapotranspiration (ET;'“";) because
it is what is retrieved by remote sensing products. This normalization works because f:;:‘:’,fm._j is constant
regardless of the water volume used by crops and ET;_”""F just serves the role of a normalization factor.
Elasticity to water and prices measures how responsive their production is to used water and crop prices

and is defined as a percent change in production over a percent change in used water or crop price. Defining

?r;f_’h“ = -g,r;-_'f"“a';"i’;_d ;» elasticities can be calculated from observations as:
A —0bs | _obs ; obs
S A [ _ dlogm; (20)
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(21)

Elasticities are typically considered constant over a period of time and they can be obtained as the
least square regression slope between the logarithm of production and the logarithm of water used or the
logarithm of crop prices over the considered period. We calculate the production elasticity to water, Ty; in
our study area empirically using (20). We constructed our crop-specific supply elasticity using results from
a series of previous studies summarized in Appendix Appendix C. In addition, we supplemented published

supply elasticity estimates with our own calculation from (21) applied using annual county-level production



combined with published values based on the temporal recency and geographical proximity of the studies,

ses  and based on expert judgment.

3.4. Economic component al simulation time
The posterior parameter distribution obtained after the most recent assimilation step K is used in the
= . -1 rilk - & - o - =
production and cost functions of the net revenue equation (1). For each member in the parameter ensemble,
the maximization problem is solved, this time for land and water allocation under any simulation scenario

a0 represented by different crop prices, production costs, and land and water constraints:
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Maximization of equation (22) for each member m of the parameter ensemble generates a result ensemble

(22)

that represents the probability distribution of land and water allocated to each crop i as well as an ensemble

T . F - T37 i
associated with total land L and water W resource constraints

of the Lagrange multipliers X;z“ gand Ay,
imposed by physical availability or policy. Lagrange multipliers represent the opportunity cost associated with
a7s  not having an additional unit of land or water and therefore can be interpreted as a metric of the value of land
and water. Additionally, solving equation (22) also produces the probability distribution of estimated crop
production, and of the probability distribution of production elasticity of supply and production elasticity of

water inputs.

4. Application to Montana

380 We demonstrate the application of the model at regional scales in the state of Montana, located in the
intermountain Pacific northwest of the United States (inset of Figure 3). The study region extends beyond
the boundaries of the state to include the headwaters of basins that drain into the state, covering an area of
464,800 km?. The state has a longitudinal topographic and climatic gradient, from the steep and relatively
wet Rocky Mountain western region toward the flatter and significantly drier eastern portions of the state,

sss  which are part of the US northern great plains region. The US continental divide runs roughly north to south

along the west quarter of the state. About 25% of Montana drains to the Pacific Ocean (Clark Fork River
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River basin) drains to the Gulf of Mexico. Annual precipitation inputs range from over 1000 mm yr~" in the

L in eastern Montana. The western

mountain regions of the west and gradually decline to about 200 mm yr—
part of the state also shows less continentality, with relatively warmer temperatures in the winter and cooler
temperatures in the summer than the eastern portion of the state.

Other than the ecosystem, the largest water user in the state is agriculture. Agriculture is also the leading
industry in the state. Despite its economic importance, agriculture is poorly diversified and dominated in
terms of production and planted area by alfalfa, wheat, and barley. Montana is a major producer of wheat
and barley in the US and contributes to the country’s food security. Irrigation is common along streams and
in the western parts of the state, however rainfed production is dominant and very vulnerable to drought in
the drier central and eastern parts of the state. Irrigated area has been growing substantially in the state in
recent decades and has contributed to increasing production and reduction in economic risk. Surface water
is the primary source for irrigation, including within irrigation districts, and so far significant groundwater
depletion due to agricultural extraction is only limited to a few localized watersheds ((Whitlock et al., 2017,

p. 120)).

4.1. Implementation of hydrologic component

The representation of the hydrologic system in the the study region is shown in Figure 3. The figure shows
the representative elementary watersheds (REWSs) that compose the domain, the nodes that define their
outlets, and the links (stream reaches) that connect them. We used the GTOPO30 digital elevation model
(DEM) produced by the USGS at 1Km resolution to determine the regional drainage network and partition
the domain into REWs using GIS procedures. We used the location of active National Water Information
System streamflow gauges as the initial set of nodes to partition the landscape into REWS and then further
densified the network with additional nodes until we achieved sufficient spatial detail. The densification was
done by allocating nodes in pixels having contributing areas larger than a specified threshold. The minimum
contributing area for a REW was selected such that the total number and sizes of REWS was considered
adequate to resolve the spatial variability of streamflows. The final domain contains over 300 REWS with
typical sizes around 1400 km?.

Each REW in the domain has one stream reach with a from_node’ and "to_node’ attribute that identify
the upstream and downstream node of the reach. This information is used to build the network topology and
a node adjacency matrix that is used in the the water routing algorithm described in Appendix A. Water
diversions oceur at 56 selected river nodes, one for each economic unit (county) included in the simulation.

we ran the model with daily gridded precipitation, maximum and minimum air temperatures at a 4km
resolution, automatically retrieved as NetCDF files from the gridMET dataset (Abatzoglou, 2013). Temper-
atures are used internally by the model to calculate reference crop evapotranspiration using the Hargreaves

method (George H. Hargreaves and Zohrab A. Samani, 1985).
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Figure 3: Location of the study region and representation of the hydrologic system and streamflow network

4.1.1. Calibration of hydrologic component

The hydrologic model parameters were calibrated manually against streamflow observations at gauged
river nodes and against snow water equivalent observations from the SNOTEL network. All parameters
of the BV rainfall-runoff model and Muskingum-Cunge routing model were adjusted and shared between
REWs grouped according to their physiographical (mean elevation, mean slope, area, shape factor) and land
use characteristics (fraction of the REW under forest cover and under agriculture) using a standard K-means
classification method. In total, we calibrated seven groups of parameters corresponding to seven groups of

REWs.

4.2. Implementation of economic component

Although remote sensing can retrieve information about land and water allocation at field scales, the
specification of the economic component of our model is designed to simulate the aggregated economic
behavior of producers in a region, not the behavior of individual farmers. The economic units considered
in this implementation are aggregated at the county level. Thus, we represent the agricultural system in
Montana using 56 economic units (counties), each of them retrieving water from the stream network at one
designated diversion node. Although the economic activity is represented in aggregated form, intra-county
agroeconomic heterogeneity is, to some extent, implicitly captured in the distribution of model predictions

for each county.
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Table 1: Observations necessary to calibrate the economic component

Observation Units Source Resolution
Land allocation ha Remote sensing (National atlas | 30 m, 8 day

of the United States, 2014)
Water allocation mm¥*ha Remote Sensing (He et al., 2019) | 30 m, 8 day
Crop price $/ton USDA State-level, Annual
Cost of land $/ha State-level, Annual
Cost of water $/(mm*ha) State-level, Annual
Crop production ton Remote Sensing (He et al., 2018) | 30 m, 8 day
Production elasticity to | - Derived, Eq (20) State-level, Annual
water
Production elasticity to | - Derived, Eq (21) State-level, Annual
price

4.2.1. Recursive calibration of the economic component

Information necessary to update the model parameters include land allocated to each crop, total water
used by each crop and total crop production. This information is available every year from remote sensing
products at 30 m spatial resolution and then aggregated at county scales. In addition, information on crop
prices, approximated variable unit costs of cultivating land and cost of applying water are also required (Table
1).

Crop price information and an approximation of production costs were obtained from annual surveys
published by the US Department of Agriculture National Agricultural Statistics Service (USDA NASS)
at the state scale (QuickStats, http://quickstats.nass.usda.gov). Crop coeflicients to determine crop
development stage were obtained from tables published by the AgriMet network for crops grown in the US
Pacific Northwest (https://www.usbr.gov/pn/agrimet/cropcurves/crop_curves.html).

Annual variations in crop mix and area are obtained from the USDA Cropland Data Layer, CDL (USDA
NASS, 2015), published by the USDA NASS. The CDL provides a satellite-based, remotely-sensed, annual
crop-specific land cover classification that resolves the type and location of the major summer crops in the
conterminous US. The CDL is available since 2003 for the conterminous US at 30 1n spatial resolution. Since
the unit of analysis of the economic component is the county, we calculated total allocated land in each county
for the main crops grown in Montana (alfalfa, barley durum wheat, spring wheat, winter wheat, maize and
peas) from 2009 to 2018. Uncertainty in land allocation retrievals were estimated by scaling the average
pixel level classification uncertainty (standard deviation) of each crop by the number of pixels allocated to
the crop in the county. Figure 4a shows an example of the CDL and the annual variations in allocated area

for alfalfa, barley, spring wheat, and winter wheat in two counties.
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Figure 4: Example of remote sensing retrievals of agricultural activity over the state of Montana. The maps in the figure show
pixel-level retrievals in 2009 of a) crop type, location and extent; b) seasonal crop evapotranspiration; and ¢) crop yield. The
time series (insects) show county-aggregated variations of a) total allocated land; b) total county-level crop water use; and c)
county-level total production for four example crops (alfalfa, barley, spring wheat and winter wheat) and two example counties

(Choteau and Wibaux).

Observations of crop production and yield (defined as the ratio of production to area planted) were
obtained using a satellite-driven, light-use efficiency model to estimate gross primary production (GPP)
over croplands at 30 m resolution and 8-day time step. The high spatial and temporal resolution necessary
to delineate cropland vegetation growth was achieved by using a NDVI dataset that blended Landsat 5/7
reflectance and Terra MODIS reflectance. Crop vields each year were obtained by accumulating GPP over
the growing season and applying a crop-specific harvest index to convert primary production to yields. He
et al. (2018) gives a full description and validation of this remote sensing product. We calculated county-
scale annual crop production by multiplying crop yield times the area allocated to the crop in each county.
Uncertainty in the county-scale production estimates was obtained by scaling the spatial standard deviation
of yields by the area planted. Figure 4c¢ shows an example of the 30 m remotely-sensed retrieved yield map

and the annual variation of alfalfa, barley, spring wheat, and winter wheat production from 2009 to 2018 in
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Crop water use was estimated by adapting an operational global ET product (NASA MOD16A2 Mu
et al., 2011). To better represent cropland ET, our adaptation of the MOD16A2 product uses finer scale
meteorological inputs from the GridMet product (Abatzoglou (2013)), and the same refined 30 m resolution
NDVT dataset used in the estimation of production. The model parameters were also recalibrated for broadleaf
crops, and for cereal crops. A complete description of the adaptation of MOD16A2 ET product for agricultural
applications of the conterminous US is given by He et al. (2019). Annual variations in county-scale, crop-
specific water use volumes were calculated by accumulating pixel-scale ET over the growing season and at
the county scale for each crop. Uncertainty in the county-scale water use estimates was obtained by scaling
the spatial standard deviation of crop ET by the area planted. Figure 4b shows an example of the 30 m
remotely-sensed retrieved crop ET map and the annual variation of total water volumes used by alfalfa,
barley, spring wheat, and winter wheat production from 2009 to 2018 in two counties. Note that crop water

use includes both evapotranspiration from precipitation and from supplemental irrigation.

4.3. Analysis methods

For this analysis we set the ensemble size M = 300. To stabilize model parameters and start with correct
(optimal) values at the beginning of the analysis period, we first spun up the data assimilation process by
repeatedly assimilating observations from 2008 (first year in our data record) until the posterior distribution
of the model parameters converged. We tuned the filter by manually adjusting the variance smoothing
parameter h and the background parameter ensemble variance (V_*,k) until the parameter ensemble resulted
in land allocation prediction distributions that approximated the assumed distribution of land allocation

*

observations in 2008. We found good results assuming Vi ., Vg . V5, and V] ;. were 0.01 of the
square of their respective ensemble means. We found V} ., Vy — and Vim_. .. to be very sensitive to
errors and required a smaller variance of about 0.0001 of the square of their respective ensemble means. We
also prescribed /i = 0.97 and a = 0.94 (low level of parameter smoothing).

After the spin up was complete (e.g. parameters converged to their optimal or near-optimal values from
their arbitrary initial values), we used the resulting model parameters to verify that they correctly reproduce
the observed land and water allocations used to calibrate them. After this verification, we started the data
assimilation process by sequentially ingesting observations from 2008 to 2016. Observations from 2017 and
2018 were available but not ingested and used to verify the the ability of the model to predict out of sample
years. We focused model verification and analysis mostly on predictions of land and water allocation, since
it is one of the most novel aspect of the modeling system. However, we also demonstrated the value added

by the hydrologic component by identifying the net impact of agricultural water diversions in 2017. In the

discussion section we provide a qualitative evaluation of the spatial impacts of agricultural water use.



505

518

Table 2: Mean relative bias (Rel. Bias #) and relative root mean square error (Rel. RMSEP)

statistics for the simulation land allocated during the 2008 benchmark conditions.

2008
Land Use Water Use
Rel. Bias | Rel. RMSE | Rel. Bias | Rel. RMSE

Alfalfa Irrigated -0.072 0.090 -0.174 0.218
Alfalfa Nonirrigated -0.044 0.087 - -
Barley Irrigated -0.050 0.099 -0.087 0.255
Barley Nonirrigated -0.030 0.068 = -
Spring Wheat Irrigated -0.029 0.090 0.080 0.246
Spring Wheat Nonirrigated | -0.030 0.110 - -
Winter Wheat -0.028 0.110 . =

& Rel. Bias — sirm; —obs;

abs;

L osongg ;—obs;)2
b Rel.LRMSE — Yn &7 (3mi—0bs:)

T —n -
n L obs;

5. Results

5.1. Calibration and verification: parameter spin-up

The results of the parameter spin-up showed that for most counties the parameters could be accurately
inferred from the assimilated observations. An example for Beaverhead county (a county with a large extent
of land allocated to agriculture and also first county alphabetically) is shown in Figure 5. Results for all
counties are presented in Appendix A available online. The ensemble was initiated before the spin-up with
an arbitrary mean and a large spread (initial coeflicient of variation of the ensemble was prescribed at 100%)
and the ensembles typically converged to a steady state distribution with within five to eight assimilation
cycles. Figure 6 show the dynamics of the ensemble of innovations (residual between Eq. (16) and Eq. (17))
for the parameter evolution of Beaverhead county shown in Figure 5. The figure shows that the innovation
quickly approaches zero, which indicates that the parameter ensembles converge to a solution that satisfied
the optimality conditions of the positive mathematical program (Eq. (13.2)). The algorithm works because
components (1) and (2) in Eq. (16) represent the marginal revenues with respect to land and water allocation,
and components (1) and (2) of Eq. (17) represent the respective marginal costs. When the ensemble of
differences between LI S; and RIS; is centered about zero the methodology is effectively solving the first
order conditions of the net revenue maximization problem, which is the core of the calibration algorithin.
Online Appendix B shows the evolution of the innovation ensembles associated with the parameter spin-ups
in all counties in the state of Montana. An inspection of this appendix shows that all innovations reliably

have zero mean and a steady variance, which are diagnostics of the correct performance and tuning of the
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Figure 5: Evolution of the parameter ensemble during parameter spin-up in Beaverhead county. Shaded areas are the 95 and

68 percentile confidence intervals of the ensemble. Ensembles for all counties is presented in online Appendix A
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The ensemble of parameters obtained at the end of the spin-up cycle was used to predict the land and
water allocation for the 2008 baseline. The model was able predict mean land and water allocations in each
county with satisfactory accuracy, as summarized in Table 2. The correlation coeflicient between county-wise
simulated and observed land allocation is higher than 0.98 and the relative bias of the estimation is typically
less than 0.06 (6%).

A comparison between the predicted probability distributions of land and water allocation and observed
allocations provides a direct evaluation of the model predictive skills for individual counties and also illustrates
how parameter uncertainty translates into uncertainty in the predictions of resource allocation. Figure 7
shows the simulated probability distribution of land allocated to the crops grown in Beaverhead county
along with the observations. The assumed uncertainty in the observed land allocation was used to tune the
background variance of the parameters and provide additional confidence that the filter is correctly tuned.
Ounline appendix C shows the simulated land allocation for all crops and counties. In general, for all counties
and crops, the predictive distributions are well centered around the observation and have a variance that
approximate the assumed observational error.

Comparison between observed and modeled water allocation for irrigation is less straightforward because
water allocation per erop and county is not directly observed. Remote sensing E'T observations only provide
total crop water use, which integrates water from natural precipitation and from supplemental irrigation.
However, the simulation scenarios require that the the expected amount of water from natural sources used
by crops (natural ET) is specified. Subtracting this specified natural ET amount from the total observed crop
water use gives us an estimate of the amount of crop water use supplemented by irrigation. This estimate
served as the observation of supplemental irrigation used to evaluate the model simulation of water allocation.
Figure 8 shows the case of Beaverhead county. Figures for water allocation in all counties in the state are
provided in online appendix D. Similar to the simulation of land use, the simulation of water allocation per
crop and county is also centered around the observations, bracketing them in most cases within the high

probability region of predictions.

5.2. Dynamics of the parameter ensemble

Using the parameter distributions obtained at the end of the spin-up period as a starting point, we assim-
ilated remote sensing observations from 2009 through 2016. Figure 9 shows the dynamics of the parameter
ensembles for Beaverhead county over the the eight years of data assimilation. Note that the y axis has been
re-scaled with respect to that of Figure 5 to better represent the ensemble spread. Figures for all counties are
available in online appendix E. In general, parameters ),,,4 and 3, showed very high stability and very
little dispersion over time, with very small drifts in their mean value. To a lesser degree, parameter 4 also
presented relatively high stability but higher ensemble dispersion. On the other hand, Aj,..4, Awater, and the
jt parameters showed large ensemble dispersion and high sensitivity to variations in the input observations.

The evolution of the parameters sometimes exhibited drifts over the data assimilation period (e.g. parameter
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Figure 8 Simulated probability distribution of water allocation for three irrigated crops grown in Beaverhead county, MT (blue
bars). Dashed grey vertical line indicates the observed total evapotranspiration consumed by the crop (evaporation from natural
supplies and from supplemental irrigation). Benchmark supplemental irrigation (red vertical line), was estimated by subtracting
water used by crops from natural supplies (natural ET) as prescribed in the modeled scenario from the observed total crop

evapotranspiration. Simulations for all counties is presented in online Appendix 1.

winter wheat and Xf,h: in year 2010), or fluctuations about a long term mean without a clear trend (e.g.
parameter p for winter wheat in Figure 9)).

The dynamics of the innovation associated with the parameter ensembles in Fig.9 were in general tightly
centered around zero for most components, reflecting the performance of the filter(Figure 10). The filter
maintained most of the parameters at optimal values for operational use throughout the assimilation period.
Components (1) and (2) of the innovation showed the highest variance but not significant biases. The most
significant departures of the ensemble from zero where for winter wheat, but these were only transient.
Although Figure 10 represents the case for one county (Beaverhead couuty), component (2) of the innovation
was often the one that exhibited the largest amount of bias and variance over all counties (See Appendix
I"). This component of the innovation is controlled by parameter A, , which is one of the most sensitive
parameters of the model and is key to correctly reproduce the correct allocation of water.

Figure 11 and Figure 12 show the state-wide interannual variability of modeled land allocation and mean
annual crop water use generated by running the model using the parameter ensemble obtained at the end of
the assimilation period. The figure shows time series obtained by averaging results over all counties during
the 2008-2016 calibration period. Relative prediction biases and relative root mean square error statistics
are given in Table 3. The model captures the magnitude of the observed land allocation to each crop type
and the share of land that is irrigated and non-irrigated, although some biases are apparent. Also, especially
in the case of alfalfa, the model exhibits larger interannual variability than the observations (Figure 11a).
A small high-bias and higher variability in modeled mean water use is also apparent (Figure 12 and Table
3). The whiskers and shaded area in these figures are the interquartile range of the county-level observations
and predictions, respectively, and give us information of their spatial (infer-county) variability. In general,

the inter-quartile range of observations and predictions is similar in the case of crop allocation (Figure 11),
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Figure 11: Modeled (lines) and obscrved (markers) average land allocation over the 2008-2016 calibration period. Shaded
arcas and error bars represent the inter-quartile range of the distribution of county means for the modeled and observed land

allocations, respectively. The interquartile range provides a sense of the spatial variation of land allocation between counties.

water use (Figure 12) underestimate the observed spatial variability. Despite the biases, the simulations
clearly diseriminate the crops that are prioritized by farmers, and to simulate a spatial distribution that is
on par with the predictions. This is further shown in the next section, which focuses on the simulation of

two out-of-sample years.

5.3. Simulation of years 2017 and 2018

Table 4 shows the relative bias and root mean square relative error (RMSRE) of the mean predicted
vs observed crop acreage and water allocation over all counties in Montana for years 2017 and 2018. For
these simulations, the model was run with the parameter distribution obtained at the end of the 2008-2016
assimilation period. Year 2017 is associated with the abnormal conditions generated by the severe flash
drought that affected the US Northern Plains in the summer of 2017 (He et al., 2019; Kimball et al., 2019).
Despite of this, the results for the two simulated years are qualitatively very similar and therefore we only
present and discuss the predictions for year 2017. The discussion of the results from 2017 also apply to the
simulations of year 2018.

The model satisfactorily reproduced the county-scale distribution of cropping patterns (Figure 13). Alfalfa
is grown in all counties and the model predictions capture well the spatial distribution of land allocation for
this crop (Figure 13 rows 1 and 2). Note that the area planted with non-irrigated alfalfa tends to be larger in
the eastern third of the state because that region is characterized by large properties and extensive ranching.

This distribution is well captured in the model predictions. On the other hand, irrigated alfalfa is more



Table 3: Mean relative bias (Rel. Bias ) and relative root mean square error (Rel. RMSE ) statistic of the prediction of county

average land per crop and water allocation over the 2008-2016 calibration period.

Rel. Bias | Rel. RMSE
Alfalfa Irrigated 0.063 0.273
Alfalfa Nonirrigated -0.024 0.262
Barley Lrrigated 0.123 0.222
Barley Nonirrigated 0.140 0.275
Spring Wheat Irrigated -0.370 0.377
Spring Wheat Nonirrigated | -0.169 0.205
Winter Wheat -0.099 0.173
Water use (Fig. 12) 0.370 0.411
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Figure 12: Modeled (lines) and observed (markers) average annual effective crop water use from supplemental irrigation over the
2008-2016 calibration period. Effective crop water use is delined as the fraction of applied water that is used by crops. Shaded
arcas and error bars represent the inter-quartile range of the distribution of county means for modecled and observed irrigation,
respectively. The inferquartile range provides a sense ol the spatial variation of water allocation between counties.

“Table 4: Mean relative bias (Rel. Bias ¥) and relative root mean square error (Rel. RMSE Y] statistic of the prediction of land and water alloeation for out-of sumple
years 2017 and 2018,

2m7 2018
Land use Water use Land use Water use
Rel. Bins | Rel. RMSE | Rel. Bias | Rel. RMSE | Rel Bins | Rel RMSE | Rel Bins | Rel. RMSE

Allalfa Trrigated -0.003 0.151 -0.182 0.425 -0.067 0.182 0.21 0.547

Allalfa Nonirrigated 0.155 0.277 - - (0.048 0.133

Barley Irrigated 0.319 0.305 2.561 1.472 -0.193 0.379 491 1.460
""l:'l':nr?’l‘lv‘.;_ﬁ;nlirriguuxl 0301 ﬂ.4?ﬁ-\ - - 0.155 0.226

Spring Wheat Irrigated 1.321 (1.340 3.026 1.26 2,531 0.508 2.19 104

Spring Wheat Nonirrigated | -0.005 (1.285 - - -0.037 0.165

Winter Wheat -0.241 (L4588 - - -(L 167 0.089 - =

® Rl Pins = 4t _cka
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and in the upstream end of the Gallatin, Yellowstone and Missouri rivers. This is also correctly captured by
the model. Also remarkable is the ability of the model to identify the regions in the state that specialize in
small grain production. The model correctly identifies the counties in the west and north west central region
of Montana that allocate the most land to irrigated and non-irrigated barley (Figure 13 rows 3 and 4). Tt
also identifies very well the swath of counties in the north and north east portions of the state that allocate
the most land to grow spring wheat and winter wheat (Figure 13 rows 5 and 6). The spatial distribution of
relative errors show some complex spatial patterns, but in general relative errors in simulated area allocated
to a crop are largest in counties where observations of area planted with a given crop are small because
relative errors are normalized by these observations. This causes the summary statistics presented in Table 4
to be skewed by very large errors in a small number of counties. This is particularly evident in the statistics
of land allocated to irrigated barley and irrigated spring wheat, where simulated land allocation tends to
underestimate observations (negative relative errors represented by blue colors in Figure 13), but Table 4
reports a large positive relative bias.

The extent of land allocated to irrigated crops is, of course, an indication of the agricultural water
demands. In general, agricultural water use is higher in counties that are closer to the river headwaters.
Counties in the headwaters of the Missouri river and upstream tributaries (Jefferson, Madison and Gallatin
Rivers, see Figure 3), in the southwestern quadrant of the state, as well as counties in the upper course of
the Yellowstone river in south central Montana, have some of the highest agricultural water consumption in
the state, putting a significant amount of strain on the water supplies. This agricultural water consunption
pattern is clearly represented in the simulated total agricultural applications per county (Figure 14). The
model underestimated the total agricultural water use in all counties (negative relative errors), however
the relative underestimations are in general modest. Large relative errors in the predictions often occur in
counties with relatively low observed supplemental irrigation.

Counties with high agricultural water use are expected to have the largest impacts on the hydrologic
system. A strength of hydro-economic model is that it tracks the hydrologic impacts of agricultural activity.
The spatial and temporal net effects of agricultural diversions on streamflows are shown in Figure 15. Insets
in Figure 15a show simulated streamflows with and without the effects of water diversions for year 2017 in
four nodes of the river network and the simulated water diversion rates from these nodes during the growing
season. The standard profile of water diversion rates in all nodes followed the water demands associated with
the progression of crops during the growing season. Water withdrawals start on the prescribed planting date
of each crop, which for most crops is around May 15, increase as crops grow to full coverage, and finally
taper down as crops mature before the prescribed harvesting date in late August. The impacts of water
withdrawals on streamflows starts during the spring freshet, when streamflows are high, but it is typically
maximal in late June or early August during low summer flows. When water diversions decline at the end of
the summer, the model simulates the recovery of streamflows.

The enatiallv distributed nature of the hvdrologie model naturally csimulates the downstream imbpacts of
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Figure 13: Comparison between model simulated (left column) and observed (center column) land allocated in 2017 to the
major crops grown in Montana. Right panel shows the relative prediction error defined as % Clounties with

small amounts of observed land allocated to a given crop can produce disproportionately large relative errors. For visualization

purposes, the error scale has been clipped to values from -1 to 1.
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Figure 14: Comparison between simulated (left panel) and observed (center panel) total agricultural water applications per

simulated —observe

observed Counties with small

county for year 2017. Right panel shows the relative prediction error defined as
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agricultural activity. For instance, the inset associated with the easternmost node in Figure 15a is not a
diversion node, so there are no agricultural water withdrawals from this location, however water diverted
upstream still reduces the natural flows in late spring and summer. To appreciate better the spatial extent of
streamflow drawdowns, we produced a visualization of the total net impact of agriculture on the hydrologic
network in 2017 (Figure 15b). The net impact (A Streamflow) was produced by calculating the total annual
water volume difference between natural flows and flows under agricultural withdrawals. Unsurprisingly, the
most impacted river reaches are those that supply water to counties with high agricultural water applications,
such as those in the headwaters of the Missouri river (c.f. Figure 14), however the impact of water diversion

often extends far downstream, atfecting counties where agricultural water demands are low.

6. Discussion

The implementation of the economic component of our hydro-economic model uses the stochastic and
recursive data assimilation framework based on the ensemble Kalman filter proposed by Maneta and Howitt
Maneta and Howitt (2014), however the new implementation adopts the form of the optimality conditions for
calibration proposed by Mérel et al. (2011) and Garnache et al. (2017). The implementation of the positive
mathematical programming methods proposed by these authors has two major advantages over the standard
implementation used by Maneta and Howitt (2014). One advantage is that it eliminates the need to solve
an initial linear constrained optimization problem to identify the unknown Lagrange multipliers associated
with land and water constraints (Howitt, 1995). Another important advantage is that it does not require
a quadratic or exponential specification of the land cost function used in the standard implementation to
provide the response function with the correct curvature (Howitt, 1995; Howitt et al., 2012a).

Our analysis demonstrates that information on land use, crop evapotranspiration and crop production
from existing and newer satellite-based remote sensing products contain sufficient information to calibrate

the hydro-economic model presented here. It also shows that the recursive data assimilation methodology is
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Figure 15: Simulated hydrologic conditions during the 2016-2017 water year. Insets in a) show time series of simulated stream-
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small number of assimilation cycles. Furthermore, The recursive updating nature of the filtering algorithimn is
ideal for model applications in non-stationary systems because it adapts the model calibration to the realities
of the regional agriculture. Variations in the model parameters over time may be indicative of changes in
the economic behavior of farmers triggered by external factors that may not be directly or easily detectable
from satellite-based remote sensing information (e.g soil fertility) or due to shifting farmer perception or
management practices. For instance, the recursive calibration for Beaverhead county (Figure 9), shows
that parameter 4, which represents the production returns to scale, may be slowly increasing over time for
nonirrigated alfalfa while remaining relatively stable for other crops. Values less than unity for this parameter
indicate that crop production will increase exponentially less than a given increase in land and water allocated
to this crop. Decreasing returns to scale reflect agricultural realities like the likelihood that crops expand to
land of lessening quality, or the diminishing returns of additional water applications when crops are irrigated
near their optimal level. Upward trends of this parameter signal technical or management improvements
over our study period that increase productivity returns from land and water inputs. On the other hand,
Parameter mu, which is a factor that represents the efficiency of the production system, seemed to decline for
irrigated and non-irrigated spring wheat. Declines in this factor indicate loss of county production in these
crops that cannot be explained by a reduction in the amount of land and water allocated to these crops. For
instance, if may signal loss of soil fertility or declines in other inputs not explicitly included in the model.
Note that the sensitivity of the model parameters to new observations is dependent on the value of a in the
parameter blending Eq. (12). This a factor was prescribed at a value of 0.94 for this analysis, which provides
a low level of smoothing and results in model parameter more responsive to new information. Lower values
of a decrease the calibration sensitivity to new observations.

An important characteristic of economic models of agricultural production ealibrated using the PMP
methodology is that there is no need to know with precision the production costs becaunse the calibration
algorithm approximates unknown or unspecified production costs by adjusting the Au,q; and Aarers. In
our implementation of the optimality conditions, negative X; values for land or water indicate that there are
unobserved benefits associated with these inputs, which is to say that the observed production costs, ¢4,
and ¢yqper i, are overestimated. Conversely, a positive A;; value means that the observed production costs
are under-estimated. In general, and in the case of Beaverhead county (Figure 9), irrigated crops typically
have a negative value for A0, ;. while positive values are more common in non-irrigated crops.

The capacity to estimate the value of A, .05 18 an important characteristic of the calibration method,
however this parameter is often the most unstable during the data assimilation process and probably one
of the largest sources of uncertainty in model predictions, as diagnosed by biases in component (2) of the
innovation (Figure 10). Errors in the identification of this parameter may be the largest source of bias in the
predictions of water and land allocation for vears 2017 and 2018.

We found during our data assimilation experiments (not presented in this study) that the parameter

en<embles are verv sensitive to the nnecertaintv in come snecific obzervations. esneciallv obcervations of vield
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elasticity (Ty ) and supply elasticity (7). If the noise to signal ratio in the observations was too high, the
ensemble of model parameters converged to a biased solution even if the observation errors were unbiased,
and this is one contributor to the prediction biases. Kanellopoulos et al. (2010) did similar forecast experi-
ments using two variants of the positive mathematical programming method and reported model prediction
sensitivities to the supply elasticity parameters and biases in model forecasts.

Commonly, hydro-economic models of agricultural production that are calibrated using any standard
variation of the PMP methodology are verified by reproducing the same baseline observations used for
calibration. Model predictions under conditions different from those of the baseline are rarely verified with
actual observations before the model is used in the simulation of design scenarios ((Graveline, 2016)). This
is because the empirical nature of the positive mathematical programming method limits the application of
models calibrated using this methodology to conditions that are not too different from those of the calibration.
Our results show that the model has forecasting skill even under the unusual flash drought conditions of 2017
and can correctly reproduce the spatial patterns of land and water allocation at county scales, albeit with
some biases. Further research is necessary to understand the range of conditions under which the model still
provides valid forecasts.

A major strength of our model is its ability to track the hydrologic impact of producer behavior. In this
demonstration we assumed that farmers can divert up to the maximum water diversions estimated over the
calibration period. We did not explicitly incorporate water rights and other institutional or technological
constraints that may limit agricultural water diversions in some parts of the state. These constraints, how-
ever, can partially be included by imposing a tighter limit on the total water available for irrigation. The
results showed that the hydrologic impacts of agricultural activity are maximal in early and mid August,
right before crops mature and water diversions start to decline. This is also the period of lowest natural
flows, therefore agricultural water diversions can exacerbate ecological stress in streams during years of low
summer Hows. However, the simulations also show that the temporal impacts of diversions are circumscribed
to the irrigation season and streamflows recover quickly after diversions cease due to contributions from the
substantial groundwater available in many of Montana’s watersheds. The simulations also show that diver-
sions also have an extensive spatial impact and their impact propagates downstream from counties where
irrigation is most prevalent, such as these at the headwaters of the Missouri, Gallatin, and Yellowstone rivers.
This pattern is correctly captured by the model. However, downstream impacts do not propagate unabated,
and the recovery of streams is clearly visible in some reaches downstream of diversion nodes (Figure 15. The
recovery is caused by groundwater inflows into streams, which are known to be a key contributor to the
resilience of riverine ecosystems in the region. Groundwater is not yet extensively nsed as a source of water
for irrigation in the region, and this may be the reason why the impacts of agricultural diversions are limited
in space and in time. Conjunctive management of surface and groundwater may therefore be desirable to
maintain the strength and resilience of Montana’s rivers.

The results from the hvdroloosie combponent oresented earlier are omlv meant to 1ustrate the canabilities
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of the coupled model and to provide a general view of the hydrologic impacts of agricultural activity in the
region, but some model limitations need to be taken into account when interpreting modeled streamflows. For
instance, this model demonstration assumed 70% efficiency in the water conveyance system and the irrigation
technology for all counties and does not take into account water right limits. Although the assumption of
constant irrigation efficiency is common (e.g. Elbakidze et al., 2012), this parameter varies between counties
and years and can have an important impact on the actual timing of streamflows, and on the total volume
of diverted water. Model refinements to improve the representation of these efficiencies are of major interest
for state water managers and are underway. Another limitation of the current hydrologic component is that
it does not yet include the effects of water impoundments. Artificial storage in dams and reservoirs and their
release rules can have a large impact on the regional streamflow dynamics and provide additional resiliency
by buffering and redistributing the spring freshet over a longer period. This model improvement is also a

current priority.

7. Conclusions

Herein, we describe the implementation of a hydro-economic model composed of a stochastic economic
model of agricultural production and a deterministic rainfall-runoff and streamflow routing model that ex-
plicitly represents the spatial configuration of the regional water distribution network. The spatially-explicit
nature of the hydrologic model allows for tracking hydrologic impacts of producer activity. The economic
component is designed to be continnously calibrated using remote sensing observations of land use, crop evap-
otranspiration, and crop production. The calibration method is based on an implementation of the PMP
methodology within a data assimilation framework that permits recursive update of the model parameters
when new remote sensing information becomes available. This new formulation of the calibration method-
ology eliminates some of the limitations that have previously hindered the use of hydro-economic models
to inform agricultural water management over large regions and temporal extents (annual to multidecadal).
Specifically, the model was designed to eliminate the need for expensive field surveys, reduce the problem
of overfitting parameters to specific conditions of surveyed farms and vears, and reduce the false sense of
precision that is associated with fully deterministic models. We recognize the deterministic treatment of the
hydrologic component as a current limitation of our modeling system. A stochastic hydrologic component is
desirable to control the impact of hydroclimatic uncertainty on model predictions. Further work is necessary
to make the modeling system fully stochastic without impairing it with an excessive computational burden.

We demonstrate the usefulness of the model in analyzing water use and agricultural production in the
state of Montana. We show that satellite-based remote sensing retrievals of crop mix, land use allocations,
water allocation and crop yield, and other ancillary information freely available online, contained sufficient
information to correctly identify the parameters of the economic module. An interesting aspect of the

recursive nature of the data assimilation methodology is that it allows analysis of the dynamics of the
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other factors that drive decision-making and are hard to observe directly, such as declines in land fertility,
existence of hidden production costs, ete. We calibrated the model with nine years of observations (2008-2016)
and eflectively reproduced the observed levels of resource allocation of the 2008 baseline vear used to spin-up
the parameters. The model also correctly predicted the spatial patterns of land and water allocation for years
2017 and 2018. Finally, we showed how the model can trace the effect of producer decision making on the
regional hydrologic system. This innovation could be an important tool to better understand how producer
behavior affects water availability in the future, and how agricultural water use at county scales propagates
through the hydrologic system to impact downstream users. The analysis of the time and propagation of
streamflow drawdowns induced by agricultural water use may also help identify regions that are at higher
risk of water shortage during droughts.

The model was designed to address a mumber of essential questions related to understanding the vulnerabil-
ity of agriculture to water shortage and the environmental impacts associated with agricultural development
and on farm adaptation. In particular, we specifically built this model to address how farmers will reallocate
land and water to mitigate loss of revenues under future climate projections and a range of water policy
scenarios. For instance, the model can simulate the reaction and impact of water access restrictions (i.e.,
calls on senior water rights), potential changes in water delivery pricing, and /or of the effect of reducing farm
operation costs through govermment incentives and subsidies. Simulated results can inform future policy

options that promote agricultural adaptation and a more efficient use of the regional water resources.
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Appendix A. Hydrologic model

The hydrologic system is simulated using a rainfall-runofl model coupled to a routing component that sim-
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and Forsman, 1973) to simulate subcatchment-scale hydrologic processes (snownelt, evapotranspiration, iu-
filtration) and to transform precipitation into runoff and streamflow. Runoff that reaches the channel is
routed through the stream network using the Muskingum-Cunge routing algorithm Chow and Mays (1988).

In this appendix we provide here a description of the implementation of the algorithms.

Appendiz A.1. Rainfall Runoff component

The HVB model (Bergstrom, 1995; Bergstrom and Forsman, 1973) is implemented as a mixture of gridded
and vector-based operations to leverage the distributed nature of raster meteorological datasets while simul-
taneously taking advantage of the reduced computational burden of operating over polygons that aggregate
runoff’ production over uuniform hydrologic response units (HRUs).

Snowpack accumulation and melt and soil processes are calculated over the uniform raster grid imposed
by the meteorological inputs (precipitation, air temperature, and potential evapotranspiration). In the next
two paragraphs subscript i indicates that the variable or parameter is spatially distributed and is represented
at grid point i. Superseript # indicates that the variable is dynamic and its value is represented at time step

t. Variables with no script or superscript indicate that the variable is spatially constant or time invariant.

Precipitation and snowpack processes. Precipitation is partitioned between snowfall and rainfall using mini-
mum and maximum daily air temperatures and a critical temperature threshold T'c that determines the the

snow-rain transition:

Pf Tmr;;ri < T
I V¢ Te;i—Tmin! et T [ TR ;
Snow; =< P!« TrmasT—Tman? T'mint < Te; < T'max! (A1)
0 Tminl > Te;
st pt_ gt
Raint = P! — Snow; (A.2)

where P is precipitation (mmd 1), Tyee and Ty are maximum and minimum air temperature (°C), Rain
is liquid precipitation and Snow is snowfall at pixel i during time step ¢t (mmd !). Snowfall during day ¢

contributes to the snow water equivalent (SWE, (mm)) of the snowpack:

SWE! = SWE! + SnowtAt (A.3)

The snowpack melt process is simulated using a degree day factor model oceurs when average air tem-

perature exceeds a air temperature threshold (1'm):

Melt: = ddf; * (Tavi — Tm,)] for Tav! > Tm; (A4)

Rain’ = P} — Snow! (A.5)
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where Melt is the amount of water output from the snowpack (mmd="), Tav is average air temperature over
the time step (°C), and ddf is the degree day factor (mmd ! °C 1), an empirical parameter that represents
the snowmelt rate per degree of air temperature above 7. Any melt form the snowpack during time f is

subtracted from the snowpack storage (SWE) and added to the amount of water ponded in the surface:

Pond: = Pond. ™' + (Melt: + Raint)At (A.6)

SWE! = SWE! — Melt! At (A.7)
where Pond (mm) is liquid water available on the surface o infilirate or produce runoff.

Soil processes. Recharge into the soil system occurs when liguid water ponding the surface infiltrates into the
soil. Ponded water that is not infiltrated increases the topsoil compartment that generates fast runoff. The
fraction of ponded water that infiltrates into the soil is a exponential function of the relative water storage

in the soil:

Y ﬁ ﬁ
ASM} = Pond; + (1 - ;‘}{: ) (A.8)

T

(A.9)

where SM (mm) is the amount of water in the soil compartment, F'C' (mm) is the maximum amount of
water soil can hold before water starts percolating to the groundwater system, and beta (dimensionless) is
an empirical parameter. Simultaneously, actual evapotranspiration (AET, mmd ') reduces the amount of

water storage in the soil and is also controlled by the degree of saturation of the soil (ration of SM to FC').

_ SMt N\
AETE = PET ¢ | — A.10
(=Pt (o) (A.10)

(A.11)

where PET is potential evapotranspiration (mmd~"')) and / is an empirical dimensionless parameter. Infil-
tration and actual evapotranspiration control the dynamics of water storage in the soil and amount of surface

water that generates fast runoff:

SM} = SM} + ASM! — AET}At (A.12)

OV L. = Pond’: — ASM! (A.13)

where OV L (i) is water that recharges the upper (near-surface) runoff-generating compartment.



Percolation and runoff generation. Excess water in the topsoil and in two groundwater compartments gen-
erate outfow that represent fast and infermediate runoff and baseflow. These processes are implemented at
the HRU level. For this, calculations about overland flow generation and soil moisture performed at the grid
1030 level are averaged over subwatersheds representing HRUs. Spatial arithmetic averaging soil water storage
over all grid cells 7 contained within a given HRU j is represented using angle brackets < . =. The mass

balance and percolation of water from the soil upper to the soil lower zone is implemented as:

Rechl =< OVL; >; + < max(SM{ — FC;,0) >; (A.14)
SUZ; = SUZ;™" + Rech’; + Pond’, — QU5At — Q1;At — PERC (A.15)
SLZ; = SLZ;™' + PERC; — Q2At (A.16)

Rech (mm) is water storage in the near-surface compartment that generates fast runoff, SUZ (mm) is the
storage in the upper groundwater compartment, and SLZ (mm) is water storage in the lower (deeper)
1035 groundwater compartment in HRU j at time step #. Qg, 1, and @5 (mmd ') are specific runoff rates from

the soil surface, and the upper and lower soil zones:

S _ 1
Q[];- =max((SUZ; — HL1;) % m,(].(]) (A.17)
1
1t arre.
Q1 = SUZ; * mrr KT (A.18)
1
ot _ o1 7. 1%
Q2 = SLZj» 5 K3, (A.19)
Qally = QO; + Q15 + Q2 (A.20)

where JTL1 (mm) is an empirical water storage threshold the triggers the generation of fast runoff, and
C'K0, C'10, CK2 (d) are empirical parameters representing the characteristic drainage time of each of the
compartments. Total outflow from HRU j on day ¢ is distributed over time to produce the catchment response

10a0 by convoluting the output of HRU j by triangular standard unit hydrograph with base My, ...

Myas e

Qf = Z Qally U (i) (A.21)
i=1

'-_1 *1q O<ix -:‘Ibﬂ.-‘h" /2
U@) =4 M | )
—Fll_ £ 1+ WL 34'.!';,;“,-;4_[2 <i< ih{f"”‘”

base

where U is a triangular hydrograph of area 1 and a base M AX BAS (d)representing the hydrograph duration

Appendiz A.2. Routing component

The response at the end of each HRU is routed through the stream network using the Muskingum-Cunge
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equation:

St = K [eQin + (1 — €)Quou] (A.23)

which has parameters K (d) and e (dimensionless) controlling, respectively, the celerity and dispersion of

the wave routed through the channel.
+ ; ¥ . L 3 e 4 : : o F gi+i_gt
Substituting this relationship in a finite-difference form of the continuity equation ——— = Qi — Qow

for a multi-reach system with lateral inflows injected upstream of reach draining H RU j at average constant

rate through time step ¢ q_‘:.'” yields:

QYT [K;(1 — €5) + 0.5A¢ + Q41 [Kje; — 0.5A] (A.24)
= Q" [K;(1—e;) — 0.5A 4+ Q% _, [Kje; + 0.5A¢] (A.25)
xR q}“ [K;(1 —e;) + 0.5A¢] (A.26)

Each of the HRUs contains one reach with an upstream and a downstream node. Streamflows for each
of the j = 1, ..., .J reaches are integrated over time using a first-order explicit finite difference scheme. The

system of J equations can be assembled as a linear system of the form:

AQ**l -B (A.27)

where Q! is the vector of unknown streamflows at time # + 1 for each of the .J reaches of the network
that is solved each time step. Matrices A add B are functions of the model parameters and streamfows at

timestep #:

A = (a+ ®b)" (A.28)
B=(d+%c)'Q +I(a®q't?) (A.29)
where @ is a Ju.J sparse connectivity (0,1)-matrix where the elements indicate if two pairs of nodes are

connected. Flow direction is from nodes in the rows to nodes in the columns. Rows representing the upstream

node of [/ RU s that drain an outlet node (exit the domain) are all zero. Finally,

a=IK-K®e)+dt«05 (A.30)
b=IK®e)—dt+0.5 (A.31)
c=1(K—-K®e)—dt«0.5) (A.32)

d=TK e+ dt+05 (A 232)
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where K is the identity matrix of order J, K and e are column vectors holding parameters K and e for
each of the N reaches in the network. The ¢ operator denotes the Schur (elementwise) product between
two vectors. The solution of (A.27) becomes unstable if At > 2% K; * (1 —¢;). To ensure robust and stable
solution an adaptive time stepping scheme was implemented. In this scheme, the default time step is reduced

by an integer fraction until the the stability condition is satisfied in all reaches.

Appendix B. Economic model

Here we briefly outline the economic optimization program using the standard Positive Mathematical
Programming (PMP), following Howitt (1995); Mérel et al. (2011) and Garnache et al. (2017). The economic
program is implemented in two step: in the first step, parameters for the economic model are calibrated such
that the program mimics the observed land and water use decisions. In the second step, the model simulates
farmer’s land use and water use responses given these model parameters along with other exogenous factors
such as availability of supplemental irrigation water. The following subsections briefly outline the calibration

and the simulation process at each simulation time.

Appendixz B.1. Calibration
The fundamental aspect of our economic program is that farmers allocate resources with the objective of
maximizing net revenues, where the revenue function follows a generalized constant elasticity of substitution
(CES) functional form:
5
A et | 8 P ; A e ; : YRR
1naz Pitti | Oland iT)gnd ; T 1 wu.!c.-r-.-a(J--;n'f:f:-e-p,i + Twater,i)

Fland,i:Fwater, i
T

- ((-‘Irnnd:i + Aiand,i) Llandi — (C-u.'u.te:r',i I /\mrr.f.er',;f'.) Later,i

r;ub_ject to Z‘"kuad{i S z Aiuud] (Bl)

1

Z Lapater,i S W It_):n.‘nt(-!?']

T
Lland.is Twater.i =0
where ¢ = 1, ..., [ indexes crops; | = land, water indexes land and water inputs. We differentiate water inputs
into an exogenous component Zpyeeip,i, which captures water provided by natural sources like precipitation,
and an endogenous component 2,4¢r;. Which captures supplemental irrigation water provision. Total water

application will be the summation of the two, i.e.

*

x,.u.-;_;.m-,_j_ = Lprecip,i i water,?

The unknown parameters in Equation B.1 are yr;, 5. p;. 0;, Ay Ap; and the known values are:



e 7;: observed crop production for crop i
1075 ® Tiunait observed land allocation for crop ¢
e

: observed ET (total) for crop i

‘walert”

o 7,y reference yield elasticity with respect to water for crop i (% change in production over % change
in total ET)
e o;: elasticity of substitution for crop i
1080 e p;: unit price of crop ¢
e ¢ per-unit input costs of production for crop i, input [
e L: total arable land

e 117 total amount of supplemental irrigation water available

Given the above maximization problem, the unknown parameters can be calibrated via positive mathe-

ass  Inatical programming, using the following set of calibration equations:

T; — ]_ 5
pi=——fori=1,...,1
0y
0 ) Tland,i
7 2 dikd—as . Fland,i
T = = ad= for =0y s I, where bj = ———
L —di Y43 bj + 7ibiTw PiTi
J (’J(I_"’:J) ﬁ;((‘}j—ﬁJ“;)
< =*p
= __ 5 J"”-""["f"'-""'{"u:u.!t:r.\i for i = Ji
TiWw = 0; 3 —Z5: 3 e ori=1,...,
¢ !u?ld,'iT[r,_flrf1i T PwateriLyater,iPi
(B.2)
"Ij,ﬂﬂnd_.i + .\':iu:a.ter;i =1 f()r = ].. e I
-
=i —f fo —*y i -
Mg = Hi |:'j,{a”d-":‘:'£and,£ + ’i'-l'U-ﬁf‘-"ﬂi'L-u.-‘ﬂ..'.vr_,i:| EOI t = J-? sy I

X z; [p'éﬁi (5‘: - H{,H") - ('Euud,iTiund.\iJ Tland i
1 =

Z i (j?ﬂnd,f.)

piTi (6 — iw) = (Cland;i + Mand;i + A1) Tranai fori=1,..., 7
Py = (Cu'atcr-,-i 2k /\wm.m-,i) f:mwy-_-j fori=1,..., 1

Appendiz B.2. Simulation

After calibrating the model parameters, the optimization framework can now be used to analyze how
farmer behaviors will change given changes in exogenous environmental and economic factors, including
ge g 24 8 ) g

water availability, crop prices, and production costs.



The simulation problem is given by the following maximization problem:

L

i s T P . Lk ] e
max E Pifl; {,J’fmd!!.fmmu + J’wu[t,.,-l.‘,I.wu“__.’..i;)-t]
Tland,isTwater,i = #

T

== ((biﬂ’nd,‘i F )\fﬂ.n.fi,'."-) Liand,i — ((:‘Hmtff?'__i + /\mﬂt(!‘r‘,iJ Lawater,i

Sllh_ie(:t to Z Llard,i < I [XI(J'J’ME:I (B:i)

Z '.r‘-:_n.-,.f_(:;-,j. S 1_1: [qur.f(:r]

and Lwater i 2 0 [E‘]

10s0  Where the unknown values are 2y,,4.;. Lwareri. the land and water inputs for crop i; 7;, the total production

for crop i: and A\jund. Awater, €, the Lagrangian multipliers. The known values include:

® ;. Fis piodiy Ayr model parameters determined from the calibration equations

® Di. Cil. Tprecip,i- L. W: crop prices, per unit production costs, water from natural sources, total arable

land, and total supplemental irrigation water (same as in the calibration equation B.1).

The simulation equations to solve the above maximization problem are given by:

o e - L
PidiTiBland itlnna

’ . : P —F (":Euﬂ.d..i =+ )\itr.'rr.ri,'i + A\ ) Lland.i fori= ) I
*jlﬂ.nd,f-"Irr.-n.rf.,'ipf = .ijj.u.-ai‘.re'r'._ii'wu“_.,.‘.{'
w0

Ty - o FF
Pid;T; j—u.‘uhw',u A water,i

P ‘# A —
- = 2 -~ =(Cuwateri + Awater,i + A2+ &) Thppars fori=1,...,1
nj)lrr.'nd_,'i-;-gu“d‘.i + Dwater,id water,ili

A

Puc ¥
_ -' Pi FPi L T S B4
T = i [J;md__\g.f.mm“ + dumir--r:'-"-J'wuu--;-.z'] forg= 1wl (B-4)
E Lland,i = Lfori=1,... ' I
i
E B e = Wiord =1, 0o 1
i
1005 The simulation model will be able to recover farmers land and water use choices, x4, and x,4000

under the new set of exogenous conditions. The model will also be able to recover shadow values with respect
to land and water inputs, A\jung and Ayarer-
Note that this system of equations requires that the water constraint is binding. If the water constraint is

non-binding, complementary slackness conditions need to be built to allow for the case in which Agper = 0.
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Table Al: Supply elasticity estimates

Authors Journal Region Elasticity
Alfalfa

Howitt et al. (2012h) Env Mod Softw California 0.44
Knapp Working Paper California 0.61
Author’s Calculation 0.141
Barley

Antle and Capalbo (2001) Am J. Ag Econ Northern Plains 0.35

Authors® Calculation
Maize

Hendricks et al. (2014)
Hendricks et al. (2014)
Arnade and Kelch (2007)
Lin and Dismukes (2007)
Lin and Dismukes (2007)
Miao et al. (2016)

Chavas and Holt (1990)
Howitt et al. (2012b)
Chembezi and Womack (1992)
Lee and Helmberger (1985)
Houck & Gallagher (1976)
Houck & Gallagher (1976)
Authors’ Calculation”®
Wheat

Antle and Capalbo (2001)
Antle and Capalbo (2001)
Burt and Worthington (1988)
Howitt et al. (2012b)
Ochmke and Yao (1990)
Sullivan et al. (1989)
Authors” Calculation

Authors’ Calculation

Am J. Ag Econ
Am J. Ag Econ
Am J. Ag Econ
Rev. Ag Econ
Rev. Ag Econ
Am J. Ag Econ
Am J. Ag Econ
Env Mod Softw
J. Ag Applied Econ
Am J. Ag Econ
Am J. Ag Econ
Am J. Ag Econ

Am J. Ag Econ
Am J. Ag Econ
J Ag Res Econ

Environ. Model. Softw

Am J. Ag Econ
USDA report

lowa, Illinois, Indiana
Towa, Illinois, Indiana
lowa

North Central Region
North Central Region
United States

North Central Region
California

United States

United States

United States

United States

Northern Plains
Northern Plains
Great Plains
California

Us

us

-0.408 (dropped)

0.40 (short run)
0.29 (long run)

0.2

0.17 (linear model)

0.35 (acreage share model)

0.68

0.15

0.55

0.1

0.05

0.24 (lower bound)
0.76 (upper bound)
0.762

0.36 (winter wheat)
0.14 (spring wheat)
1:5

0.36

0.4

0.5

0.368 (winter wheat)

0.409 (spring wheat)

* We empirically calculate the supply elasticity using (21), with annual county level production and price statistics in the state of

Montana, provided by the USDA.



Highlights

* A hydro-economic model of agricultural production written in Python is presented
*  Model calibrated with stochastic version of positive mathematical programming

* Hydro-economic model can be calibrated using remote sensing observations

* Arecursive Bayesian filter permits dynamic updating of model parameters

*  Model predicts probabilities of land and water allocation to crops grown in a region
*  Model can trace the spatial hydrologic impact of producer choices






