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Abstract

We study a two-dimensional variational problem which arises as a thin-film limit of the Landau-de Gennes energy of nematic 
liquid crystals. We impose an oblique angle condition for the nematic director on the boundary, via boundary penalization (weak 
anchoring.) We show that for strong anchoring strength (relative to the usual Ginzburg-Landau length scale parameter), defects 
will occur in the interior, as in the case of strong (Dirichlet) anchoring, but for weaker anchoring strength all defects will occur 
on the boundary. These defects will each carry a fractional winding number; such boundary defects are known as “boojums”. The 
boojums will occur in ordered pairs along the boundary; for angle α ∈ (0, π2 ), they serve to reduce the winding of the phase by 
steps of 2α and (2π − 2α) in order to avoid the formation of interior defects. We determine the number and location of the defects 
via a Renormalized Energy and numerical simulations.
© 2020 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we study minimizers of a variational problem motivated by the study of defects in a nematic liquid 
crystal. We consider a two-dimensional setting, arising in a thin-film reduction of the three dimensional Landau–de 
Gennes model to two dimensions. The special feature of our problem is in the boundary condition imposed, in which 
energy minimization prefers that the nematic director be oblique to the normal to the boundary with a prescribed 
angle. In three dimensions, such a fixed angle condition constrains the nematic director to lie on a cone coaxial with 
the boundary normal; in the plane, this reduces to demanding that the director make an angle of ±α with respect 
to the normal vector at each boundary point. In our model this will be accomplished by imposing weak anchoring 
conditions on the domain boundary, that is, by adding a penalization term to the energy which favors oblique director 
configurations. We refer the reader to [21,20,19] for the detailed discussion of anchoring within the context of the 
Landau-de Gennes theory and relevant physical observations.
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We begin by describing the variational problem in mathematical terms, and stating our main result in Theorem 1.1. 
Let � ⊂R2 be a bounded, simply connected domain with C2 boundary � := ∂�, carrying unit exterior normal vector 
ν. Our energy functional is the classical Ginzburg-Landau functional, modified by the addition of a surface energy 
term which enforces the desired weak anchoring. Let α ∈ (0, π2 ) be fixed throughout the paper. As usual, we associate 
C �R2, with scalar product (u, v) = �[u v̄] and wedge product u ∧ v = (iu, v) for u, v ∈ C. Let g : � → S1 ⊂C be 
a given C1 smooth function on the boundary. We assume that

D = deg(g;�) > 0,

and take a smooth lifting γ : � → R, g = eiγ . In the physical context, g would represent the unit normal vector 
field on �; in the orientable GL or Ericksen models, it would then have degree D = 1. In the reduction from the 
3D Landau-de Gennes model the complex order parameter doubles the phase of the director, and so we would have 
D = 2. (See the discussion below.) However, we may take g to be any smooth S1-valued map in our analysis.

Our energy then takes the form:

Eg,α
ε (u) := 1

2

∫
�

(
|∇u|2 + 1

2ε2

(|u|2 − 1
)2)

dx + ϒ

2

∫
�

W(u,g)ds, (1.1)

with boundary anchoring energy density W given by:

W(u,g) := 1

2
(|u|2 − 1)2 + [(u, g) − cosα]2. (1.2)

The weak anchoring strength ϒ is assumed to depend on the length scale parameter ε,

ϒ = ϒ(ε) = ε−s for s ∈ (0,1].
The effect of the weak anchoring may be inferred from the form of W . As ε → 0 we expect that W(uε, g) → 0

almost everywhere on �. At points y ∈ � at which W(uε(y), g(y)) → 0, we would have |uε| → 1 and (u, g) → cosα, 
that is, uε � g exp(±iα). If g represents the unit normal vector field, this is the desired cone condition for a nematic. 
If there are no defects on � then the phase shift ±α is uniformly chosen on �, and uε will effectively satisfy a Dirichlet 
boundary condition with degree D, for which there must be interior defects, which will be vortices. However, energy 
minimization may prefer to accept defects on � in order to avoid the energy cost of interior vortices. In this case, the 
phase of uε must jump at defect points in order to “unwind” its phase so as to have degree zero on �. The form of 
W allows the phase to unwind by steps of 2α, (2π − 2α) or 2π . This suggests that there are three distinct types of 
boundary defects. The first two are boojums—defects with fractional degree. In correspondence with the size of the 
jump in angle, we call these a “light” boojum and a “heavy” boojum, respectively. The last type is a boundary vortex, 
of the sort studied in [1], with integer degree. Our result states that for very strong anchoring (larger s), minimizers 
prefer interior vortices, while for milder anchoring (smaller s), we will obtain light-heavy boojum pairs on � and no 
interior vortices. The threshold value for s will depend on the angle α. In no case are boundary vortices (of integer 
degree) preferred.

In order to state our result, we define

Cα :=
{(α

π

)2 +
(

1 − α

π

)2
}

, (1.3)

a constant which will appear often in our calculations of the energy of boundary defects of solutions. Note that 
1
2 < Cα < 1 for all α ∈ (0, π/2).

Theorem 1.1.

(a) If 1 ≥ s > 1
2Cα

, then ∃ D points, p1, . . . , pD ∈ � and a subsequence εn → 0 such that the minimizers uεn of Eg,α
εn

satisfy

uεn → u∗ in H 1
loc ∩ C

1,α
loc (�̄ \ {p1, . . . , pD}),

with u∗ an S1-valued harmonic map with W(u, g) = 0 on �, and pi is a vortex of degree 1, ∀i.
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(b) If s < 1
2Cα

, there ∃ (2D) points y1, ỹ1, y2, ỹ2, . . . , yD, ỹD ∈ �, ordered along the boundary curve, and a subse-

quence εn → 0 such that the minimizers uεn of Eg,α
εn satisfy

uεn → u∗ in H 1
loc ∩ C

1,α
loc (�̄ \ {y1, ỹ1, . . . , yD, ỹD}),

with u∗ an S1-valued harmonic map with W(u, g) = 0 on � \ {y1, ỹ1, . . . , yD, ỹD}, and yj , ỹj is a boojum pair 
of total degree −1.

In the critical case s = 1
2Cα

the situation is more delicate, as interior and boundary defects will have the same energy 
to highest order O(| ln ε|), and one may have coexistence of the two species of defect depending on the geometry of 
the domain and choice of boundary map g. As in [1] we expect that by introducing a coefficient ϒ = Kε−s in the 
weak anchoring strength, the cross-over between boundary and interior vortices may be observed by varying K when 
s = 1

2Cα
, but we do not pursue this direction in the present paper.

As in the classical work [4] on the Ginzburg–Landau model with Dirichlet boundary conditions, the location of the 
defects may be determined by minimizing a finite dimensional Renormalized Energy. This will be briefly discussed 
in Section 8, after the proof of Theorem 1.1.

A related model is that of a thin ferromagnetic film as obtained in appropriate limiting regime by DeSimone, Kohn, 
Muller and Otto ([5]). This limiting ferromagnetic thin film was studied by Moser ([11]), and by Kurzke ([9]) in 
certain settings. In those problems, they impose tangential weak anchoring conditions (i.e. α = 0) and find critical 
anchoring strength (though with a different critical exponent), at which boundary vortices are favored over interior 
vortices. In our case we impose oblique anchoring conditions which reveal boojums defects.

In the context of nematic liquid crystals, boojums were also observed in [12,13] at interfaces between the nematic 
and the isotropic phases. In the limit of the small nematic correlation length, the assumption of a large splay elastic 
constant in [12,13] led to the tangency condition of the director on the interface and appearance of boojums. In 
this setting, the boojums are also associated with interface singularities because the interface location is one of the 
unknowns of the problem.

The rest of the paper is organized as follows: in Section 2 we describe how to obtain the above variational problem 
as a thin-film limit of the Landau-de Gennes energy of nematic liquid crystals. In Section 3, we present an upper bound 
on the energy of minimizers, as well as a priori pointwise bounds for all solutions of the Euler-Lagrange equations. 
In Section 4, we present an η compactness result adapted to handle boundary defects and use it to define the “bad 
balls” and show that they are contained in a finite number of very small balls. Next in Section 5, we classify the “bad 
balls” as interior vortex, boundary vortex, light and heavy boojums. In Section 6, we obtain an energy lower bound 
for each type of defects and prove an important new “degree Lemma” (Lemma 6.3) which will be essential in proving 
the lower bound on the energy of boundary defects in terms of the degree of the boundary data. In section 7, we put 
everything together and prove our main theorem, modifying the technique of vortex ball analysis introduced by Jerrard 
[8] and Sandier [17]. In Section 8, we formally derive the associated Renormalized Energy and, finally, in Section 9
we present numerical examples of possible defect configurations.

2. Modeling nematic thin films

In this section we motivate our variational problem via the Landau-de Gennes theory of nematic liquid crystals, in 
a limiting thin-film regime.

2.1. The Q-tensor

A nematic liquid crystal occupying a region � ∈ R3 can be described by a 2-tensor-valued field which can be 
thought of as the field Q : R3 → M3×3

sym of 3 × 3 symmetric, traceless matrices [15]. It immediately follows that Q
has a mutually orthonormal eigenframe {e1, e2, e3} and three real eigenvalues satisfying λ1 + λ2 + λ3 = 0. The tensor 
Q(x) represents the second moment of the orientational distribution in S2 of the nematic molecules near x ∈ R3, 
hence its eigenvalues must satisfy the constraints

λi ∈ [−1/3,2/3], for i = 1,2,3. (2.1)
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Suppose that λ1 = λ2 = −λ3/2. Then the liquid crystal is in a uniaxial nematic state and

Q = −λ3

2
e1 ⊗ e1 − λ3

2
e2 ⊗ e2 + λ3e3 ⊗ e3 = S

(
n⊗ n− 1

3
I
)

, (2.2)

where S := 3λ3
2 is the uniaxial nematic order parameter and n = e3 ∈ S2 is the nematic director. If there are no repeated 

eigenvalues, the liquid crystal is said to be in a biaxial nematic state and

Q = λ1l⊗ l+ λ3n⊗ n− (λ1 + λ3) (I− l⊗ l− n⊗ n) = S1

(
l⊗ l− 1

3
I
)

+ S2

(
n⊗ n− 1

3
I
)

, (2.3)

where S1 := 2λ1 + λ3 and S2 = λ1 + 2λ3 are biaxial order parameters.
For so-called thermotropic liquid crystals nematic states are typically observed at low temperatures. On the con-

trary, at high temperatures, these materials loose orientational order and become isotropic. The corresponding state is 
represented by Q = 0 so that λ1 = λ2 = λ3 = 0.

2.2. Landau-de Gennes model

Within the Q-tensor theory, the bulk elastic energy density of a nematic liquid crystal is given by

fe(∇Q) :=
3∑

j=1

{
L1

2
|∇Qj |2 + L2

2

(
divQj

)2 + L3

2
∇Qj · ∇QT

j

}
, (2.4)

while the bulk Landau-de Gennes energy density is

fLdG(Q) := a tr
(
Q2
)

+ 2b

3
tr
(
Q3
)

+ c

2

(
tr
(
Q2
))2

, (2.5)

cf. [15]. Here Qj, j = 1, 2, 3 is the j -th column of the matrix Q and A · B = tr
(
BT A

)
is the dot product of two 

matrices A, B ∈ M3×3. The coefficient a = a0 (T − T∗) in (2.5) is temperature-dependent and negative for sufficiently 
low temperatures, while c > 0. The potential (2.5) is designed to depend only on the eigenvalues of Q and its form 
guarantees that the isotropic state Q ≡ 0 yields the global minimum of fLdG at high temperatures while a uniaxial 
state of the form (2.2) gives the global minimum when temperature is sufficiently low, cf. [10,15]. In what follows we 
set the temperature to be low enough so that the minimizers of fLdG are uniaxial. Note that by adding an appropriate 
constant to fLdG we can assume the global minimum value of zero for fLdG.

Now consider a nematic sample occupying a thin domain �h := � × (−h, h) ⊂ R3, where � ⊂R2 and h � 1. The 
equilibrium nematic configuration should minimize the bulk energy subject to the appropriate boundary conditions 
on ∂�h. There are two possible alternatives. The first option is to impose Dirichlet boundary conditions on Q—also 
known as strong anchoring conditions—that fix the alignment of nematic molecules on ∂�h. The second option is to 
consider weak anchoring, that is, to specify the surface energy on the boundary of the nematic sample. The molecular 
orientations on the boundary are then determined as a part of the minimization procedure.

In this paper we consider a two-dimensional variational problem for Q that can be obtained—following [7]—via 
a rigorous dimension reduction procedure by taking the limit h → 0. Briefly, as in [7], suppose that weak anchoring 
conditions are specified on the top and the bottom surfaces � ×{−h, h} of the nematic film �h. The anchoring energy 
density has the form

f (1)
s (Q, ẑ) = α

([
(Qẑ · ẑ) − β

]2 + ∣∣(I− ẑ ⊗ ẑ
)
Qẑ
∣∣2) , (2.6)

for any Q ∈A, where α > 0, β ∈R,

A :=
{
Q ∈ M3×3

sym : trQ = 0
}

, (2.7)

and ẑ is normal to the surface of the film. This form of the anchoring energy requires that a minimizer of f (1)
s has ẑ

as an eigenvector with corresponding eigenvalue equal to β .
On the remaining part � × (−h, h) of ∂�h we impose different weak anchoring conditions with the nonnegative 

surface energy density f (2)
s (Q, g), where � = ∂�, the uniaxial data g ∈ H 1/2(� × (−h, h); A) does not vary in the 

direction normal to �, and f (2)
s is a smooth function of its arguments.
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The Landau-de Gennes energy can then be obtained by combining together (2.4), (2.5), and (2.6) so that

Eh(Q) :=
∫
�h

{fe(∇Q) + fLdG(Q)} dV +
∫

�×{−h,h}
f (1)

s (Q, ẑ) dS +
∫

�×(−h,h)

f̃ (2)
s (Q,g)dS. (2.8)

In what follows we will assume that the elastic constants L2 = L3 = 0 and L1 = L > 0; this corresponds to the so 
called equal elastic constants case where the equality of the constants refers to those in the Oseen-Frank model. The 
elastic energy density we consider is thus given by

fe(∇Q) := L

2
|∇Q|2. (2.9)

The problem can be nondimensionalized by scaling the spatial coordinates

x̃ = x

D
, ỹ = y

D
, z̃ = z

h
,

where D := diam(ω). Set ξ = L
2D2 , δ = h

D
and introduce f̃e(∇Q) := 1

ξ
fe(∇Q). Dropping tildes, we obtain

fe(∇Q) := Qim,jQim,j + 1

δ2 Qim,3Qim,3,

where the indices i, m = 1, 2, 3, and j = 1, 2. Rescaling the Landau-de Gennes potential f̃LdG(Q) := ε2

ξ
fLdG(Q)

and ignoring tildes again gives

fLdG(Q) = 2A tr
(
Q2
)

+ 4

3
B tr
(
Q3
)

+
(

tr
(
Q2
))2

, (2.10)

where A = a
c

, B = b
c

, and ε =
√

2ξ
c

. We also let α̃ = α
ξD

and set

f̃ (1)
s (Q, ẑ) := 1

ξD
f (1)

s (Q, ẑ), f̃ (2)
s (Q,g) := 1

ξD
f (2)

s (Q,g)

to obtain the expressions for the nondimensionalized surface energies.
Finally, introducing the non-dimensional energy Fδ[Q] := 2

Lh
E[Q] and dropping all tildes, we find that

Fδ(Q) =
∫

�×(−1,1)

(
fe(∇Q) + 1

ε2 fLdG(Q)

)
dV

+ 1

δ

∫
�×{−1,1}

f (1)
s (Q, ẑ) dA +

∫
�×{−1,1}

f (2)
s (Q,g)dA. (2.11)

We now define the space

H :=
{
Q ∈ H 1(� × (−1,1);A) : ∂Q

∂z
≡ 0 a.e., fs(Q(x), ẑ) = 0 a.e. in �

}
(2.12)

and let F0 : H 1(� × (−1, 1); A) →R be given by

F0(Q) :=
{

2
∫
�

{
|∇xyQ|2 + 1

ε2 fLdG(Q)
}

dx + 2
∫
�

f
(2)
s (Q,g)dA if Q ∈H,

+∞ otherwise.
(2.13)

The following theorem can be proved in the same way as its analog in [7].

Theorem 2.1. Fix g ∈ H 1/2 (∂�;A) that does not vary in the direction normal to �. Let Fδ be given by (2.11). 
Then �-limδ Fδ = F0 in the weak H 1 topology. Furthermore, if a sequence {Qδ}δ>0 ⊂ H 1(� × (−1, 1); A) satisfies 
a uniform energy bound Fδ[Qδ] < C0 then there is a subsequence {Qδj

} such that Qδj
⇀ Q as δj → 0 for some 

Q ∈ H.
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From now on we use the following representation of Q ∈ H invoked, for example, in [6] and [3]:

Q =
⎛
⎝ p1 − β

2 p2 0
p2 −p1 − β

2 0
0 0 β

⎞
⎠ . (2.14)

It is a convenient change of variables in the setting when one eigenvector of the Q-tensor is parallel to the z-axis. For 
simplicity, we also assume that β = −1/3 and that a uniaxial tensor minimizing W has eigenvalues −1/3, −1/3, and 
2/3. Then

Q(p1,p2) =
⎛
⎝ 1

6 + p1 p2 0
p2

1
6 − p1 0

0 0 − 1
3

⎞
⎠ , (2.15)

and

fLdG(Q) =
(

trQ2
)2 − 4

3
trQ3 − 2

3
trQ2 + 8

27
,

where the constant 8/27 was added to ensure that the minimum value of W is equal 0. The potential function can now 
be written as

f̃LdG(p) := W(Q(p)) = 1

4

(
4|p|2 − 1

)2

in terms of p = (p1, p2). Dropping the subscript xy in (2.13), we also have that

|∇Q|2 = 2|∇p|2,
so that the bulk contribution to (2.13) takes the form∫

�

{
4|∇p|2 + 1

2ε2

(
4|p|2 − 1

)2
}

dx. (2.16)

With a slight abuse of notation, we set f (2)
s (p, g) := f

(2)
s (Q(p1, p2), g), where g : ∂� → S1 is fixed. In order to 

establish the form of f (2)
s , we appeal to the Rapini-Papoular form of the surface energy [20] that in the Oseen-Frank 

director description can be written as

σ
(
(n · g)2 − cos2

(α

2

))2
. (2.17)

Here n is the nematic director and α2 is a preferred angle between the director n and the uniaxial data g on the boundary 
with α ∈ (0, π). We now recall the relationship between the director n and the uniaxial tensor Q. Because we assumed 
that Q is given by (2.15), the largest eigenvalue minimizing the potential energy is 2/3. If the director n = (n1, n2, n3)

lies in the xy-plane, we have that n3 = 0 and

Q = n ⊗ n − 1

3
I,

so that

n ⊗ n =
⎛
⎜⎝

n2
1 n1n2 0

n1n2 n2
2 0

0 0 0

⎞
⎟⎠=

⎛
⎜⎝

1
2 + p1 p2 0

p2
1
2 − p1 0

0 0 0

⎞
⎟⎠ . (2.18)

Then

(n · g)2 = (n ⊗ n) · (g ⊗ g) =
(

1

2
+ p1

)
g2

1 + 2p2g1g2 +
(

1

2
− p1

)
g2

2

= 1

2
+
(
g2

1 − g2
2

)
p1 + 2g1g2p2 = 1

2
+ p · ĝ, (2.19)
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where ĝ = (g2
1 − g2

2,2g1g2
)
. It follows that we can write (2.17) as

f (2)
s (p, ĝ) = σ

(
p · ĝ − 1

2
cosα

)2

. (2.20)

This choice is well-motivated physically and clearly favors the desired cone condition for the angle of the director for 
nematic directors of fixed length, 2|p| = 1. However, when relaxing this constraint via the Ginzburg-Landau functional 
this boundary energy effectively does not enforce the angle condition when 2|p| < 1. Indeed, in order to obtain the 
desired behavior at boundary defects it is necessary to add a term for which the boundary energy is minimized when 
|p| = 1/2 lies on the cone of aperture α with the axis that coincides with the normal to �. With this observation in 
mind, we replace (2.20) with

f (2)
s (p, ĝ) = σ

4

[
1

2
(|2p|2 − 1)2 + (2p · ĝ − cosα

)2]
. (2.21)

Defining u := 2p and Eg,α
ε [u] := 1

2F0[Q(u/2)], dropping the hat in ĝ, and denoting ϒ := σ/2 we arrive at the 
expression (1.1) for the energy Eg,α

ε .
Note that the weak anchoring condition is now coercive: using complex notation, the condition (2.20) when u ∈

S1 ⊂ C says that the angle between ĝ = g2 and u is twice that of the angle between the director n and g, which is 
consistent since the phase of u is doubled compared to that of n.

We also note that the main theorem is stated for α ∈ (0, π2 ). The case α ∈ (π
2 , π) follows directly from this case, as 

will be mentioned in the course of the proof.

3. Upper bounds

In this section we prove two fundamental estimates: a rough upper bound on the energy of minimizers, and a priori
pointwise bounds for all solutions of the Euler-Lagrange equations,

−�u + 1

ε2 (|u|2 − 1)u = 0, in �,

∂u

∂ν
+ ϒε

(
(|u|2 − 1)u + [(u, g) − cosα]g

)
= 0, on �,

⎫⎪⎬
⎪⎭ (3.1)

where ϒε = ε−s , with 0 < s ≤ 1.

Lemma 3.1. Let g = eiγ : � → S1 be a C1 smooth map, with

D = deg(g;�) > 0, and Eg,α
ε := min

H 1(�)
Eg,α

ε .

Recall Cα = ( α
π
)2 + (1 − α

π
)2, α ∈ (0, π2 ),

(i) If sCα ≥ 1
2 then

Eg,α
ε ≤ πD| ln ε| + C1 (3.2)

(ii) If sCα < 1
2 , then

Eg,α
ε ≤ 2πDsCα| ln ε| + C1 (3.3)

Proof. In case (i) we let vε be the energy minimizer of the standard Ginzburg-Landau functional with Dirichlet 
boundary conditions u

∣∣
�

= geiα (so as to make the boundary anchoring energy vanish.) The bound (3.2)then follows 
from the work of Bethuel-Brezis-Hélein [4] since Eg,α

ε becomes the Ginzburg-Landau functional.
In case (ii), we will construct an S1-valued test function with boundary defects. Note that in that case, the up-

per bound in (3.3) is smaller than the bound (3.2). The construction follows Kurzke [9] (see also [[1], Lemma 3.1]) 
although our boundary condition is quite different. This construction is also very helpful in understanding what mini-
mizers should look like.
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Fig. 1. Near a boundary point x0 ∈ �, the disk ωR(x0) and annulus Ar,R , which separates the boundary � ∩ Ar,R into two arcs, �±
r,R

.

Choose 2D points q1, . . . , q2D ∈ �, well separated, and fix R > 0 with R < 1
2 |qi − qj | ∀i �= j . We order the 

points along � so that the index of qi increases as � is traced out counterclockwise. For each i we define vi
ε in 

ωR(qi) = BR(qi) ∩ � via polar coordinates (ρ, θ) centered at qi with θ measured from the oriented unit tangent τ to 
� at qi . Since � is smooth, by reducing R (if necessary) we may ensure that ωR(qi) is a polar rectangle, and nearly a 
half-disk:

ωR(qi) = {(ρ, θ)| θ+(ρ) < θ < θ−(ρ),0 < ρ < R}
with θ± ∈ C1 and |θ+(ρ)| ≤ cρ, |π − θ−(ρ)| ≤ cρ.

The odd q2j−1 will be “light” boojums, with phase decreasing by 2α, while the even q2j will be “heavy” boojums, 
with phase decreasing by 2π − 2α. Consider the “light” case; the “heavy” case will be essentially the same, except 
for the coefficient.

With g = eiγ , define phases for vi
ε on the two components of � ∩ BR(qi) \ {qi} around a point qi (see Fig. 1),

parametrized by

�± = {(ρ, θ±(ρ)) : 0 < ρ ≤ R},
as follows: let

h±(ρ) = γ (ρ, θ±(ρ)) ∓ α

and

ψ(ρ, θ) = h+(ρ)
θ − θ−(ρ)

θ+(ρ) − θ−(ρ)
+ h−(ρ)

θ − θ+(ρ)

θ−(ρ) − θ+(ρ)
,

which linearly interpolates between them. We introduce a cut-off near qi: χε(ρ) ∈ C∞,

0 ≤ χε(ρ) ≤ 1, χε(ρ) = 0 for 0 ≤ ρ < εs,χε(ρ) = 1 for ρ ≥ 2εs, |∇χε(ρ)| ≤ cε−s .

Then we define vi
ε in ωR(qi) with i odd by:

vi
ε(ρ, θ) = exp {i[χε(ρ)ψ(ρ, θ) + (1 − χε(ρ))γ (qi)]}

Note that on �+ \ B2εs (qi), vi
ε = g e−iα and on �− \ B2εs (qi), vi

ε = g eiα , so that W(vi
ε, g) = 0 on �± \ B2εs (qi). In 

particular,

ϒε

∫
�∩BR(qi )

W(vi
ε, g) ds ≤ O(1).

Also, |vi
ε| = 1 in ωR(qi), so

ε−2
∫

(|vi
ε|2 − 1)2 dx = 0.
BR(qi )
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Furthermore, vi
ε is smooth and ε-independent in ωR(qi) \ ωεs (qi) with∫

ωR(qi )

|∂ρvi
ε|2 ≤ C and

∫
ωεs (qi )

|∂θv
i
ε|2 ≤ C

so the main contribution to the gradient energy is via |∂θv
i
ε| in ωR(qi) \ ωεs (qi):

1

2

∫
ωR(qi )\ωεs (qi )

1

ρ2 |∂θv
i
ε|2 dx = 1

2

∫
ωR(qi )\ωεs (qi )

χ2
ε (r)|∂θψ(ρ, θ)|2 1

ρ2 dx

≤ 1

2

∫
ωR(qi )\ωεs (qi )

(h+(ρ) − h−(ρ))2

(θ+(ρ) − θ−(ρ))2

1

ρ2 dx

≤ 1

2

R∫
εs

(h+(ρ) − h−(ρ))2

(θ+(ρ) − θ−(ρ))

1

ρ
dρ

≤ 1

2

R∫
εs

((2α) + cρ)2

(π − cρ)

1

ρ
dρ

≤ 2π
(α

π

)2
ln(

R

εs
) + O(1),

for i odd. Thus we have

Eε(v
i
ε;ωR(qi)) ≤ 2π

(α

π

)2
s| ln(ε)| + C,

for odd i. When i is even, we modify h± to

h̃−(ρ) = γ (ρ, θ−(ρ)) − α; h̃+(ρ) = γ (ρ, θ+(ρ)) + α − 2π,

and follow the same estimates to arrive at:

Eε(v
i
ε;ωR(qi)) ≤ 2π

(
π − α

π

)2

s| ln(ε)| + C.

Now, consider the (ε-independent) domain, �̃ = � \⋃2D
i=1 BR(qi). Define g̃ : ∂�̃ → S1 by:

g̃ =

⎧⎪⎪⎨
⎪⎪⎩

g on � \
2D⋃
i=1

B2R(qi)

vi
ε on ∂B2R(qi) ∩ �.

By the construction of vi
ε, the function g̃ is ε-independent, piecewise C1, continuous, and deg(g̃; ∂�̃) = 0.

Therefore we can find ṽ ∈ H 1
g̃
(�̃) with

Eε(ṽ; �̃) ≤ C.

Hence, setting

vε =
{

ṽ in �̃

vi
ε in ωR(qi),

we have vε ∈ H 1(�) with

Eε(vε) ≤ 2πDs

((α

π

)2 +
(

1 − α

π

)2
)

| ln ε| + C,

which is the desired upper bound (3.3) and this ends the proof of the Lemma. �
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Next we prove the following pointwise upper bounds on solutions to (3.1).

Lemma 3.2. Let uε be any solution of (3.1).

(i) Suppose that εϒε ≤ C. Then ||uε||∞ ≤ 2 and there exists a constant C1 = C1(�) > 0 so that |∇uε| ≤ C1/ε, for 
all x ∈ �.

(ii) If we further assume that εϒε → 0 as ε → 0, then lim supε→0 ||uε||∞ ≤ 1.

Proof. Let uε solve (3.1), and suppose by contradiction that uε is not uniformly bounded, and that there is a point 
pε ∈ � such that |uε(pε)| = ||uε||∞ > 2. Set Vε = |uε|2 and (using u, V rather than uε, Vε), we obtain ∇V = 2u · ∇u

and

1

2
�V = |∇u|2 + u · �u = |∇u|2 + 1

ε2 V (V − 1).

If pε ∈ �, V attains an interior maximum at pε with V (pε) > 1 so that 1
2�V (pε) > 0, which is a contradiction.

If instead pε ∈ ∂�, note that

∂V

∂ν
= 2u · ∂u

∂ν
= −2ϒε

[
V (V − 1) + [u · g − cosα](u · g)

]
and hence denoting by mε := ||uε||∞ and still assuming that it is not uniformly bounded we obtain:

∂V

∂ν
≤ −2ϒε

[
m2

ε(m
2
ε − 1) − |u · g − cosα||u · g|

]
≤ −2ϒε

[
m4

ε − m2
ε − [(mε + | cosα|)mε]

]
≤ −2ϒε

[
1

2
m4

ε − 2m2
ε

]

≤ −ϒε

[
m4

ε − 4m2
ε

]
< 0,

in case mε > 2. But if V attains its maximum at pε ∈ ∂�, then ∂V
∂ν

(pε) ≥ 0, which is a contradiction. Therefore 
mε = ‖uε‖∞ is bounded by 2.

Next we show that if εϒε → 0 as ε → 0, then lim supε→0 ||uε||∞ ≤ 1. Indeed, assume for a contradiction that 
(along some subsequence) mε → m0 > 1. Note that if ‖uε‖∞ is attained inside �, by the above |uε(x)| ≤ 1, ∀x ∈ �̄. 
So suppose that pε ∈ ∂�. Without loss of generality, we rotate the domain such that the normal ν(pε) = �e2. Blowing 
up at scale ε around the points pε , define for y ∈ �ε := ε[� − pε] the function vε(y) = uε(pε + εy) and let g̃(y)

denote the boundary values g for y ∈ ∂�ε . As ε → 0, the set �ε becomes the upper half plane R2+ and we have:

�vε = ε2�uε = (|vε|2 − 1)vε,

∂vε

∂ν
= ε

∂uε

∂ν
= −ϒεε

[
(|vε|2 − 1)vε + [vε · g̃ − cosα]g̃

]
Note that |vε| ≤ mε ≤ 2 by the above, so that in B+

R (0) we have vε → v0 in C2
loc (along a subsequence.) Therefore, 

using that εϒε → 0, we obtain

�v0 = (|v0|2 − 1)v0,

∂v0

∂ν
= 0, and |v0(0)| = m0 > 1.

As usual, we define V0(y) := |v0(y)|2, and we obtain for V0:

1
�V0 = |∇v0|2 + v0 · �v0 ≥ 1

2 V0(V0 − 1) > 0,

2 ε
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while having a maximum at y = 0 with ∂V0
∂ν

= 0: this contradicts the Hopf Lemma. We conclude that
lim supε→0 ||uε||∞ ≤ 1.

To establish the gradient bound, we argue by contradiction: suppose there exist sequences εk → 0, xk ∈ � for 
which tk := |∇uk(xk)| = ‖∇uk‖∞ satisfies tkεk → ∞. Blowing up at scale tk around the points xk , define vk(x) :=
uk

(
xk + x

tk

)
. By our choice of scaling, ‖vk‖∞ < C, and vk solves

−�vk = 1

(tkεk)2 (|vk|2 − 1)vk → 0,

uniformly on � (since ‖uk‖∞ = ‖vk‖∞ < C, by the first part of the lemma.) If, for some subsequence, 
tkdist (xk, ∂�) → ∞, then the domain tk[� − xk] of vk converges to all R2, and vk → v in Ck

loc. Moreover, the limit 
v is a bounded harmonic function on R2, and hence constant: ∇v(x) ≡ 0. However, by construction, |∇vk(0)| = 1 for 
all k, and hence |∇v(0)| = 1, a contradiction.

On the other hand, if tkdist (xk, ∂�) is uniformly bounded, then the domains tk[� − xk] of vk converge to a half-
space R2+, with boundary condition

∂vk

∂ν
= −ϒεk

tk

[
vk(|vk|2 − 1) −

[(
vk, g

(
xk + x

tk

))
− cosα

]
g

(
xk + x

tk

)]
→ 0,

since 
ϒεk

tk
→ 0 and vk is uniformly bounded by the a priori bound on uε proven above. That is, vk → v which is 

bounded and harmonic in R2+, and with a Neumann condition ∂νv = 0 on the boundary. By the reflection principle 
and Liouville’s theorem we again conclude that v is constant, which leads to the same contradiction as in the previous 
case. Thus, the desired gradient bound must hold. �
4. Isolating the defects

We begin by proving an η-compactness (also called η-ellipticity) result (see [18], [16]). We then define vortex balls, 
of radius of order ε in the interior and of radius of order εs on the boundary of the domain, and following Struwe 
([18]) we show that they form a uniformly bounded family.

4.1. η-compactness

Basically, if the energy contained in a ball of radius εβ is too small, there can be no vortex in a slightly smaller 
ball, Bεγ (x0). To this end, we recall that ϒ = ϒ(ε) = ε−s for s ∈ (0, 1], and fix β, γ such that 3

4 s ≤ β < γ < s. We 
also let a ∈ (0, 12 ) to be chosen later.

Proposition 4.1 (η-compactness). There exist constants η, C, ε0 > 0 such that for any solution uε of (3.1) with ε ∈
(0, ε0), if x0 ∈ �, a ∈ (0, 12 ) and

Eε

(
uε;Bεβ (x0)

)≤ η | ln ε|, (4.1)

then

|uε|2 ≥ 1 − √
2a in Bεγ (x0), (4.2)

W(u,g) := 1

2
(|u|2 − 1)2 + [(u, g) − cosα]2 ≤ a2 on � ∩ Bεγ (x0), (4.3)

1

4ε2

∫
Bεγ (x0)

(
|uε|2 − 1

)2
dx + ϒ

2

∫
�∩Bεγ (x0)

W(uε, g) ds ≤ Cη. (4.4)

We note that in case � ∩ Bεβ (x0) = ∅, this has been proven in Lemma 2.3 of [18], and hence it suffices to consider 
x0 ∈ � ⊂ ∂� when proving Proposition 4.1.
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Define �r(x0) = ∂� ∩ Br(x0), and following Struwe [18], define

F(r) = F(r;x0, u, ε) = r

⎡
⎢⎣ ∫
∂Br (x0)∩�

1

2

{
|∇u|2 + 1

2ε2 (|u|2 − 1)2
}

ds + ϒ(ε)

2

∑
x∈∂�r (x0)

W(u,g)

⎤
⎥⎦ . (4.5)

Note that if ∂�r(x0) �= ∅, then for r > 0 sufficiently small it consists of two points.
The proof of Proposition 4.1 relies on the following estimate. For any x0 ∈ � and R > 0, we define (as in the proof 

of Lemma 3.1)

ωR(x0) = BR(x0) ∩ �. (4.6)

Then, we first prove:

Lemma 4.2. There exist C > 0 and r0 > 0 such that for ε ∈ (0, 1), x0 ∈ �, and r ∈ (0, r0), we have that

1

2ε2

∫
ωr(x0)

(|uε|2 − 1
)2

dx + ϒ

∫
�r (x0)

W(u,g) ds � C

⎧⎪⎨
⎪⎩r

∫
ωr(x0)

|∇uε|2 dx + F(r) + r2ϒ

⎫⎪⎬
⎪⎭ ,

where F(r) is as in (4.5).

Proof of Lemma 4.2. We denote u = uε , ωr = ωr(x0), and �r = �r(x0) for convenience, as x0 ∈ � and ε > 0 are 
fixed.

Let ψ ∈ C∞(�; R2) be a vector field, to be determined later. Taking the complex scalar product of the equation 
(3.1) with ψ · ∇u and integrating over ωr , we obtain the Pohozaev-type equality,∫

∂ωr

{
−(∂νu,ψ · ∇u) + 1

2
|∇u|2(ψ · ν) + 1

4ε2 (|u|2 − 1)2(ψ · ν)

}
ds

=
∫
ωr

⎧⎨
⎩ 1

4ε2 (|u|2 − 1)2divψ + 1

2
|∇u|2divψ −

∑
i,j

∂iψj (∂iu, ∂ju)

⎫⎬
⎭dx. (4.7)

We choose r0 > 0 sufficiently small so that � ∩Br(x0) consists of a single smooth arc, and ωr is strictly starshaped 
with respect to some x1 ∈ ωr , for all 0 < r ≤ r0.

Let N be a 2r0-neighborhood of �. We claim that, by taking r0 smaller if necessary, there exists a vector field 
X ∈ C2(N ; R2) with the following properties (see [9], [11]):

X · ν = 0, for all x ∈ �r, (4.8)

|X − (x − x0)| ≤ C|x − x0|2, |DX − Id| ≤ C|x − x0|, for all x ∈ ωr, (4.9)

for a constant C > 0, for any x0 ∈ �. The existence of such a vector field in a disk Br(x0) follows from the smoothness 
of �; to obtain the uniform global estimates (4.8), (4.9) we use the compactness of � and a partition of unity. In 
particular, note that X = (X · τ)τ � (x − x0)τ lies along the tangent vector on �r .

We now take ψ = X in (4.7) and estimate each term in (4.7), separating the ∂ωr terms into the pieces along �r and 
along ∂Br(x0) ∩ �. First, on �r we have X · ν = 0, and the only contribution to the left hand side of (4.7) is:

−
∫
�r

(∂νu,X · ∇u)ds = ϒ

∫
�r

{
(|u|2 − 1)(u,X · ∇u) + [(u · g) − cosα] (g,X · ∇u)

}
ds

= ϒ

∫
�r

{
(|u|2 − 1)

(
u,

∂u

∂τ

)
+ [(u · g) − cosα]

(
g,

∂u

∂τ

)}
(X · τ) ds

= ϒ

∫ [
∂τ

(
1

2
[(u, g) − cosα]2

)
− [(u, g) − cosα](∂τ g,u)
�r
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+∂τ (
1

4
(|u|2 − 1)2))

]
X · τ ds

= I1 − I2 + I3

To estimate I1, we use integration by part and (4.9) as follows:

I1 = ϒ

∫
�r

∂

∂τ

{
1

2
[u · g − cosα]2

}
X · τ ds (4.10)

= ϒ

2

⎧⎪⎨
⎪⎩[u · g − cosα]2(X · τ)

∣∣∣∣∣
∂�r

−
∫
�r

{
[(u · g) − cosα]2

}
∂τ (X · τ) ds

⎫⎪⎬
⎪⎭ (4.11)

= ϒ

2

⎧⎪⎨
⎪⎩r
∑
∂�r

[(u · g) − cosα]2 −
∫
�r

{
[(u · g) − cosα]2

}
dx

⎫⎪⎬
⎪⎭+ O(ϒr2), (4.12)

using (4.9) in the last line. Indeed, on the endpoints of �r , |X · τ ∓ r| ≤ Cr2 and on �r itself, ∂τ (X · τ) = 1 + O(|x −
x0|).

For I2, we have the rough estimate:

|I2| ≤ ϒ|�r |
(

(‖u‖∞ + 1)2
∣∣∣∣
∣∣∣∣∂g

∂τ

∣∣∣∣
∣∣∣∣∞ ‖X · τ‖∞

)
≤ Cϒr2,

using again (4.9). Finally, I3 is estimated in the same way as I1:

I3 = ϒ

∫
�r

1

4
∂τ ((|u|2 − 1)2)X · τ ds (4.13)

= ϒ

⎧⎪⎨
⎪⎩

1

4
(|u|2 − 1)2(X · τ)

∣∣∣∣∣
∂�r

− 1

4

∫
�r

(
|u|2 − 1

)2
∂τ (X · τ) ds

⎫⎪⎬
⎪⎭ (4.14)

= ϒ

2

⎧⎪⎨
⎪⎩r
∑
∂�r

1

2

(
|u|2 − 1

)2 − 1

2

∫
�r

(
|u|2 − 1

)2
ds

⎫⎪⎬
⎪⎭+ O(ϒr2) (4.15)

The remaining terms on the left-hand side of (4.7) may also be estimated in a simple way, using |X ·ν|, |X ·τ | ≤ Cr

and (4.8):∣∣∣∣∣∣∣
∫

∂ωr∩�

{
−(∂νu,X · ∇u) + 1

2
|∇u|2X · ν

}
ds

∣∣∣∣∣∣∣≤ Cr

∫
∂ωr∩�

|∇u|2 ds (4.16)

∣∣∣∣∣∣∣
1

4ε2

∫
∂ωr

(|u|2 − 1)2 (X · ν) ds

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

1

4ε2

∫
∂Br∩�

(|u|2 − 1)2 (X · ν) ds

∣∣∣∣∣∣∣ (4.17)

≤ Cr

ε2

∫
∂Br∩�

(|u|2 − 1)2 ds. (4.18)

For the terms on the right side of (4.7), we use (4.9): |∂iXj − δij | ≤ Cr , and for r0 chosen smaller if necessary, we 
may assume divX ≥ 2 − Cr > 1 in ωr . Thus, the right side of (4.7) may be estimated as:
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∫
ωr

⎧⎨
⎩ 1

4ε2 (|u|2 − 1)2divX + 1

2
|∇u|2divX −

∑
i,j

∂iXj (∂iu, ∂ju)

⎫⎬
⎭dx ≥

∫
ωr

{
1

4ε2 (|u|2 − 1)2 − Cr|∇u|2
}

dx.

(4.19)

Putting the above estimates together, we arrive at the desired bound. �
We are ready for the

Proof of Proposition 4.1. We follow [18], [11]. If x0 ∈ � \ �, this is proven in [18], so we restrict our attention to 
x0 ∈ �.

Recalling the definition of F (4.5), we note that since

η ln
1

ε
≥ Eε(uε;ωεβ \ ωεγ ) =

εβ∫
εγ

F (r)

r
dr, (4.20)

there exists rε ∈ (εγ , εβ) so that

F(rε) ≤ η

γ − β
.

By Lemma 4.2 with �rε := ∂ωrε ∩ �, we deduce:

1

2ε2

∫
ωrε (x0)

(|u|2 − 1)2 dx + ϒε

∫
�rε (x0)

W(uε, g) ds

≤ C

⎧⎪⎨
⎪⎩rε

∫
ωrε (x0)

|∇uε|2 dx + F(rε) + r2
ε ϒε

⎫⎪⎬
⎪⎭

≤ C

{
εβη| ln ε| + η

γ − β
+ ε2βε−s

}
≤ C′η, (4.21)

which proves (4.4) since rε > εγ . Note that no conditions are required on η at this point, and this will prove useful 
later on (see Corollary 4.3.)

To prove (4.2), assume (for contradiction) that there is a point x2 ∈ Bεγ (x0) with |uε(x2)| < 1 − a. By Lemma 3.2, 
|∇uε| ≤ C1/ε, and hence there is a constant C > 0 such that |u(x)| < 1 − a

2 , ∀x ∈ BCε(x2) ⊂ Bεγ (x0). In that case,

1

4ε2

∫
Bεγ (x0)

(|u|2 − 1)2 dx ≥ 1

4ε2

∫
BCε(x0)

(|u|2 − 1)2 dx

≥ Ca2.

We then choose η > 0 small enough so this contradicts (4.4) and hence (4.2) holds for all such η (which is inde-
pendent of x0).

To verify (4.3), we return to the Pohozaev identity (4.7). We recall that for r = rε (as in the proof of (4.4)) suffi-
ciently small, the smoothness and compactness of � ensure that ωrε = Brε (x0) ∩ � is strictly starshaped around some 
x1 ∈ ωrε , and we have (x − x1) · ν ≥ rε/4 on ∂ωrε . Taking ψ = x − x1 in (4.7), we obtain:∫

∂ωrε

{
(x − x1) · ν

[
|∂τ uε|2 − |∂νuε|2

]
+ (x − x1) · (ν − τ) (∂νuε, ∂τ uε)

}
ds

≤ 1

2ε2

∫
ωrε

(1 − |uε|2)2dx. (4.22)
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To estimate the second term in the left hand side of this inequality we use Cauchy-Schwartz,∣∣∣∣∣∣∣
∫

∂ωrε

(x − x1) · (ν − τ) (∂νuε, ∂τ uε)

∣∣∣∣∣∣∣≤ 2rε

∫
∂ωrε

{
1

32
|∂τ uε|2 + 8|∂νuε|2

}
ds,

and hence

rε

16

∫
∂ωrε

|∂τ uε|2 ds ≤ Crε

∫
∂ωrε

|∂νuε|2 ds + 1

2ε2

∫
ωrε

(1 − |uε|2)2dx

which yields:∫
∂ωrε

|∂τ uε|2 ds ≤ C′
∫

∂ωrε

|∂νuε|2 ds + 8

rεε2

∫
ωrε

(1 − |uε|2)2 dx

≤ C′ϒ2
∫

�rε

∣∣∣[(uε, g) − cosα]g + (|u|2 − 1)u

∣∣∣2 ds + 8

rεε2

∫
ωrε

(1 − |uε|2)2 dx + C′′

rε
F (rε)

≤ C′′′

⎡
⎢⎣ϒ2

∫
�rε

W(u,g)ds + 8

rεε2

∫
ωrε

(1 − |uε|2)2 dx + F(rε)

rε

⎤
⎥⎦

≤ C′′′′η
{
ε−s + ε−γ

}
≤ Cε−s ,

using (4.4) in the next to last line. By the Sobolev embedding theorem (on the one-dimensional set �rε ), there exists 
a constant C > 0 independent of x0 and of ε for which

|uε(x) − uε(y)| ≤ C
√|x − y|ε−s/2 (4.23)

holds for all x, y ∈ �rε .
The conclusion now follows as in Proposition 3.6 of [9]. Assume there exists x2 ∈ �rε for which W(u, g) > a. 

Using (4.23), there would exist a radius ρ = cεs , for constant c > 0 independent of x0, for which W(u, g) > a
2 when 

x ∈ �rε ∩ Bρ(x2). In that case, we would have, by (4.4),

Cη ≥ ϒ

∫
�rε ∩Bcεs

W(u,g) ds > ϒ
a

2
2πcεs = πac′,

which would lead to a contradiction for η chosen sufficiently small. By reducing the value of η required for the proof 
of (4.2) if necessary, we obtain (4.3). Thus there exists η > 0 for which all three statements are valid and this completes 
the proof of Proposition 4.1. �
Corollary 4.3. Let (uε)ε>0 be a family of solutions with Eε(uε) ≤ K| ln ε| and 3

4 s < γ < s. Then, ∀x0 ∈ �̄,

1

2ε2

∫
Bεγ (x0)

(
|uε|2 − 1

)2
dx + ϒ

∫
�∩Bεγ (x0)

W(uε, g) ds ≤ C(K)

Proof. As mentioned in the proof of Proposition 4.1, (4.21) holds for any η as long as E(uε; Bεβ (x0)) ≤ η| ln ε|, 
which is clearly satisfied with η = K . Since Bεβ (x0) ⊂ Brε (x0), the conclusion follows. �
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4.2. Defining bad balls

We define the family of sets

Sε =
{
x ∈ � : |uε(x)|2 < 1 − √

2a
}

, Tε =
{
x ∈ ∂� : W(uε, g) > a2

}
.

Following Lemmas 3.1 and 3.2 of [18], we show that the sets Sε, Tε which include the defects may be contained in 
a bounded number of vary small balls.

Lemma 4.4. There exists N0 = N0(a, g, s, α), κ > 1, and points pε,1, . . . , pε,Iε ∈ Sε , yε,1, . . . , yε,Jε ∈ Tε ∩ � such 
that

(i) Iε + Jε ≤ N0;
(ii) {Bκε(pε,i), Bκεs (yε,j )}1≤i≤Iε,1≤j≤Jε are mutually disjoint; more precisely

|pε,i − pε,j | > 8κε, |pε,i − yε,j | > 8κεs and |yε,i − yε,j | > 8κεs

(iii)

Sε ⊂
Iε⋃

i=1

Bκε(pε,i) and Tε ⊂
Jε⋃

j=1

Bκεs (yε,j ). (4.24)

Proof. The is essentially the same as in Struwe [18], who considered the case of Dirichlet boundary conditions, for 
which all of the “bad balls” have the same radius ε, so here we need to make some modification due to our boundary 
conditions. As the existence of ε-balls covering Sε is the same as in [18], we only need to treat Tε.

By the η-compactness Proposition 4.1, if y ∈ Tε , it follows that Eε(uε; Bεβ (y)) > η| ln ε|. Furthermore, applying 
the Vitali’s covering Theorem to the collection (Bεβ (y))y∈Tε , there is a finite choice y1, . . . , yN1 ∈ Tε for which 

(Bεβ (yi))i=1,...,N1 are disjoint, and 
[
� ∩⋃y∈Tε

Bεβ (y)
]

⊂
(⋃N1

i=1 B5εβ (yi)
)

. Therefore it follows:

N1η| ln ε| ≤
N1∑
i=1

Eε(uε;Bεβ (yi)) ≤ Eε(uε) ≤ K| ln ε|, (4.25)

which means that N1 = N1(ε) is uniformly bounded from above.
Next, using the same argument as in (4.20), there exists rε ∈ (εγ , εβ) such that

(γ − β)| ln ε|F(rε) ≤ E(uε;ωεβ\εγ (y)) ≤ K| ln ε|, i.e. F(rε) ≤ C1

∀ε, y ∈ Tε , so by Lemma 4.2 we obtain the uniform estimate

1

2ε2

∫
ωrε (y)

(|uε|2 − 1)2 dx + ϒ

∫
�rε (y)

W(u,g)ds ≤ C(F(rε) + r2
ε ϒ + O(1))

≤ C2,

uniformly in ε, y ∈ Tε .
On the other hand, by the Hölder bound arguments employed in the proof of Proposition 4.1 (see (4.23)), there 

exists constants c1, c2 (independent of ε) such that ∀y ∈ Tε ,

ϒε

∫
Bc1εs (y)

W(u,g)dx ≥ c2 > 0,

independently of ε, y ∈ Tε .
Now following Struwe (see Lemma 3.2 in [18]) and using Vitali’s covering Theorem again, we conclude that there 

exists a finite collection y1, . . . , yJ ∈ Tε , with J uniformly bounded in ε such that the sets 
{
Bεs (yj )

}
j=1,...,J

are 

disjoints and Tε ⊂⋃J
j=1 B5εs (yj ). Finally, by the same argument as that of Theorem IV.1 of [4], by enlarging and if 

necessary fusing together vortex balls which intersect, we may find κ > 1 and modified centers pi, yj for which (ii) 
holds. �
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5. Classifying the defects

Our goal in this section is to classify defects x0 ∈ �, defined as a center of one of the “bad balls” constructed in 
Lemma (4.4), and associate a degree to each. For any x0 ∈ �, and 0 < r < R < ∞, denote the annulus centered at x0
by

Ar,R(x0) = wR(x0) \ wr(x0).

We will analyze the structure of uε in such annuli around defects.
We begin with a lemma which shows the energy densities are coercive near their minima:

Lemma 5.1. For any α ∈ (0, π2 ), we can find a constant Cα > 0 and a0 = a0(α) such that for u ∈ C and g = eiγ ∈
S1 ⊂C with W(u, g) < a2

0 we may represent u = f eiψ with

|f 2 − 1| ≤√2W(u,g) <
√

2a0 and

either |ψ − γ − α| < Cα

√
W(u,g) or |ψ − γ + α| < Cα

√
W(u,g)

(5.1)

Note that by choosing a0 sufficiently small, the intervals

I± := {ψ : |ψ − γ ± α| < Cα

√
W(u,g)} (5.2)

will be disjoint. In particular, in places where W is small, we know that u must be close to either ei(γ±α), but not both.

Proof of the Lemma 5.1. Let a := √
W(u,g) < a0, a0 to be determined.

1

2
(|u|2 − 1)2 ≤ a2 ⇐⇒ 1 − √

2a ≤ |u|2 ≤ 1 + √
2a

It follows that for a0 < 1
4 , a ∈ (0, a0), we may write u = f eiψ with

1 − √
2a ≤ f 2 ≤ 1 + √

2a and φ := ψ − γ ∈ [−π,π].
This choice of φ is natural since we have in addition,

[(u, g) − cosα]2 ≤ a2 ⇐⇒ cosα − a ≤ f cosφ ≤ cosα + a.

Therefore

cosα − a√
1 + √

2a
≤ cosφ ≤ cosα + a√

1 − √
2a

,

and it follows:

cosφ ≤ (cosα + a)(1 + 4a) < cosα + C1a (5.3)

cosφ ≥ (cosα − a)(1 − a) > cosα − C1a, (5.4)

and hence

| cosφ − cosα| < C1a.

Since α ∈ (0, π2 ), and φ ∈ (−π, π), choosing a0 = a0(α) sufficiently small, ∀a ∈ [0, a0), we have

{φ ∈ (−π,π) : | cosφ − cosα| < C1a} ⊂ (−α − Cαa,−α + Cαa) ∪ (α − Cαa,α + Cαa).

Recalling that a = √
W(u,g), this completes the proof. �

For the remainder of the paper, we fix once and for all a value a0 = a0(α) such that the intervals I in (5.2) where 
ψ − γ is close to either α or −α are disjoint.
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We now treat the question of classification of defects, and their associated degrees. If x0 ∈ � then the defect is 
an interior vortex, and its degree d(x0) ∈ Z is defined in the usual way. When x0 ∈ � = ∂� the situation is more 
interesting and more subtle.

In case x0 ∈ �, for R sufficiently small the piece of the boundary ∂Ar,R(x0) ∩ ∂� consists as before of exactly two 
arcs along �R = � ∩BR(x0), which we will denote by �±

r,R . (See Fig. 1.) We recall from the upper bound construction 
in Lemma 3.1 that �±

R may be parametrized as

�±
R = {(ρ, θ±(ρ)) : 0 < ρ ≤ R},

for smooth θ±(ρ), with θ+(ρ) = O(ρ) and θ−(ρ) = π + O(ρ).
We now apply Proposition 4.1 to uε to conclude that for any 0 < r < R with Ar,R(x0) disjoint from the bad 

balls covering Sε ∩ Tε , we have |uε|2 ≥ 1 − √
2a in Ar,R(x0) and, for x0 ∈ �, W(uε, g) ≤ a2 on �±

R . In particular, 
Lemma 5.1 applies and we obtain the representation

uε = f (ρ, θ)eiψ(ρ,θ), with |f 2 − 1| < √
2a in Ar,R, (5.5)

and the phase ψ on �±
r,R(x0) is chosen with either ψ ∈ I− or ψ ∈ I+, that is,

(I) |ψ − γ − α| < Cα

√
W(u,g) < Cαa or

(II) |ψ − γ + α| < Cα

√
W(u,g) < Cαa,

By the continuity of g = eiγ , for R small we can treat γ (x) � γ0 := γ (x0) on �R , and in fact the complex phase 
difference of u along each of �±

R is also small (on the order of R) and hence the winding of the phase around a 
boundary vortex occurs principally around the half-circle ∂BR(x0) ∩ �. Introduce polar coordinates (ρ, θ) centered 
at x0, with θ measured from the unit tangent τ to � at x0. (See Fig. 1.)

We distinguish three possibilities for each boundary defect x0 ∈ �, define the degree, and introduce a new topolog-
ical index τ(x0) ∈ {−1, 0, 1}, the “boojum number”.

CLASSIFICATION OF BOUNDARY DEFECTS:

(i) “Light boojums”.
In this case, (I) holds on �−

r,R(x0) while (II) holds on �+
r,R(x0). This means that the phase decreases by 2α

(modulo 2π) along �R . So let n(x0) ∈ Z be the number of multiples of 2π by which the phase increases around 
x0. Note that n(x0) represents the degree at x0. In particular, we may write u(ρ, θ) = f (ρ, θ) exp(iψ(ρ, θ)) in 
polar coordinates centered at x0, with phase

ψ(ρ, θ) = γ0 − α + 2
θ

π
(α + n(x0)π) + φ(ρ, θ), θ+(ρ) < θ < θ−(ρ), (5.6)

with φ a smooth single-valued function in Ar,R(x0). Note that for light boojums, (iuε, g) = |uε| sin(ψ − γ )

changes sign, from positive to negative, moving counter-clockwise across the boundary defect x0. We define the 
boojum number τ(x0) = −1 for a light boojum.

(ii) “Heavy boojums”.
In this case, (II) holds on �−

r,R(x0) while (I) holds on �+
r,R(x0). This means that the phase increases by 2α (modulo 

2π) along �R . Again, let n(x0) ∈ Z be the number of multiple of 2π by which the phase increases. As above, 
n(x0) represents the degree of a heavy boojum, and using polar coordinates centered at x0 ∈ �, we may write 
u(ρ, θ) = f (ρ, θ) exp(iψ(ρ, θ)), with phase

ψ(ρ, θ) = γ0 + α + 2
θ

π
(−α + n(x0)π) + φ(ρ, θ), θ+(ρ) < θ < θ−(ρ), (5.7)

with φ a smooth single-valued function in Ar,R(x0). As for light boojums, (iuε, g) = |uε| sin(ψ − γ ) changes 
sign across the defect x0, but for heavy boojums it goes from negative to positive as we move counter clockwise. 
The boojum number for a heavy boojum is τ(x0) = +1.
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(iii) “Boundary vortices”.
This occurs when either (I) or (II) holds on both �±

r,R(x0). In particular, the phase ψ rotates by 2πn along 
∂Bρ(x0) ∩ �, with n ∈Z, so in polar coordinates we may write

ψ(ρ, θ) = γ0 ± α + 2nθ + φ(ρ, θ), θ+(ρ) < θ < θ−(ρ), (5.8)

for smooth, single-valued φ(ρ, θ) in Ar,R(x0). The degree associated with the boundary vortex is n = n(x0) ∈ Z, 
and the boojum number τ(x0) = 0. Note that the sign of (iuε, g) = |uε| sin(ψ − γ ) does not change across a 
boundary vortex.

Remark 5.2. If we extend the modulus and phase fε, ψε to all of �R by linearly interpolating in �r from the values 
in �±

R , we may define a nonvanishing extension ũε = f̃εe
iψ̃ε of uε to all of �R . Setting ũε = uε on ∂BR(x0) ∩ �, we 

obtain an S1-valued map ũ
|ũ| : ∂ωR(x0) → S1, whose degree measured on ∂ωR(x0) is n(x0), as defined above.

Remark 5.3. It is here that we see that the case α ∈ (π
2 , π) is the same as the case α ∈ (0, π2 ): it only exchanges the 

role of “heavy” and “light” boojums.

Now that we have defined degrees corresponding to the bad balls constructed in Lemma 4.4, we may verify that 
they must always sum to the degree D = deg(g; ∂�):

Lemma 5.4. Let {Bκε(pε,i)}1≤i≤Iε , {Bκεs (yε,j )}1≤j≤Jε be as in Lemma 4.4, and di = n(pε,i), nj = n(yε,j ) ∈ Z be 
their degrees. Then,

deg(g; ∂�) =D =
Iε∑

i=1

di +
Jε∑

j=1

nj .

The proof of Lemma 5.4 involves excising half-disks around the boundary defects, and redefining uε on the arcs 
�R(x0) as in Remark 5.2. The details may be found in part (i) of [1, Lemma 5.3].

6. Energy lower bound for defects

We are ready to prove lower bounds on the energy in annular regions around the defects.

Proposition 6.1. Suppose Eε(uε) ≤ K| ln ε| with constant K independent of ε. Assume x0 ∈ � = ∂�, R > r > εs , and 
that |u|2 ≥ 1 − √

2a on the annulus Ar,R(x0) and W(u, g) ≤ a2 on �±
r,R . If x0 has degree n(x0) and boojum number 

τ(x0) ∈ {−1, 0, 1}. Then, there exists a constant C (depending on α, a and ∂�), such that:

1

2

∫
Ar,R

|∇uε|2 dx ≥ 2π
(
n(x0) − τ(x0)

α

π

)2
ln(

R

r
) − C. (6.1)

It is well-known that for interior vortices x0 ∈ �, the energy lower bound is given by

1

2

∫
Ar,R

|∇uε|2 dx ≥ π (n(x0))
2 ln(

R

r
) − C.

Proof of Proposition 6.1. For simplicity, we drop the ε subscripts, and write n := n(x0) and τ = τ(x0). We may unify 
the polar coordinate representations (5.6), (5.7), and (5.8) using boojum number, and write u(ρ, θ) = f (ρ, θ)eiψ(ρ,θ)

in Ar,R(x0) with

ψ(ρ, θ) = γ0 + 2nθ + τα

(
1 − 2θ

π

)
+ φ(ρ, θ). θ+(ρ) < θ < θ−(ρ). (6.2)

Thus, we have:
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|∇uε|2 ≥ f 2|∇ψ |2 ≥ f 2
∣∣∣2(n − τ

α

π

)
∇θ + ∇φ

∣∣∣2
= f 2

[
4
(
n − τ

α

π

)2 |∇θ |2 + 4
(
n − τ

α

π

)
∇θ · ∇φ + |∇φ|2

]

= 4
(
n − τ

α

π

)2 1

ρ2 + E, (6.3)

with remainder term,

E := (f 2 − 1)4
(
n − τ

α

π

)2 1

ρ2 + 4f 2
(
n − τ

α

π

) 1

ρ2

∂φ

∂θ
+ f 2|∇φ|2.

We claim that 
∫

Ar,R(x0)

E dx ≥ C, with constant C independent of ε as long as r > εs . Assuming the claim for the 

moment, we obtain the desired lower bound, since then,

1

2

∫
Ar,R

|∇uε|2 dx ≥ 2
(
n − τ

α

π

)2
∫

Ar,R

1

ρ2 dx + C

= 2
(
n − τ

α

π

)2
R∫

r

θ−(ρ)∫
θ+(ρ)

1

ρ
dθdρ + C

= 2
(
n − τ

α

π

)2
R∫

r

1

ρ
[θ−(ρ) − θ+(ρ)]dρ + C

= 2π
(
n − τ

α

π

)2
R∫

r

1

ρ
dρ + C

= 2π
(
n − τ

α

π

)2
ln(

R

r
) + C.

It remains to verify the claim. We will start by showing that the first term in E has small integral. Using the upper 
bound on the energy from Lemma 3.1, and recalling (see Section 4) r > εs with 3

4 s < γ < s, we have:

∣∣∣∣∣∣∣
∫

Ar,R

(1 − f 2)
1

ρ2 dx

∣∣∣∣∣∣∣≤
⎡
⎢⎣(

∫
BR

(1 − f 2)2 dx)(

∫
Ar,R

1

ρ4 dx)

⎤
⎥⎦

1
2

(6.4)

≤
[
Cε2| ln ε|( 1

r2 − 1

R2 )

] 1
2 → 0 (6.5)

as ε → 0.
Next we show that we can bound the second term in E by the (positive) third term. We write,∫

Ar,R

f 2 1

ρ2

∂φ

∂θ
dx =

∫
Ar,R

∂φ

∂θ

1

ρ2 dx +
∫

Ar,R

f 2 − 1

ρ2

∂φ

∂θ
dx (6.6)

and estimate each term separately. For the first term on the right hand side, we write:

∫
A

∂φ

∂θ

1

ρ2 dx =
R∫

r

θ+(ρ)∫
−

∂φ

∂θ

1

ρ
dθ dρ
r,R θ (ρ)
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=
R∫

r

[φ(ρ, θ−(ρ)) − φ(ρ, θ+(ρ))] dρ

ρ

and therefore∣∣∣∣∣∣∣
∫

Ar,R

∂φ

∂θ

1

ρ2 dx

∣∣∣∣∣∣∣≤ C

⎛
⎜⎜⎝
∫

�+
r,R(x0)

|φ|dρ
ρ

+
∫

�−
r,R(x0)

|φ|dρ
ρ

⎞
⎟⎟⎠ .

To continue we require the estimates in Lemma 5.1. Note that the intervals I± for the phase ψ may be defined 
modulo 2π , and the fact that n = n(x0) is the degree of the defect implies that ψ(x) − 2πn ∈ I− or I+ for all 
x ∈ �±

r,R . For concreteness, let’s assume ψ − 2πn ∈ I− on �−
r,R ; all other cases may be handled in the same way. 

From Lemma 5.1 (with the above observation) we may then conclude that on �−
r,R(x0) it holds:

Cα

√
W(u,ρ) >|ψ − γ − α − 2nπ |

= |γ0 − α + 2(
α

π
+ n)θ−(ρ) + φ(ρ, θ) − γ − α − 2nπ |

= |(γ0 − γ ) + 2α

(
θ−(ρ)

π
− 1

)
+ 2n(θ−(ρ) − π) + φ(ρ, θ)|

≥ |φ(ρ, θ)| − |γ0 − γ | − 2α

π
|θ−(ρ) − π | − 2n|θ−(ρ) − π |

≥ |φ| − Cρ.

Therefore on �−
r,R(x0)

|φ| ≤ Cα

√
W(u,g) + O(ρ),

and similarly on �+
r,R(x0).

In consequence we have∫
�+

r,R(x0)∪�−
r,R(x0)

|φ|dρ
ρ

≤
∫

�+
r,R(x0)∪�−

r,R(x0)

Cα

1

ρ

√
W(u,g) dρ + O(1) (6.7)

We split �±
r,R(x0) in two parts:

�±
r,R(x0) = �±

r,εγ (x0) ∪ �±
εγ ,R(x0),

and using the Corollary 4.3 we estimate:∫
�+

r,εγ
(x0)∪�−

r,εγ
(x0)

1

ρ

√
W(u,g)dρ

≤

⎡
⎢⎢⎣
⎛
⎜⎜⎝

∫
�+

r,εγ
(x0)∪�−

r,εγ
(x0)

W(u,g) dρ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∫
�+

r,εγ
(x0)∪�−

r,εγ
(x0)

dρ

ρ2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

1
2

≤ c

r
1
2 ϒ

= o(1),

since r > εs = ϒ−1. Furthermore, by the global upper bound on the energy Eε(uε) ≤ K| ln ε|,
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∫
�+

εγ ,R
(x0)∪�−

εγ ,R
(x0)

1

ρ

√
W(u,g) dρ

≤

⎡
⎢⎢⎣
⎛
⎜⎜⎝

∫
�+

εγ ,R
(x0)∪�−

εγ ,R
(x0)

W(u,g) dρ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∫
�+

εγ ,R
(x0)∪�−

εγ ,R
(x0)

dρ

ρ2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

1
2

≤ Cϒ−1| ln ε|ε−γ → 0,

since s − γ > 0.
We are left with estimating the second term in (6.6):∣∣∣∣∣∣∣
∫

Ar,R

f 2 − 1

ρ2

∂φ

∂θ
dx

∣∣∣∣∣∣∣≤
1

εs

∫
Ar,R

|f 2 − 1|| 1

ρ

∂φ

∂θ
|dx

≤ ε−s

⎡
⎢⎣ ∫
Ar,R

|f 2 − 1|2
∫

Ar,R

|∇φ|2
⎤
⎥⎦

1
2

≤ ε−s

⎡
⎢⎣Kε2| ln ε|

∫
Ar,R

|∇φ|2
⎤
⎥⎦

1
2

≤ Cε1−s
√| ln ε|

⎡
⎢⎣ ∫
Ar,R

|∇φ|2
⎤
⎥⎦

1
2

= o(1)(

∫
Ar,R

|∇φ|2) 1
2 + o(1) (6.8)

Finally, the last term in E is bounded below,∫
Ar,R

f 2|∇φ|2 dx ≥ (1 − √
2a)2

∫
Ar,R

|∇φ|2 dx,

and hence this positive term controls (6.8). Putting all of these estimates together, we obtained the desired lower bound 
on the residual term, 

∫
Ar,R

E dx ≥ C, and the desired lower bound is established. �
Remark 6.2. We note that it is in deriving the estimate (6.7), on the energy contribution of the “excess phase” φ to 
the energy of a boundary defect, where we need to introduce the boundary penalization of (|u|2 − 1)2 in W(u, g). 
(See (2.20) and the following remarks there.) In particular, while we know that |uε|2 ≥ 1 − √

2a > 0 away from 
the bad balls, this is not a strong enough estimate to control the error term in (6.7) without introducing additional 
logarithmically growing terms.

Next we compare the energies of boundary boojums and boundary vortices. First, we remark that, since the phase 
ψ � γ ±α away from the bad balls, and 0 < α < π

2 , light and heavy boojums must be paired and in fact must alternate 
as we trace out � = ∂�. In addition, given the lower bound (6.1) for annuli, we observe that the lower bound for the 
energy of a “ground state” boojum pair, with (n, τ) = (0, −1), (1, 1), is smaller than that of a boundary vortex since

Cα :=
(α )2 +

(
1 − α )2

< 1.

π π
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This suggests that boojum pairs will always be energetically preferred over boundary vortices. We will indeed show 
this in the course of proving the main theorem, but the following fundamental lemma is suggestive of this fact (and 
will be instrumental in proving it).

In the following lemma we will denote by n0
j the degree of a boundary vortex, and by n+

i the degree of a heavy 

boojum while n−
i will be that of a light boojum:

Lemma 6.3. Assume ∃ Nv, Nb ∈ {0, 1, 2, . . . } and integers 
{
n0

j

}
j=1,...,Nv

, 
{
n+

i , n−
i

}
i=1,...,Nb with 

∑Nb

i=1(n
+
i +n−

i ) +∑Nv

j=1 n0
j = D. Then

Nv∑
j=1

(n0
j )

2 +
Nb∑
i=1

[
(n−

i + α

π
)2 + (n+

i − α

π
)2
]

≥ |D|Cα. (6.9)

Furthermore, in case that D > 0, we have equality if and only if

n0
j = 0 ∀j, n+

i = 1 ∀i, and n−
i = 0, i = 1, . . . ,D = Nb,

while if D < 0, we have equality if and only if

n0
j = 0 ∀j, n+

i = 0 ∀i, and n−
i = −1, i = 1, . . . ,D = Nb

Remark 6.4. We note that the minimum value is therefore obtain by Nb boojum pairs of light and heavy boojums and 
with no boundary vortex.

Remark 6.5. In proving Lemma 6.3 it is advantageous to list the different types of defects (light and heavy boojums 
and boundary vortices) separately, but for later purposes it will be more convenient to make a single list of the defects 
yε,�, using the integer degree n� and boojum number τ� ∈ {0, −1, +1} to distinguish their topological type. In the 
latter case, the lower bound expressed in equation (6.9) is reformulated as:

Nv+Nb∑
�=1

(n� − τ�

α

π
)2 ≥ |D|Cα. (6.10)

Recall that τ = 0 for a boundary vortex, τ = ±1 for a heavy, respectively light, boojum and that Nv + Nb is the total 
number of boundary defects.

Proof. Assume D > 0. We use induction on D ∈ N and assume that the lower bound is false, i.e. that the inequality 
(6.9) is reversed; for D = 1 we then have:

Nv∑
j=1

(n0
j )

2 +
Nb∑
i=1

[
(n−

i + α

π
)2 + (n+

i − α

π
)2
]

≤ Cα.

As we have a sum of positive terms, this means:

Nv∑
j=1

(n0
j )

2 ≤ Cα < 1 =⇒ n0
j = 0 ∀j.

Further,

Nb∑
i=1

[
(n−

i + α

π
)2 + (n+

i − α

π
)2
]

≤ Cα,

which means that for each i we have[
(n−

i + α
)2 + (n+

i − α
)2
]

≤ Cα = (
α

)2 + (1 − α
)2 < 1,
π π π π
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and hence either

(n−
i , n+

i ) = (0,1) or (0,0) or (−1,0).

Since D = 1 > 0, for at least one i0 we have

(n−
i0
, n+

i0
) = (0,1), and (n−

i0
+ α

π
)2 + (n+

i0
− α

π
)2 = Cα,

so ∑
i �=i0

[
(n+

i + α

π
)2 + (n−

i − α

π
)2
]

≤ 0 =⇒ Nb = 1, i0 = 1, (n−
1 , n+

1 ) = (0,1).

This corresponds to the case of equality in (6.9) with D = 1, and hence we conclude that (6.9) must hold in the case 
D = 1.

Next, consider the case D > 1 and assume

Nv∑
j=1

(n0
j )

2 +
Nb∑
i=1

[
(n−

i + α

π
)2 + (n+

i − α

π
)2
]

≤ D Cα, (6.11)

holds with D replaced by D − m, m = 1, 2, . . . , D − 1, with equality if and only if n0
j = 0 ∀j, n−

i = 0 ∀i, and n+
i =

1, i = 1, . . . , D −m = Nb , and we will prove that this still holds for D, leading to the conclusion of the Lemma in the 
case that D > 0.

Since D > 0, there must be a positively charged defect somewhere. If ∃ n0
j ≥ 1, we eliminate that boundary vortex 

to obtain a new configuration. Indeed, assuming without loss of generality that j = 1, we have a configuration({
n0

j

}
j=2,...,Nv

,
{
n−

i , n+
i

}
i=1,...,Nb

)
,

with degree D − n0
1 ≤ D − 1, and

Nv∑
j=2

(n0
j )

2 +
Nb∑
i=1

[
(n−

i + α

π
)2 + (n+

i − α

π
)2
]

≤ D Cα − (n0
1)

2 (6.12)

= (D − n0
1)Cα + n0

1Cα − (n0
1)

2

< (D − n0
1)Cα,

since n0
1 ≥ 1 by assumption.

By induction hypothesis, we conclude that

n0
j = 0 ∀j = 2,3, . . . ,Nv,Nb = D − n0

1, n
−
i = 0 ∀i, n+

i = 1 ∀i = 1, . . . ,D − n0
1.

This means that the left hand side in (6.12) becomes:

Nv∑
j=2

(n0
j )

2 +
Nb∑
i=1

[
(n−

i + α

π
)2 + (n+

i − α

π
)2
]

= (D − n0
1)Cα,

which is a contradiction, so this case cannot occur.
Thus, it must be that ∃i, which without loss of generality we will take to be 1, with n−

1 + n+
1 ≥ 1. Moreover, since 

for x < y,

(x + α

π
)2 + (y − α

π
)2 < (y + α

π
)2 + (x − α

π
)2,

we may assume that n+
1 ≥ n−

1 , n+
1 ≥ 1 since otherwise we would switch n+

1 and n−
1 and obtain a smaller value in 

(6.11).
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Note that

(n−
i + α

π
)2 + (n+

i − α

π
)2 = (n−

i + α

π
)2 + (n+

i − 1 + (1 − α

π
))2

≥ (n+
i + α2

π2 ) + (n−
i − 1 + (1 − α

π
)2) = n−

i + n+
i − 1 + Cα (6.13)

so eliminating this boojum pair to create a new configuration with degree D̃ = D − (n−
i + n+

i ) < D, we have from 
(6.11)

Nv∑
j=1

(n0
j )

2 +
Nb∑
i=2

[
(n−

i + α

π
)2 + (n+

i − α

π
)2
]

≤ CαD − [n−
1 + n+

1 − 1 + Cα]

= {Cα(D − 1) − [n−
1 + n+

1 − 1]}
≤ Cα[(D − 1) − (n−

1 + n+
1 − 1)]

= D̃Cα

with equality if and only if n−
1 = 0, n+

1 = 1. By the induction hypothesis, D̃ < D, and

n0
j = 0 ∀j,Nb = D̃ + n−

1 + n+
1 = D,n−

i = 0, n+
1 = 1, i = 1, . . . ,D.

This completes the proof for D > 0.
When D < 0, we note that this reduces to the positive case if we replace n0

j → −n0
j , n+

j → −n−
j , and n−

j → −n+
j , 

that is, negative degree heavy boojums are counted the same way as positive degree light boojums, and vice-versa. 
The case D = 0 is trivially true. �
7. Proof of the Main Theorem

Returning to the bad balls constructed in Lemma 4.4, we may pass to a subsequence εn → 0 for which there exist 
points ξk ∈ �, k = 1, . . . , Nv , ζk ∈ �, k = 1, . . . , Nb , for which

yεn,j −→ ζk for some k ∈ {1, . . . ,Nb}, and

pεn,i −→ ξk for some k ∈ {1, . . . ,Nv}, or pεn,i −→ ζk for some k ∈ {1, . . . ,Nb}. (7.1)

That is, certain interior vortices yi for uε might accumulate at a boundary point ζk ∈ �. Our task is to provide a 
global lower bound on the energy to match the upper bounds from Lemma 3.1. To do this we adapt techniques of 
vortex ball analysis introduced by Jerrard [8] and Sandier [17], but we must treat the various types of defect (boojums, 
boundary vortices, interior vortices, and interior vortices approaching the boundary) with care, as each leads to a 
different contribution to the energy.

For σ > 0, define

Bσ :=
(

Nv⋃
k=1

Bσ (ξk)

)
∪
⎛
⎝ Nb⋃

k=1

Bσs (ζk)

⎞
⎠ , and �σ := � \Bσ . (7.2)

Lemma 7.1. Let 1 > σ > 0 be fixed. Then there exists C = C(g, α, �) such that:

Eε(uε;Bσ ) ≥ 2π sCα |D| ln
(σ

ε

)
+ C, if sCα ≤ 1

2
,

and

Eε(uε;Bσ ) ≥ π |D| ln
(σ

ε

)
+ C, if sCα >

1

2
,

Combined with Lemma 3.1 we may then conclude that the energy is bounded above away from any neighborhood 
of the defects:
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Corollary 7.2. For any σ > 0, there exists C such that:

Eε(uε;�σ ) ≤
{

2π sCα |D| | lnσ | + C, if sCα ≤ 1
2 ,

π |D| | | lnσ | + C, if sCα > 1
2 .

Proof of Lemma 7.1. We let 1 > σ > 0 be given, but such that

σ s < 4 min
{
|ξi − ξj |, |ζi − ζj |,dist(ξi,�) | i �= j, i = 1, . . . ,Nv, j = 1, . . . ,Nb

}
,

so that the balls Bσ (ξi), Bσs (ζj ) be well separated in �. We take ε → 0 along the subsequence employed in (7.1)
above. By taking a further subsequence we may assume that each of the centers of the bad balls constructed in 
Lemma 4.4 lies withing σ of its limiting ξi or ζj . We assume ε → 0 along this subsequence, but without explicit 
notation by subscripts.

First, we separate out the “bad balls” defined in Lemma 4.4 whose centers converge to interior points ξj ∈ � (see 
(7.1) above). Along the subsequence, the total degree due to these, Dint is constant, and applying the result of Sandier 
or Jerrard in a slightly smaller domain �′ � �, we have the lower bound for the energy in this collection of interior 
balls,

Eε

(
uε ;

Nv⋃
k=1

Bσ (ξk)

)
≥ π |Dint | ln

(σ

ε

)
+ c, (7.3)

for any fixed σ > 0.
For the bad balls which accumulate on the boundary we employ the same procedure introduced in [17] to obtain 

lower bounds for the classical Ginzburg-Landau functional with Dirichlet boundary condition, adapted to deal with 
boundary defects. We construct families of balls, B(t), t ≥ 1, containing the bad balls of Lemma 4.4, and growing in 
time. Each ball Bi(t) ∈ B(t) carries a degree, a radius Ri(t), and a “seed size” ri(t), which in some sense remembers 
the scale of the original ball (O(ε) or O(εs).) The lower bound is derived through a two-step evolution. The first 
step is “expansion”: to continuously grow the balls’ radii, and use Proposition 6.1 to estimate the energy in the annuli 
contained between the expanded balls and the original bad balls, in terms of the logarithm of the ratio of the radii. 
When two or more balls come into contact, the second “merger” step combines balls together, and uses Lemma 6.3 to 
bound the energy in the resulting larger balls from below. These two steps are repeated until the radii of the growing 
balls exceeds σ .

To do this we need to further separate the remaining balls into two classes, those whose centers lie on the boundary 
versus interior balls converging to the boundary. Assume that sCα ≤ 1

2 ; the modifications required for the opposite 
case will be described at the end of the proof.

Step 0: Initialization. Set the initial time t0 = 1 (for convenience), and begin the process with the remaining bad balls 
as defined in Lemma 4.4, numbered in a single list, Bi(t0), i = 1, . . . , N0. Define two index sets Ib, I ′ as follows:

• For i ∈ Ib , Bi(t0) are centered on the boundary �. Boundary balls have initial radii ri(t0) = κεs , and carry both a 
degree ni and a Boojum number τi . We let D0 :=∑i∈Ib

ni , the total degree of defect balls centered on ∂�.
• For i ∈ I ′, Bi(t0) lie in the interior (but accumulate on the boundary as ε → 0.) These balls have degree di and 

initial radii ri(t0) = κε. The total degree of defect balls approaching ∂� will be denoted D′.

We note that by Lemma 5.4 we must have Dint + D0 + D′ =D, the total degree associated to the boundary function 
g. We also define

Db := D0 + D′ =D − Dint ,

and note that Db is also constant in ε.
The values ri(t0) are initially chosen to be the actual radii of vortex balls, but following Sandier [17] we think 

of them as a “seed size”, which will change in the process of merging the expanding balls but retain the order of 
magnitude of the original radii.



S. Alama et al. / Ann. I. H. Poincaré – AN 37 (2020) 817–853 843
Step 1: Initial expansion. We grow the radii of each ball continuously in time t , maintaining a uniform ratio of the 
radius of each ball to its initial radius. We do this in a different way depending on the two classes of bad balls near the 
boundary. We recall that the initial time t0 = 1. If B1(t0) is centered on the boundary � and B2(t0) is an interior ball 
converging to the boundary, we require that their radii R1(t), R2(t) satisfy:

R1(t)

r1(t0)
= t

t0
=
(

R2(t)

r2(t0)

)s

. (7.4)

By (ii) of Lemma 4.4 we can increase t , expanding each ball for some positive time t > t0 = 1, in which the balls will 
remain disjoint. During this expansion phase the seed sizes ri(t) = ri(t0) remain constant. Call t1 > t0 = 1 the first 
time at which two or more expanding balls touch. Applying Proposition 6.1 to each ball at time 1 = t0 ≤ t ≤ t1, we 
obtain a lower bound in each annulus, of outer radius Ri(t) and inner radius ri(t0) around each center:

Eε

⎛
⎝uε ;

N0⋃
i=1

Bi(t)

⎞
⎠≥ Eε

⎛
⎝uε ;

N0⋃
i=1

(Bi(t) \ Bi(t0))

⎞
⎠

≥
∑
i∈Ib

2π
(
ni − τi

α

π

)2
ln

Ri(t)

ri(t0)
+
∑
i∈I ′

πd2
i ln

Ri(t)

ri(t0)
+ c1

=
⎧⎨
⎩
∑
i∈Ib

2π
(
ni − τi

α

π

)2 +
∑
i∈I ′

π

s
d2
i

⎫⎬
⎭ ln

t

t0
+ c1 (7.5)

Using Lemma 6.3, (see also (6.10)) we then obtain a lower bound on the energy in the expanded balls near ∂�,

Eε

⎛
⎝uε ;

N0⋃
i=1

Bi(t)

⎞
⎠≥

[
2πCα |D0| + π

s
|D′|
]

ln
t

t0
+ c1

≥ πμ|Db| ln
t

t0
+ c1, (7.6)

for 1 = t0 < t ≤ t1, where we recall Db = D0 + D′ and denote

μ = min

{
2Cα ,

1

s

}
. (7.7)

Step 2: Merging. At time t1, some of the expanding balls will come into contact with each other, in the sense that their 
closures will intersect. The merging process is based on the observation:

if
R1

r1
= t = R2

r2
then

R1 + R2

r1 + r2
= t. (7.8)

Thus, we can combine balls whose closures touch into new balls by summing the radii, and the lower bound will be 
preserved if we adjust the “seed size”, which remembers the radii of the initial balls, accordingly. That is, the new 
denominator r̃ = r1 + r2 will no longer be the initial radius but will be a quantity of the same order of magnitude.

If the closures of two or more interior balls B1(t1), . . . , Bk(t1) touch, (but remain disjoint from boundary balls),
they are enclosed within a new interior ball, B̃j (t1), of radius R̃j (t1) := R1(t1) + · · · + Rk(t1). The degree of this new 
ball will be d̃j =∑k

i=1 di , and we will choose a new “seed size” r̃j (t1) := r1(t0) + · · · + rk(t0) = O(ε). In this way, 
we are maintaining the ratio,[

R̃j (t1)

r̃j (t1)

]s

=
[
Ri(t1)

ri(t0)

]s
= t1

t0
, i = 1, . . . , k.

The energy contained in the new ball at t = t1 may be bounded below,
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Eε

(
uε ; B̃j (t1)

)
≥

k∑
i=1

Eε

(
uε ; Bi(t1)

)

≥
k∑

i=1

πd2
i ln

[
t1

t0

] 1
s + O(1)

≥ π

s
|d̃j | ln

t1

t0
+ O(1). (7.9)

The case of two or more boundary balls B1(t1), . . . , Bk(t1) merging is only slightly more complicated. As above, 
the new merged ball B̃j (t1) will have radius R̃j (t1) =∑k

i=1 Ri(t1), and new “seed size” r̃j (t1) := r1(t0) + · · · +
rk(t0) = O(εs). We recall that light and heavy boojums must alternate along �, and thus if we enclose two or more 
boundary balls in a larger B̃j (t1), the boojum number of the merged ball τ̃j =∑k

i=1 τi ∈ {−1, 0, 1}. Likewise, the 
degree also sums, ñj =∑k

i=1 ni ∈ Z. Thus, the new boundary ball’s energy may be bounded below by:

Eε

(
uε ; B̃j (t1)

)
≥

k∑
i=1

Eε

(
uε ; Bi(t1)

)

≥
k∑

i=1

2π
(
ni − τi

α

π

)2
ln

[
t1

t0

]
+ O(1). (7.10)

The most delicate case is when interior defect balls collide with boundary balls. (If interior balls contact ∂� itself, 
we can think of this as the merger of interior balls with an empty boundary ball, of radius, degree, and boojum number 
all zero.) Assume k boundary balls and � interior balls (with radii Ri(t1) and seed size ri(t0)) meet at t = t1. We create 
a new boundary ball B̃j (t1) with radius and new seed size,

R̃j (t1) =
k∑

i=1

Ri(t1) +
k+�∑

i=k+1

[Ri(t1)]s , r̃j (t1) =
k∑

i=1

ri(t0) +
k+�∑

i=k+1

[ri(t0)]s = O(εs).

As 0 < s < 1, R̃j (t1) is larger than the sum of the radii of the old balls, and so B̃j (t1) encloses each of the merging 
balls inside. Employing the key observation (7.8), we obtain the same lower bound on the energy in the new boundary 
ball (7.10) as in the previous case.

Putting each case together, we have created a new family of defect balls {B̃j (t1)}j=1,...,N1 , whose union contains 
the expanded balls 

⋃N0
i=1 Bi(t1). By the merging process, the closure of these balls is disjoint. We divide the balls into 

two classes via the index sets Ĩb and Ĩ ′ (separating the family into balls centered on the boundary versus those in the 
interior but approaching the boundary), and denote by

D̃0 =
∑
j∈Ĩb

ñj and D̃′ =
∑
j∈Ĩ ′

d̃j ,

the total degrees. Then, applying Proposition 6.3 we have a lower bound:

Eε

⎛
⎝uε ;

N1⋃
j=1

B̃j (t1)

⎞
⎠≥

⎡
⎣∑

j∈Ĩb

2π
(
ni − τi

α

π

)2 +
∑
j∈Ĩ ′

π

s
|d̃j |
⎤
⎦ ln

t1

t0
+ O(1)

≥
[
2πCα |D̃0| + π

s
|D̃′|
]

ln
t1

t0
+ O(1)

≥ πμ|Db| ln
t1

t0
+ O(1), (7.11)

in terms of the new merged defect balls. (We note that, while D̃0, D̃′ may be different from D0, D′ because of merging, 
Db = D0 + D′ = D̃0 + D̃′.)
Step 3: Repeat as necessary. Restart the expansion process in Step 1, but starting now with the merged balls 

{B̃j (t1)}j=1,...,N1 , whose closures are disjoint. Dropping the tildas, we expand the balls according to (7.4) but for 
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t ≥ t1, with the new seed sizes rj (t1). Again, expansion may continue until two or more expanded balls touch, at some 
t2 > t1. Applying Proposition 6.1 in each annular region Bj(t2) \ Bj (t1), we obtain a lower bound analogous to (7.5)

Eε

(
uε ;

N1⋃
i=1

[
Bj (t) \ Bj (t1)

])
≥
∑
i∈Ib

2π
(
nj − τj

α

π

)2
ln

Rj (t)

rj (t1)
+
∑
j∈I ′

πd2
j ln

Rj (t)

rj (t1)
+ c1

=
⎧⎨
⎩
∑
j∈Ib

2π
(
nj − τj

α

π

)2 +
∑
i∈I ′

π

s
d2
j

⎫⎬
⎭ ln

t

t1
+ O(1)

≥
[
2πCα |D0| + π

s
|D′|
]

ln
t

t1
+ O(1)

≥ πμ |Db| ln
t

t1
+ O(1),

with μ defined in (7.7). Combining this with (7.11) we have improved our lower bound to:

Eε

(
uε ;

N1⋃
i=1

Bj (t)

)
≥ Eε

(
uε ;

N1⋃
i=1

[
Bj (t) \ Bj (t1)

])
+ Eε

(
uε ;

N1⋃
i=1

Bj (t1)

)

≥ πμ|Db| ln
t

t0
+ O(1),

for all t ∈ (t1, t2).
This process must terminate after a bounded finite number of steps, as by Lemma 4.4 the number of bad balls is 

uniformly bounded in ε. After all the mergers are finished, there are only Nb boundary balls remaining, each centered 
on �, converging to the points ζk ∈ �, and the expansion step may continue without interruption until the sum of 

the radii 
∑Nb

j=1 Rj(t∗) = σ s/2. Since the seed size rj (t) = O(εs) for boundary centered balls, we obtain (for all 
sufficiently small ε in the subsequence),

Eε

⎛
⎝uε ;

Nb⋃
j=1

Bσs (ζj )

⎞
⎠≥ Eε

⎛
⎝uε ;

Nb⋃
i=1

Bj (t∗)

⎞
⎠

≥ πμ|Db| ln
t∗
t0

+ O(1)

≥ πμ|Db| ln
σ s

εs
+ O(1)

= sπμ|Db| ln
σ

ε
+ O(1)

For a lower bound on the energy contained in all of the balls, we include the lower bound (7.3) on the energy of defect 
balls contained in the interior of �. Thus, we have

Eε(uε;Bσ ) ≥ π
[
μs |Db| + |Dint |

]
ln
(σ

ε

)
+ C,

where Bσ is defined in (7.2). In case μ = 1/s ≤ 2Cα , since D = |Db + Dint | ≤ |Db| + |Dint |, we obtain the desired 
lower bound and the proof of the lemma is complete. In case μ = 2Cα < 1/s, we have 1 > 2sCα and a similar 
argument leads to the desired lower bound,

Eε(uε;Bσ ) ≥ π
[
2sCα |Db| + |Dint |

]
ln
(σ

ε

)
+ C

≥ 2πsCα|D| ln
σ

ε
+ c2. �

Remark 7.3. We note that when defining the collection of bad balls Bσ we may delete any balls (interior or boundary) 
for which the degree deg(uε; ∂Bε(ξ)) = 0 (or deg(uε; ∂Bεs (ξ)) = 0 for boundary balls.) Doing so does not change 
the lower bound on the energy contained in the bad set Bσ , and thus any bad balls with net degree zero form part of 
the “regular” set where uε converges.
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Proof of Theorem 1.1. From Corollary 7.2 we can choose a subsequence uε of minimizers which is bounded in 
H 1 (� \Bσ ;C), for any small σ > 0, and for which the corresponding bad balls (from Lemma 4.4) converge to the 
defect sites ξi ∈ � or ζj ∈ �. By the upper bound in Corollary 7.2 (extracting another subsequence, if necessary),
uε ⇀ u∗ in H 1

loc away from the defects ξi ∈ �, ζj ∈ �, with |u∗| = 1. As in [18] the limiting u∗ is an S1-valued 
harmonic map with defects on the finite point set � := {ξi, ζj | i = 1, . . . , Nv, j = 1, . . . , Nb}. Following [4,16]

the convergence may be improved to H 1
loc(� \ �) and C1,β

loc (�̄ \ �). In particular, passing to the limit in (3.1) on 
� \ {ζj }j=1,...,Nb , we may conclude that W(u∗, g) = 0 away from the boundary defects. That is, u∗ = ge±iα on the 
boundary arcs determined by the defects on �. We may also conclude that the degrees di (corresponding to interior 
limiting defects ξi ) and nj (corresponding to boundary limiting vortices ζj , with boojum number τj ) are preserved in 
the limit.

We now fix

R ≤ 1

4
min
{
|ξi − ξj |, |ζi − ζj |,dist(ξi,�) | i �= j, i = 1, . . . ,Nv, j = 1, . . . ,Nb

}
,

so that the balls of radius R around each defect are pairwise disjoint. For any σ > 0 with σ s < R, we apply Proposi-
tion 6.1 to uε in each annular region Aσ,R(ξi), Aσs,R(ζj ), to obtain a lower bound,

Eε(uε;�σ ) ≥ Eε

⎛
⎝uε;� \

⎡
⎣⋃

i

Aσ,R(ξi) ∪
⋃
j

Aσs,R(ζj )

⎤
⎦
⎞
⎠

≥
⎡
⎣π
∑

i

d2
i + 2π s

∑
j

(
nj − τj

α

π

)2

⎤
⎦ ln

R

σ
+ O(1).

From the upper bound in Corollary 7.2 and Lemma 6.3 we then have:

πμ sD | lnσ | ≥ Eε(uε;�σ )

≥
⎡
⎣π
∑

i

d2
i + 2π s

∑
j

(
nj − τj

α

π

)2

⎤
⎦ ln

R

σ
+ O(1)

≥
[
π
∑

i

|di | + 2πCαs|Db|
]

ln
R

σ
+ O(1)

≥
[
π |Dint | + 2πCαs|Db|

]
ln

R

σ
+ O(1),

with equality if and only if di = sgnDint , and nj = 0 for τj = 0, 1 while nj = 1 for τj = −1. As this inequality is 
true for all σ > 0, we must have

sμ|D| ≥
∑

i

|di | + 2Cαs|Db| ≥ sμ
(
|Dint | + |Db|

)
≥ sμ|D|, (7.12)

and thus each term is equal.
If we assume μ = 2Cα < 1/s we must then conclude that di = 0 ∀i, and D = Db , so all of the topologically 

nontrivial defects occur on the boundary, with degrees nj = 0 for τj = 0, 1 while nj = 1 for τj = −1. Consequently, 
there are exactly 2D defects, alternating between light and heavy boojums. On the other hand, if μ = 1/s < 2Cα then 
the equality of each term in (7.12) forces Db = 0, and hence D = Dint and di = 1 for all i. In this case there are 
exactly D interior defects. When 2Cαs = 1 each defect (boundary or interior) has the same energy cost at highest 
order, and the question of characterizing the defects is more subtle. �
8. Renormalized energies

After proving Theorem 1.1, which details the nature of defects under weak anchoring to oblique angle condition 
at the boundary, it is natural to ask whether we may determine the location of boojums in the ε → 0 limit. This 
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involves verifying (as in [4]) that the defect locations minimize a Renormalized Energy, determined by a more precise 
asymptotic expansion of the energy which identifies the order-one term. Rather than carry out the necessary estimates 
as in [4], we argue formally in this section in order to give the form of the Renormalized Energy and come to some 
heuristic conclusion in special geometries relevant to physical cases.

As the case 2sCα > 1 is essentially the same as the Dirichlet case studied in [4], we restrict our attention to the 
more novel situation 2sCα < 1 in which minimizers exhibit boojum pairs, which (as in the statement of Theorem 1.1),
we denote by yj , ỹj , j = 1, . . . , D, with yj a light, and ỹj a heavy, boojum. We recall that (along a subsequence) 
uε → u∗ = exp(iϕ∗), in C1,β

loc (� \ {y1, ỹ1, . . . , yD, ỹD). The limit u∗ is an S1-valued harmonic map in � with defects 
on the given boundary points. In addition, W(u∗, g) = 0 on � \ {y1, ỹ1, . . . , yD}, and thus on �, u∗ = g exp(±iα), 
with jumps of −2α or −(2π − 2α) at the light and heavy boojums, yj , ỹj respectively. These must alternate along �, 
and the heavy boojum carries a degree nj = 1 for each j = 1, . . . , D. As described in [4,16], the energy of minimizers 
is then expanded as:

Eε(uε) =D(π s Cα| ln ε| + Qb) + W(y1, ỹ1, . . . , yD, ỹD) + o(1), (8.1)

where Qb is a constant, representing the energy of boojum cores at the length scale εs . This defines the Renormalized 
Energy, W : �2D → R, where �2D is the set of all 2D points on �. To connect W to the limit u∗ = exp(iϕ∗) of 
the minimizers uε , we define the conjugate harmonic function to the phase ϕ∗: �(x) = �(x; {yj , ỹj }) with ∇� =
−∇⊥ϕ∗. The conjugate solves

�� = 0, in �,

∂�

∂ν
= g ∧ gτ −

D∑
j=1

[
2α δyj

(x) + 2(π − α)δỹj
(x)
]
, on �,

⎫⎪⎪⎬
⎪⎪⎭ (8.2)

the boundary condition reflecting the jump in the harmonic phase ϕ∗ at light and heavy boojums. Then, it may be 
shown [4] that the Renormalized Energy is given by

W(y1, ỹ1, . . . , yD, ỹD) := lim
ρ→0

⎛
⎜⎝1

2

∫
�\Bρ

|∇�(x; {yj , ỹj })|2 dx − π s CαD ln
1

ρ

⎞
⎟⎠ , (8.3)

where Bρ =⋃D
j=1[Bρ(yj ) ∪ Bρ(ỹj )].

In the special case where � = B1, the unit disk, with equivariant g = g(θ) = eiDθ of degree D > 0, the Renormal-
ized Energy may be expressed simply. In that case, g ∧ gτ = D is constant, so � is a linear combination of Green’s 
functions G(x, p) with pole p ∈ �:

−�xG(x,p) = 0, in �,
∂G

∂νx

(x,p) = 1 − 2πδp(x), for x ∈ � = ∂B1,

whose solution is G(x, p) = 2 ln |x − p|. Then, we have:

�(x; {yj , ỹj }) =
D∑

j=1

[α
π

G(x, yj ) +
(

1 − α

π

)
G(x, ỹj )

]
.

Substituting into (8.3) and integrating by parts (see [4, I.4] for interior vortices and [1, Section 6] for boundary defects),
we obtain an explicit formula for the Renormalized Energy,

W(y1, ỹ1, . . . , yD, ỹD) =
D∑

i,j=1
i �=j

[α
π

G(yi, yj ) +
(

1 − α

π

)
G(ỹi, ỹj )

]
−

D∑
i,j=1

G(yi, ỹj )

= −2
D∑

i,j=1
i �=j

[α
π

ln |yi − yj | +
(

1 − α

π

)
ln |ỹi − ỹj |

]
− 2

D∑
i,j=1

ln |yi − ỹj |.
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In the case D = 1 there is only one boojum pair and W(y1, ỹ1) = −4 ln |y1 − ỹ1|, so it is clear that the light and heavy 
boojums must be antipodally placed on the circle �. For the Landau-de Gennes case D = 2, different weights appear 
in the sum,

W(y1, ỹ1, y2, ỹ2) = −4
[α
π

ln |y1 − y2| +
(

1 − α

π

)
ln |ỹ1 − ỹ2|

]
− 2 ln

[|y1 − ỹ1| |y1 − ỹ2| |y2 − ỹ1| |y2 − ỹ2|
]
.

9. Numerical examples

In this section we present several examples of configurations with vortices that can be observed in numerically 
computed critical points of the energy (1.1). These are obtained by simulating gradient flow for Eg,α

ε using the finite 
elements software package COMSOL [22].

Note that we do not claim that solutions that we obtain are minimizers of Eg,α
ε or prove that these solutions converge 

to critical points of the limiting energy. Rather, we use numerical simulations as a useful tool that demonstrates that the 
behavior of computed solutions is similar to what is predicted by rigorous analysis discussed in the previous sections.

In each of the examples below, we consider a circular domain � of radius 1 centered at the origin and set ε = 0.02. 
We assume α = π

3 so that Cα = 5
9 and consider two cases: s = 1 and s = 0.72 corresponding to a situation described 

in part (a) and (b) of Theorem 1.1, respectively.

9.1. Boundary data of degree one

Here we suppose that g(x) = x
|x| on ∂� so that degg = 1.

First, let s = 1. According to Theorem 1.1, the minimizers of Eg,α
ε must converge to an S1-valued harmonic map 

with a single vortex in the interior of the domain �. The numerically computed critical point of Eg,α
ε exhibits this 

feature as is shown in Fig. 2. Note that the absence of boundary singularities corresponds to u being continuous on 
the boundary then u must essentially coincide everywhere on ∂� with eiπ/3g (or e−iπ/3g) in order to minimize the 
surface energy.

Recall that in Section 2 we established the relationship between u and the nematic director n. We can now use 
(2.18) to find the distribution of the director in �. This distribution is depicted in Fig. 3 and is characterized by the 
presence of a single disclination of degree 1/2 at the origin.

Now, let s = 0.72. Since 0.72 < 0.9 = 1
2Cα

, from Theorem 1.1 we expect that a numerically computed critical point 
of Eg,α

ε should have one light and one heavy boojum on ∂�. This is indeed the case for a critical point in Fig. 4. The 
light boojum corresponds to the shallower depression of |u| on the boundary in the top left inset in Fig. 4 and it is 
placed antipodally from the heavy boojum. Further, as the vector field is forced to switch its orientation with respect 
to g on ∂� at boundary singularities, the bottom inset in Fig. 4 demonstrates that u “jumps” between e−iπ/3g and 
eiπ/3g as one traverses ∂�.

The distribution of the nematic director n when s = 0.72 is shown in Fig. 5.

9.2. Boundary data of degree two

Here we let g(x) = (x2
1 − x2

2 , 2x1x2
)
/|x|2 on ∂� so that degg = 2.

As expected, for s = 1, the numerically computed critical point of Eg,α
ε has two interior, degree one singularities 

as is shown in Fig. 6. The same is true for the nematic director (Fig. 7) that now has two degree 1/2 singularities in 
the interior of �.

For s = 0.72, a numerically computed critical point of Eg,α
ε has two light and two heavy boojums on ∂� as demon-

strated in Fig. 8. The boojums types are interleaved as one traverses the boundary and the boojums are equidistant 
from each other.

The distribution of the nematic director n when s = 0.72 is shown in Fig. 9. The director has four boundary 
singularities, two light and two heavy boojums.
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Fig. 2. A critical point of Eg,α
ε for g(x) = x

|x| , α = π
3 , and s = 1. Top left: The plot of |u|; Top right: The vector field u. Contour lines of |u| are 

depicted to indicate the location of the singularity; Bottom: The restriction of the vector field u to ∂�. Here u is shown in red, e−iπ/3g and eiπ/3g

are shown in blue and black, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. The director field n for g(x) = x
|x| , α = π

3 , and s = 1. Contour lines of |u| are shown to indicate the location of the singularity.

The original motivation for this study stems from experimental results of Volovik and Lavrentovich [14], for the 
case of a (three-dimensional) nematic ball. Although our treatment in this paper is restricted to a two-dimensional, 
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Fig. 4. A critical point of Eg,α
ε for g(x) = x

|x| , α = π
3 , and s = 0.72. Top left: The plot of |u|; Top right: The vector field u. Contour lines of |u|

are depicted to indicate the locations of the singularities; Bottom: The restriction of the vector field u to ∂�. Here u is shown in red, e−iπ/3g and 
eiπ/3g are shown in blue and black, respectively.

Fig. 5. The director field n for g(x) = x
|x| , α = π

3 , and s = 0.72. Contour lines of |u| are shown to indicate the locations of the singularities.

thin film geometry, we may still observe the resemblance of the configuration in Fig. 9 with that in Fig. 7b in [14], 
which shows two polar point defects and an equatorial disclination ring on the surface of a spherical particle. Because 
the 3D configuration in [14] is invariant with respect to both the axial and mirror symmetries in each cross-section 
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Fig. 6. A critical point of Eg,α
ε for g(x) =

(
x2

1 − x2
2 , 2x1x2

)
/|x|2, α = π

3 , and s = 1. Top left: The plot of |u|; Top right: The vector field u. 
Contour lines of |u| are depicted to indicate the location of the singularity; Bottom: The restriction of the vector field u to ∂�. Here u is shown in 
red, e−iπ/3g and eiπ/3g are shown in blue and black, respectively.

Fig. 7. The director field n for g(x) =
(
x2

1 − x2
2 , 2x1x2

)
/|x|2, α = π

3 , and s = 1. Contour lines of |u| are shown to indicate the location of the 
singularity.

of the particle that contains the axis of symmetry, it displays four surface point singularities separated by 90 degrees 
angles. Topologically this is the same situation as in Fig. 9: there are two heavy boojums that are the traces of the 
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Fig. 8. A critical point of Eg,α
ε for g(x) =

(
x2

1 − x2
2 , 2x1x2

)
/|x|2, α = π

3 , and s = 0.72. Top left: The plot of |u|; Top right: The vector field u. 
Contour lines of |u| are depicted to indicate the locations of the singularities; Bottom: The restriction of the vector field u to ∂�. Here u is shown 
in red, e−iπ/3g and eiπ/3g are shown in blue and black, respectively.

Fig. 9. The director field n for g(x) =
(
x2

1 − x2
2 , 2x1x2

)
/|x|2, α = π

3 , and s = 0.72. Contour lines of |u| are shown to indicate the locations of 
the singularities.

singularities at the poles, and two light boojums corresponding to the intersection between the circular cross-section 
and the equatorial disclination ring. Here both the equatorial ring and the light boojums serve the same purpose of 
unwinding the extra phase gained at the poles due to the heavy boojums.
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Furthermore, the experimental work in [14] also indicates that when the angle of inclination between the director 
and the normal on the surface of the particle is close to 90 degrees, it might be reasonable to seek minimizers of the 
3D problem in the class of functions that possess both axial and inversion symmetries. This is the approach that we 
undertook recently in a separate work [2], and we conjecture that these techniques can be extended to the present 
problem in 3D.
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