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Abstract

We study a two-dimensional variational problem which arises as a thin-film limit of the Landau-de Gennes energy of nematic
liquid crystals. We impose an oblique angle condition for the nematic director on the boundary, via boundary penalization (weak
anchoring.) We show that for strong anchoring strength (relative to the usual Ginzburg-Landau length scale parameter), defects
will occur in the interior, as in the case of strong (Dirichlet) anchoring, but for weaker anchoring strength all defects will occur
on the boundary. These defects will each carry a fractional winding number; such boundary defects are known as “boojums”. The
boojums will occur in ordered pairs along the boundary; for angle « € (0, %), they serve to reduce the winding of the phase by
steps of 2« and (2 — 2«) in order to avoid the formation of interior defects. We determine the number and location of the defects
via a Renormalized Energy and numerical simulations.
© 2020 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we study minimizers of a variational problem motivated by the study of defects in a nematic liquid
crystal. We consider a two-dimensional setting, arising in a thin-film reduction of the three dimensional Landau—de
Gennes model to two dimensions. The special feature of our problem is in the boundary condition imposed, in which
energy minimization prefers that the nematic director be oblique to the normal to the boundary with a prescribed
angle. In three dimensions, such a fixed angle condition constrains the nematic director to lie on a cone coaxial with
the boundary normal; in the plane, this reduces to demanding that the director make an angle of £« with respect
to the normal vector at each boundary point. In our model this will be accomplished by imposing weak anchoring
conditions on the domain boundary, that is, by adding a penalization term to the energy which favors oblique director
configurations. We refer the reader to [21,20,19] for the detailed discussion of anchoring within the context of the
Landau-de Gennes theory and relevant physical observations.
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We begin by describing the variational problem in mathematical terms, and stating our main result in Theorem 1.1.
Let © C R? be a bounded, simply connected domain with C? boundary I' := 3<2, carrying unit exterior normal vector
v. Our energy functional is the classical Ginzburg-Landau functional, modified by the addition of a surface energy
term which enforces the desired weak anchoring. Let o € (0, %) be fixed throughout the paper. As usual, we associate
C ~ RR2, with scalar product (i, v) = R[u v] and wedge product u A v = (iu,v) foru,v e C.Letg: I - S' c C be
a given C! smooth function on the boundary. We assume that

D =deg(g; ') >0,

and take a smooth lifting y : T' — R, g = ¢!”. In the physical context, g would represent the unit normal vector
field on I'; in the orientable GL or Ericksen models, it would then have degree D = 1. In the reduction from the
3D Landau-de Gennes model the complex order parameter doubles the phase of the director, and so we would have
D = 2. (See the discussion below.) However, we may take g to be any smooth S'-valued map in our analysis.

Our energy then takes the form:

o 1 1 2 T
ES*(u) ::§/<|Vu|2+2—82(|u|2—1) )dx+§/W(u,g)ds, (1.1)
Q r

with boundary anchoring energy density W given by:

19 2 2
Wi, g) =2 (lul” = )"+ [(u, g) — cosa]". (1.2)
The weak anchoring strength Y is assumed to depend on the length scale parameter ¢,
T="(E)=¢"* forse(0,1].

The effect of the weak anchoring may be inferred from the form of W. As ¢ — 0 we expect that W (u., g) — 0
almost everywhere on I'. At points y € I' at which W (u¢(y), g(y)) — 0, we would have |u.| — 1 and (u, g) — cosa,
that is, u; >~ g exp(Ziw). If g represents the unit normal vector field, this is the desired cone condition for a nematic.
If there are no defects on I" then the phase shift +« is uniformly chosen on I', and u, will effectively satisfy a Dirichlet
boundary condition with degree D, for which there must be interior defects, which will be vortices. However, energy
minimization may prefer to accept defects on I in order to avoid the energy cost of interior vortices. In this case, the
phase of u, must jump at defect points in order to “unwind” its phase so as to have degree zero on I'. The form of
W allows the phase to unwind by steps of 2«, (2mr — 2) or 2. This suggests that there are three distinct types of
boundary defects. The first two are boojums—defects with fractional degree. In correspondence with the size of the
jump in angle, we call these a “light” boojum and a “heavy” boojum, respectively. The last type is a boundary vortex,
of the sort studied in [1], with integer degree. Our result states that for very strong anchoring (larger s), minimizers
prefer interior vortices, while for milder anchoring (smaller s), we will obtain light-heavy boojum pairs on I" and no
interior vortices. The threshold value for s will depend on the angle «. In no case are boundary vortices (of integer
degree) preferred.

In order to state our result, we define

2 2
c. ;:{(z) (-9 } (13)
b4 b4
a constant which will appear often in our calculations of the energy of boundary defects of solutions. Note that
I <Cy<lforallae(0,7/2).

Theorem 1.1.

@ Ifl1>s> % then 3D points, pi, ..., pp € Q and a subsequence &, — 0 such that the minimizers ue, of Eggn’a
o
satisfy

Ue, — s in HL N CLY(Q\ (1, ..., DY),

with uy an S'-valued harmonic map with W (u, g) =0 on T, and p; is a vortex of degree 1,Vi.



S. Alama et al. / Ann. I. H. Poincaré — AN 37 (2020) 817-853 819

M) Ifs < ﬁ there 3 (2D) points y1, V1, ¥2, Y2, .-, yD, yD € I, ordered along the boundary curve, and a subse-
quence &, — 0 such that the minimizers u., of E5." satisfy

. 1, = ~ ~
Ue, —> s in Hy . N Cp(Q\ {y1, 31, ..., yp, D)),

with u, an S'-valued harmonic map with W (u, g) =0 on T\ {y1, J1. ..., yp. yp}, and yj,¥j is a boojum pair
of total degree —1.

In the critical case s = ﬁ the situation is more delicate, as interior and boundary defects will have the same energy
to highest order O (|In¢[), and one may have coexistence of the two species of defect depending on the geometry of
the domain and choice of boundary map g. As in [1] we expect that by introducing a coefficient T = K&™* in the
weak anchoring strength, the cross-over between boundary and interior vortices may be observed by varying K when
s= 2C , but we do not pursue this direction in the present paper.

As in the classical work [4] on the Ginzburg—Landau model with Dirichlet boundary conditions, the location of the
defects may be determined by minimizing a finite dimensional Renormalized Energy. This will be briefly discussed
in Section 8, after the proof of Theorem 1.1.

A related model is that of a thin ferromagnetic film as obtained in appropriate limiting regime by DeSimone, Kohn,
Muller and Otto ([5]). This limiting ferromagnetic thin film was studied by Moser ([11]), and by Kurzke ([9]) in
certain settings. In those problems, they impose tangential weak anchoring conditions (i.e. « = 0) and find critical
anchoring strength (though with a different critical exponent), at which boundary vortices are favored over interior
vortices. In our case we impose oblique anchoring conditions which reveal boojums defects.

In the context of nematic liquid crystals, boojums were also observed in [12,13] at interfaces between the nematic
and the isotropic phases. In the limit of the small nematic correlation length, the assumption of a large splay elastic
constant in [12,13] led to the tangency condition of the director on the interface and appearance of boojums. In
this setting, the boojums are also associated with interface singularities because the interface location is one of the
unknowns of the problem.

The rest of the paper is organized as follows: in Section 2 we describe how to obtain the above variational problem
as a thin-film limit of the Landau-de Gennes energy of nematic liquid crystals. In Section 3, we present an upper bound
on the energy of minimizers, as well as a priori pointwise bounds for all solutions of the Euler-Lagrange equations.
In Section 4, we present an 1 compactness result adapted to handle boundary defects and use it to define the “bad
balls” and show that they are contained in a finite number of very small balls. Next in Section 5, we classify the “bad
balls” as interior vortex, boundary vortex, light and heavy boojums. In Section 6, we obtain an energy lower bound
for each type of defects and prove an important new “degree Lemma” (Lemma 6.3) which will be essential in proving
the lower bound on the energy of boundary defects in terms of the degree of the boundary data. In section 7, we put
everything together and prove our main theorem, modifying the technique of vortex ball analysis introduced by Jerrard
[8] and Sandier [17]. In Section 8, we formally derive the associated Renormalized Energy and, finally, in Section 9
we present numerical examples of possible defect configurations.

2. Modeling nematic thin films

In this section we motivate our variational problem via the Landau-de Gennes theory of nematic liquid crystals, in
a limiting thin-film regime.

2.1. The Q-tensor

A nematic liquid crystal occupying a region © € R can be described by a 2-tensor-valued field which can be
thought of as the field Q : R?® — Mf;j,f of 3 x 3 symmetric, traceless matrices [15]. It immediately follows that Q
has a mutually orthonormal eigenframe {e, e, €3} and three real eigenvalues satisfying A1 4+ A2 + A3 = 0. The tensor
Q(x) represents the second moment of the orientational distribution in S? of the nematic molecules near x € R3,

hence its eigenvalues must satisfy the constraints

—1/3,2/3], fori=1,2,3. (2.1)
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Suppose that A = Ap = —X3/2. Then the liquid crystal is in a uniaxial nematic state and

A3 A3 1
Q:—?e1®e1—?e2®e2+/\3e3®e3=5 n®n—§l , (2.2)
where § := 3% is the uniaxial nematic order parameter and n = e3 € S? is the nematic director. If there are no repeated
eigenvalues, the liquid crystal is said to be in a biaxial nematic state and

1 1
O=MIRQAN+1n@n—A1+23)I-11—n®n) =375 <l®l—gl>+S2 <n®n—§l), (2.3)

where S1 :=2XA1 + A3 and S = A1 + 2A3 are biaxial order parameters.

For so-called thermotropic liquid crystals nematic states are typically observed at low temperatures. On the con-
trary, at high temperatures, these materials loose orientational order and become isotropic. The corresponding state is
represented by Q =0 sothat A\ = Ay = A3 =0.

2.2. Landau-de Gennes model

Within the Q-tensor theory, the bulk elastic energy density of a nematic liquid crystal is given by
3

L L . L
fe(VO) = jzl {7]|VQJ-|2 + 72 (dvaj)2 + 73VQ]- 'VQJT} , 2.4)

while the bulk Landau-de Gennes energy density is

2\, 2b 3, ¢ 2\\?
frac(@=at(?) + S (%) + 5 (e (7)) . 2.5)
cf. [15]. Here Q;, j =1,2,3 is the j-th column of the matrix Q and A- B =tr (BTA) is the dot product of two
matrices A, B € M3*3. The coefficient a = ag (T — Ty) in (2.5) is temperature-dependent and negative for sufficiently
low temperatures, while ¢ > 0. The potential (2.5) is designed to depend only on the eigenvalues of Q and its form
guarantees that the isotropic state Q = 0 yields the global minimum of f7 ;5 at high temperatures while a uniaxial
state of the form (2.2) gives the global minimum when temperature is sufficiently low, cf. [10,15]. In what follows we
set the temperature to be low enough so that the minimizers of f; 4 are uniaxial. Note that by adding an appropriate
constant to f74G we can assume the global minimum value of zero for f146-

Now consider a nematic sample occupying a thin domain Q, := Q x (—h, h) C R, where @ € R? and & < 1. The
equilibrium nematic configuration should minimize the bulk energy subject to the appropriate boundary conditions
on d<2;. There are two possible alternatives. The first option is to impose Dirichlet boundary conditions on Q—also
known as strong anchoring conditions—that fix the alignment of nematic molecules on 9€2;. The second option is to
consider weak anchoring, that is, to specify the surface energy on the boundary of the nematic sample. The molecular
orientations on the boundary are then determined as a part of the minimization procedure.

In this paper we consider a two-dimensional variational problem for Q that can be obtained—following [7]—via
a rigorous dimension reduction procedure by taking the limit 2z — 0. Briefly, as in [7], suppose that weak anchoring
conditions are specified on the top and the bottom surfaces €2 x {—#, h} of the nematic film €2;,. The anchoring energy
density has the form

V.3 =a ([(Q2~2) P+ |(1-2®3) Q2|2>, 2.6)
forany Q € A, where « > 0, 8 € R,
A:|QeM3$uQ=q, 2.7)

and Z is normal to the surface of the film. This form of the anchoring energy requires that a minimizer of fs(l) has z

as an eigenvector with corresponding eigenvalue equal to 8.
On the remaining part I' x (—h, k) of 02, we impose different weak anchoring conditions with the nonnegative
surface energy density fs(z)( 0, g), where I' = 92, the uniaxial data g € H'/2(I" x (—h, h); A) does not vary in the

direction normal to I", and fs(z) is a smooth function of its arguments.
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The Landau-de Gennes energy can then be obtained by combining together (2.4), (2.5), and (2.6) so that

Eh(Q)I=/{fe(VQ)+deG(Q)}dV+ f Q.2 ds + / 20, ¢)ds. (2.8)
Qx{—h,h} I'x(—h,h)

In what follows we will assume that the elastic constants L, = L3 =0 and L1 = L > 0; this corresponds to the so
called equal elastic constants case where the equality of the constants refers to those in the Oseen-Frank model. The
elastic energy density we consider is thus given by

L
f(VQ) = 5|VQ|2. (2.9)

The problem can be nondimensionalized by scaling the spatial coordinates

PO ST S
—D,y—D, —hs

where D := diam(w). Set £ = 2LF’ §= % and introduce fe(V 0):= éfe(V Q). Dropping tildes, we obtain

1
fe(VQ):=0im,jOQim,j + 2 Qim,30Qim.3

where the indices i,m =1, 2,3, and j = 1, 2. Rescaling the Landau-de Gennes potential deG(Q) S deG(Q)
and ignoring tildes again gives

fLa6(Q) =2Atr<Q2) +28u(0%) + (w(2?)) (2.10)
where A=%2, B=2,and ¢ = \/7 We also let & = % and set

F(1) Q) F) @
fs(Q.2) = ng Q.2),  £;7(Q.9):= ng (Q.9)

to obtain the expressions for the nondimensionalized surface energies.
Finally, introducing the non-dimensional energy Fs[Q] := ﬁE [Q] and dropping all tildes, we find that

1
Fs(Q) = / (fe(vQ)+8_2deG(Q)>dV

Qx(=1,1)

)
Qx{—1,1} Ix{—1,1}

+l f f9Q, 5 dA + f £2(0, g)dA. 2.11)

We now define the space

{QEH(QX( 1L,1);A): Q

EOa.e., f5(Q(x),z)=0ae.in Q} (2.12)
and let Fo: H'(Q x (-1, 1); A) — R be given by

2Jo {1V 0P + L frac (@)} dx +2 [ (P Q. 90dA ifQ e,
+o0 otherwise.

Fo(Q) 1=! (2.13)

The following theorem can be proved in the same way as its analog in [7].

Theorem 2.1. Fix g € H'/? (dQ; A) that does not vary in the direction normal to T. Let Fs be given by (2.11).
Then T-lims F5 = Fy in the weak H' topology. Furthermore, if a sequence {Qs}s-o C H' (2 x (=1, 1); A) satisfies
a uniform energy bound Fs[Qs] < Co then there is a subsequence {ng} such that Qaj — Q as §; — 0 for some
0 eH.
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From now on we use the following representation of Q € H invoked, for example, in [6] and [3]:

p1—§ D2 0

o= p -p-% 0] (2.14)
0 0 B
It is a convenient change of variables in the setting when one eigenvector of the Q-tensor is parallel to the z-axis. For
simplicity, we also assume that 8 = —1/3 and that a uniaxial tensor minimizing W has eigenvalues —1/3, —1/3, and
2/3. Then

Lvp 0
Qp,p=| p t-pm O
0 0o -

) (2.15)

and

(e 022 8
frac(@ = (wr@?) - 3w @’ —Zw o+ .

where the constant 8/27 was added to ensure that the minimum value of W is equal 0. The potential function can now
be written as

~ 1 2
Frac(p):=W(Q(p) = 7 (41p* 1)

in terms of p = (p1, p2). Dropping the subscript xy in (2.13), we also have that
IVOI>=2VpP,

so that the bulk contribution to (2.13) takes the form
1 2
2, 2
/{4|Vp| +33 <4|p| 1) }dx. (2.16)
Q

With a slight abuse of notation, we set fs(z)(p, g) = fs(z)(Q(pl, p2), g), where g : 92 — S! is fixed. In order to
establish the form of fx(z), we appeal to the Rapini-Papoular form of the surface energy [20] that in the Oseen-Frank
director description can be written as

a((n . 9)% — cos? (%))2 2.17)

Here n is the nematic director and 5 is a preferred angle between the director n and the uniaxial data g on the boundary
with @ € (0, 7). We now recall the relationship between the director n and the uniaxial tensor Q. Because we assumed
that Q is given by (2.15), the largest eigenvalue minimizing the potential energy is 2/3. If the director n = (n1, nz, n3)
lies in the xy-plane, we have that n3 =0 and

1
= - =1,
O0=nQ®n 3
so that
nt nmy 0 I+p m
n@n= |\ niny n% 0= D2 %—pl 0ol. (2.18)
0 0 0 0 0 0
Then

1 1
(n~g)2=(n®n)‘(g®g)=(5+p1>gf+2ng1gz+<§—p1>g§
1

1 A
=5+ (gf - g%) pi+28182p2=5+p-8 (219
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where g = (g7 — g3.2g182). It follows that we can write (2.17) as

1 2
fS(Z)(p, 2) = a(p g — Ecosa> . (2.20)

This choice is well-motivated physically and clearly favors the desired cone condition for the angle of the director for
nematic directors of fixed length, 2| p| = 1. However, when relaxing this constraint via the Ginzburg-Landau functional
this boundary energy effectively does not enforce the angle condition when 2|p| < 1. Indeed, in order to obtain the
desired behavior at boundary defects it is necessary to add a term for which the boundary energy is minimized when
|p| = 1/2 lies on the cone of aperture o with the axis that coincides with the normal to I'. With this observation in
mind, we replace (2.20) with

P, 9= % B(|zp|2 ~D*+(2p- 8- cosa)2] ) (2.21)

Defining u :=2p and ES*[u] := 1 Fo[Q(u/2)], dropping the hat in g, and denoting Y := o/2 we arrive at the
expression (1.1) for the energy ES™“.

Note that the weak anchoring condition is now coercive: using complex notation, the condition (2.20) when u €
S! € C says that the angle between § = g2 and u is twice that of the angle between the director n and g, which is
consistent since the phase of u is doubled compared to that of n.

We also note that the main theorem is stated for « € (0, %). The case o € (%, ) follows directly from this case, as
will be mentioned in the course of the proof.

3. Upper bounds

In this section we prove two fundamental estimates: a rough upper bound on the energy of minimizers, and a priori
pointwise bounds for all solutions of the Euler-Lagrange equations,

1
—Au+—(u* - Du=0, inQ,
&

ou (3.1)
=+ Te((ul? = Du+ [, g) —cosalg) =0, onT.
v
where Y, =¢7 ¢, withO < s < 1.
Lemma 3.1. Let g = €'V : T — S be a C' smooth map, with
D =deg(g;T) >0, and E§"® := min E$“*.
H ()
Recall Co = (2£)* + (1 — £)?, a € (0, §),
(i) IfsCq = % then
E&® <nD|lng| + C (3.2)
(i) IfsCq < 3, then
E$® <27DsCy|Ine| + C (3.3)

Proof. In case (i) we let v, be the energy minimizer of the standard Ginzburg-Landau functional with Dirichlet
boundary conditions u|F = ge'® (so as to make the boundary anchoring energy vanish.) The bound (3.2)then follows
from the work of Bethuel-Brezis-Hélein [4] since ES'® becomes the Ginzburg-Landau functional.

In case (ii), we will construct an S 1_valued test function with boundary defects. Note that in that case, the up-
per bound in (3.3) is smaller than the bound (3.2). The construction follows Kurzke [9] (see also [[1], Lemma 3.1])
although our boundary condition is quite different. This construction is also very helpful in understanding what mini-
mizers should look like.
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Zo

Fig. 1. Near a boundary point x( € I', the disk wg (x¢) and annulus A, g, which separates the boundary I' N A, g into two arcs, F;E R

Choose 2D points gy, ...,qp € I', well separated, and fix R > 0 with R < %|q,~ —gjl Vi # j. We order the
points along I" so that the index of g; increases as I' is traced out counterclockwise. For each i we define vé in
wr(qi) = Br(gi) N Q2 via polar coordinates (p, 8) centered at g; with & measured from the oriented unit tangent t to
I' at g;. Since I is smooth, by reducing R (if necessary) we may ensure that wg(g;) is a polar rectangle, and nearly a
half-disk:

wr(gi) ={(p,0)] 04+(p) <O <6_(p),0 <p <R}

with 6 € C! and 61-(p)| < cp, | —6-(p)| < cp.

The odd g2 1 will be “light” boojums, with phase decreasing by 2o, while the even g;; will be “heavy” boojums,
with phase decreasing by 27 — 2«. Consider the “light” case; the “heavy” case will be essentially the same, except
for the coefficient.

With g = €7, define phases for v on the two components of I' N Bg(g;) \ {¢;} around a point ¢; (see Fig. 1),
parametrized by

I ={(p,0+(p)): 0<p <R},

as follows: let

hi(p)=y(p,0+(p) Fa

and

(D) () OB 0)
Ve = oo T — e

which linearly interpolates between them. We introduce a cut-off near ¢;: x.(p) € C*,
0=<x:(p) =1, xe(p) =0for 0 < p <&®, xe(p) = 1for p > 2", [Vxe(p)| < ce™.
Then we define v. in wg(g;) with i odd by:
vi(p, 0) = explilxe (0¥ (p, 0) + (1 = xe(0))y (@)1}
Note that on 't \ Bpes(g;), vi = ge™™® and on '™\ Boes(gi), vl = ge'®, so that W(vi, g) =0 on 't \ Bpes(g;). In
particular,
[ welgds=ow,
I'NBr(gi)
Also, [vi| = 1in wg(gi), so
72 / (Wi* = 1)?dx =0.

Br(qi)
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Furthermore, vé is smooth and e-independent in wgr(g;) \ wes (g;) with

/ 19,vL|* < C and / 19gvi|* < C
wRr(qi) wgs (qi)

so the main contribution to the gradient energy is via |dg vé| in wr(gi) \ wes (q;):

1 i 1 2 2 1
?Iaevgl dx = 3 Xe ()09 (o, 0)| ?dx
oR(qi)\wgs (qi) oR(qi)\wes (i)
/ (h+(p) —h—_(p))* 1
7 54X
O+(p) —0-(p))~ p

1
2

1

S —
2
oR(gi)\wgs (qi)

R
L[ —h)? 1
“2) @ —6-() p

R
2
sl (2ar) + cp) 1d
2 (T —cp) p
SS

o2 R
<27 (—) In(—~) + O(1),
T SX
for i odd. Thus we have
, a2
Ec (v wr(g) =27 (=) sline)| +C.
for odd i. When i is even, we modify h¥* to

h=(p) =y (p.0-(p)) —a; h*(p) =y(p,01(p)) + o — 2,
and follow the same estimates to arrive at:

2
Ec(v}; wr(gi)) <27 (nn—a> s|In(e)| + C.

Now, consider the (¢-independent) domain, Q=Q\ U12=D1 Br(gi). Define g : 92 — S! by:
2D

L on '\ |J B2r(g0)
= i=1

vl on dByr(gi) N Q.

By the construction of vé, the function g is e-independent, piecewise C!, continuous, and deg(g; 92) = 0.
Therefore we can find v € H gl (2) with

E.(3;Q) <C.
Hence, setting
7 in Q
ve=1 ;.
v, in wgr(q;),

we have v, € H!(Q) with

E.(ve) <27 Ds ((%)2 4 (1 - %)2> |Ing| +C,

which is the desired upper bound (3.3) and this ends the proof of the Lemma. O
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Next we prove the following pointwise upper bounds on solutions to (3.1).
Lemma 3.2. Let u, be any solution of (3.1).

(1) Suppose that €Yy < C. Then ||uglloo <2 and there exists a constant C1 = C1(2) > 0 so that |Vu.| < Cy /¢, for
all x € Q.
(i) If we further assume that €Xe — 0 as ¢ — 0, then limsup,_, o ||us|loo < 1.

Proof. Let u, solve (3.1), and suppose by contradiction that u, is not uniformly bounded, and that there is a point
ps € S such that |ug (pe)| = ||ug]|oo > 2. Set Ve = |ug|? and (using u, V rather than u,, V,), we obtain VV =2u - Vu
and

1 1
SAV = IVul? +u- Au=|Vul* + 5V (V - 1).
&

If p. € Q, V attains an interior maximum at p, with V(p¢) > 1 so that %AV( pe) > 0, which is a contradiction.
If instead p, € 0€2, note that

aVv a
LA P —ZTE[V(V — 1) +[u- g —cosalu ~g)]
av av
and hence denoting by m, := ||u¢||so and still assuming that it is not uniformly bounded we obtain:
oV

m < -=-27, [mg(mg —1)—|u-g—-cosallu -g|]
v

<=2, [mg — mg —[(me + |cosa|)mg]]
1

<-7, [mg — 4mg]
<0,

in case mg > 2. But if V attains its maximum at p, € 92, then %—‘:( pe) = 0, which is a contradiction. Therefore
mg = ||us||oo 1s bounded by 2.

Next we show that if eY, — 0 as ¢ — 0, then limsup,_, ||u¢||loc < 1. Indeed, assume for a contradiction that
(along some subsequence) m, — mq > 1. Note that if ||u. ||~ is attained inside €2, by the above |u.(x)| < 1,Vx € Q.
So suppose that p, € 3. Without loss of generality, we rotate the domain such that the normal v(p,) = €. Blowing
up at scale ¢ around the points p,, define for y € Q. := ¢[Q2 — p.] the function v, (y) = u.(p. + €y) and let g(y)

denote the boundary values g for y € 9€2;. As ¢ — 0, the set €2, becomes the upper half plane Rﬁ and we have:
Ave = > A = (e * = D,
31)5 aug 2 ~ ~
——=e—= —Tge[(lvel —Dve +[ve - 8 — Cosa]g]
av av
Note that |v;| < m, <2 by the above, so that in B;(O) we have v, — vg in CZZOC (along a subsequence.) Therefore,
using that e Y, — 0, we obtain

Avg = (Jvo|> — Dvo,

9
7% _ 0, and |uo(0)| = mo > 1.
ov

As usual, we define Vy(y) := |v0(y)|2, and we obtain for Vj:

1 1
SAVo = IVuol* +vo - Avg = — Vo(Vo— 1) > 0,
I
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while having a maximum at y = 0 with %Lvo = 0: this contradicts the Hopf Lemma. We conclude that

limsup,_,¢ ||uelloo < 1.

To establish the gradient bound, we argue by contradiction: suppose there exist sequences &, — 0, x; € Q for
which #; := |Vur (xr)| = || Vurll o satisfies txex — 0o. Blowing up at scale #; around the points xi, define vi(x) :=

Uy (xk + i) By our choice of scaling, ||vi|lco < C, and vy solves

(lok* = Dvg — 0,

A (ter)?
uniformly on € (since |uklloo = l|Vkllec < C, by the first part of the lemma.) If, for some subsequence,
trdist (xg, 0€2) — oo, then the domain #;[$2 — xi] of vr converges to all R2, and vy — v in Clkoc. Moreover, the limit
v is a bounded harmonic function on R2, and hence constant: Vv(x) = 0. However, by construction, | Vv (0)| = 1 for
all k, and hence |Vv(0)| = 1, a contradiction.

On the other hand, if #;dist (x;, 9€2) is uniformly bounded, then the domains #[$2 — xi] of v converge to a half-
space R2, with boundary condition

0 T
Sk _a [Uk(|vk|2 -1 - [(vk,g (Xk + ﬁ)) —COSOt} g (Xk + i)] — 0,
av 178 173 Tk

since % — 0 and v is uniformly bounded by the a priori bound on u, proven above. That is, vy — v which is

bounded and harmonic in ]R%r, and with a Neumann condition d,v = 0 on the boundary. By the reflection principle
and Liouville’s theorem we again conclude that v is constant, which leads to the same contradiction as in the previous
case. Thus, the desired gradient bound must hold. O

4. Isolating the defects

We begin by proving an n-compactness (also called n-ellipticity) result (see [18], [16]). We then define vortex balls,
of radius of order ¢ in the interior and of radius of order &° on the boundary of the domain, and following Struwe
([18]) we show that they form a uniformly bounded family.
4.1. n-compactness

Basically, if the energy contained in a ball of radius &? is too small, there can be no vortex in a slightly smaller
ball, B (xp). To this end, we recall that Y = Y(¢) = ¢~ for s € (0, 1], and fix 8, y such that %s <p<y<s.We

also leta € (0, %) to be chosen later.

Proposition 4.1 (n-compactness). There exist constants 1, C, &9 > 0 such that for any solution u, of (3.1) with ¢ €
(0, 0), if xo € R, a € (0, 3) and

E. (ug; B.s (xo)) <n|lng|, 4.1
then
luesl>>1—+2a in  Ber(xo), 4.2)
1

W, g) = 5(|u|2— D%+ [(u, g) —cosal> <a®> onT N B (xp), (4.3)
! / (| 2 1)2d X f W, g)ds <C (4.4)

152 Ug X 3 Ug,g)as =Ln. :

B,y (x0) NBy (x0)

We note that in case I' N B, s (xg) = ¥, this has been proven in Lemma 2.3 of [18], and hence it suffices to consider
xo € I' C 92 when proving Proposition 4.1.
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Define I', (xg) = 92 N By (xp), and following Struwe [ 18], define

F(r)=F(r;xo,u,e)=r / %{IVulz%—%ﬂulz—l)z}ds—i-% > W) |- 4.5)

9By (x0)NS2 x€dly(xq)

Note that if 9T (xo) # @, then for r > 0 sufficiently small it consists of two points.
The proof of Proposition 4.1 relies on the following estimate. For any xp € 2 and R > 0, we define (as in the proof
of Lemma 3.1)

wpr(xg) = Br(xg) N 2. (4.6)

Then, we first prove:

Lemma 4.2. There exist C > 0 and ro > 0 such that for ¢ € (0, 1), xg € I, and r € (0, ro), we have that

1
¥ / (|u5|2—1)2dx+T/ W(u,g)ds <C{r / [Vug|?dx + F(r) +r>Y },
&

oy (x0) Ty (x0) wr(x0)
where F(r) is as in (4.5).

Proof of Lemma 4.2. We denote u = u,, w, = w,(xg), and I',, = I', (xg) for convenience, as xg € I" and ¢ > 0 are
fixed.

Let ¢ € C®(Q; R?) be a vector field, to be determined later. Taking the complex scalar product of the equation
(3.1) with ¥ - Vu and integrating over w,, we obtain the Pohozaev-type equality,

1 2 1 2 2
[{—(3uu,1/f~Vu)+—|VM| W)+ —(ul” =1 (WU)}ds
2 4de

dwy

1 . 1 .
=/ E(W — D2divy + E|Vu|2chvw - Zaiwj(aiu, dju) tdx. (4.7)
wy 1]
We choose rg > 0 sufficiently small so that I N B, (xo) consists of a single smooth arc, and w; is strictly starshaped
with respect to some x| € w,, for all 0 < r <ryg.

Let A be a 2ry-neighborhood of I'. We claim that, by taking r( smaller if necessary, there exists a vector field
X € C%(NV; R?) with the following properties (see [9], [11]):

X-v=0, forallxel,, 4.8)
IX —(x —x0)| <Clx —x0|>, |DX —1d|<Clx —xo|, forallx € w,, 4.9

for a constant C > 0, for any xo € I'. The existence of such a vector field in a disk B, (xo) follows from the smoothness
of I'; to obtain the uniform global estimates (4.8), (4.9) we use the compactness of I' and a partition of unity. In
particular, note that X = (X - 7)7 >~ (x — xg)7 lies along the tangent vector on [,

We now take ¢ = X in (4.7) and estimate each term in (4.7), separating the dw, terms into the pieces along I', and
along d B, (xp) N 2. First, on I', we have X - v =0, and the only contribution to the left hand side of (4.7) is:

—/(auu,X -Vu)ds =T/ {(|u|2 — D@, X -Vu)+[(u-g)—cosa] (g, X - Vu)} ds
r, r,

= T/ {(|u|2 -1 (u, 8_u) 4+ [(u - g) —cosa] (g, 8_u>} (X-1)ds
ot aT

r

= T/ [af (%[(u,g) —cosa12> — [(u, §) — cos (3, g, u)

r
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+af<%<|u|2 —~ 1)%)} X -tds

=h—-—h+13

To estimate /1, we use integration by part and (4.9) as follows:

11=T/i{l[u-g—cosa]z}X-rds (4.10)
ot |2
r,
T 2 2
= {lu-g —cosal’(X 1) —/{[(u-g)—cosa] }ar(x.r)ds 4.11)
ar, 1,
:% r;[(u-g)—cosaf—/{[(u-g)—cosa]z]dx +0(Yr?), (4.12)
r r,

using (4.9) in the last line. Indeed, on the endpoints of I', | X - T Fr| < Cr? and on I, itself, 3; (X - 1) =14+ O(|x —

xol)-
For I, we have the rough estimate:

g

|| < YT, ((nunoo +1)%
ot

H ||X'T||oo> <CYr?,
00

using again (4.9). Finally, /3 is estimated in the same way as I:

=" To.ur-1x.
3= [ 29:((u’ =) X - zds (4.13)
r,
—r{ (P - 12 —3/(|u|2—1)23 (X -0)ds (4.14)
4 4 ' :
ar, T,
_T 1 2 2 1 2 2 2
=3 25 (w 1) =5 [ (wP=1)"ast + 000 (4.15)
r l"y

The remaining terms on the left-hand side of (4.7) may also be estimated in a simple way, using | X -v|, | X - 7| < Cr
and (4.8):

1
f {—(avu,x-w)+§|vm2x.v}ds <Cr / [Vu|*ds (4.16)
wrNQ dw, N
i/(|u|2—1)2(x-v) ds| = R f (ul> = D> (X -v) ds (4.17)
42 482 ’
dwy dB,NQ2
c
<= / (ul> — 1) ds. 4.18)
&
dB,NQ

For the terms on the right side of (4.7), we use (4.9): |0; X; — §;;| < Cr, and for ro chosen smaller if necessary, we
may assume divX > 2 — Cr > 1 in w,. Thus, the right side of (4.7) may be estimated as:
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1 1 1
/ E(Mz—1)2divX+§|Vu|2divx—;aixj(a,-u,a,»u) dxz/{4—82(|u|2—1)2—Cr|Vu|2}dx.
Wy ¥ wy

(4.19)

Putting the above estimates together, we arrive at the desired bound. O
We are ready for the

Proof of Proposition 4.1. We follow [18], [11]. If xg €  \ T, this is proven in [18], so we restrict our attention to
xg€el.
Recalling the definition of F (4.5), we note that since

of
1
77111; > E¢(ug; Wep \ wer) =/

gy

F(r)

dr, (4.20)

there exists r, € (¢7, £?) so that

n
F(re) < .
Ty -8
By Lemma 4.2 with I',, := dw,, N T", we deduce:
1 2 2
— (Jul = D“dx + Y, W(ue, g)ds
22

rg (X0) L'y (x0)

<C{re / |Vue > dx + F(re) +r27,

wrg(xo)
<C {sﬁn|ln8| + T —i—szﬂg_x}
y—B
<C'n, “4.21)

which proves (4.4) since r, > ¢”. Note that no conditions are required on 7 at this point, and this will prove useful
later on (see Corollary 4.3.)

To prove (4.2), assume (for contradiction) that there is a point xp € By (x¢) with |ug(x2)| <1 —a. By Lemma 3.2,
|[Vug| < C1/e, and hence there is a constant C > 0 such that |u(x)| <1 — %, Vx € Bce(x2) C Ber (x0). In that case,

1 1
v f (ul? = 1)?dx = = / (ul = 1)?dx

By (x0) Bce (x0)
>C a’.
We then choose 1 > 0 small enough so this contradicts (4.4) and hence (4.2) holds for all such 5 (which is inde-
pendent of xq).
To verify (4.3), we return to the Pohozaev identity (4.7). We recall that for r = r, (as in the proof of (4.4)) suffi-

ciently small, the smoothness and compactness of I" ensure that w,, = B, (xo) N €2 is strictly starshaped around some
X1 € wy,, and we have (x —x1) - v > r¢ /4 on dw,, . Taking ¥ = x — x1 in (4.7), we obtain:

[ o= v [P =10 4 =)+ 0= 0 @t B s
deor,

1
<53 /(1 — lug|»)?dx. (4.22)

Wy
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To estimate the second term in the left hand side of this inequality we use Cauchy-Schwartz,

1
f(x—m)-(v—r)(auug,afug) <2r / {§|afug|2+8|avug|2}ds,

W dwrg
and hence
r 1
% / 9,1 |>ds < Cre / |avus|2ds+2—82/(1—|u£|2>2dx
Oy, 0wy, Wrg
which yields:
8
[oPas<c [omPas+ = [ -2
0wy 0wy ¢ Wrg

"

2 2 2 8
<c'r ‘[(ug,g)—cosa]g+(|u| —l)u‘ ds +—
£

Cre Wrg

/(1 — Jue|*)? dx + C Fir)

re

8 F
<c” T2/W<u,g>ds+ ; f<1—|u8|2)2dx+ﬁ
Vg€ re
Wre

Ty,
< C////}7 {S_S +8—y}
<Ce™,
using (4.4) in the next to last line. By the Sobolev embedding theorem (on the one-dimensional set I',,), there exists
a constant C > 0 independent of xo and of & for which

lue (x) — ue (y)] < Cy/1x — yle™/? (4.23)

holds forall x, y € I,

The conclusion now follows as in Proposition 3.6 of [9]. Assume there exists x € I',, for which W(u, g) > a.

Using (4.23), there would exist a radius p = ce®, for constant ¢ > 0 independent of x¢, for which W (u, g) > 5 when

x €'y, N By (x2). In that case, we would have, by (4.4),

Cn>17 / W(u,g)ds>T%2n’csS:7[ac’,

Iy NBegs

which would lead to a contradiction for 7 chosen sufficiently small. By reducing the value of 5 required for the proof
of (4.2) if necessary, we obtain (4.3). Thus there exists n > 0 for which all three statements are valid and this completes
the proof of Proposition 4.1. O

Corollary 4.3. Let (u:)c~0 be a family of solutions with E¢(u:) < K|Ine| and %s <y <s. Then, Yxg € Q,

f(|u8|2—1)2dx+T f W (ue, g)ds < C(K)

Bgy (x0) 'NBgy (x0)

2¢2

Proof. As mentioned in the proof of Proposition 4.1, (4.21) holds for any n as long as E(u.; B.s(x0)) < n|lne|,
which is clearly satisfied with n = K. Since B,s(xp) C By, (xp), the conclusion follows. O
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4.2. Defining bad balls

We define the family of sets
ng{er: e ()% < 1—+2a } ng{xeasz: W(ue,g)>a2}.

Following Lemmas 3.1 and 3.2 of [ 18], we show that the sets S, 7, which include the defects may be contained in
a bounded number of vary small balls.

Lemma 4.4. There exists No = No(a, g,s,a), kK > 1, and points pg1,...,Ps 1. € Se, Yel, .-+, Ye,J. € Te NI such
that

@) Ie + Je < Nos

|Pe,i — De,jl > 8ke&, |pei — Ye,j| > 8ke® and |ye; — ye, j| > 8ke’
(iii)
I Je

Se C U By (ps,i) and T C U Bygs (}’e,j)~ (4.24)
i=l1 Jj=1

Proof. The is essentially the same as in Struwe [18], who considered the case of Dirichlet boundary conditions, for
which all of the “bad balls” have the same radius ¢, so here we need to make some modification due to our boundary
conditions. As the existence of e-balls covering S; is the same as in [18], we only need to treat 7.

By the n-compactness Proposition 4.1, if y € T, it follows that E.(us; B,s(y)) > n|Ing|. Furthermore, applying

the Vitali’s covering Theorem to the collection (B.s(y))yer,, there is a finite choice y1,..., yn, € T¢ for which
(Bos (3))i—1....n, are disjoint, and [sz NUyer, B (y)] c (U,N:] | Bs.s (yi)). Therefore it follows:
N
Ninline| <) Ec(ue; By (7)) < Ee(ue) < K|Inel, (4.25)

i=1
which means that N1 = N (¢) is uniformly bounded from above.
Next, using the same argument as in (4.20), there exists r, € (g7, €P) such that

(v — B)lInelF(re) < E(ue; wgp\er (y)) < KlInel, ie. F(ry) < Cy

Ve, y € T, so by Lemma 4.2 we obtain the uniform estimate

1
¥ / (ugl> = D?dx+ Y / W(u, g)ds < C(F(re) +r2Y + O(1))
@rg () Lre (v)
< (3,

uniformly in e,y € T.
On the other hand, by the Holder bound arguments employed in the proof of Proposition 4.1 (see (4.23)), there
exists constants cp, ¢; (independent of ¢) such that Vy € T,

Y, / Wu,g)dx >cy >0,
Bcl.ﬁ;s ()’)
independently of €, y € T,.

Now following Struwe (see Lemma 3.2 in [18]) and using Vitali’s covering Theorem again, we conclude that there

exists a finite collection yi,...,y; € T, with J uniformly bounded in & such that the sets {Bgs (y f)}jzl _y are

disjoints and T, C Ujj-zl Bses (). Finally, by the same argument as that of Theorem IV.1 of [4], by enlarging and if
necessary fusing together vortex balls which intersect, we may find « > 1 and modified centers p;, y; for which (ii)
holds. O
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5. Classifying the defects

Our goal in this section is to classify defects xo € Q, defined as a center of one of the “bad balls” constructed in
Lemma (4.4), and associate a degree to each. For any x¢p € 2, and 0 < r < R < 00, denote the annulus centered at xg
by

Ar,r(x0) = wr(x0) \ wr(x0).
We will analyze the structure of u, in such annuli around defects.

We begin with a lemma which shows the energy densities are coercive near their minima:

Lemma 5.1. For any o € (0, %), we can find a constant Cy > 0 and ag = ag(«) such that for u € C and g = e’ e
S1cCwithW(u,g) < aé we may represent u = fe'V with

|f2 -1 </2W(u,g) < «/an and
either | —y —a| < Cor/ W, g) or | —y +a| < Coy/W(u, g)

Note that by choosing ag sufficiently small, the intervals

Io={y : ¥ —yFal <CayW(u, g)} (5.2)

will be disjoint. In particular, in places where W is small, we know that # must be close to either ' V=0 but not both.

5.1)

Proof of the Lemma 5.1. Let a := /W (u, g) < ag, ag to be determined.
%(|u|2—1)2§a2 e 1-V2a<u?<1++2a

It follows that for ag < %, a € (0,ap), we may write u = fei‘/’ with
l—x/iasfzgl—i-x/iaandq&::t/f—ye[—n,n].

This choice of ¢ is natural since we have in addition,

[(u,g)—cosw]zsa2 <= cosa —a < fcos¢ <cosu +a.

Therefore
cosa —a cosa +a

——— <08 < —,
\/1+«/§a \/l—ﬁa

and it follows:

cos¢p < (cosa+a)(l+4a) <cosa+ Cia (5.3)
cos¢ > (cosa —a)(l —a) > cosa — Cia, 54
and hence

|cos¢ —cosa| < Cia.
Since « € (0, %), and ¢ € (—m, ), choosing ap = ap(«) sufficiently small, Va € [0, ag), we have
{pe(—m,m):|cos¢p —cosa| <Cia} C(—a—Cyqa,—a + Cya)U (@ — Cya,a + Cya).
Recalling that @ = /W (u, g), this completes the proof. O

For the remainder of the paper, we fix once and for all a value ag = ap(«) such that the intervals Z in (5.2) where
Y — y is close to either o or —« are disjoint.
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We now treat the question of classification of defects, and their associated degrees. If xo € Q2 then the defect is
an interior vortex, and its degree d(xp) € Z is defined in the usual way. When xo € ' = 92 the situation is more
interesting and more subtle.

In case xp € I', for R sufficiently small the piece of the boundary d A, g(xp) N dS2 consists as before of exactly two
arcs along I'r = I'N Br(x0), which we will denote by Ff - (See Fig. 1.) We recall from the upper bound construction

in Lemma 3.1 that Ff may be parametrized as

g =1{(0,04(p): 0<p <R},

for smooth 64 (p), with 64 (p) = O(p) and O_(p) =7 + O(p).

We now apply Proposition 4.1 to u, to conclude that for any 0 < r < R with A, gr(xp) disjoint from the bad
balls covering S, N T, we have |ug|2 >1—+/2ain A, r(xp) and, for xo € I', W(ug, g) < a® on F}E. In particular,
Lemma 5.1 applies and we obtain the representation

ue = f(p,0)eV P with |f2—1| <~2ain A, (5.5)

and the phase ¥ on FfR (x0) is chosen with either ¥ € 7_ or ¢ € 7, that is,

D |y —y—a|l <Cuys/W(u, g) <Cqaor
D | —y +a|l < Cu/W(u, g) < Cya,

By the continuity of g = ¢/”, for R small we can treat ¥ (x) = yp := y(xg) on I'g, and in fact the complex phase
difference of u along each of F% is also small (on the order of R) and hence the winding of the phase around a
boundary vortex occurs principally around the half-circle d Bg(xp) N 2. Introduce polar coordinates (p, ) centered
at xo, with 6 measured from the unit tangent 7 to I" at x¢. (See Fig. 1.)

We distinguish three possibilities for each boundary defect xg € I, define the degree, and introduce a new topolog-
ical index t(xg) € {—1, 0, 1}, the “boojum number”.

CLASSIFICATION OF BOUNDARY DEFECTS:

(i) “Light boojums”.
In this case, (I) holds on I~ R(xo) while (II) holds on F+R(x0) This means that the phase decreases by 2«
(modulo 27) along I'z. So let n(xg) € Z be the number of multiples of 27t by which the phase increases around
xo. Note that n(xo) represents the degree at xo. In particular, we may write u(p,0) = f(p,0)exp(iv(p,0)) in
polar coordinates centered at x¢, with phase

0
v(p,0) =y —« +2;(01 +nxo)m) +¢(p,0), 04(p) <0 <60_(p), (5.6)

with ¢ a smooth single-valued function in A, g(xo). Note that for light boojums, (iu, g) = |ue|sin(yy — y)
changes sign, from positive to negative, moving counter-clockwise across the boundary defect xo. We define the
boojum number t(x¢) = —1 for a light boojum.

(i) “Heavy boojums”.
In this case, (IT) holds on | (xp) while (I) holds on F;f & (x0). This means that the phase increases by 2« (modulo
2m) along I'g. Again, let n(xg) € Z be the number of multiple of 27 by which the phase increases. As above,
n(xp) represents the degree of a heavy boojum, and using polar coordinates centered at xo € I', we may write

u(p,6) = f(p.0)exp(iv(p.6)), with phase

0
Vip.0)=yo+a+2_(—a+nx)m)+¢p.0). 0+(p) <0 <6-_(p). (5.7

with ¢ a smooth single-valued function in A, r(xp). As for light boojums, (ius, g) = |u|sin(yy — y) changes
sign across the defect x¢, but for heavy boojums it goes from negative to positive as we move counter clockwise.
The boojum number for a heavy boojum is 7 (xg) =
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(iii) “Boundary vortices”.
This occurs when either (I) or (II) holds on both FfER(xo). In particular, the phase i rotates by 27n along
0B, (x0) N2, with n € Z, so in polar coordinates we may write

V(p,0)=rEta+2n0+¢(p,0), 64(p) <6 <06_(p), (5.8)

for smooth, single-valued ¢ (p, 6) in A, r(xp). The degree associated with the boundary vortex is n = n(xp) € Z,
and the boojum number 7 (xg) = 0. Note that the sign of (iu,, g) = |ug|sin(yy — y) does not change across a
boundary vortex.

Remark 5.2. If we extend the modulus and phase f, ¥ to all of I'g by linearly interpolating in I'; from the values
in FR, we may define a nonvamshmg extension ity = fge”/’s of u, to all of I'g. Setting i1, = u, on d Br(xg) N2, we
obtain an S!-valued map | K s dwgr(xo) = S!, whose degree measured on dwg(xp) is n(xp), as defined above.

Remark 5.3. It is here that we see that the case a € (%, 7) is the same as the case a € (0, %): it only exchanges the
role of “heavy” and “light” boojums.

Now that we have defined degrees corresponding to the bad balls constructed in Lemma 4.4, we may verify that
they must always sum to the degree D = deg(g; 92):

Lemma 5.4. Let {By:(pe,i)}1<i<l,» {Bies (Ve,j)}1<j<y, be asin Lemma 4.4, and di = n(pe;), nj = n(ye ;) € Z be
their degrees. Then,

I&‘ ‘]8
deg(g: 0Q)=D =) di+ Y nj.

i=1 j=1

The proof of Lemma 5.4 involves excising half-disks around the boundary defects, and redefining u. on the arcs
['r(x0) as in Remark 5.2. The details may be found in part (i) of [1, Lemma 5.3].

6. Energy lower bound for defects
We are ready to prove lower bounds on the energy in annular regions around the defects.
Proposition 6.1. Suppose E.(u.) < K|Ine| with constant K mdependent of e. Assume xo e ' =0, R >r > &°, and

that |u|2 > 1 — «/2a on the annulus A r(x0) and W(u, g) < a? on F &+ If x0 has degree n(xo) and boojum number
T(xg) € {—1,0, 1}. Then, there exists a constant C (depending on o, a and d082), such that:

- / \Vue |2 dx > 27 (n(xo)—r(xo)ﬁ) n_c. 6.1)
2 T r

AR

It is well-known that for interior vortices xg € €2, the energy lower bound is given by

3 / [Vuel"dx 2 m (n(x0))"In(-=) = C

Ar,R
Proof of Proposition 6.1. For simplicity, we drop the e subscripts, and write n := n(xg) and T = 7 (xg). We may unify

the polar coordinate representations (5.6), (5.7), and (5.8) using boojum number, and write u(p, 6) = f(p, 0)etV (0.0
in Ay r(xp) with

20
Y(p,0) =y +2n0 + 1 <1 — ;) +¢(p,0). 04(p) <0 <6_(p). (6.2)

Thus, we have:
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Vuel = LIV = 122 (n v 2) Vo + Vo
— f2 [4 (n - r%)z Vo2 —|—4<n — f%) VO .V + |v¢|2}

=4(n—t%>2%+8, 6.3)

with remainder term,
a2 1 ay 1
&= 2—14(——)— 42(— ) v
e I R C 289+f| oI,

We claim that Edx > C, with constant C independent of ¢ as long as r > &°. Assuming the claim for the

Ay, r(x0)
moment, we obtain the desired lower bound, since then,

1
2/|Vug| dx>2 n—r /—dx+C
Ar.R
R 0~ (p)

2 1
=2(n—rﬁ) / / ~dodp+C
m o
r 6% (p)

R

2 1
=2 (n %) / L0y 6% (o)1dp + C
) ) p

r

R
=2n(n—r%>2/%d,o+c

J
— 2 (n - r%)zln(g) tc.

It remains to verify the claim. We will start by showing that the first term in £ has small integral. Using the upper
bound on the energy from Lemma 3.1, and recalling (see Section 4) r > &° with %s <y <s,we have:

1
2

2, 1 252 1

a-r );dx = (f A= f9)dx)( FdX) (6.4)

- 1

) 1 1.2
< _Ce |lne|(r—2 - F) -0 (6.5)

ase — 0.
Next we show that we can bound the second term in £ by the (positive) third term. We write,
1 a¢ 3¢ 1 f2 -1 a¢

/f2 T30 —f (6.6)

rR

and estimate each term separately. For the first term on the right hand side, we write:

R 6% (p)

/a"’l //——d@d
30 p2

ArR 67 (p)
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R
d
= /[tﬁ(p, 07 () —d(p, 07 ()] 7'0

and therefore

ap 1 dp dp

— —dx|<C — —
/ae;ﬂx— / |¢Ip+ / I¢Ip
r.R F e (x0) T, g (x0)

To continue we require the estimates in Lemma 5.1. Note that the intervals Z4 for the phase { may be defined
modulo 27, and the fact that n = n(xg) is the degree of the defect implies that {(x) — 2mn € Z_ or Z for all
X e FfR. For concreteness, let’s assume ¥ — 27n € Z_ on F;R; all other cases may be handled in the same way.

From Lemma 5.1 (with the above observation) we may then conclude that on F; r(x0) it holds:

Coy/Wu,p) > —y —a —2nn|

=lp—ao +2(% +n)07 () +¢(p,0) —y —a —2nx|
-
=1y — ) + 20 (% - 1) £ 2007 (p) — 70) + b (p. 0)]

2
= o0, O —Ivo—vl— ;IQ_(/O) — 7| =2nl0" (p) — 7|
> |¢| = Cp.

Therefore on I e (x0)

9] < Coay W(u, g) + O(p),

and similarly on F;LR (x0).
In consequence we have

dp 1
[ s [ o /Wamdet oo ©.7)
I R (x0)UT; ¢ (x0) T (r0)UT,  (x0)
We split Ff & (X0) in two parts:
TR (x0) =T, (x0) UT, 4 (x0),
and using the Corollary 4.3 we estimate:

1
f Wag)dp

Iy (0)UT,y (x0)

dp
< / W, g)dp / e
Uy (Go)UT,y (x0) Iy (0)UTy (x0)
C
=——=o(),
rzY

since r > &* = Y~ !. Furthermore, by the global upper bound on the energy E.(u:) < K|In¢|,
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1
/ ;\/W(u,g)dp

T p&UT, p(xo)

d
< /1 W(u, g)dp / =

[ RE)U, p(xo) Iy G0UTL, L (x0)
<CY Ynele™” = 0,

since s —y > 0.
We are left with estimating the second term in (6.6):

f2—1a¢ 1 5 193¢
Sg—sflf —1] ——Id

D=

<o /If /ﬁvm

1
2
<& | K&?|Ing| / Vo>

Ar,R

<Ce'*/|Ine| / Vo>
ArR _

=oax/ﬁvw%%+oa> 68)

Ar,R

Finally, the last term in £ is bounded below,

/f2|V¢| dx > (1 — v2a)? / IVo|?dx,

A ArR

and hence this positive term controls (6.8). Putting all of these estimates together, we obtained the desired lower bound
on the residual term, f A g Edx > C, and the desired lower bound is established. O

Remark 6.2. We note that it is in deriving the estimate (6.7), on the energy contribution of the “excess phase” ¢ to
the energy of a boundary defect, where we need to introduce the boundary penalization of (Ju?> = D? in W(u, g).
(See (2.20) and the following remarks there.) In particular, while we know that |u ?>1-—+2a>0 away from
the bad balls, this is not a strong enough estimate to control the error term in (6.7) without introducing additional
logarithmically growing terms.

Next we compare the energies of boundary boojums and boundary vortices. First, we remark that, since the phase
¥ =~ y +a away from the bad balls, and 0 < o < 7, light and heavy boojums must be paired and in fact must alternate
as we trace out I' = 9. In addition, given the lower bound (6.1) for annuli, we observe that the lower bound for the
energy of a “ground state” boojum pair, with (r, ) = (0, —1), (1, 1), is smaller than that of a boundary vortex since

o2 o2
Ca::(—> +(1——) <1.
T T
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This suggests that boojum pairs will always be energetically preferred over boundary vortices. We will indeed show
this in the course of proving the main theorem, but the following fundamental lemma is suggestive of this fact (and
will be instrumental in proving it).

In the following lemma we will denote by n(} the degree of a boundary vortex, and by nlJr the degree of a heavy

boojum while n;” will be that of a light boojum:

Lemma 6.3. Assume 3NV, N? ¢ {0,1,2,...} and integers [n(l)] S {ni ,nf}i_1 Nb with ZlNzhl (n:r +n;)+
J_ v —Adyeeey
Zjvzl n? = D. Then
i N o o
S+ Y [0 + 5%+ o = )] = IDIC. 6.9)
j=1 i=1 T T

Furthermore, in case that D > 0, we have equality if and only if
nY=0Vj, nf=1Vi, and ny =0,i=1,....D=N",
while if D < 0, we have equality if and only if
n)=0Vj, nf=0Vi, and ny=—1,i=1,...,D=N"

Remark 6.4. We note that the minimum value is therefore obtain by N boojum pairs of light and heavy boojums and
with no boundary vortex.

Remark 6.5. In proving Lemma 6.3 it is advantageous to list the different types of defects (light and heavy boojums
and boundary vortices) separately, but for later purposes it will be more convenient to make a single list of the defects
Ye.e, using the integer degree ny and boojum number t, € {0, —1, +1} to distinguish their topological type. In the
latter case, the lower bound expressed in equation (6.9) is reformulated as:
NY4+N®
®2
Y (—n—)?=|D|Co. (6.10)
=1

Recall that T = 0 for a boundary vortex, T = =1 for a heavy, respectively light, boojum and that NV + N? is the total
number of boundary defects.

Proof. Assume D > 0. We use induction on D € N and assume that the lower bound is false, i.e. that the inequality
(6.9) is reversed; for D = 1 we then have:

NY N®
S+ Y [0 + 2P+ nf - 2P <
j=1 i=1

As we have a sum of positive terms, this means:
NV
Y mD*<Co<l = nt=0v,.
j=1
Further,
Nh
_  « o
S or+ 2P o - 27 =c,
= b4 b1g

which means that for each i we have

(07 + 22+ o = 2] sce =P+ -2 <1,
T T T T
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and hence either

(n7,nf) = (0, 1) or (0,0) or (~1,0).

Since D =1 > 0, for at least one iy we have

(nj,»ny,

nf)=(0,1), and (n;, +—)2+(n n) =Cq,
o)
+, %0 -_ %o b_ 1 in=1.m".nH =01
Y|0f+ ey = ) <0 = N =Lig=1,(17.n{) = 0. ).
iio
This corresponds to the case of equality in (6.9) with D = 1, and hence we conclude that (6.9) must hold in the case

D=1.
Next, consider the case D > 1 and assume

Z<”°>2+Z[(" + 5%+ - 2] = DC (6.11)

holds with D replaced by D —m, m = 1,2, ..., D — 1, with equality if and only if n(j). =0Vj,n; =0Vi, and nl+ =
1,i=1,...,D—m= N’ and we will prove that this still holds for D, leading to the conclusion of the Lemma in the
case that D > 0.

Since D > 0, there must be a positively charged defect somewhere. If 3 n(} > 1, we eliminate that boundary vortex
to obtain a new configuration. Indeed, assuming without loss of generality that j = 1, we have a configuration

<{n(f)‘]‘/=2,.._,1vt"{ni’nﬂi:l """ Nb)’

with degree D — ”(1) <D-—1,and

Z(no) +Z[(n + 22+ 0nf = 2| =DCu— ) (6.12)
= (D —nCq +n)Cq — (n9)?
< (D —n)C,,
since ”(1) > 1 by assumption.
By induction hypothesis, we conclude that
n)=0vj=23,....N",N* =D —nl,n; =0Vi,n} =1Vi=1,....,D —nf.

This means that the left hand side in (6.12) becomes:
N Nb o o
042 - 2 + 2
Z(nj) +;[(”i +;) + (n; —;) ]Z(D_nl)cou
_ i

which is a contradiction, so this case cannot occur.
Thus, it must be that 3, which without loss of generality we will take to be 1, with n} + n?‘ > 1. Moreover, since
for x <y,

@2t (= I < (v 4 2P+ (= )2,
T T T T

we may assume that nT >ny, nT > 1 since otherwise we would switch nT and n| and obtain a smaller value in
(6.11).
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Note that

— o o _ o o
(n + =2+ 0 == =0 + 2+ 0 -1+ - 2))°
T T T T
2
+ @ - _ %y -
> +—=)+ 0] —14+01 ) =n; +nf —14C, (6.13)
T T

so eliminating this boojum pair to create a new configuration with degree D = D — (n; + ni+) < D, we have from
6.11)

NV NP

_ (07 o _
Z(n?)z + Z [(”i + ;)2 + (nlTF - ;)2] <CyD —[n; ~|—n‘1" —14Cyl
Jj=1 i=2

={Co(D = 1) = [n] +n] — 11}
< Cal(D =1) = (ny +nj = 1]
=DC,
with equality if and only if n; =0, nT = 1. By the induction hypothesis, D < D, and
n)=0VjN'=D+ny +nf=D,ny =0,n{ =1,i=1,...,D.

This completes the proof for D > 0.
When D < 0, we note that this reduces to the positive case if we replace n(]). — —nY, nj — —n;, and n; — —n;r,
that is, negative degree heavy boojums are counted the same way as positive degree light boojums, and vice-versa.

The case D =0 is trivially true. 0O
7. Proof of the Main Theorem

Returning to the bad balls constructed in Lemma 4.4, we may pass to a subsequence &, — 0 for which there exist
points & € Q, k=1,...,N', & el k=1,..., N?, for which

Ven,j — Ck forsomeke{l,...,Nb},and 7.1
De,i —> & forsome k € {1,...,N’}, or  pg, ;i —> & for some k € {1, ...,Nh}. ’

That is, certain interior vortices y; for u, might accumulate at a boundary point ¢, € I'. Our task is to provide a

global lower bound on the energy to match the upper bounds from Lemma 3.1. To do this we adapt techniques of

vortex ball analysis introduced by Jerrard [8] and Sandier [17], but we must treat the various types of defect (boojums,

boundary vortices, interior vortices, and interior vortices approaching the boundary) with care, as each leads to a

different contribution to the energy.

For o > 0, define

NV Nb
By = (U B, (.f;k)) U U Bys(gr) |, and Q,:=Q\ Bs. (7.2)
k=1 k=1

Lemma 7.1. Let 1 > o > 0 be fixed. Then there exists C = C(g, o, 2) such that:
o . 1
Ec(ug; Bs) = 2m sCy | D ln<_>+ca lfscafi,
e
and
o . 1
Ee(us: By) =7 DI In () +C. if 5Ca> 5,
€
Combined with Lemma 3.1 we may then conclude that the energy is bounded above away from any neighborhood
of the defects:
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Corollary 7.2. For any o > 0, there exists C such that:

i 1
Es(Mg; Qor) = 2JTSC0¢ |D| |1na| e l.fsca = 21,
7|D|||Ino|+ C, if sCq > 5.

Proof of Lemma 7.1. We let 1 > o > 0 be given, but such that
o’ <4min{|§,~ —&jl, 16 —¢jl, dist(§, D) |i#j, i=1,...,N", j:l,...,Nb],

so that the balls B, (§;), Bss(¢;) be well separated in Q. We take ¢ > 0 along the subsequence employed in (7.1)
above. By taking a further subsequence we may assume that each of the centers of the bad balls constructed in
Lemma 4.4 lies withing o of its limiting &; or ;. We assume ¢ — 0 along this subsequence, but without explicit
notation by subscripts.

First, we separate out the “bad balls” defined in Lemma 4.4 whose centers converge to interior points &; €  (see
(7.1) above). Along the subsequence, the total degree due to these, D" is constant, and applying the result of Sandier
or Jerrard in a slightly smaller domain Q" € 2, we have the lower bound for the energy in this collection of interior
balls,

NV
E. (u U s @k)) =7 D" 1n(Z) +e, (7.3)

k=1

for any fixed o > 0.

For the bad balls which accumulate on the boundary we employ the same procedure introduced in [17] to obtain
lower bounds for the classical Ginzburg-Landau functional with Dirichlet boundary condition, adapted to deal with
boundary defects. We construct families of balls, B(t), t > 1, containing the bad balls of Lemma 4.4, and growing in
time. Each ball B (r) € B(t) carries a degree, a radius R; (), and a “seed size” r; (), which in some sense remembers
the scale of the original ball (O(e) or O(e*).) The lower bound is derived through a two-step evolution. The first
step is “expansion”: to continuously grow the balls’ radii, and use Proposition 6.1 to estimate the energy in the annuli
contained between the expanded balls and the original bad balls, in terms of the logarithm of the ratio of the radii.
When two or more balls come into contact, the second “merger” step combines balls together, and uses Lemma 6.3 to
bound the energy in the resulting larger balls from below. These two steps are repeated until the radii of the growing
balls exceeds o.

To do this we need to further separate the remaining balls into two classes, those whose centers lie on the boundary
versus interior balls converging to the boundary. Assume that sC, < %; the modifications required for the opposite
case will be described at the end of the proof.

Step 0: Initialization. Set the initial time #p = 1 (for convenience), and begin the process with the remaining bad balls

as defined in Lemma 4.4, numbered in a single list, B! (to),i=1,..., Ny. Define two index sets Z,, I as follows:

e Fori € T, B'(t) are centered on the boundary I". Boundary balls have initial radii r; (fo) = k&, and carry both a
degree n; and a Boojum number ;. We let D° := > e7, i» the total degree of defect balls centered on 9€2.

e Fori € T/, Bi(to) lie in the interior (but accumulate on the boundary as ¢ — 0.) These balls have degree d; and
initial radii r; (f9) = r&. The total degree of defect balls approaching €2 will be denoted D’.

We note that by Lemma 5.4 we must have D™ + DO 4+ D’ = D, the total degree associated to the boundary function
g. We also define

Dt =D+ D' =D - D",

and note that D is also constant in €.

The values r;(fp) are initially chosen to be the actual radii of vortex balls, but following Sandier [17] we think
of them as a “seed size”, which will change in the process of merging the expanding balls but retain the order of
magnitude of the original radii.
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Step 1: Initial expansion. We grow the radii of each ball continuously in time 7, maintaining a uniform ratio of the
radius of each ball to its initial radius. We do this in a different way depending on the two classes of bad balls near the
boundary. We recall that the initial time ty = 1. If B(#p) is centered on the boundary I" and B;(fp) is an interior ball
converging to the boundary, we require that their radii R;(¢), Ry (¢) satisfy:

Ri@) 1 _ (Rz(ﬂ)s (7.4)

ri(to) to r2(to)

By (ii) of Lemma 4.4 we can increase ¢, expanding each ball for some positive time ¢ > fy = 1, in which the balls will
remain disjoint. During this expansion phase the seed sizes r;(¢) = r;(fy) remain constant. Call #| >ty = 1 the first
time at which two or more expanding balls touch. Applying Proposition 6.1 to each ball at time 1 =#) <t <t, we
obtain a lower bound in each annulus, of outer radius R;(#) and inner radius r; (fp) around each center:

NO . NO . .
Eo |ue: | JB' @) | = Ee [ ue: | JB )\ B (%))
i=1 i=1

2 Ri() z(t)
> Z 2 (n,' — r,-%) (o) + Z +c

i€l

ZZn(ni—ri%) +Z & ln—+c1 (1.5)

i€l zeI/

Using Lemma 6.3, (see also (6.10)) we then obtain a lower bound on the energy in the expanded balls near 92,
o T t
E|u: | JB 0] = [27[Ca 1D°| + —|D’|] In— +cp
| s fo

t
> 7ulD’|In— +er, (7.6)
0
for 1 =1y <t <1, where we recall D? = DY 4+ D’ and denote

1
u:min{ZCa , —}. (7.7)
s
Step 2: Merging. At time t1, some of the expanding balls will come into contact with each other, in the sense that their
closures will intersect. The merging process is based on the observation:
R Ri+R
R R e BT R (7.8)
r %) ry+nr
Thus, we can combine balls whose closures touch into new balls by summing the radii, and the lower bound will be
preserved if we adjust the “seed size”, which remembers the radii of the initial balls, accordingly. That is, the new
denominator 7 = r1 + ro will no longer be the initial radius but will be a quantity of the same order of magnitude.

If the closures of two or more interior balls B(z}), . , Bk (t1) touch, (but remain disjoint from boundary balls),
they are enclosed within a new interior ball, B/ (1), of radlus R (t1) == R1(t1) + - - - + Rk (21). The degree of this new
ball will be dj = lel d;, and we will choose a new “seed size” 7 (t) :=ri(fp) + - - - + rr(fo) = O(e). In this way,
we are maintaining the ratio,

Rj(h) ‘Y:[Ri(tl):r:t_l i=1 k
70 rito) | 10’ o

The energy contained in the new ball at # = #; may be bounded below,
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Ee(ue: BI) = ij Ee (ue; B'(n)

i=1
>an21n[ } +0(1)

> —|J,-| ln o, (7.9)

The case of two or more boundary balls B! (1), - Bk(t1) merging is only slightly more complicated. As above,
the new merged ball B/ (t;) will have radius R; (tl) = Zl 1 Ri(t1), and new “seed size” 7;(t1) :=ri(to) + -+ +
rr(to) = O(e®). We recall that light and heavy bOOJumS must alternate along I', and thus if we enclose two or more
boundary balls in a larger B/ (t1), the boojum number of the merged ball 7; = Zf:l 7; € {—1,0, 1}. Likewise, the

degree also sums, 71 = Zle n; € Z. Thus, the new boundary ball’s energy may be bounded below by:
k
E; (“8; éj(tl)) = ZES (”s§ Bi(ﬁ))
i=1
k a2 I3
> 2 i —Ti— ) In| — o(1). 7.10
=3 m(ni—v>) “[;J* () (7.10)

The most delicate case is when interior defect balls collide with boundary balls. (If interior balls contact 92 itself,
we can think of this as the merger of interior balls with an empty boundary ball, of radius, degree, and boojum number
all zero.) Assume k boundary balls and ¢ interior balls (with radii R; (1) and seed size r;(tp)) meet at t = ;. We create
a new boundary ball B/ (1) with radius and new seed size,

_ k k42 k k+t
Rj() =) Rit)+ Y [R)F,  Fit)=) rit)+ Y [riw)] =0,
i=1 i=k+1 i=l i=k+1

AsO<s<1,R j(t1) is larger than the sum of the radii of the old balls, and so B (1) encloses each of the merging
balls inside. Employing the key observation (7.8), we obtain the same lower bound on the energy in the new boundary
ball (7.10) as in the previous case.

Putting each case together, we have created a new family of defect balls {Bj (t1)}j=1,...n,, Whose union contains

.....

the expanded balls UNO Bi(t1). By the merging process, the closure of these balls is disjoint. We divide the balls into

two classes via the index sets Zp, and 7' (separating the family into balls centered on the boundary versus those in the
interior but approaching the boundary), and denote by

= Zﬁj and D' = Zc?-,
jel, jeT

the total degrees. Then, applying Proposition 6.3 we have a lower bound:

ZZn(ni—riz) +Z 1dj| ln—+0(1)

jei;, /GZ’

v

Ny
E;|ug; U Bj(tl)
=1

v

0 T =
[2nca D0+ 2D |]1n— +0()
s o
t
znulDant—l—i—O(l), (7.11)

0

in terms of the new ~rnerge~d defect balls. (We note that, while DO, D’ may be different from DY, D' because of merging,

Dt=p+D'=D"+D')

Step 3: Repeat as necessary. Restart the expansion process in Step 1, but starting now with the merged balls

{BJ (1)} j=1,..,N;» Whose closures are disjoint. Dropping the tildas, we expand the balls according to (7.4) but for
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t > 11, with the new seed sizes r;(#1). Again, expansion may continue until two or more expanded balls touch, at some
t > t1. Applying Proposition 6.1 in each annular region B/ (t2) \ B/ (t1), we obtain a lower bound analogous to (7.5)

Ny
(ug, Ul Bf'm)]) = 32 (ns - ’f'%)z f(g " Z
J

i€l

o 2
ZZn(nj—rj;> +Z d; ln—+0(1)
J€Tp teI’

> [2nca DY) + z|D’|]1nt— +o()
s )

t
> 7| DY lnt— +0(1),
1
with u defined in (7.7). Combining this with (7.11) we have improved our lower bound to:
Ny Ny Ny
E. (u U Bf(r)) > E, (u U[B o) Bf(n)]) + E, (u Y Bf(n))
i=1 i=1 i=1
b t
>mulD”| lnt— +O0(),
0

forall r € (¢, 1p).

This process must terminate after a bounded finite number of steps, as by Lemma 4.4 the number of bad balls is
uniformly bounded in ¢. After all the mergers are finished, there are only N? boundary balls remaining, each centered
on I', converging to the points ¢ € I', and the expansion step may continue without interruption until the sum of

the radii Zjv:b 1 Rj(ty) = o°/2. Since the seed size r;(t) = O(e*) for boundary centered balls, we obtain (for all
sufficiently small ¢ in the subsequence),

N® Nb
Ec|ue: |JBos @) | = Ec [ue: | B/ (1)
j= i=1

>n,u|Db|ln +0(1)

> | D ln—v +0()
p
b O-
=smpu|D”)| In—+ O(1)
&

For a lower bound on the energy contained in all of the balls, we include the lower bound (7.3) on the energy of defect
balls contained in the interior of 2. Thus, we have

Eo(ue: B )>JT[MSID”|+|D’”|]1H( )+c.

where B, is defined in (7.2). In case u = 1/s <2Cy, since D = |D? + D"| < |D?| + | D™ |, we obtain the desired
lower bound and the proof of the lemma is complete. In case u = 2C, < 1/s, we have 1 > 2sC, and a similar
argument leads to the desired lower bound,

E.(ue: By )>7'r[2sC |Db|+|D””|]ln< )+c

>275Cy|D| In g +c. O
I3

Remark 7.3. We note that when defining the collection of bad balls B, we may delete any balls (interior or boundary)
for which the degree deg(u,; dB:(£)) =0 (or deg(u.; dBes (§)) = 0 for boundary balls.) Doing so does not change
the lower bound on the energy contained in the bad set B, and thus any bad balls with net degree zero form part of
the “regular” set where u, converges.
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Proof of Theorem 1.1. From Corollary 7.2 we can choose a subsequence u, of minimizers which is bounded in
H! (2\ By; C), for any small o > 0, and for which the corresponding bad balls (from Lemma 4.4) converge to the
defect sites & € Q2 or {; € I'. By the upper bound in Corollary 7.2 (extracting another subsequence, if necessary),
Ug — Uy IN Hch away from the defects & € 2, ¢; € I', with |u,| = 1. As in [18] the limiting u, is an S!-valued
harmonic map with defects on the finite point set ¥ :={&,¢; |[i=1,...,N", j=1,..., Nb}. Following [4,16]
the convergence may be improved to Hllo (2\ %) and Cllo’f (Q\ ¥). In particular, passing to the limit in (3.1) on
'\ {¢j};=1,... v, we may conclude that W (u,, g) = 0 away from the boundary defects. That is, u, = ge™® on the
boundary arcs determined by the defects on I". We may also conclude that the degrees d; (corresponding to interior
limiting defects &;) and n; (corresponding to boundary limiting vortices ¢, with boojum number ;) are preserved in
the limit.
We now fix

I . . . .
R§Zmln{|f§,~—§,~|,|§,~—{j|,dlst(‘§,',[')|l7£], i=1,... N ]:l,...,Nb},

so that the balls of radius R around each defect are pairwise disjoint. For any o > 0 with 0¥ < R, we apply Proposi-
tion 6.1 to u, in each annular region A, g(&;), Ass g(£;), to obtain a lower bound,

Ee(ue; Qo) = Ee | ue; @\ | [ J Ao rE) U Aos r(Z))
i J

J

2| R
> JTZdi2+2ﬂsZ<nj—rj%> In—+0(1).
i

From the upper bound in Corollary 7.2 and Lemma 6.3 we then have:

wusD|Ino| > Eg(ue; 205)

> nZdiz—l—ZnsZ(nj—rj%)z ln§+0(1)

v

R
Y |di| 427 Cys|DP| | In = + O(1)
N o

- 1

[ int b R
> [7|D""| + 27 Cys|D |]1n—+0(1),
L o

with equality if and only if d; = sgn D', and n; = 0 for r; =0, 1 while n; = 1 for r; = —1. As this inequality is
true for all o > 0, we must have

suIDl = Y ldi] +2Cos| DI = s (ID™] 4 D) = sl D, (7.12)

1

and thus each term is equal.

If we assume u = 2C, < 1/s we must then conclude that d; = 0 Vi, and D = DP, so all of the topologically
nontrivial defects occur on the boundary, with degrees n; =0 for t; =0, 1 while n; =1 for 7; = —1. Consequently,
there are exactly 2D defects, alternating between light and heavy boojums. On the other hand, if © =1/s < 2C, then
the equality of each term in (7.12) forces D? = 0, and hence D = D™ and d; = 1 for all i. In this case there are
exactly D interior defects. When 2Cys = 1 each defect (boundary or interior) has the same energy cost at highest
order, and the question of characterizing the defects is more subtle. O

8. Renormalized energies

After proving Theorem 1.1, which details the nature of defects under weak anchoring to oblique angle condition
at the boundary, it is natural to ask whether we may determine the location of boojums in the & — 0 limit. This
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involves verifying (as in [4]) that the defect locations minimize a Renormalized Energy, determined by a more precise
asymptotic expansion of the energy which identifies the order-one term. Rather than carry out the necessary estimates
as in [4], we argue formally in this section in order to give the form of the Renormalized Energy and come to some
heuristic conclusion in special geometries relevant to physical cases.

As the case 2sCy > 1 is essentially the same as the Dirichlet case studied in [4], we restrict our attention to the
more novel situation 2sC, < 1 in which minimizers exhibit boojum pairs, which (as in the statement of Theorem 1.1),
we denote by y;, y;, j=1,...,D, with y; a light, and y; a heavy, boojum. We recall that (along a subsequence)
Ug —> Uy =exp(i@y), in Clla’f (5\ {yvi, Y1, ..., yD, yp). The limit u, is an S!-valued harmonic map in 2 with defects
on the given boundary points. In addition, W (u, g) =0 on '\ {y1, y1, ..., yp}, and thus on T, u, = gexp(Fia),
with jumps of —2a or — (27 — 2«) at the light and heavy boojums, y;, ¥; respectively. These must alternate along I',
and the heavy boojum carries a degree n; = 1 foreach j =1,..., D. As described in [4,16], the energy of minimizers
is then expanded as:

E¢(ue) =D(m s Collng| + Op) + W(y1, 1. ..., yp, yp) + o(1), (8.1)

where Qj, is a constant, representing the energy of boojum cores at the length scale ¢°. This defines the Renormalized
Energy, W : T'?P — R, where I'?P is the set of all 2D points on I". To connect W to the limit u, = exp(i¢y) of
the minimizers u,, we define the conjugate harmonic function to the phase ¢,: ®(x) = ®(x; {y;, y;}) with V& =
—V-=+¢,. The conjugate solves

A® =0, in€,

9D D
o =gAs— ). [2a 8y, (%) + 207 — @)y, (x)] ., onT,
j=1

(8.2)

the boundary condition reflecting the jump in the harmonic phase ¢, at light and heavy boojums. Then, it may be
shown [4] that the Renormalized Energy is given by

~ ~ M 1 v 1
WO 5. yp. jp) = lim | / |V<I>(X:{ijY./})lzdx_”SC“Dm; ’ o
Q\B,
where B, = U?zl [By(yj) U Bp(y))].
iDo

In the special case where 2 = By, the unit disk, with equivariant g = g(f) = e of degree D > 0, the Renormal-
ized Energy may be expressed simply. In that case, g A g = D is constant, so ® is a linear combination of Green’s
functions G(x, p) with pole p e I':

0G
—AxG(x, p)=0, in , 8—(x, p)=1-2md,(x), forx eI'=0By,
Vx
whose solution is G(x, p) =2In|x — p|. Then, we have:
D
~ o o ~
Oy S =Y [ZGap+(1-2) 60 p).
j=1

Substituting into (8.3) and integrating by parts (see [4, 1.4] for interior vortices and [1, Section 6] for boundary defects),
we obtain an explicit formula for the Renormalized Energy,

D D
WO 5p) = Y (2601 + (1= 2) GG 3| = X2 G0

i,j=1 i,j=1
i#]
D o o D
=23 [Smnly =yl + (1= 2) il = 50] =2 3 Inpyi = ;1.
ij=1 i.j=1
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In the case D = 1 there is only one boojum pair and W (yj, y1) = —41In|y; — yi|, so it is clear that the light and heavy
boojums must be antipodally placed on the circle I'. For the Landau-de Gennes case D = 2, different weights appear
in the sum,

N N o o L
Wi, y1, y2, y2) = —4 [;lnb’l —»nl+ (1 - ;)1H|)’1 - Y2|]
—2In[ly1 = J1lly1 = 2l ly2 = 1l ly2 = 32l] -

9. Numerical examples

In this section we present several examples of configurations with vortices that can be observed in numerically
computed critical points of the energy (1.1). These are obtained by simulating gradient flow for E5"* using the finite
elements software package COMSOL [22].

Note that we do not claim that solutions that we obtain are minimizers of E§"* or prove that these solutions converge
to critical points of the limiting energy. Rather, we use numerical simulations as a useful tool that demonstrates that the
behavior of computed solutions is similar to what is predicted by rigorous analysis discussed in the previous sections.

In each of the examples below, we consider a circular domain €2 of radius 1 centered at the origin and set ¢ = 0.02.
We assume o = % so that Cy = g and consider two cases: s = 1 and s = 0.72 corresponding to a situation described
in part (a) and (b) of Theorem 1.1, respectively.

9.1. Boundary data of degree one

Here we suppose that g(x) = ﬁ on 9€2 so thatdegg = 1.

First, let s = 1. According to Theorem 1.1, the minimizers of E &% must converge to an S!-valued harmonic map
with a single vortex in the interior of the domain 2. The numerically computed critical point of E5'* exhibits this
feature as is shown in Fig. 2. Note that the absence of boundary singularities corresponds to u being continuous on
the boundary then u must essentially coincide everywhere on 32 with ¢/™/3g (or e~?"/3g) in order to minimize the
surface energy.

Recall that in Section 2 we established the relationship between u# and the nematic director n. We can now use
(2.18) to find the distribution of the director in €2. This distribution is depicted in Fig. 3 and is characterized by the
presence of a single disclination of degree 1/2 at the origin.

Now, let s =0.72. Since 0.72 < 0.9 = ﬁ, from Theorem 1.1 we expect that a numerically computed critical point

of ES** should have one light and one heavy boojum on 3. This is indeed the case for a critical point in Fig. 4. The
light boojum corresponds to the shallower depression of |u| on the boundary in the top left inset in Fig. 4 and it is
placed antipodally from the heavy boojum. Further, as the vector field is forced to switch its orientation with respect
to g on 32 at boundary singularities, the bottom inset in Fig. 4 demonstrates that u “jumps” between e ~*"/3g and
¢'/3g as one traverses 9.

The distribution of the nematic director n when s = 0.72 is shown in Fig. 5.

9.2. Boundary data of degree two

Here we let g(x) = (x12 - x%, 2x1xz) /|x|% on 92 so that degg =2.

As expected, for s = 1, the numerically computed critical point of E§'® has two interior, degree one singularities
as is shown in Fig. 6. The same is true for the nematic director (Fig. 7) that now has two degree 1/2 singularities in
the interior of 2.

For s = 0.72, a numerically computed critical point of E§*® has two light and two heavy boojums on 92 as demon-
strated in Fig. 8. The boojums types are interleaved as one traverses the boundary and the boojums are equidistant
from each other.

The distribution of the nematic director n when s = 0.72 is shown in Fig. 9. The director has four boundary
singularities, two light and two heavy boojums.
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Fig. 2. A critical point of ES% for g(x) = |§—|, o= %, and s = 1. Top left: The plot of |u|; Top right: The vector field u. Contour lines of |u| are

depicted to indicate the location of the singularity; Bottom: The restriction of the vector field u to dS2. Here u is shown in red, e~in/ 3g and /7/3 g
are shown in blue and black, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 3. The director field n for g(x) = I::_I’ o= %, and s = 1. Contour lines of |u| are shown to indicate the location of the singularity.

The original motivation for this study stems from experimental results of Volovik and Lavrentovich [14], for the
case of a (three-dimensional) nematic ball. Although our treatment in this paper is restricted to a two-dimensional,
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Fig. 4. A critical point of ES** for g(x) = ‘i—‘, o= %, and s = 0.72. Top left: The plot of |u|; Top right: The vector field u. Contour lines of |u|
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Fig. 5. The director field n for g(x) = |§—|, o= %, and s = 0.72. Contour lines of |u| are shown to indicate the locations of the singularities.

thin film geometry, we may still observe the resemblance of the configuration in Fig. 9 with that in Fig. 7b in [14],
which shows two polar point defects and an equatorial disclination ring on the surface of a spherical particle. Because
the 3D configuration in [14] is invariant with respect to both the axial and mirror symmetries in each cross-section
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Fig. 6. A critical point of ES** for g(x) = (xf —x3. 2x1x2) /x>, e =%, and s = 1. Top left: The plot of |u|; Top right: The vector field u.
Contour lines of |u| are depicted to indicate the location of the singularity; Bottom: The restriction of the vector field u to 9$2. Here u is shown in
red, e~/ 3g and ¢!7/3 g are shown in blue and black, respectively.
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Fig. 7. The director field n for g(x) = (x% — x%, 2x 1x2> / |x|2, a= %, and s = 1. Contour lines of |u| are shown to indicate the location of the

singularity.

of the particle that contains the axis of symmetry, it displays four surface point singularities separated by 90 degrees
angles. Topologically this is the same situation as in Fig. 9: there are two heavy boojums that are the traces of the



852 S. Alama et al. / Ann. I. H. Poincaré — AN 37 (2020) 817-853

m= 0.96
1
0.95
0.9 =+ 0.86
0.85
0.8
0.75 1 0.75
0.7
0.65
0.6 = 0.64
0.55
0.5

== 0.54

Fig. 8. A critical point of ES' for g(x) = <x12 —x3. 2x1x2) /x>, @ =%, and s = 0.72. Top left: The plot of |u[; Top right: The vector field u.
Contour lines of |u| are depicted to indicate the locations of the singularities; Bottom: The restriction of the vector field u to 9€2. Here u is shown
inred, e~i7/3g and ¢!"/3 g are shown in blue and black, respectively.

Fig. 9. The director field n for g(x) = (x% — x%, 2x1x2) /|x\2, o= %, and s = 0.72. Contour lines of |u| are shown to indicate the locations of
the singularities.

singularities at the poles, and two light boojums corresponding to the intersection between the circular cross-section
and the equatorial disclination ring. Here both the equatorial ring and the light boojums serve the same purpose of
unwinding the extra phase gained at the poles due to the heavy boojums.
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Furthermore, the experimental work in [14] also indicates that when the angle of inclination between the director
and the normal on the surface of the particle is close to 90 degrees, it might be reasonable to seek minimizers of the
3D problem in the class of functions that possess both axial and inversion symmetries. This is the approach that we
undertook recently in a separate work [2], and we conjecture that these techniques can be extended to the present
problem in 3D.
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