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Abstract

Continuing theprogram initiated inGolovaty et al. (SIAMJMathAnal 51(1):276–
320, 2018), we analyze amodel problem based on highly disparate elastic constants
that we propose in order to understand corners and cusps that form on the boundary
between the nematic and isotropic phases in a liquid crystal. For a bounded planar
domain � we investigate the ε → 0 asymptotics of the variational problem

inf
1

2

∫
�

(
1

ε
W (u) + ε|∇u|2 + Lε(div u)2

)
dx

within various parameter regimes for Lε > 0. Here u : � → R
2 and W is a

potential vanishing on the unit circle and at the origin. When ε � Lε → 0, we
show that these functionals�-converge to a constantmultiple of the perimeter of the
phase boundary and the divergence penalty is not felt. However, when Lε ≡ L > 0,
we find that a tangency requirement along the phase boundary for competitors in
the conjectured�-limit becomes amechanism for development of singularities.We
establish criticality conditions for this limit and under a non-degeneracy assumption
on the potential we prove the compactness of energy bounded sequences in L2. The
role played by this tangency condition on the formation of interfacial singularities is
investigated through several examples: each of these examples involves analytically
rigorous reasoning motivated by numerical experiments. We argue that generically,
“wall” singularities between S

1-valued states of the kind analyzed in Golovaty et
al. (SIAM J Math Anal 51(1):276–320, 2018) are expected near the defects along
the phase boundary.

1. Introduction

Our purpose in this article is to propose and then initiate an analysis of a family of
models inspired by phase transitions in liquid crystals. We have in mind the islands
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of phase known as tactoids, whose singular phase boundaries separate a locally
well-ordered state of nematic liquid crystals from a disordered isotropic state. Our
models should be relevant more generally to other phase transition problems for
which large disparity in the elastic constants is a salient feature. Our analysis is
mainly rigorous, but also includes formal calculations as well as computational
experiments.

Many models, of course, exist for nematic liquid crystals, including the Oseen–
Frank energy, based on the elastic deformations of an S1—or S2-valued director n,
and the Q-tensor based Landau–de Gennes model, whose energy density consists
of a bulk potential favoring either a uniaxial nematic state, an isotropic state, or
both, depending on temperature. What distinguishes our effort here is the attempt
to capture the often singular structure of nematic/isotropic phase boundaries using
a model reminiscent of Landau–de Gennes.

The modeling of phase transitions in thin liquid crystalline films has attracted
the attention of materials scientists and physicists for some time, Fang et al. [14],
Kim et al. [23], Rudnick and Bruinsma [37] and van Bijnen et al. [40].
In experiments, one observes thin liquid crystal samples separated into nematic
and isotropic phases. The islands of phase, i.e. the “tactoids”, appear as planar
regions, with boundaries consisting of two or more smooth curves. Depending on
temperature and on the type of liquid crystals, these smooth boundary curves may
meet each other at singular points, known as “boojums”, forming angles or perhaps
even cusps.

Regarding the significance of tactoids as an object of study, we quote from the
recent computational study of tactoids [12], “Tactoid structures have been shown
to act as sensors via chirality amplification and can be used to guide motile bac-
teria. They are also valuable architectural elements of self assembly, for example
providing nucleation sites for growth of the smectic phase”.

In modeling these regions, the typical approach found in the materials science
literature is to use a director theory and to postulate a surface energy that depends
on the angle the director n makes with the normal ν to the phase boundary. Calling
the region occupied by the phase of uniaxial nematic say �N , and writing n =
(cos θ, sin θ) and ν = (cosφ, sin φ), this leads to minimization of a surface energy
of the form

Fs(n) :=
∫

∂�N

σ(θ − φ) ds, (1.1)

where a typical choice for the function σ : R → R, based on symmetries (and
simplicity), is given by

σ(θ − φ) = c1 + c2 cos 2(θ − φ),

a form referred to as a Rapini–Papoular type surface density, (see e.g. [32], Section
3.4). In some studies within the physics literature the phase domain �N is taken as
a given region having a simple geometry such as a disk and then the minimization,
taken over director fields n : �N → S

1, may involve coupling the surface term
above to an elastic term such as

∫
�N

|∇n|2 dx , corresponding to the so-called ‘equal
constants’ form of elastic energy, see e.g. [40]. In other studies, the shape itself is
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an unknown, but then, due to the difficulty of the analysis, the director field is often
‘frozen’, that is, taken to be a constant so that there is no elastic energy contribution
and one minimizes (1.1) alone. Then the problem resembles somewhat the Wulff
shape problem arising in the classical study of crystal morphology, see e.g. [15,37].

Rather than postulating a specific surface energy, here we seek a model based
on an order parameter, u : � → R

2 defined on a planar domain � in which the
singularities of the phase boundary emerge as a result of large disparity between
the values of the elastic constants. We are not alone in taking this viewpoint; see for
example, [12], where the authorswrite “It is clear that significant shape deformation
is only achieved with the introduction of elastic anisotropy”.

In [18], our first endeavor in this direction, we propose a model problem cou-
pling the Ginzburg–Landau potential to an elastic energy density with large elastic
disparity, namely

inf
u∈H1(�;R2)

1

2

∫
�

(
1

ε
(1 − |u|2)2 + ε|∇u|2 + L(div u)2

)
dx . (1.2)

The minimization is taken over competitors satisfying an S1-valued Dirichlet con-
dition on ∂� so as to avoid a trivial minimizer. Here one might view the positive
constant ε � 1 as being comparable in size to the elastic constant L1 in say a
Landau–de Gennes elastic energy density while the positive constant L , indepen-
dent of ε, is playing the role of L2, the coefficient of squared divergence in more
standard elastic energy densities.

This choice of potential clearly favors S1-valued states, which are a stand-in in
ourmodels for uniaxial nematic states. As such, themodel (1.2) precludes any phase
transitions between S1-valued states and the isotropic state u = 0, and corresponds
to the situation where the temperature—and therefore the potential—favor only the
nematic state. Analysis of (1.2) in the ε → 0 limit involves a ‘wall energy’ along
a jump set Ju penalizing jumps of any S

1-valued competitor u, and bulk elastic
energy favoring low divergence. The conjectured �-limit of (1.2) is

L

2

∫
�

(div u)2 dx + 1

6

∫
Ju∩�

|u+ − u−|3 dH1, (1.3)

where u+ and u− are the one-sided traces of u along Ju . The natural space for
competitors for this limit should be some subset of Hdiv (�;S1), the Hilbert space
of L2 vector fields having L2 divergence. In order to make sense of the jump set
we make the additional assumption in [18] that u ∈ BV (�;S1), though this is
surely not optimal. As a simple consequence of the Divergence Theorem, it follows
that allowable jumps for an Hdiv vector field must satisfy continuity of the normal
component

u+ · ν = u− · ν along Ju, (1.4)

where ν denotes the normal to Ju . Hence the cubic jump cost is penalizing the jump
in the tangential component only.

In the present paper, we allow for co-existence of both nematic and isotropic
phases by replacing the Ginzburg–Landau potential in (1.2) with a potential W :
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R
2 → [0,∞) that still depends radially on u but that instead vanishes on S1 ∪ {0}.

This is reminiscent of the zero set of the Landau–de Gennes potential in the critical
temperature regime within the thin film context, see e.g. [6]. A prototype for what
we have in mind is a potential of the form W (u) = WCSH (u) := |u|2 ( |u|2 − 1

)2,
or what is known in other physical contexts as the Chern–Simons–Higgs potential,
see e.g. [25].

We thus arrive at twomodels based on this potential. In the first model, analyzed
in Section 2, we examine the asymptotic limit in ε of the energy

Fε(u) := 1

2

∫
�

(
1

ε
W (u) + ε|∇u|2 + Lε(div u)2

)
dx,

where we assume ε � Lε → 0. Our main result for this model is Theorem 2.1,
which states that in the L1-topology, this sequence of energies �-converges to a
perimeter functional, measuring the arclength of the phase boundary between the
S
1-valued phase and the zero phase. In short, despite the much stronger penalty

on divergence–think of say Lε = 1
|log ε|–this amount of ‘elastic disparity’ is too

weak to be felt in the limit. In particular, minimizers of the limit, even under a
boundary condition or area constraint to induce co-existence of S1-valued and 0
phases, will have smooth phase boundaries. We mention that in [25], the authors
study the �-convergence of 1

ε
Fε for Lε = 0. In that scaling, vortices rather than

perimeter contributes at leading order.
Our second model, and the main focus of our paper, involves the same type of

potential W as in Fε, but now we ‘ramp up’ the cost of divergence still further,
leading us to the energy

Eε(u) := 1

2

∫
�

(
1

ε
W (u) + ε|∇u|2 + L(div u)2

)
dx, (1.5)

where L is a positive constant independent of ε. As ε → 0 in this model, the jump
set Ju features two distinct types of discontinuities: as in (1.3), there are what we
will call ‘walls’ involving a jump discontinuity between two S

1-valued states that
respect (1.4), and there are what we will call ‘interfaces’ involving a jump between
an S

1-valued state and the isotropic 0 phase.
We mention that one can consider minimization of Eε subject to a Dirichlet

condition g : ∂� → R
2, or a constraint such as

∫
�

|u|2 = const , or both in
order to induce the co-existence of phases. The weak Hdiv convergence of energy
bounded sequences, however, implies that the appropriate condition for the limiting
functional E0 is that it inherits only the condition

u · n∂� = g · n∂� along ∂�, (1.6)

or simply meas
({u = 0}) = const in the case of the constraint.

In any event, it is the interfaces that represent the nematic/isotropic phase bound-
ary and in light of the requirement (1.4), one sees that whatever form the �-limit
takes, the competitors, being in Hdiv , must have S1-valued traces that are tangent
to the phase boundaries. As we will demonstrate through examples and numer-
ics in Section 4, it is this tangency requirement that may induce singularities in
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Fig. 1. Tactoids observed in simulations (left) and the experiments (right). The figure on the
right is courtesy of O. D. Lavrentovich

the phase boundary. On this point, we mention that in this article we chose to pe-
nalize divergence more than other elastic energy terms, but had we replaced the
term L

∫
(div u)2 in (1.5) by L

∫
(div Rθu)2 where Rθ is any rotation matrix, we

would arrive at a limiting requirement on the nematic/isotropic interface in which
tangency is replaced by u making some non-zero angle with the tangent to the
phase boundary. In particular, for θ = π/2 one penalizes the curl rather than the
divergence and the resulting interface requirement is that the trace is orthogonal to
the boundary.

In Fig. 1, we present an example of experimental nematic/isotropic configura-
tion obtained in the laboratory of Oleg Lavrentovich along with a figure showing a
numerically generated phase boundary based on gradient flow for Eε. Both figures
represent transient states but we point out the similar nature of the singular phase
boundaries. Note that in the experimental picture, the phase boundary is singular
only for the isotropic island whose surrounding nematic phase has degree 0 on the
boundary of the isotropic tactoid, not for the island where the degree is 1. This
distinction will come up frequently in our analysis.

Regarding a rigorous identification of the �-limit of Eε, we only have partial
results at this point. We present rigorous compactness results in L2(�;R2) in
Theorem 3.7 based on an adaptation of [13], but roughly put, it is easy to verify
that any limit u of an energy bounded sequence, i.e. {uε} such that Eε(uε) < C , is
a vector field u ∈ Hdiv (�;S1 ∪ {0}) such that the isotropic phase {x : u(x) = 0}
is a set of finite perimeter. Then making the extra assumption that u is of bounded
variation in the nematic phase where u(x) ∈ S

1, one can invoke a combination of
known techniques [18,36] to establish a lower bound on the limit of the form

E0(u) = L

2

∫
�

(div u)2 dx + c0 Per�
({|u| = 0})

+
∫
Ju∩{|u|=1}

K (u · ν) dH1, (1.7)

where c0 is the standard Modica–Mortola cost of an interface, cf. (2.3), and K :
R → [0,∞) is a wall cost, arising through an abstractly defined solution to a
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certain cell problem. We wish to emphasize that, unlike for example (1.1), the
limiting problem that arises involves both interfacial energy terms and a bulk term.

We strongly suspect that this wall cost K is in fact the cost associated with the
heteroclinic connection between the states (−u ·τ, u ·ν) and (u ·τ, u ·ν)where τ is
the approximate tangent to the jump set, see (3.8) and (3.9). The upper bound based
on a recovery sequence for such a “one-dimensional" wall where only the tangential
component varies across the boundary layer is the content of Theorem 3.1.

The optimality of one-dimensional walls is a delicate point that turns out to hold
in the analysis of (1.2)–(1.3), cf. [18], as well as in the analysis of the divergence-
free, or equivalently L = ∞, versions of these problems known as the Aviles–Giga
problem, see e.g. [2,4,10,13,19,29,30,35,36]. However, for Aviles–Giga and in
[18], thematching of lower bound to upper bound is achieved through the somewhat
miraculous Jin–Kohn entropy, cf. [22] and (3.22). The divergence of this vector field
on the one hand bounds the Aviles–Giga energy from below but at the same time
yields a value for the cost of a wall that coincides with the one-dimensional upper
bound construction described above. As far as we can tell, there is no analogous
entropy that works similarly for (1.5).

In Section 3.3, in contrast to the partial results from Section 3.1, we establish
a complete �-convergence analysis along with optimal compactness, in the case
where � is an interval.

In Section 3.4, we turn to the derivation of criticality conditions for the pro-
posed �-limit, E0. As in [18], we find that in the S

1-valued phase, away from
walls, we can phrase criticality in terms of a system of conservation laws sharing
characteristics, cf. Corollary 3.13. Characteristics turn out to be circular arcs along
which divergence is constant with the curvature of the arc being given by the value
of the divergence. We also explore criticality conditions for the wall and interface
in Theorems 3.11 and 3.14, as well as for possible junctions between walls and
interfaces in Theorem 3.15, whose somewhat technical proof we delay until the
appendix.

Section 4 is crucial to our paper in that we explore the possible morphology of
vortices, interfaces andwalls through a series of examples.We focus on constructing
critical points to the formal L → ∞ limit of E0 which one might describe as the
Aviles–Giga�-limit augmented by isotropic regions, see (4.1). These constructions
are in particular divergence-free competitors for E0 for L finite that should be close
to optimal for L large. One might expect that when no area constraint on the size of
the isotropic phase is imposed and S

1-valued Dirichlet data g is specified in (1.6)
for E0, then only critical points that are nematic—i.e. S1-valued—would emerge,
with perhaps a certain number of defects in order to accommodate the degree of
g, as in [7]. However, in Example 4.1, we take � to be the unit disk and g to have
negative degree, andwe show that, somewhat surprisingly, an O(1) isotropic region
opens up.We provide a possible explanation for this phenomenon in Theorem 3.16.

In Section 4.3, we construct a divergence-free example in all of R2 in which
a singular phase boundary encloses an isotropic island and in which the infinite
nematic complement of this island obeys a trivial degree zero condition at infinity,
i.e. u → 
e1 as |x | → ∞. Unlike in the first example, this island is induced through
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an area constraint. This somewhat delicate calculation involves construction of both
interfaces and walls with proper junction conditions holding at their intersection.

In this section we also comment on the following crucial feature of the model
observed in several of our examples. At defects on the phase boundary, the director
u often switches the sense of tangency. If a defect is a corner in the interior of the
domain and a change in tangency occurs, then walls necessarily emanate from the
defect in order to avoid infinite energy from the bulk divergence term; see Fig. 5
and the discussions at the end of Section 3.5 and preceding Example 4.2.

Needless to say, this article represents just the initial investigation of a problem
which holds within it a rich array of phenomena yet to be understood and questions
to be pursued.We alsomention that upgrading thismodel to the setting of Q-tensors
should not pose significant obstacles.

2. First Try: A Model Whose Elastic Disparity is Weak

In this section, we begin our examination of the effect of disparity in elastic
energy. Throughout this section, wewill consider a continuous potentialW : R2 →
[0,∞) which vanishes on S

1 ∪ {0}. We assume that for some continuous function
V : R → [0,∞), one has W (u) = V (|u|) with then V (0) = V (1) = 0 and V > 0
elsewhere. The prototype for what we have in mind is the Chern-Simons-Higgs
potential

WCSH (u) := |u|2 (|u|2 − 1)2. (2.1)

Then for a sequence of positive numbers Lε ↓ 0, we consider the sequence of
functionals

Fε(u) :=
⎧⎨
⎩

1

2

∫
�

(
1

ε
W (u) + ε|∇u|2 + Lε(div u)2

)
dx if u ∈ H1(�;R2),

+∞ otherwise.
(2.2)

Though the �-convergence result below holds for any sequence {Lε} approach-
ing zero, we are especially interested in the situation where

Lε

ε
→ ∞ as ε → 0,

so that the divergence term in the elastic energy is heavily emphasized. Our goal
is to explore whether or not this disparity can produce a �-limit whose minimizers
possess the types of phase boundary singularities reminiscent of isotropic-nematic
interfaces as described in the introduction. What we shall find is that this level of
elastic disparity is in fact not sufficiently strong to achieve this goal.

To this end, we define our candidate for the �-limit:

F0(u) :=
{
c0Per�({|u| = 0}) if |u| ∈ BV (�; {0, 1}),
+∞ otherwise.
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Here,

c0 :=
∫ 1

0

√
V (s) ds. (2.3)

The reader may well recognize this �-limit as precisely the well-known limit of
the Modica–Mortola energies, an indication that to leading order in the energy, the
divergence term has no effect on the asymptotic behavior of minimizers.

Our main result for this section is

Theorem 2.1. The sequence {Fε} �-converges to F0 in the topology induced by the
L1 norm of the modulus | · |. That is,
(i) for any u ∈ L1(�;R2) and for any sequence {uε} in L1(�;R2),

|uε| → |u| in L1(�) implies lim inf
ε→∞ Fε(uε) � F0(u), (2.4)

and
(ii) for each u ∈ L1(�,R2) there exists a recovery sequence {wε} in L1(�,R2)

satisfying

|wε| → |u| in L1(�;R2) and lim sup
ε→∞

Fε(wε) � F0(u). (2.5)

In fact, we can construct the sequence {wε} so that wε → u in L1.

Remark 2.2. Regarding the asymptotic behavior of global minimizers, this result
does not seem to address the possibility of a phase transition since there is no
‘incentive’ for a minimizer of Fε to take on both 0 and S

1 values. To encourage a
phase transition for a minimizer, one could, for example, impose a mass constraint
such as ∫

�

|uε|2 dx = m or
∫

�

|uε| dx = m

where m ∈ (0, |�|) with |�| = Lebesgue measure of �.

Alternatively, one could impose a Dirichlet condition on ∂� such as uε = gε where
gε is S1-valued on one portion of the boundary and then transitions smoothly down
to 0 on the rest of the boundary. Either of these alterations in the problem can be
easily accommodated usingwhat are by now standard techniques in�-convergence,
see e.g. [31,34,39]. However, in order to present the main ideas without excessive
technicalities, we formulate and prove a �-convergence theorem without either of
these conditions, and merely remark that they could be incorporated if desired.

Though as indicated below (2.5), we can in fact establish �-convergence in the
stronger topology L1(�), it is not possible to obtain L1-compactness for an arbitrary
energy bounded sequence due to the degeneracy of the well S1. However, L1-
compactness of {|uε|} follows by a standard argument, cf. e.g. [39, Proposition 3].
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Proposition 2.3. Let {uε} be a sequence of maps from � toR2 and assume that the
sequence of energies Fε(uε) is uniformly bounded. Then there exists a subsequence
{uε j } and u ∈ L1(�;S1 ∪ {0}) such that |uε j | → |u| in L1(�).

As observed in [33], this rather weak form of compactness is nonetheless suf-
ficient to imply the existence of local minimizers of Fε given a local minimizer of
F0 which is isolated in this weaker topology, by modifying an argument of [24].
For example, on a “dumbbell"-type domain, there always exist local minimizers of
Fε for ε sufficiently small, cf. [33, Theorems 4.2, 5.1].
Proof of the lower semi-continuity condition (2.4) Lower semi-continuity follows
as in the Modica–Mortola setting since one simply ignores the divergence term.
Since the argument is short, however, we present it here. The cases in which
lim infε→0 Fε(uε) = ∞ or W (u) �= 0 on a set of positive measure are trivial. We
therefore assume that lim infε→0 Fε(uε) = C < ∞, and suppose that |uε| → |u|
in L1(�). Suppose also for now that |uε| � 1, an assertion we will justify later by
means of a truncation procedure. In the argument below, we will make use of the
function �(t) := ∫ t

0

√
V (s) ds. As Lε � 0, we have

Fε(uε) = 1

2

∫
�

(
1

ε
W (uε) + ε|∇uε|2 + Lε(div uε)

2
)

dx

�
∫

�

√
V (|uε|)

∣∣∇|uε|
∣∣ dx

�
∫

�

|∇�(|uε|)| dx .

By the assumption that lim inf Fε(uε) = C < ∞, we obtain a uniform bound on
{�(|uε|)}ε>0 in BV (�), implying the existence of a subsequence converging in L1

to �(|u|). Therefore, by lower semi-continuity in BV ,

lim inf
ε→0

Fε(uε) � lim inf
ε→0

∫
�

|∇�(|uε|)| dx

�
∫

�

|∇�(|u|)| dx
= c0Per�({|u| = 1}).

This then completes the proof of (2.4) under the assumption that |uε| � 1.
If it does not hold that |uε| � 1 then we define

u∗
ε(x) :=

{
uε(x) if |uε(x)| � 1,
uε(x)|uε(x)| if |uε(x)| > 1.

We compute that

Fε(uε) � 1

2

∫
�

(
1

ε
W (uε) + ε|∇uε|2

)
dx � 1

2

∫
�

(
1

ε
W (u∗

ε) + ε|∇u∗
ε |2

)
dx .

(2.6)
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Finally, we have that

‖ |u∗
ε | − |u| ‖L1(�) � ‖ |uε| − |u| ‖L1(�) → 0,

so that we can combine the previous arguments with (2.6) to obtain lower semi-
continuity for the original sequence {uε}. ��
Proof of the recovery sequence condition (2.5) Suppose we are given u : � →
S
1 ∪{0} with |u| ∈ BV (�; {0, 1}). Wewill construct a sequence wε ⊂ H1(�;R2)

with wε → u in L1(�;R2) such that lim supε→0 Fε(wε) � F0(u). We first briefly
discuss the main idea, in order to motivate the construction that follows. Suppose
that u is smooth on the set, say N , where it is S1-valued, except for finitely many
singular points ai , and suppose u carries degree di around each “vortex" ai . Suppose
also that ∂N is smooth. We would like to define wε using a boundary layer near
∂N which bridges the values of u|N near ∂N to 0 outside. In order to recover the
correct �-limit with constant 2c0, we must define wε on a neighborhoodsNε of N
so that

1

2

∫
Nε

(
1

ε
W (wε) + ε|∇wε|2 + Lε(divwε)

2
)

dx → c0 Per�({|u| = 1}).

As this is the least upper bound we could achieve even if Lε = 0, wemust therefore
construct wε on Nε so that ∫

Nε

Lε(divwε)
2 dx → 0

and so that the gradient squared and potential terms give the correct asymptotic
limit. Since there is no assumption on how fast the sequence {Lε} approaches zero,
a natural construction to try is to definewε onNε so that it is divergence-free there.
This can be done by setting

wε = fε(d(x))(∇⊥d)(x), (2.7)

where d(x) is the distance function to ∂N and fε is a suitably defined scalar function
bridging the values 0 and 1. Then

divwε = f ′
ε(d)(∇d) · ∇⊥d + fε(d)div (∇⊥d) = 0. (2.8)

It is easy to check that ifwε is a smooth, non-zero vector field tangent to level sets of
d, as above, then its degree restricted to such a level set is 1. If, however,

∑
i di �= 1,

then degree considerations imply that it is impossible to define smooth wε which
are non-zero and tangent to ∂N but equal to u in the interior of N away from the
boundary. In addition, even if

∑
di = 1, definingwε inside N bymollifying u could

yield vortices which result in unbounded energy as ε → 0; see Theorem 3.16.
To address these issues, it is instructive to consider the case in which � is the

ball of radius 2 centered at the origin, N := {|u| = 1} is the unit disk with u ≡ 
e1
there and u vanishes on the annulus {1 < |x | < 2}. As explained above, there is
no smooth field tangent to the boundary of the disk and equal to u inside the disk.
However, suppose we alter the boundary of the disk by adding two small cusps.
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Then we can define a continuous vector field tangent to the modified boundary,
except at the cusps, which has degree zero. This tangent vector field allows for the
construction of a boundary layer similar to (2.7) which contributes a perimeter term
differing from F0(u) by a negligible amount, and a second, S1-valued boundary
layer inside the disk which bridges the degree zero tangent field to the constant 
e1.
The energetic contribution of this second layer vanishes in the limit.

Our general construction utilizes this basic idea. Given any component of the
nematic region N , we first approximate u there by a map with degree zero around
any closed curve lying in that component. This allows us to avoid the creation of
vortices which are energetically too expensive for the divergence term. Then, we
add two cusps to the boundary components of the nematic regions; and finally, we
use two boundary layers to bridge 0 to the values in the nematic regions. We should
emphasize that the approximations will be close to the original function u in L1

but of course will not be close in a stronger topology as that would violate basic
properties of degree.

We now fix any u : � → S
1 ∪ {0} such that |u| ∈ BV (�; {0, 1}) and begin our

construction of the recovery sequence. We first approximate u by vector fields un ,
then construct a recovery sequence for any un . A standard diagonal procedure will
then imply the existence of a recovery sequence for u. We begin by showing that
there exists an intermediate sequence of vector fields {vn} : R2 → S

1 ∪ {0} such
that

(i) {|vn| = 1} =: Ãn has C2 boundary,
(ii) vn is smooth restricted to Ãn ,
(iii) for each n, there exists a non-empty arc In ⊂ S

1 such that vn(x) /∈ In for all
x ∈ Ãn ,

(iv) H1(∂ Ãn ∩ ∂�) = 0 where H1 denotes one-dimensional Hausdorff measure,
(v) vn → u in L1, and
(vi) Per�( Ãn ∩ �) → Per�({|u| = 1}).
It is standard that there exist Ãn such that (i), (iv), and (vi) hold andχ Ãn

→ χ{|u|=1}
in L1, see e.g. [17, Theorem 1.24]. Next, we define a sequence ṽn by

ṽn =

⎧⎪⎨
⎪⎩
u(x) if x ∈ Ãn ∩ {|u| = 1},

e1 if x ∈ Ãn\{|u| = 1},
0 if x /∈ Ãn .

The choice of 
e1 is arbitrary, since any unit vector would suffice. From the conver-
gence of χ Ãn

to χ{|u|=1} and the dominated convergence theorem, it follows that,

up to a subsequence, ṽn → u in L1(�;R2). The sequence {ṽn} satisfies properties
(i) and (iv)–(vi), so it remains to argue we can modify it so that (ii) and (iii) hold
as well. For each n, we define for 1 � j � n

Cn
j := {x ∈ � : ṽn(x)

∈ (cos([2π( j − 1)/n, 2π j/n)), sin([2π( j − 1)/n, 2π j/n)))},
and observe that for some jn , |Cn

jn
| � |�| /n, since ∑ j |Cn

j | � |�|. Then for x ∈
Cn

jn
, we redefine ṽn(x) to be identically (cos(2π( jn − 1)/n), sin(2π( jn − 1)/n)),



1750 D. Golovaty et al.

Fig. 2. The Lipschitz vector field 
t is tangent to this connected component of ∂An and has
degree zero around it

so that the ṽn now avoids an arc In ⊂ S
1 of length 2π/n. Now we can mollify ṽn to

obtain smooth vn which also avoid In and satisfy (i)–(vi). Indeed, this can be done
by choosing an interval [an, bn] in which to define the values of the phase of vn and
mollifying the phase function itself. We also point out that inside Ãn , the degree of
vn around any simple, closed curve is zero, since vn cannot take values in In .

Next, for each n, we add small cusps to the sets Ãn and modify vn to obtain un .
For each connected component of ∂ Ãn , we add two cusps pointing into the isotropic
region, which change the perimeter of Ãn by at most 1/n. We denote the resulting
modification of Ãn by An , and smoothly alter the values of the function vn , yielding
un . This procedure can be carried out in such a fashion so that properties (ii)–(vi)
above still hold for the sequence {un}, and property (i), the smoothness of ∂An ,
holds except at the cusps. This completes the construction of the sequence {un}.

For each n, we now construct a recovery sequence {uε}, suppressing the de-
pendence of {uε} on n for ease of notation. Away from ∂An , uε will be identically
equal to un . Near ∂An , we will use a boundary layer of the form fε
t , where 
t is a
unit vector field tangent to level sets of the signed distance function d to An and
where fε solves a certain ODE. Away from the cusps, the level sets of the d are
smooth, which will be enough for our purposes. For each connected component of
∂An , we define 
t there by choosing a unit vector field tangent to that component
and continuous on all of that component; see Fig. 2.

The fact that each component contains two cusps implies that for the field 
t to
be continuous, it must change the sense of tangency at every cusp. Thus on ∂An , 
t
is always equal to ±∇⊥d. From these observations it follows that the degree of 
t
around any connected component of ∂An is zero. We then extend 
t to a continuous,
unit vector field tangent to level sets of d for x such that d(x) is small and positive
and the nearest point projection x onto ∂An is not contained in any one of a union
of rectangles near each cusp; see Fig. 3. To bridge the divergence free field fε
t
to the values of un inside An , there is a second boundary layer, which is defined
via an S1-valued homotopy between 
t and the values of un inside An . This is only
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Fig. 3. Each rectangle Rε
i has length m2/3

ε and height 2Cε and is perpendicular to the one-
sided tangent vectors at the cusp ci . For x near the interface and not in Rε

i , we can extend
the tangent field 
t to be unit valued and tangent to level sets of the distance function to the
interface

possible because 
t has degree zero around ∂An , as does un around any simple,
closed curve in An . The energy contribution from this layer in the limit will be
zero, since W (uε) = 0 there.

We now specify uε in the first boundary layer, which contributes the perimeter
term in the asymptotic limit. In the interior of An and in Ac

n at sufficient distances
away from ∂An to be specified shortly, we set uε equal to un .

First, for some fixed δ > 0, we consider the following ODE, similar to [5,
Equation 3.2]:

(
∂

∂s
fε(s)

)2

= δ + V ( fε(s))

ε2( fε(s))2
.

As argued in [5], there exists a constant C , depending on δ, such that for every ε,
there exist positive numbers Cε and strictly decreasing solutions fε : [0,Cε] →
[0, 1] of this ODE such that

Cε � Cε (2.9)

and

fε(0) = 1 and fε(Cε) = 0.

Each fε in fact depends on δ, but we suppress this dependence. Next, we excise a
small rectangle at each cusp. Let

mε := max{ε, Lε}. (2.10)

For each cusp ci , consider a rectangle Rε
i with one side of length 2Cε, centered at

ci , and perpendicular to the one-sided tangents at ci , such that Rε
i protrudes m2/3

ε
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into the isotropic set {u = 0} in the other direction; see Fig. 3. We denote by Rε

the union of all Rε
i ’s and then we define

uε(x) :=
{
un(x) if Cε � d(x) or d(x) � −m2/3

ε ,

fε(d(x))
t(x) if 0 < d(x) < Cε and x /∈ Rε.

In the definition above and in the remainder of the argument, we take d to denote the
signed distance function to ∂An which is negative inside An . We will deal with uε

on {x : −m2/3
ε < d(x) � 0} and onRε at the end. It can be shown, by calculations

similar to those preceding [33, Equation 3.33] that

lim sup
ε→0

1

2

∫
{0�d(x)�Cε}

(
1

ε
W (uε) + ε|∇uε|2 + Lε(div uε)

2
)

dx

� c0 Per�(An) + O(
√

δ), (2.11)

observing in the process the crucial fact that the divergence of uε on this set is zero,
cf. (2.8). Furthermore,

1

2

∫
{Cε�d(x) or d(x)�−m2/3

ε }

(
1

ε
W (uε) + ε|∇uε|2 + Lε(div uε)

2
)

dx

= 1

2

∫
{Cε�d(x) or d(x)�−m2/3

ε }

(
1

ε
W (un) + ε|∇un|2 + Lε(div un)

2
)

dx →
ε→0

0,

(2.12)

since W (un) = 0 and |∇un|2 and (div un)2 are bounded functions independent of
ε away from ∂An .

It remains to define uε on the second boundary layer, {x : −m2/3
ε < d(x) � 0},

and on Rε. Let us first consider the second boundary layer. Because of the fact
that uε defined thus far has degree zero around ∂An and {d(x) = −m2/3

ε }, there
exist Lipschitz phases ψ1 : ∂An → R, ψ2 : {d(x) = −m2/3

ε } → R such that
uε = (cos(ψ1), sin(ψ1)) on ∂An and uε = (cos(ψ2), sin(ψ2)) on {d(x) = −m2/3

ε }.
Then we can interpolate on the intermediate region using convex combinations of
ψ1 andψ2 so that |∇uε|2 and (div uε)

2 are both O(m−4/3
ε ). Since uε is a unit vector

field here, W (uε) is 0. Hence we can calculate

1

2

∫
{x :−m2/3

ε <d(x)�0}

(
1

ε
W (uε) + ε|∇uε|2 + Lε(div uε)

2
)

dx

� |{−m2/3
ε < d(x) � 0}|(εm−4/3

ε + Lεm
−4/3
ε ) � O(m1/3

ε ). (2.13)

Thus uε on the second boundary layer contributes nothing to the asymptotic limit.
Finally, we treat uε on the unionRε of rectangles Rε

i . It suffices to demonstrate
the construction on a single Rε

i such that the cusp ci contained on one of its sides is
the origin and the isotropic phase is to the right of the x2-axis. Up to a translation,
this is the situation depicted in Fig. 3 with Rε

2. In these coordinates wemay describe

Rε
i as the rectangle [0,m2/3

ε ] × [−Cε,Cε]. We set

uε(x1, x2) = fε(|x2|)(1 − m−2/3
ε x1)
t(0)
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on Rε
i , which ensures compatibility with uε as previously defined. We remark

that 
t(0) is either plus or minus 
e1. Then on Rε
i , (div uε)

2 ∼ O(m−4/3
ε ), and

|∇uε|2 ∼ O(ε−2). Since the area of Rε
i is 2Cεm

2/3
ε � 2Cεm2/3

ε by (2.9) and
(2.10), we have for small ε

1

2

∫
Rε
i

(
1

ε
W (uε) + ε|∇uε|2 + Lε(div uε)

2
)

dx � O(m2/3
ε ). (2.14)

Combining (2.11)–(2.14), we obtain

Fε(uε) → F0(un) + O
√

δ.

In addition, the uε converge in L1 to un by virtue of the dominated convergence
theorem, since they are bounded and the set where they differ from un has measure
going to zero. Therefore, recalling that {uε} depends on δ as well, we diagonalize
over ε and δ to obtain a recovery sequence for un . Since un converge in L1 to u
and F0(un) → F0(u), a second diagonalization argument over n and ε yields a
recovery sequence for u. ��

3. A Model with Large Elastic Disparity and Singular Phase Boundaries

In the previous section we saw that disparity in the elastic energy density of the
form

ε |∇u|2 + Lε(div u)2 with ε � Lε → 0

is insufficient to induce a singular phase boundary between the isotropic state 0 and
an S1-valued nematic state in minimizers of the �-limit. We now introduce a model
with still larger disparity, and it is this model we will work with for the remainder
of the article.

To this end, for a positive constant L independent of ε we define

Eε(u) := 1

2

∫
�

(
1

ε
W (u) + ε|∇u|2 + L(div u)2

)
dx, (3.1)

where W (u) = V (|u|) for some continuous V : [0,∞) → [0,∞) that vanishes
only at 0 and 1. As always, our prototype is the potential given by WCSH (u) =
|u|2 (|u|2 − 1

)2
, but in what follows we can allow for more general potentials

vanishing at 0 and 1, provided that for some constant c > 0 one also has the
condition

c(1 − t)2 � V (t) in a neighborhood of t = 1. (3.2)

In light of the divergence term in Eε, it is clear that energy-bounded sequences
{uε} will have divergences that converge weakly in L2(�). As we will discuss
in Section 3.3, Theorem 3.7, under the assumption (3.2), an adaptation of the
compactness techniques of [13] allows us to also establish that a subsequence of
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{uε} will converge strongly in L2(�) to a limit taking values in S
1 ∪ {0}. We will

write

uε
∧
⇀ u

when both div uε ⇀ div u weakly in L2(�) and uε → u strongly in L2(�;R2).
These compactness results naturally lead us to consider the Hilbert space Hdiv

(�;R2)of L2 vectorfields having L2 divergence, andmore specificallyHdiv (�;S1∪
{0}), in light of the assumed zero set of the potential W .

Avectorfieldu ∈ Hdiv (�;S1∪{0}) that additionally lies in the space BV (�;S1∪
{0}) is known to have a countably 1-rectifiable jump set Ju off of which u is ap-
proximately continuous. In our pursuit of a possible candidate for the limit of the
sequence {Eε} we will focus on functions lying in the intersection of these two
spaces.

Mappings in BV have well-defined traces, say u+ and u− on either side of Ju
and an easy application of the Divergence Theorem reveals that when Hdiv vector
fields have jump discontinuities across Ju then necessarily the normal component
is continuous, i.e.

u+ · ν = u− · ν H1 a.e. on Ju, (3.3)

where ν is the (approximate) normal to Ju .
This brings us to a crucial distinction when attempting to identify a limiting

energy for the sequence {Eε} –a mapping u ∈ (Hdiv ∩ BV )(�;S1 ∪ {0}) may
undergo a jump between two S1-valued states, in which case (3.3) is supplemented
by the additional requirement that

u+ · τ = −(u− · τ) along Ju, (3.4)

where τ is the approximate tangent to Ju . We will refer to any component of Ju
bridging two S

1-valued states as a wall. On the other hand, u may jump between
an S

1-valued state, say u+, and u− = 0, in which case (3.3) implies that u+ must
coincide with ±τ . We will refer to any such component of Ju as an interface. It
is this tangency requirement along an interface that can induce singularities in the
isotropic-nematic phase boundary.

3.1. A Conjecture for the �-Limit of Eε

Our goal in this section is to make the case for a proposed �-limit of the
sequence {Eε} defined in (3.1). While we do not at present have matching upper
and lower asymptotic bounds for this sequence, we do have a construction leading
to an asymptotic upper bound which we strongly suspect is sharp. We will begin
with a description of this construction and then discuss various strategies for lower
bounds, why the analogue of what works for the Ginzburg–Landau potential, cf.
[18], apparently fails here and what the evidence is to support our conjecture on
the sharpness of the upper bound.

We should say at the outset that our pursuit of the �-limit E0(u) begins with
the assumption that u ∈ (BV ∩ Hdiv )(�;S1 ∪ {0}). While this is not the natural
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Fig. 4. A configuration with a junction point P at which two components of the interface,
�01 and �03 meet two components of the wall �12 and �23

space from the standpoint of compactness, the identification of the correct limiting
space is non-trivial and we do not attempt to address it here. We refer the reader to
[2,11,28] for more discussion of this issue. We make the BV assumption here in
order to speak sensibly about the 1-rectifiability of the jump set Ju , though for that
part of Ju corresponding to interfaces, i.e. to ∂{|u| = 1}, as we will note below, this
rectifiability comes easily from the fact that limits u of energy-bounded sequences
satisfy |u| ∈ BV (�).

As noted above, for such a vector-valued function u, the jump set naturally splits
into two types: walls and interfaces, though these two types of singular curves
may well meet in junctions, see e.g. Theorem 3.15 and Fig. 4. An upper bound
construction then rests on efficiently smoothing out these jump discontinuities, and
in both cases, we rely on a one-dimensional type of resolution described formally
below. The rigorous execution of these ideas follows the approach of [10] as adapted
in [18].

To resolve an interface separating an isotropic region where u = 0 from a
nematic region where u ∈ S

1 we invoke a by-now standard Modica–Mortola type
of heteroclinic connection in the modulus. More precisely, after mollifying the
interface to smoothen it if necessary, we mollify u in the nematic region and make
a boundary layer construction, say {wε}, of the form

wε(x) = h

(
dist (x, Ju)

ε

)
u(x) (3.5)
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where dist (x, Ju) denotes the signed distance function to Ju and where h : R → R

minimizes the 1d energy
∫ ∞

−∞
V ( f ) + ∣∣ f ′∣∣2 dt taken over f ∈ H1(R)

such that f (−∞) = 0, f (∞) = 1. (3.6)

This leads to the same ‘interfacial cost’ encountered in Section 2, namely

c0 =
∫ 1

0

√
V (s) ds,

multiplying the perimeter of the interface. Since

divwε(x) = h

(
dist (x, Ju)

ε

)
div u(x) + 1

ε
h′

(
dist (x, Ju)

ε

)
∇dist (x, Ju) · u(x),

the term L
∫
(divwε)

2 in Eε(wε) will contribute nothing to such a boundary layer
construction in the limit ε → 0 since the first term is controlled by the fact that
u ∈ Hdiv and the second term is negligible due to the required tangency of u and
Ju along an interface. We note that the ansatz (3.5) would fail for the sequence of
functionals Fε analyzed in Section 2 since there u is not required to lie in Hdiv and
so the term ∇dist (x, Ju) · u(x) will in general not vanish.

With appropriate care taken to treat issues of regularity, this can be made rig-
orous. What is more, this construction, based only on appropriate interpolation of
the modulus between 0 and 1, gives a sharp upper bound on the interfacial energy,
in light of the inequality

Eε(u) � 1

2

∫
�

(
1

ε
V (|u|) + ε |∇ |u| |2

)
dx for any u ∈ H1(�;R2). (3.7)

Since this is the classical scalarModica–Mortola functional in terms of the function
|u|, when applied in a neighborhood of the interface it yields the matching lower
bound of c0 Per�({|u| = 1}).

Our boundary layer construction in a neighborhood of a wall separating two
S
1-valued states, say u+ and u−, is one-dimensional in a different sense. In light

of the continuity of the normal component of u across a wall, cf. (3.3), a natural
choice is to fix the value of u · ν across the boundary layer and use a heteroclinic
connection to bridge the value of u− · τ to u+ · τ , that is, to bridge −√

1 − (u · ν)2

to
√
1 − (u · ν)2 in light of (3.4).
At a point on the wall, such a choice leads to a cost per unit length given by the

minimum of a heteroclinic connection problem that is a bit different from (3.6),
namely

inf
f

∫ ∞

−∞
W

(
f τ + (u · ν)ν

)+∣∣ f ′∣∣2 dt= inf
f

∫ ∞

−∞
V

(√
f 2 + (u · ν)2

)
+∣∣ f ′∣∣2 dt,

taken over f ∈ H1(R) such that

f (−∞) = (u− · τ) = −
√
1 − (u · ν)2 and f (∞) = (u+ · τ) =

√
1 − (u · ν)2.
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One easily checks that this infimum is given by K (u · ν) where we define

K (z) :=
∫ √

1−z2

−√
1−z2

V 1/2
(√

z2 + y2
)

dy, (3.8)

which in the prototypical case of WCSH (u) := |u|2 (|u|2 − 1)2 takes the form

K (z) =
∫ √

1−z2

−√
1−z2

√
z2 + y2

(
1 − z2 − y2

)
dy. (3.9)

We point out that c0 = K (0)
2 and also note that K is not a monotone function of

z on [0, 1], but rather increases to a unique maximum and then decreases down to
zero at z = 1.

Such an upper bound construction leads us to our conjectured �-limit when
u ∈ (Hdiv ∩ BV )(�;S1 ∪ {0}), namely E0 given by

E0(u) = L

2

∫
�

(div u)2 dx + K (0)

2
Per�({|u| = 1}) +

∫
Ju∩{|u|=1}

K (u · ν) dH1.

(3.10)

One should also impose upon competitors in theminimization of E0 a boundary
condition of the form (1.6) if one imposes the Dirichlet condition u|∂�

= g for Eε

or an area constraint on the measure of the isotropic or nematic region within � if
an integral constraint has been imposed on Eε.

In particular, we can rigorously assert:

Theorem 3.1. For any u ∈ (Hdiv ∩ BV )(�,S1 ∪ {0}), there exists a sequence

{wε} ∈ H1(�;R2) with wε
∧
⇀ u such that

lim sup
ε→0

Eε(wε) = E0(u). (3.11)

Proof of Theorem 3.1. The proof of (3.11) is similar to the proof of [18, Theorem
3.2(ii)], which itself is an adaptation of the techniques laid out in [10] for Aviles–
Giga recovery sequences, so we omit the details. The only difference between the
argument here and that in [18] is that, as discussed above, in addition to walls,
there are also interfaces now in which u jumps from a tangent S1-valued state to 0.
However, this does not pose a serious obstacle to the construction, as the important
technical components are the rectifiability of the jump set Ju and the condition
(3.3) satisfied along Ju at either a wall or interface, which goes to guarantee that
the boundary layer constructions do not contribute asymptotically to the L2-norm
of the divergence. ��

Unfortunately, we do not have a proof of a matching lower bound, since at this
point we cannot rigorously confirm the one-dimensionality of the wall cost arising
in the last integral of (3.10). Instead we state it as a conjecture.
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Conjecture: SupposeW satisfies (3.2). Then for any u ∈ (Hdiv∩BV )(�,S1∪{0})
and any sequence uε

∧
⇀ u we have

lim inf
ε→0

Eε(uε) � E0(u). (3.12)

Even though the sharp lower bound is still beyond reach, it was pointed out to us
by Lamy et al. [26] that a presumably non-sharp alternative can be proved using
the entropies introduced in [13]. To state it, we need the following definitions.
Definition: An entropy is a mapping � ∈ C∞

0 (R2;R2) such that

�(0) = 0, D�(0) = 0 and for all z ∈ R
2 one has z · D�(z) z⊥ = 0,

where z⊥ = (−z2, z1), cf. [13, Definition 2.1].
A crucial property of an entropy is that (cf. [13, Lemma 2.3]) for any entropy�,

there exists compactly supported smooth functions� : R2 → R
2 and α : R2 → R

such that for any smooth v,

∇ · [�(v)] = �(v) · ∇(1 − |v|2) + α(v)(∇ · v). (3.13)

In fact, � and α can be calculated explicitly as in [27, Lemma 20] or [13, Lemma
2.2].

Let

E := {� : � is an entropy and vanishes in a neighborhood of 0}. (3.14)

We have

Theorem 3.2. For any u ∈ (Hdiv ∩ BV )(�,S1 ∪ {0}) and any sequence uε
∧
⇀ u

the following lower bound holds

lim inf
ε→0

Eε(uε) � L

2

∫
�

(div u)2 dx + K (0)

2
Per�({|u| = 1})

+
∫
Ju∩{|u|=1}

K̃ (u, ν) dH1 (3.15)

where

K̃ (u, ν) := sup
�∈E

∣∣(�(u+) − �(u−)
) · ν

∣∣
C�

and

C� := sup
z∈R2

{∣∣�(z)(1 − |z|2)∣∣√
W (z)

,
|∇z�(z)| ∣∣1 − |z|2∣∣√

W (z)

}

We note that since � is required to vanish in a neighborhood of 0, it follows
that � will as well. Hence C� is finite for any � ∈ E .
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Proof of Theorem 3.2. The lower bound (3.15) is proved by partitioning � into
three distinct subsets and estimating the energies restricted to each subset, leading
to the three terms in (3.15). We focus on obtaining the lower bound for the energy
that concentrates along Ju ; the estimates leading to the other two terms are similar
to arguments in [18,39]. We will use the energies Eε(uε; J δ

u ) in a δ-neighborhood
of the jump set Ju to control the quantities div [�(uε)] among the smaller class of

entropies E . In the limit uε
∧
⇀ u, the parts of the measure div [�(u)] that concen-

trate along Ju will yield a lower bound which is the supremum of the restrictions to
Ju of the total variation measures |div [�(u)]|. First, we invoke (3.13) at v = uε,
multiply (3.13) by a test function ζ ∈ C∞

c (J δ
u ; [0, 1]) and integrate by parts:

∫
J δ
u

−∇ζ · �(uε) dx

=
∫
J δ
u

(
−ζ tr (∇ � · ∇ uε) (1−|uε|2)−∇ζ · �(1−|uε|2)+ζ α(uε) div uε

)
dx .

(3.16)

Next, with the goal of bounding the right hand side of (3.16) by Eε(uε; J δ
u ), we

observe that for any potential W which grows quadratically away from S
1, the

quantityC� defined above is finite since� vanishes near 0 and has compact support.
We will also assume C� � 1 in what follows, replacing it by max{C�, 1} if
necessary. Then we have
∫
J δ
u

(
− ζ tr (∇ � · ∇ uε) (1 − |uε|2) − ∇ζ · �(1 − |uε|2) + ζ α(uε) div uε

)
dx

�
∫
J δ
u

(
ζ C�|∇uε|

√
W (uε) + |∇ζ |C�

√
W (uε) + ζ |α(uε) div uε|

)
dx

� C�

2

∫
J δ
u

(
1

ε
W (uε) + ε|∇uε|2 + L(div uε)

2
)
dx

+ 1

2

∫
J δ
u

( |α(uε)|2
L

+ C�|∇ζ |√W (uε)

)
dx . (3.17)

Combining (3.16) and (3.17) gives
∫
J δ
u

−∇ζ · �(uε) dx � C�Eε(uε; J δ
u ) + O(δ) + O(ε). (3.18)

The L2 convergence of uε to u implies next that

1

C�

∫
J δ
u

−∇ζ · �(u) dx � lim inf
ε→0

Eε(uε; J δ
u ) + O(δ) (3.19)

for any ζ ∈ C∞
c (J δ

u ; [0, 1]). Hence given � ∈ E , the total variation measure
|div�(u)|/C� is bounded from above by lim infε→0 Eε(uε; J δ

u )+O(δ). The lower
bound (3.15) follows from the remainder of the argument from [18, Theorem 3.2]
which in turn is based upon the lower bound argument in [4, Theorem 3.2]. ��
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Corollary 3.3. For the cost function K̃ given by a supremum in Theorem 3.2, there
exists some c > 0 such that

c|u+ − u−|3 � K̃ (u, ν). (3.20)

Proof. It suffices to prove (3.20) in the case where that ν = (1, 0). Other values
of ν can then be handled by a suitable rotation. If ν = (1, 0), then for any entropy
� = (�1,�2),

|(�(u+) − �(u−)
) · ν| = |�1(u+) − �1(u−)| (3.21)

so that to prove (3.20), it is enough to produce one entropy � ∈ E such that
�1|S1 = z32. The entropy

�̃ := (z32, z
3
1)

has the correct values onS1 but is not in E , since it does not vanish in a neighborhood
of 0.To rectify this,wemultiply �̃bya radial cutoff function g(|z|)where g vanishes
in a neighborhood of 0 and equals 1 in a neighborhood of 1 to obtain

� = g�̃.

It is straightforward to verify that � still satisfies z · D�(z)z⊥ = 0 due to the fact
that g is radial. Therefore, � ∈ E and we have

1

C�

|u+ − u−|3 = 1

C�

|(�(u+) − �(u−)
) · ν| � K̃ (u, ν).

��
Remark 3.4. The cubic behavior of K̃ is compatible with the conjectured result
(3.12) claiming that the 1-D cost function K from (3.8) provides a sharp lower
bound when u ∈ (Hdiv ∩ BV )(�,S1 ∪ {0}). Indeed, quadratic growth of W at
S
1 implies that K also satisfies an estimate like (3.20). In fact, the authors in [20,

Proposition 11] established that any smooth entropy � generates a cost function
which is O(|u+ − u−|3) as |u+ − u−| → 0. However, it is unclear whether K̃ is
optimal or if K = K̃ .

Remark 3.5. Wehave not addressed in (3.10) or in Theorem3.1 the issue of bound-
ary conditions, so we describe now how to incorporate them. Suppose one were to
fix Dirichlet data gε ∈ H1/2(∂�;R2) for admissible functions in Eε. The functions
gε could be S1-valued, or could transition smoothly between S

1 and {0} if we are
trying to induce a phase transition. Let us assume that gε → g in L2(∂�;R2) for
some g : ∂� → S

1 ∩ {0}. We observe that for a sequence {uε} ∈ H1(�;R2) satis-
fying uε = gε on ∂� and so in particular uε · ν� = g · ν�, under the convergence

uε
∧
⇀ u with u ∈ (BV ∩Hdiv (�;S1∩{0}), it follows from the divergence theorem

and the convergence of gε to g that

u · ν� = g · ν�.

In this case, the limiting energy E0 would also contain integrals around the portion
of ∂� where u · τ� �= g · τ�, and the cost along these portions would either be
given by K (0)/2 or K (u · ν�).
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Remark 3.6. An a priori sharper upper bound for the wall cost K could be obtained
for these energies using the techniques of [35]. There, the author obtains an upper
bound without assuming that the optimal profile is one-dimensional. Instead, the
cost is defined via a cell problem. As the class of admissible functions for the cell
problem is strictly larger than the class of 1d competitors, the cell problem yields
what could in theory be a sharper upper bound. However, since we conjecture that
the one-dimensional profile is optimal and since at present we see noway to analyze
the abstract cell problem to make this comparison, we do not pursue the strategy
from [35].

Given the presence of arguments leading to matching lower bounds for one-
dimensional constructions in the Aviles–Giga problem [4] and for the energy E0
with the potential replaced by aGinzburg–Landau potentialWGL(v) := (1−|v|2)2,
in [18], it behooves us to comment on why, at present, we have no such argument
here. In [4] and in [18], the authors employ the celebrated Jin–Kohn entropy [22].
Defining

�(v1, v2) = 2

(
1

3
v32 + v2v

2
1 − v2,

1

3
v31 + v1v

2
2 − v1

)
, (3.22)

the version of these entropies well-suited to the situation where the jump set is
parallel to one of the coordinate axes, one can then calculate

div�(v1, v2) = 2(|v|2 − 1)(∂x1v2 + ∂x2v1) + 4v1v2div v. (3.23)

In the divergence-free Aviles–Giga setting of [22], the last term drops out and an
application of the inequality a2 + b2 � 2ab allows one to bound the Aviles–Giga
energy density from below by div�(v1, v2). When the divergence is possibly non-
zero, as in [18], a slight modification yields

div�(v1, v2) �
(

ε|∇v|2 + 1

ε
(|v|2 − 1)2 + L(div v)2

)
+ error terms,

which is the crux of the argument.
Unfortunately, for most radial potentials that are not the Ginzburg–Landau

potential WGL , this technique does not seem to work. First, we note that

�(v1, v2) =
(∫ v2

−v2

(v21 + s2 − 1) ds,
∫ v1

−v1

(s2 + v22 − 1) ds

)
,

where the integrands are, up to signs, given by
√
WGL . Therefore, to obtain a

version of (3.23) with WGL replaced by
√
W , where W is our potential vanishing

on S
1 ∪ {0}, the natural choice for the vector field to replace � would be

�W (v1, v2) =
(∫ v2

−v2

√
W (v1, s) ds,

∫ v1

−v1

√
W (s, v2) ds

)
.
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When we calculate the divergence of �W (v1, v2), we get

div�(v1, v2)

= 2
√
W (v)(∂x1v2 + ∂x2v1) + ∂x1v1

∫ v2

−v2

(∂v1

√
W (v1, s)) ds

+ ∂x2v2

∫ v1

−v1

(∂v2

√
W (v2, s)) ds.

The only way for div v to factor out of the last two terms is if
∫ v2

−v2

∂v1

√
W (v1, s) ds =

∫ v1

−v1

∂v2

√
W (v2, s) ds,

which holds for radial W when
√
W is linear in |v|2. This cannot hold for any W

that vanishes only at S1 and {0}.
We point out that a related problem that has resisted resolution for several

decades is the determination of a sharp lower bound for the sequence of energies
∫

�

1

ε
(|u|2 − 1)p + ε |∇u|2 with p < 2 (3.24)

where competitors u : � → R
2 must be divergence-free. Here too it is conjectured

that the optimal lower bound for the wall cost is based on a one-dimensional ansatz,
[2], but a proof has not been found, and in particular, no version of the Jin–Kohn
entropy is evident. An abstract lower bound involving a cell problem for functionals
of this type has been derived in [36], but has not yet to our knowledge been matched
by a corresponding upper bound. The strategy in this and other papers involving a
lower bound phrased in terms of a cell problem is based on a blow up procedure
introduced in [16]. Such a lower bound of the form

∫
Ju
K̄ (u · ν) dH1 for some

function K̄ : [0,∞) → [0,∞) defined as the solution to a cell problem could be
derived for our wall energy as well, but we do not include the argument since it
does not provide much insight here.

On the other hand, for p > 2 in (3.24), as shown in [2], the one-dimensional
ansatz is not optimal, with an oscillatory construction, often referred to as ‘mi-
crostructure,’ whose modulus hews close to S1, yielding a lower asymptotic energy.

So what is the rationale behind our conjecture (3.12)? One key point is that for
W given by WCSH or more generally by a potential satisfying (3.2), the level of
degeneracy of the S1 potential well is no flatter than that of WGL where again it is
known that walls follow a one-dimensional profile asymptotically. Thus, it seems
unlikely that microstructure of the type emerging, for example, in (3.24) for p > 2
would appear here since for our model it is no more beneficial energetically to
abandon one-dimensionality in order to be nearer to S1 across a wall than it was in
(1.2).

Other evidence for our conjecture is numerical. Repeated numerical experi-
ments in the form of gradient flow for Eε with ε small in a variety of domains, for a
variety of boundary conditions and for a wide range of L values have not indicated
any lack of one-dimensionality in the wall structure. Were the transition to be truly
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2d, one might expect the wall to exhibit some oscillation or other instability. For
example, in [18] while we prove that for (1.2)–(1.3) the wall cost is based on a
one-dimensional construction, we also find that when minimizing (1.2) in a rect-
angle with S

1-valued Dirichlet data given by (±a,
√
1 − a2) for a ∈ [0, 1) on the

top and bottom respectively and periodic boundary conditions on the sides, there
exists a parameter regime in L and in the box dimensions where the minimizer
is not one-dimensional, cf. [18], Thm. 6.6. Indeed this theorem is supported by
numerics revealing the eventual instability of a horizontal wall and the emergence
of so-called ‘cross-ties’ commonly arising in studies of micromagnetics such as
[1]. On the other hand, as we discuss in Section 4.1, numerically we detect no such
instability of a horizontal wall for Eε under these boundary conditions. Then a
numerical examination in Section 4.2 of wall structure for a version of our problem
posed in a disk also indicates a one-dimensional heteroclinic connection for thewall
structure. This gives us further confidence in the conjectured one-dimensionality
of the wall cost.

3.2. Compactness

In this sectionwe establish a compactness result for energy-bounded sequences.
In [18] it is shown that forW given by theGinzburg–Landau potential, the compact-
ness result of [13] generalizes to Eε. In this section, we show that this compactness
approach generalizes to potentials also vanishing at the origin, provided we assume
(3.2).

Theorem 3.7. Let {uε}ε>0 ⊂ H1(�;R2) be a sequence such Eε(uε) � C, with C
independent of ε. Then there exists a subsequence (still denoted here by uε) and a
function u ∈ Hdiv (�;S1 ∪ {0}) with |u| ∈ BV (�; {0, 1}) such that

uε ⇀ u in Hdiv (�;R2), (3.25)

uε → u in L2(�;R2). (3.26)

The fact that for a subsequence of {uε}, one has |uε| → |u| in L1(�)where |u| ∈
BV (�; {0, 1}) follows from inequality (3.7) via the standard Modica–Mortola ap-
proach, cf. [31] or [39]. The proof of (3.25) follows immediately from the uniform
bound on the L2 norm of the divergences, so we turn to the proof of (3.26). The
proof follows closely the proof in [13, Proposition 1.2], with the details suitably
modified to account for the fact that the potential may now possibly vanish at 0 in
addition to S1. Below we outline the procedure and indicate which portions require
changes from [13].

The proof relies on compensated compactness and a careful analysis of the
Young measures {μx }x∈� generated by the sequence {uε}. Proving that the se-
quence

div [�(uε)]
is compact in H−1(�) is the main step that allows for this analysis. In Lemma 3.8,
we prove that the class E of entropies which vanish near the origin, given by (3.14)
is large enough for our purposes. The rest of the proof then follows exactly as in
[13]. We begin with
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Lemma 3.8. (cf. [13, Lemma 2.2]) Letμ be a probability measure onR2 supported
on S

1 ∪ {0}. Suppose it has the property
∫

� · �̃⊥ dμ =
∫

� dμ ·
∫

�̃⊥ dμ for all entropies �, �̃ ∈ E . (3.27)

Then μ is a Dirac measure.

Remark 3.9. We point out that the proof of this lemma does not generalize to
the case where the potential vanishes on a pair of circles that both have non-zero
radius. As a consequence, Theorem 3.7 does not generalize via this approach to
such situations.

Proof of Lemma 3.8. We begin by recalling the definition of “generalized entropy”
from [13, Lemma 2.5]. These are functions � defined by

�(z) =
{ |z|2e for z · e > 0
0 for z · e � 0

for any fixed e ∈ S
1. Any such � can be approximated pointwise by entropies

�n ∈ E such that (3.27) holds for � as well. This approximation is only possible
since these generalized entropies vanish at the origin; maps which do not vanish
at 0 cannot be approximated closely enough by entropies in E . Using the fact that
these generalized entropies vanish at the origin, we then have

∫
S1

� · �̃⊥ dμ =
∫
S1

� dμ ·
∫
S1

�̃⊥ dμ.

We rewrite this as

e · ẽ⊥ μ({z · e > 0} ∩ {z · ẽ > 0} ∩ S
1)

= e · ẽ⊥μ({z · e > 0} ∩ S
1) μ({z · ẽ > 0} ∩ S

1) for all e, ẽ ∈ S
1

or

μ({z · e > 0} ∩ {z · ẽ > 0} ∩ S
1)

= μ({z · e > 0} ∩ S
1) μ({z · ẽ > 0} ∩ S

1)

for all ẽ ∈ S
1\{e,−e} and all e ∈ S

1.

Letting ẽ approach e, we obtain

μ({z · e > 0} ∩ S
1) � μ({z · e > 0} ∩ S

1)μ({z · e � 0} ∩ S
1) for all e ∈ S

1,

so that either

μ({z · e > 0} ∩ S
1) = 0 or μ({z · e � 0} ∩ S

1) � 1 for all e ∈ S
1. (3.28)

Since μ is a probability measure, if μ({0}) > 0 then it cannot be that μ({z · e �
0} ∩ S

1) � 1 for any e ∈ S
1. In this case μ({z · e > 0} ∩ S

1) = 0 for all S1-valued
e, and μ is clearly a Dirac measure concentrated at zero. So we may assume that
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μ({0}) = 0, implying thatμ is a probability measure on S1. In this case, we deduce
from (3.28) that

suppμ ⊂ {z · e � 0} ∩ S
1 or suppμ ⊂ {z · e � 0} ∩ S

1 for all e ∈ S
1.

As μ is a probability measure on S1, this implies that μ is concentrated on a single
point. ��

The remainder of the Proof of Theorem 3.7 follows almost exactly as in [13],
so we will be brief. In order to prove that for any entropy � ∈ E the sequence
{div [�(uε)]}ε is compact in H−1(�), we appeal to a lemma of Murat (see [13,
Lemma 3.1] for a proof in this setting) which says that if {�(uε)} are uniformly
integrable and their divergences are uniformly bounded in L1(�), then they are
compact in H−1(�). The uniform integrability is clear since entropies are L∞
vector fields. The L1 bound on the divergences will follow from estimate (3.17)
in the previous section. Letting ζ now be a test function on �, we have by the
calculations leading to (3.17):

∫
�

ζ ∇ · [�(uε)] dx � C�Eε(uε) + 1

2

∫
�

( |α|2
L

+ C�|∇ζ |√W (uε)

)
dx

� C�Eε(uε) + ‖α‖2L∞
2L

|�| + O(ε).

The uniform L1 bound is now a consequence of duality. The proof concludes as in
[13], substituting Lemma 3.8 for the similar commutation relation Lemma 2.2 of
[13].

3.3. The �-Limit of Eε Among 1D Competitors

In this section we analyze �-convergence of Eε where competitors uε =
(u(1)

ε , u(2)
ε ) are defined on an interval [−H, H ] for some H > 0 and are required

to satisfy S1-valued boundary conditions of the form

u(±H) = (±
√
1 − a2, a) for some a ∈ [0, 1). (3.29)

Under the one-dimensional assumption, Eε takes the form

E1D
ε (u) :=

⎧⎨
⎩

1

2

∫ H

−H

(
1

ε
W (u)+ε|u′|2+L(u(2) ′)2

)
dx2 if u∈H1((−H, H);R2),

+∞ otherwise .

(3.30)

In a manner similar to [18], Section 6, within this one-dimensional ansatz we
can obtain a sharp compactness theorem for energy bounded sequences, a complete
�-convergence result of the Eε functionals and a complete characterization of min-
imizers of the �-limit. Since the proofs of the results in this section are completely
analogous to those in [18, Section 6], we only sketch the arguments highlighting
differences.
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In Section 4.1, we present results of numerical simulations obtained via gradient
flow for Eε with ε > 0 for the two-dimensional problem in a rectangle � =
(−1/2, 1/2) × (−H, H), subject to the boundary conditions (3.29) on the top
and bottom and periodic boundary conditions on the left and right sides. These
computations suggest convergence in large time to configurations that resemble
the one-dimensional minimizers of this section, lending further evidence to our
conjecture (3.12). We emphasize that the initial data for these numerics were not
restricted to be one-dimensional.

We continue making the assumption (3.2) on our potentials. Recall that we are
writing W (u) = V (|u|). We begin with a compactness result.

Theorem 3.10. Let uε = (u(1)
ε , u(2)

ε ) ∈ H1((−H, H);R2) with E1D
ε (uε) � C.

Then there exists u = (u1, u2) with

�(u1) :=
∫ u1

−u1
V 1/2

(√
s2 + 1 − u21

)
ds ∈ BV ((−H, H); [0, 1])

such that up to a subsequence, u(1)
ε → u1 in L2(−H, H). In addition, u2 ∈

H1((−H, H);R), u(2)
ε → u2 in C0,γ (−H, H) for all γ < 1/2, and |(u1, u2)| =

1 or 0 a.e.

Proof. Throughout the course of the proof, we repeatedly pass to further and further
subsequences of ε converging to zero but suppress this from our notation.We notice
that thanks to the uniform L4 bound from (3.2), after passing to a subsequence,

uε ⇀ u = (u1, u2) in L4. (3.31)

Furthermore, this bound, along with the uniform L2 bound on (u(2)
ε )′ yields after

passing to a further subsequence that

u(2)
ε ⇀ u2 in H1 and u(2)

ε → u2 in C
0,γ ([−H, H ]) for every γ < 1/2.

(3.32)

Finally, from the bound on the potential, there exists ρ ∈ L2((−H, H); {0, 1})
such that

|uε| → ρ in L2. (3.33)

It remains to upgrade the convergence of u(1)
ε fromweak to strong convergence.

An algebraic identity is used in the proof of [18, Theorem 6.1] to obtain strong
convergence. Here, without an explicit expression for W, we proceed differently.
As in [18], we utilize the function ψ defined by

ψ(uε) :=
∫ u(1)

ε

−u(1)
ε

V 1/2
(∣∣∣(s, u(2)

ε )

∣∣∣
)
ds = u(1)

ε

∫ 1

−1
V 1/2

(∣∣∣(u(1)
ε t, u(2)

ε )

∣∣∣
)
dt.

(3.34)



A model problem for nematic-isotropic transitions 1767

We set Jε =
∫ 1

−1
V 1/2

(∣∣∣(u(1)
ε t, u(2)

ε )

∣∣∣
)
dt , so that

u(1)
ε Jε = ψ(uε). (3.35)

On the one hand,

Jε =
∫ 1

−1
V 1/2

(√
(|uε|2 − (u(2)

ε )2)t2 + (u(2)
ε )2

)
dt;

thus (3.32)–(3.33) yield that

Jε →
∫ 1

−1
V 1/2

(√
(ρ2 − (u(2))2)t2 + (u(2))2

)
dt =: J a.e. in (−H, H).

(3.36)

On the other hand, using (3.2) and a Cauchy-Schwarz argument completely
analogous to that found in [18], we note thatψ(uε) is bounded in BV . Upon passing
to a subsequence, we conclude that {ψ(uε)} converges in L1, and upon passing to
a further subsequence, {ψ(uε)} converges almost everywhere. Consequently, using
(3.35) and (3.36), we find that u(1)

ε converges almost everywhere as well.
Finally, since |u(1)

ε | � |uε| and |uε| → ρ strongly in L2, we can apply the
Lebesgue dominated convergence theorem to conclude that u(1)

ε converges strongly
in L2 to some limit. From (3.31), this limit is u1, and it follows that |(u1, u2)| = 0
or 1 a.e. and that the limit of ψ(uε) is ψ(u1, u2) ∈ BV . Since ψ is 0 when u1 = 0,
we see that �(u1) = ψ(u), which concludes the proof. ��

We turn next to �-convergence in this one-dimensional setting. The analogue
of E0 from (3.10) is the energy

E1D
0 (u) := L

2

∫ H

−H
(u(2) ′)2 dx2

+
∑

x2∈Ju(1)∩{|u|=1}
K (u(2)(x2)) + c0H0

(−H,H) (∂({|u| = 1})) . (3.37)

One can establish the �-convergence of E1D
ε to E1D

0 in a completely analogous
manner to the proof of Theorem 6.2 in [18], so we omit the details.

Finally, as inTheorem6.4of [18], andwith identical proofs, one can characterize
the minimizers of (3.37) explicitly.When the boundary conditions (3.29) are differ-
ent from (±1, 0) the minimizer is unique and consists of a single wall occuring at
y = 0, no interfaces andbulk contribution in the regions {y > 0}∪{y < 0}: the func-
tion u(2) is piecewise linear and u(1) jumps from

√
1 − (u(2))2 to −√

1 − (u(2))2

across y = 0. The optimal jump value is easily determined by optimizing over
the bulk and jump contributions. Finally when the Dirichlet boundary conditions
on the top and the bottom are given by (±1, 0), we find two parameter regimes
similar to the situation in [18]. When L/H is smaller than a certain threshold, the
minimizer is unique and has both bulk divergence and jump contributions. However
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for larger L/H values, the minimizer only has perimeter contribution, along with
two interfaces, one connecting (−1, 0) to (0, 0) and the other connecting (0, 0) to
(1, 0). These interfaces divide the interval into subintervals in each of which the
minimizer is a constant. See Section 4.1 for numerical simulations.

3.4. Criticality Conditions for E0

In this section we will describe criticality conditions associated with a critical
point u of the conjectured �-limit E0 given by (3.10). Throughout this section we
are making an assumption that u is sufficiently regular to justify the calculations.
Of course, a critical point may well have jumps across interfaces and walls but we
assume in this section that all interfaces and walls are smooth away from a finite
set of singular points, which we denote by Singu ⊂ Ju . Furthermore, we assume
here that u itself is sufficiently smooth in {|u| = 1} away from Ju with sufficiently
smooth traces along all interfaces and walls away from Singu .

The question of regularity of critical points and minimizers is certainly an
interesting and challenging one, but we do not address it in this paper. Our purpose
in this section is to gain insight into the structure of critical pointswith the immediate
aim of using the derived conditions to build critical points that will indeed possess
this assumed level of regularity. These constructions appear in Section 4.

For u ∈ (Hdiv ∩ BV )(�;S1 ∪ {0}), we recall the notation K (u · ν), with K
given by (3.8) or (3.9) in the case of the Chern–Simons–Higgs potential, for the
cost per arclength of a jump from one S1-valued state, say u1 to another one, say
u2 across a jump set Ju , with ν denoting the unit normal pointing from the 1 side
of a wall to the 2 side. We recall that for such a jump, an Hdiv vector field must
satisfy the requirement

u1 · ν = u2 · ν along the jump set Ju . (3.38)

In light of (3.38), we will sometimes write just u · ν when evaluating the normal
component of u along Ju .

We also recall that for portions of Ju corresponding to a jump from the isotropic
state 0 to an S

1-valued state u, the cost per unit arclength is given by K (0)
2 and

condition (3.38) becomes simply u · ν = 0.
Parts of the argument follow the same lines as in the proof of Theorem 4.1 in

[18] except that the cost in that paper is the one associated with a Ginzburg–Landau
potential, namely KGL(u · ν) where

KGL(z) :=
∫ √

1−z2

−√
1−z2

(
1 − z2 − y2

)
dy,

which can also be written as 4
3

(
1 − (u · ν)2

)3/2
or equivalently 1

6 |u1 − u2|3 .

However, in the present context, we will need to distinguish between varia-
tions of the ‘walls’ separating two S

1-valued states and ‘interfaces’ separating the
isotropic state from an S1-valued state. We will also examine criticality conditions
at a junction corresponding to the intersection of these two kinds of curves. We
begin with
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Theorem 3.11. (Variations that fix the jump set) Let u be any sufficiently regular
critical point of E0 such that u∂� · ν∂� = g · ν∂� on ∂�. Then we have

u⊥ · ∇div u = 0 on �\(Ju ∪ {u = 0}), (3.39)

where u⊥ = (−u2, u1).
Furthermore,

K ′(u · ν) = L[div u] on
(
Ju\Singu

) ∩ �, (3.40)

whenever |u1| = |u2| = 1, where [div u] = div u2 − div u1 represents the jump
in divergence across Ju and ν is the unit normal to Ju pointing from region 1 to
region 2.

Remark 3.12. There is no natural boundary condition analogous to (3.40) for such
variations taken about a point of Ju where Ju separates an isotropic state 0 from
an S1-valued state since the requirement of tangency in such a configuration is too
rigid to allow for a rich enough class of perturbations.

Proof. To derive conditions (3.39) and (3.40) we assume that for some point p ∈ �

and for some R > 0, either B(p, R) ∩ Ju = ∅ or else p ∈ Ju and the following
conditions hold B(p, R):
(i) The set B(p, R)∩ Ju is a smooth curve, which we denote by� and which admits
a smooth parametrization by arclength, which we denote by r : [−s0, s0] → � for
some s0 > 0 with r(0) = p.
(ii) On either side of � the critical point u and div u possess smooth traces on Ju .
We will denote the two components of B(p, R)\� by �1 and �2 and we denote u
on these two sets by u j : � j → S

1, for j = 1, 2.
We will present the argument for the case where (i) and (ii) hold, indicating at

the end how the easier case B(p, r) ∩ Ju = ∅ follows by the same analysis.
To define an allowable perturbation ut of the critical point u given by u1 and

u2, we must maintain the property of being S1-valued, so to that end we introduce
smooth functions φ j : B(p, R) × (−T, T ) → R for some T > 0 such that the
perturbations of u1 and u2 take the form

utj (x) := u j (x)e
itφ j (x,t), (3.41)

shifting just for the moment to complex notation. Introducing φ j (x) := φ j (x, 0),
expanding (3.41) and reverting back to an R2-valued description of utj we find that
for x ∈ �t

j one has

utj (x) ∼ u j (x) + tφ j (x)u j (x)
⊥. (3.42)

Along Ju , we must also be sure to preserve to O(t) the Hdiv condition (3.38),
namely

ut1 · ν = ut2 · ν along �. (3.43)
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Invoking (3.38) for the unperturbed critical point, along with (3.42) we find that
ut1 · ν = ut2 · ν to O(t) provided

φ1u
⊥
1 · ν = φ2u

⊥
2 · ν.

However, since

u⊥
j · ν = u j · τ and u1 · τ = −u2 · τ �= 0 (3.44)

along the jump set Ju bridging S
1-valued states, it follows that we must require

φ1(x) = φ2(x) for x ∈ �. (3.45)

For later use, we also record that from (3.42) and (3.44) one has along � the
expansion

ut · ν ∼ u1 · ν + tφ1(u1 · τ) + o(t). (3.46)

Now we calculate

d

dt
E0(u

t )
∣∣
t=0 = d

dt

⎧⎨
⎩
L

2

2∑
j=1

∫
� j

(
div utj

)2 dx
⎫⎬
⎭
∣∣∣∣∣∣
t=0

+ d

dt

{∫
�

K (ut · ν) ds

}∣∣∣∣
t=0

= d

dt

⎧⎨
⎩

2∑
j=1

L

2

∫
� j

(
div (u j (x) + tφ j (x)u j (x)

⊥)
)2 dx

⎫⎬
⎭
∣∣∣∣∣∣
t=0

+ d

dt

{∫
�

K (u1 · ν + tφ1(u1 · τ)) ds

}∣∣∣∣
t=0

Taking the t-derivatives and evaluating at t = 0 we obtain

d

dt
E0(u

t )

∣∣∣∣
t=0

= L
2∑
j=1

∫
� j

(
div u j

)(
div (φ j u

⊥
j )
)
dx

+
∫

�

K ′(u · ν)(u1 · τ) ds.

Integrating by parts, a vanishing first variation of this type leads to the condition

−L
2∑
j=1

∫
� j

∇(
div u j

) · φ j u
⊥
j )
)
dx

+ L
∫

�

{(
div u1

)
φ1u

⊥
1 · ν − (

div u2
)
φ2u

⊥
2 · ν

}
ds

+
∫

�

K ′(u · ν)(u1 · τ) ds = 0. (3.47)
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Now by taking the functions φ j to be supported off of Ju we arrive at condition
(3.39). This also handles the case where B(p, R)∩ Ju = ∅. Then, in light of (3.39),
along with (3.44) and (3.45) we find that

∫
�

{
K ′(u · ν)(u1 · τ) + L

(
div u1 − div u2

)}
(u1 · τ) φ1 ds = 0.

Since u1 · τ �= 0 along the jump set and φ1 is arbitrary, we arrive at (3.40). ��
Corollary 3.13. (cf. [18], Cor. 4.2). Suppose u is a sufficiently regular critical point
of E0 on an open, connected subset of �\(Ju ∪ {u = 0}). Then writing u locally in
terms of a lifting as u(x) = eiθ(x) and defining the scalar v := div u, one has that
within this subset, (3.39) is equivalent to the following system for the two scalars
θ and v:

− sin θ θx1 + cos θ θx2 = v (3.48)

− sin θ vx1 + cos θ vx2 = 0. (3.49)

Consequently, starting from any initial curve in � parametrized via s �→(
x01 (s), x

0
2 (s)

)
along which θ and v take values θ0(s) and v0(s) respectively, the

characteristic curves, say t �→ (
x1(s, t), x2(s, t)

)
, are given by

x1(s, t) = 1

v0(s)

[
cos

(
v0(s)t + θ0(s)

) − cos θ0(s)
] + x01 (s), (3.50)

x2(s, t) = 1

v0(s)

[
sin

(
v0(s)t + θ0(s)

) − sin θ0(s)
] + x02 (s), (3.51)

whenever v0(s) �= 0. The corresponding solutions θ(s, t) and v(s, t) are given by

θ(s, t) = v0(s)t + θ0(s), v(s, t) = v0(s), (3.52)

so that the characteristics are circular arcs of curvature v0(s) and carry constant
values of the divergence. In case the divergence vanishes somewhere along the
initial curve, i.e. v0(s) = 0, then the characteristic is a straight line.

We also consider the implications of criticality with respect to perturbations of
the jump set itself.

Theorem 3.14. (Variations of the jump set) Let u be a sufficiently regular critical
point. Then along any points of Ju\Singu where u jumps between two S

1-valued
maps u1 and u2, a vanishing first variation leads to the condition

L

2

(
(div u1)

2 − (div u2)
2
)

− L(div u1 + div u2)
′ (u1 · τ)

− L(div u1 + div u2) (u1 · τ)′ − K (u · ν) κ = 0, (3.53)

Here κ denotes the curvature of Ju, τ denotes the unit tangent to Ju and ν is the
unit normal to Ju pointing from the u1 side of Ju to the u2 side. The notation (·)′
refers to the tangential derivative along the jump set.
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For portions of Ju\Singu separating an S
1-valued state u∗ from the isotropic

state 0, criticality takes the form

L

2

(
div u∗)2 − L

(
div u∗)′ (u∗ · τ) + K (0)

2
κ = λ, (3.54)

where λ is a Lagrange multiplier that is present only if E0 is considered subject to
an area constraint on the measure of the isotropic phase 0. Also, since u ∈ Hdiv (�)

requires that u∗ ·ν = 0 along such a portion of Ju, we note that in (3.54) one either
has u∗ · τ ≡ 1 or u∗ · τ ≡ −1.

Proof. To derive condition (3.53) assume that for some point p ∈ Ju the following
conditions hold in a ball B(p, R) for some radius R:
(i) The set B(p, R)∩ Ju is a smooth curve, which we denote by� and which admits
a smooth parametrization by arclength, which we denote by r : [−s0, s0] → � for
some s0 > 0 with r(0) = p.
(ii) On either side of � the critical point u is C2 with C1 traces on Ju . We will
denote the two components of B(p, R)\� by �1 and �2 and we denote u on these
two sets by u j : � j → S

1, for j = 1, 2. Again, our convention for the unit normal
ν is that it points out of �1 into �2.

For the calculation it will be convenient to assume that for j = 1, 2, u j has
been smoothly extended so as to be defined in an open neighborhood of �. We take
this extension to be executed so that u1 is constant along ν and so that u2 is constant
along −ν.

In order to effect a smooth perturbation of �, u1 and u2 we now introduce a
vector field X ∈ C1

0(B(p, R);R2). For convenience we will assume that X (x) is
parallel to ν(x) for x ∈ � and sowe introduce the scalar function h : [−s0, s0] → R

such that

X (r(s)) = h(s)ν(s) for s ∈ [−s0, s0], (3.55)

where h(±s0) = 0. Here we have written ν(s) for the composition ν(r(s)). Then
let � : B(p, R) × (−T, T ) → � solve

∂�

∂t
= X (�) �(x, 0) = x, (3.56)

for some T > 0. Expanding in t we find that

D�(·, t) ∼ I + t∇X + o(t), (3.57)

so that in particular one has the identity

J�(x, t) := det D� ∼ 1 + tdiv X (x) + o(1). (3.58)

Throughout this proof, the symbol ∼ refers to an equivalence up to terms that are
o(t).

Now we define the evolution of the curve � via the vector field X by �t :=
�(�, t) with corresponding parametrization

r t (s) := �(r(s), t) ∼ r(s) + X (r(s))t ∼ r(s) + th(s)ν(s), (3.59)



A model problem for nematic-isotropic transitions 1773

in light of (3.55). A simple calculation goes to show that the normal νt to �t takes
the form

νt (s) ∼ ν(s) − th′(s)τ (s), (3.60)

where we have introduce the notation τ for the unit tangent r ′(s) to �. We caution
that the parameter s used to parametrize �t is not an arclength parametrization on
this deformed curve. Indeed one finds through an application of the Frenet equation
that

r t ′(s) = r ′(s) + th′(s)ν(s) + thν′(s) = (1 − th(s)κ(s))τ (s) + th′(s)ν(s),

where κ denotes the curvature of �, so that
∣∣r t ′(s)

∣∣ ∼ 1 − th(s)κ(s). (3.61)

Similarly, we define the deformation of the two sets �1 and �2 via

�t
j := �(� j , t) for j = 1, 2. (3.62)

To define the allowable evolution of the critical point u given by u1 and u2 requires
a little more care. Firstly, we must maintain the property of being S

1-valued, so to
that end we introduce smooth functions φ j : B(p, R) × (−τ, τ ) → R such that
the perturbations of u1 and u2 take the form

utj (x) := u j (x)e
itφ j (x,t), (3.63)

shifting just for the moment to complex notation. Introducing φ j (x) := φ j (x, 0),
expanding (3.63) and reverting back to an R2-valued description of utj we find that
for x ∈ �t

j one has

utj (x) ∼ u j (x) + tφ j (x)u j (x)
⊥. (3.64)

As before (a, b)⊥ = (−b, a).

Secondly, we must preserve to O(t) the Hdiv condition (3.38), namely

ut1 · νt = ut2 · νt along �t . (3.65)

To this end, we observe that along �t one has

utj (r
t (s)) ∼ utj

(
r(s) + th(s)ν(s)

) + tφ j
(
r(s) + th(s)ν(s)

)
u⊥
j

(
r(s) + th(s)ν(s)

)
∼ u j (r(s)) + tφ j (r(s))u

⊥
j (r(s)). (3.66)

It is here that we require the slight extensions of the original functions u j that are
constant along the normal direction of ν to make (3.64) well-defined in�t

j\� j and
to make (3.66) correct to O(t).

Then once we apply (3.60) and (3.66) to (3.65) we arrive at the requirement
that

(u1 + tφ1u
⊥
1 ) · (ν − th′τ) ∼ (u2 + tφ2u

⊥
2 ) · (ν − th′τ) along �. (3.67)
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Equating terms at O(t) and using (3.44), we find that necessarily,

h′(s) = 1

2

(
φ1(r(s)) + φ2(r(s))

)
for s ∈ [−s0, s0]. (3.68)

For later use we also record the fact, based on expanding the left hand side of (3.67),
that

ut1(r
t (s)) · νt (s) ∼ u(r(s)) · ν(s)+t

(
φ1(r(s))−h′(s)

)
(u1 · τ) for s∈[−s0, s0].

(3.69)

With these preliminaries taken care of, we are now ready to proceed with the
calculation of the first variation d

dt |t=0
E0(ut ). We begin with the variation of the

divergence term in the energy taken over �t
j for j = 1, 2. We observe that

∫
�t

j

(
div utj

)2 dx ∼
∫

�t
j

(
div u j + t div (φ j u

⊥
j )
)2 dx

∼
∫

� j

[
div u j (�(y, t)) + t div φ j (�(y, t))u⊥

j (�(y, t))
]2

(1 + tdiv X (y)) dy,

where we have utilized the change of variables x = �(y, t) and invoked (3.58) to
obtain the leading order behavior of the Jacobian of the change of variables. Then,
since � ∼ y + t X (y) we find

d

dt

{∫
�t

j

(
div utj

)2 dx
}∣∣∣∣∣

t=0

=
∫

� j

[
(div u j (y))

2 div X + 2 div u j (y)div (φ j (y)u
⊥
j (y))

+ ∂

∂t |t=0

(
div u j (y + t X (y)

)2] dy

=
∫

� j

[
(div u j (y))

2div X + 2 div u j (y)div (φ j (y)u
⊥
j (y))

+ 2 div u j (y)∇div u j (y) · X (y)
]
dy

=
∫

� j

[
div

(
(div u j )

2X
)

+ 2 div u j (y)div (φ j (y)u
⊥
j (y))

]
dy (3.70)
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Applying the divergence theorem, and invoking (3.39) along with the compact
support of X within the ball B(p, R), we conclude that

L

2

d

dt

{∫
�t
1

(div ut1)
2 dx +

∫
�t
2

(div ut2)
2 dx

}∣∣∣∣∣
t=0

= L

2

∫
�

{(
(div u1)

2 − (div u2)
2
)
h + 2 (div u1)φ1u

⊥
1 · ν

− 2 (div u2)φ2u
⊥
2 · ν

}
ds

= L

2

∫
�

{(
(div u1)

2 − (div u2)
2
)
h + 2 (φ1div u1

+φ2div u2) (u1 · τ)} ds, (3.71)

where in the last line we used (3.44).
We turn now to the variation of the jump energy. By (3.69) we have

K (ut (r t (s)) · νt (s)) ∼ K
(
u(r(s)) · ν(s) + t (φ1(r(s)) − h′(s))(u1(r(s) · τ(s))

)
∼ K

(
u · ν

) + t K ′(u · ν
)
(φ1 − h′)(u1 · τ),

where all terms in the last line are evaluated along �, that is, evaluated at x = r(s).
Then we can appeal to (3.61) to calculate that

d

dt

{∫
�t

K (ut · νt ) ds

}∣∣∣∣
t=0

= d

dt

{∫ s0

−s0

{
(K (u(r(s)) · ν(s)) + t K ′(u(r(s)) · ν(s))(φ1(r(s))

− h′(s))(u1(r(s) · τ(s))

}{
1 − t h(s)κ(s)

}
ds

}∣∣∣∣
t=0

=
∫

�

K ′(u · ν)(φ1 − h′)(u1 · τ) − K (u · ν) hκ ds

=
∫

�

L
(
div u2 − div u1

)
(φ1 − h′)(u1 · τ) − K (u · ν) hκ ds, (3.72)

where in the last line we have used the criticality condition (3.40).
Combining (3.71) and (3.72) we obtain

d

dt
E0(u

t )

∣∣∣∣
t=0

=
∫

�

{
L

2

(
(div u1)

2 − (div u2)
2
)

− K (u · ν) κ

}
h ds

+ L
∫

�

{
(φ1 + φ2)div u2 + (div u1 − div u2)h

′} (u1 · τ) ds

=
∫

�

{
L

2

(
(div u1)

2 − (div u2)
2
)

− K (u · ν) κ

}
h ds

+ L
∫

�

(div u1 + div u2) (u1 · τ)h′ ds,
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in light of (3.68). Integrating by parts in the last integrals, and using that h(−s0) =
h(s0) = 0 we finally obtain

d

dt
E0(u

t )

∣∣∣∣
t=0

=
∫

�

{
L

2

(
(div u1)

2 − (div u2)
2
)

− L(div u1 + div u2)
′ (u1 · τ)

−L(div u1 + div u2) (u1 · τ)′ − K (u · ν) κ

}
h ds.

Since criticality implies that this last integral must vanish for all h, we obtain (3.53).
The derivation of (3.54) follows along similar lines so we omit the details. One

difference to note, however, is that in the presence of an area constraint on the
measure of {u ≡ 0}, the normal component h of the vector field X along � must
additionally satisfy the requirement

∫ s0

−s0
h(s) ds = 0

so that the perturbed jump set preserves area to O(t). This condition leads to the
appearance of the Lagrange multiplier in (3.54). ��

Our last consequence of criticality for a vector field u with respect to the func-
tional E0 concerns the possible presence in � of a junction point P such that for
some R > 0, the set B(p, R) ∩ Ju consists of four curves meeting at p. We wish
to focus on the configuration where two of these curves, which we label as �01 and
�03, are interfaces separating an isotropic region, which we label as �0, from two
disjoint regions, �1 and �3, where u is given by u1 : �1 → S

1 and u3 : �3 → S
1,

respectively. Wedged between �1 and �3 we assume there exists a set �2 where
u takes on another S1-valued state u2. The dashed curve separating �1 from �2,
representing the wall across which u jumps from u1 to u2 we denote by�12, and the
dashed curve separating �2 from �3, representing the wall across which u jumps
from u2 to u3 we denote by �12. We write τi j and νi j for the unit tangent and unit
normal to the curve �i j where each τi j points away from the junction P and νi j
points from the region �i into the region � j . See Fig. 4.

Our reason for focusing on this particular configuration is predicated on the
belief that it is somehow quite generic behavior in a neighborhood of a singular
point on the isotropic-nematic phase boundary; see the discussion in Section 4.3.
This belief is grounded in the findings of numerous numerical experiments we
have conducted and examples we have constructed for this model, some of which
appear in the last section of this article. Our hope is that the condition derived
in Theorem 3.15 below will be of use in constructing particular candidates for
minimizers of E0 as well as perhaps being of use in ruling out certain junction
configurations that are found to violate (5.18).

To state the next result we must introduce the notation τi j for the unit tangent
on �i j oriented so as to point away from P , and νi j for the unit normal to �i j ,
pointing from region �i into � j .

Theorem 3.15. (Criticality conditions at a junction). Assume a configuration in a
neighborhood of a point P ∈ � as described above and as depicted in Fig. 4.
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Assume that in a neighborhood of P the functions u j and their divergences div u j

for j = 1, 2, 3 are all smooth in the closure of � j including at the junction point
P. Assume further that the four curves �01, �12, �23 and �03 are all smooth near
P. Then criticality of E0 with respect to variations of P, the four curves �i j and
the three functions u j leads to the condition

K (0)

2

(
τ01 + τ03

) + K
(
u1 · ν12

)
τ12 + K

(
u2 · ν23

)
τ23

= L

{
(div u1)(u1 · τ01)ν01 + (div u3)(u3 · τ03)ν03

}

− L

{(
div u1 + div u2

)(
u1 · τ12

)
ν12

+ (
div u2 + div u3

)(
u2 · τ23

)
ν23

}
(3.73)

where all quantities above are evaluated at P.

The Proof of Theorem 3.15 can be found in the appendix.

3.5. Degrees Other Than 0 or 1 are Too Costly

Beforewe present the constructions and numerics pertaining to critical points of
E0 in the next section, we conclude this section with a theorem which will provide
an explanation for some of the morphology to come. The theorem yields a lower
bound for the L2-norm of the divergence, in the spirit of analogous lower bound
results of Jerrard [21] and Sandier [38] for the Ginzburg–Landau energy. The
proofs of the Jerrard/Sandier results rely crucially on the fact that the square of the
gradient of a function is a sum of squares of its components, a feature that is not
shared by the square of the divergence of a vector field. We overcome this difficulty
by working in Fourier space.

Theorem 3.16. Fix 0 < ρ < ρ′ � 1, set A := {x ∈ R
2 : ρ < |x | < ρ′} and let Ct

be a circle of radius t centered at the origin. Suppose that u ∈ C1(A;R2) is such
that 1 � |u| � 1/2 on A and deg (u,Ct ) = d /∈ {0, 1} for any t ∈ [ρ, ρ′]. Then

∫
A
(div u)2 dx � π(d2 − 1) log(ρ′/ρ) − 4π. (3.74)

Remark 3.17. By majorizing
∫
A(div u)2 by

∫
A |∇u|2 in (3.74), it follows from

results for |∇u|2 that the scaling in ρ′/ρ is optimal. Note that there is no similar
lower bound when d = 1 due to existence of the divergence-free vector field 
eθ .

Proof. The proof of this result proceeds using Fourier series.
1. Developing u in a Fourier series, given by

u ∼
∑
n∈Z

un(r)e
inθ ,
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we first derive a formula for the degree of u in terms of its Fourier coefficients.
Denoting by ut the restriction of u to Ct , and writing un = fn + ign, we compute

d := deg(ut ,Ct )

= 1

2π

∫
Ct

ut × utτ dH1

= 1

2π

∫
Ct

∑
n

n

(
fn cos nθ − gn sin nθ

fn sin nθ + gn cos nθ

)
×

(− fn sin nθ − gn cos nθ

fn cos nθ − gn sin nθ

)

=
∑
n∈Z

n
(
| fn(t)|2 + |gn(t)|2

)
(3.75)

=
∑
n∈Z

n|un(t)|2, (3.76)

where in the last line we have used orthogonality. This expression for the degree in
terms of the Fourier coefficients can be found in [8].

2. As in the proof of Thm. 5.1 in [18], we find

div u =
∑
n∈Z

div Vn,

in L2, where we have

div V1 =
(
f ′
1(r) + f1(r)

r

)
,

div Vn =
(
f ′
n(r) + n fn(r)

r

)
cos(n − 1)θ − (

g′
n(r)

+ngn(r)

r

)
sin(n − 1)θ. n �= 1.

It follows that

1

π

∫
A
(div u)2 = 2

∫ ρ′

ρ

(
f ′
1 + f1

r

)2

r dr

+
∑
n �=1

∫ ρ′

ρ

((
f ′
n + n fn(r)

r

)2

+
(
g′
n + ngn(r)

r

)2
)
r dr

�
∫ ρ′

ρ

⎡
⎣2 f 21

r
+

∑
n �=1

n2( fn(r)2 + gn(r)2)

r

⎤
⎦ dr +

∫ ρ′

ρ⎡
⎣4 f1(r) f ′

1(r) +
∑

n∈Z,n �=1

2n
(
fn(r) f

′
n(r) + gn(r)g

′
n(r)

)
⎤
⎦ dr

:= I + I I.

(3.77)

We estimate the integrals I and I I separately as follows, beginning with I I. From
Eqn. (3.75) and the assumption that deg(u,Ct ) = d for each t ∈ [ρ, ρ′], we obtain
that for each r
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I I =
∫ ρ′

ρ

∂

∂r

⎡
⎣2 f 21 +

∑
n∈Z,n �=1

n( f 2n + g2n)

⎤
⎦ dr

=
∫ ρ′

ρ

∂

∂r

[
f 21 − g21 +

∑
n∈Z

n( f 2n + g2n)

]
dr

=
∫ ρ′

ρ

∂

∂r

[
f 21 − g21 + d

]
dr

= f1(ρ
′)2 − f1(ρ)2 + g1(ρ)2 − g1(ρ

′)2. (3.78)

Using now the definition of f1, g1, and the fact that |u| � 1, we find that ‖ f1‖∞,

‖g1‖∞ � 1. It follows that

|I I | � 4. (3.79)

We next turn to estimating I.
For this term, we find

I �
∫ ρ′

ρ

f1(r)2

r
+

∑
n∈Z,n �=1

n2( fn(r)2 + gn(r)2)

r

=
∫ ρ′

ρ

∑
n∈Z

n2(| fn(r)|2 + |gn(r)|2)
r

− g21
r

.

(3.80)

Next, for fixed r ∈ (ρ, ρ′), applying Cauchy-Schwarz followed by Plancherel
implies that

d =
∑
n∈Z

n
(
f 2n (r) + g2n(r)

)

�
(∑
n∈Z

n2
(
fn(r)

2 + gn(r)
2)
)1/2 (∑

n∈Z
fn(r)

2 + gn(r)
2

)1/2

�
(∑
n∈Z

n2
(
fn(r)

2 + gn(r)
2)
)1/2

.

(3.81)

Squaring both sides and dividing by r ∈ (ρ, ρ′) yields a lower bound for the
expression in (3.80):

d2

r
�

∑
n∈Z

n2
(
fn(r)2 + gn(r)2

)
r

(3.82)

Integrating in r and using the fact that |g1| � 1, we find that

I � (d2 − 1) ln(ρ′/ρ) (3.83)
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Fig. 5. Corner on an interface at which u changes tangency: If there are nowalls, aGinzburg–
Landau vortex forms in one of two ways, resulting in infinite E0 energy. The dotted lines
represent characteristics, and the arrows represent the S1-valued director, which is perpen-
dicular to the characteristics

Inserting (3.83)–(3.79) in (3.77) yields
∫
A
(div u)2 � π(d2 − 1) ln

ρ′

ρ
− 4π. (3.84)

This completes the proof of the theorem. ��
It also is worth mentioning that among degree 1 singularities, the L2-norm

of the divergence can vary greatly and may or may not satisfy a lower bound of
the type in the previous theorem. For example, for a Ginzburg–Landau vortex x

|x | ,
the L2-norm of the divergence taken over an annulus centered at the origin blows
up logarithmically as the inner radius approaches 0. However, an 
eθ vortex, given

by x⊥
|x | , is divergence free. This observation is relevant to our model, especially at

corner-type defects on the phase boundary. In many of our examples, the director
u, which must be tangent to the phase boundary, switches the sense of tangency at
a corner. If such a switch occurs at a corner of the phase boundary in the interior
of the domain, then walls must intersect the defect in order to avoid infinite energy
from the bulk divergence term; see Fig. 5. Conversely, if u does not change its sense
of tangency at a corner on the interface, then the singularity can be locally resolved
by the formation of a partial 
eθ vortex in which an infinite family of characteristics
emanate from the defect.

4. Examples: Analytical Constructions for Large L and Some Numerics

In this final section we explore analytically and numerically some possible
morphologies for critical points of our limiting energy E0, which we recall is given
by

E0(u) = L

2

∫
�

(div u)2 dx + K (0)

2
Per�({|u| = 1}) +

∫
Ju∩{|u|=1}

K (u · ν) dH1,
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with the cost K given by (3.8). After describing in Section 4.1 some numerics that
complement our rigorous work in Section 3.3 for the case where � is a rectangle,
we will focus on two main settings: (i) the case where � is a disk and competitors
must satisfy a boundary condition in the sense of (1.6) where g has degree k ∈ Z;
and (ii) the case of an island of isotropic phase, generated by an area constraint,
lying inside a nematic whose far field is given by 
e1.

For both settings (i) and (ii) we will not work directly with E0 but rather with
a problem that at least formally can be viewed as the large L limit of E0, namely

E∞
0 (u) := K (0)

2
Per�({|u| = 1}) +

∫
Ju∩{|u|=1}

K (u · ν) dH1, (4.1)

defined for u ∈ (BV ∩ Hdiv )(�,S1 ∪ {0}) such that

div u = 0 in �. (4.2)

In other words, E∞
0 is simply E0 restricted to divergence-free competitors. We

will consider this functional perhaps supplemented by the condition u∂� · ν∂� =
g · ν∂� on ∂� if one wishes to specify Dirichlet data g : ∂� → S

1 ∪ {0}, or such
that |{u = 0}| = const or |{|u| = 1}| = const if one wishes to specify an area
constraint. We also note that the Hdiv requirement still enforces the condition that
competitors have trace from the nematic side that is tangent to any interface, i.e.
(3.4) where u− = 0.

We will construct critical points for E∞
0 that we expect to be local or even

globally minimal and we observe that these divergence-free vector fields are com-
petitors in the minimization of E0 for finite L . Thus, we expect that they may well
be close to critical points or perhaps even minimizers of E0 when L is large. As
we shall see, this expectation is supported by simulations on the gradient flow for
Eε where L is large but fixed and then ε is taken to be small.

Regarding all simulations in this section, we obtain critical points for the en-
ergy Eε by simulating gradient flow for Eε using the software package COMSOL
[9]. Unless specified otherwise, we do not claim that solutions that we obtain are
minimizers of Eε or prove that these solutions converge to critical points of the
limiting energy. We will infer such convergence in cases where we are able to show
via an analytical construction that a similar looking critical point of E0 does exist.

We consider E∞
0 rather than E0 here in part because, as we will describe below,

the divergence-free condition (4.2) provides a rigidity that simplifies the search
for critical points. We hasten to add, however, that to us minimization of E∞

0 is
a fascinating and nontrivial problem in its own right that one might view as a
version of the Aviles–Giga limiting problem which allows for phase transitions,
i.e. isotropic regions, as well as walls. Of course this entire project represents just
an initial investigation of Eε and E0 that we hope will generate interest in future
analysis of critical points and minimization of these functionals for L finite. In that
vein, we hope the work in this section provides intuition and techniques that can be
generalized, and that the criticality conditions derived in Section 3.4 provide some
tools.
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Sowhat does criticalitymean for E∞
0 ?Within the nematic regionwhere |u| = 1,

but away from the jump set Ju , if we locally describe a competitor u via u(x) =(
cos θ(x), sin θ(x)

)
, then (4.2) implies that

∇θ · ( − sin θ, cos θ
) = 0.

Defining the characteristic direction via x ′
1 = − sin θ, x ′

2 = cos θ we see that θ

and therefore u is constant along characteristics and further that u is orthogonal to
characteristics and so one concludes in particular that:

Characteristics for E∞
0 must be straight lines along which u

is orthogonal and constant. (4.3)

This rigidity, familiar to those who work on Aviles–Giga, is what will allow us to
carry out some of the analytical constructions in this section.

On the other hand, this amount of rigidity limits one’s ability build a rich class of
variations of E∞

0 and so we will not attempt to directly compute L = ∞ analogues
of the ODE’s (3.53) or (3.54) or the junction condition (3.73).

4.1. Critical Points of E0 in a Rectangle.

Herewe take� to be the rectangle (−0.2, 0.2)×(−0.5, 0.5) andwe seek critical
points of the energy E0 which satisfy the boundary conditions u (·,±1/2) = ±
e1 =
(±1, 0) and satisfy periodic boundary conditions on the sides x = ± 1

2 .
As discussed in Section 3.3, when restricting minimization of Eε to one-

dimensional competitors which in this case are functions of y, we obtain full
�-convergence of the one-dimensional analog of Eε to that of E0. Further, the
behavior of minimizers of E0 among one-dimensional competitors is determined
by the value of L . When L exceeds a certain threshold, the bulk divergence con-
tribution vanishes and the energy of a critical point is associated solely with a wall
along the x-axis that separates the regions of zero divergence. When L falls below
the threshold value, the bulk divergence contribution is present along with a cost
of the wall associated with the jump set of the minimizer. When L tends to zero,
the wall disappears and the energy minimizing vector field is essentially a linear
interpolation of the boundary data.

Figuers. 6 and 7 present the results of simulations for the gradient flow for
Eε in the rectangle. It is evident that, even though the simulations are fully two-
dimensional, the critical points obtained in this way are one-dimensional and con-
form to the picture described in the previous paragraph. Two main observations
follow from these figures. First, the results seem to indicate that the wall cost
is indeed one-dimensional as we conjectured earlier in the paper. Second, in all
simulations done in the rectangle, the critical points we observe are always one-
dimensional, even for large values of L . This is in contrast to the results in [18]
for the version of the problem with the Ginzburg–Landau instead of the Chern-
Simons-Higgs potential. In that work, one-dimensional critical points are found to
be unstable with respect to formation of cross-tie configurations for large L—such
instability does not seem to be present here, at least numerically.
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(a)L = .4 (b)L = .5

Fig. 6. Critical points of Eε in the rectangle. Here ε = 0.001

Fig. 7. Cross-section of the wall for a critical point of Eε in the rectangle. The y-axis is as
shown in Fig. 6 and ε = 0.001. When L � 0.5, the profile is independent of L (not shown)

4.2. Critical Points of E0 and E∞
0 in a Disk

In this section we consider critical points of the energy E∞
0 in the disk � of

radius R among competitors satisfying the boundary condition

u
(
R cos

s

R
, R sin

s

R

) · ν∂� = (
cos(ks + α), sin(ks + α)

) · ν∂�

for s ∈ [0, 2πR) , (4.4)

where k ∈ Z, α ∈ R, and the boundary is parametrized with respect to arc-length.
The simplest cases to consider are (k, α) = (1, π/2) and when k = 0 for which

minimizers of E0 are the divergence-free vortex

u0 = 
eθ =
⎛
⎝ −x2√

x21 + x22

,
x1√

x21 + x22

⎞
⎠ ,
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(a) L = 0.4, ε = 0.005 (b) L = 2, ε = 0.005

Fig. 8. Critical points of Eε for (k, α) = (−1, π). The red curves represent level sets of div u
while |u| = 0.5 on the black curves that enclose the isotropic phase (color figure online)

and the constant state

u0 = (
cosα, sin α

)
,

respectively. Indeed, trivially, in both cases E0(u0) = min E0 = 0. Hence our
principal interest in this section will be to understand the behavior of critical points
for other choices of (k, α).

We begin by considering the case where k is a negative integer and α = π . To
gain some insight into how these boundary conditions influence the morphology of
interfaces andwalls,wepresent inFig. 8 the large-timeasymptotics for gradient flow
dynamics for the energy Eε with boundary conditions u|∂� = −(

cos ks, sin ks
)

for two values of L . Then in Fig. 9 we present simulations for data with degrees
−2 and −3. Although we do not impose an area constraint in these simulations in
order to induce a phase transition, these numerics nonetheless indicate a substantial
presence of the isotropic phase in the form of an island with 2 |k| + 2 boundary
singularities. Generally speaking, these islands appear to grow in size as |k| grows,
and for k < −1, both configurations with a single or multiple vortices are possible.
Studies on vortices using the Ginzburg–Landau potential such as [7] or—more
appropriately to this study—the Chern-Simons-Higgs potential with L = 0 in the
elastic energy [25] tempt one to think of these islands for ε > 0 as “defects”
arising from the negative degree boundary condition. However, the numerics and
Theorem 3.16 indicate that the cores of the defects do not shrink in the ε → 0
limit. Indeed, from Theorem 3.16 it follows that a defect with a negative degree
must either be inside an isotropic region or have walls originating from the defect.
The latter situation was, in fact, observed in [18] for the degree −1 defects while
the Ginzburg–Landau potential considered in [18] did not allow for presence of
interfaces.

We now provide some analytical evidence that supports the observations in
Figs. 8 and 9. Motivated by the gradient flow simulations, we construct critical
points for E∞

0 and so divergence-free competitors for E0. These constructions
will have only interface, but no walls, with singular points of the interface always
touching the boundary of the disk, though of course the numerics suggest that for L
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(a) L = 0.04, ε = 0.005 (b) L = 0.1, ε = 0.005

(c) L = 0.1, ε = 0.005 (d) L = 0.04, ε = 0.005

Fig. 9. Critical points of Eε for a–c: (k, α) = (−2, π) and (d): (k, α) = (−3, π). The
red curves represent level sets of div u while |u| = 0.5 on the black curves that enclose
the isotropic phase. The configurations b and c are obtained starting from different initial
conditions. Configuration b has slightly lower energy in Eε (color figure online)

finite, there should exist walls branching off the phase boundary singularities and
attaching to ∂�.

Example 4.1. In this example, � = B(0, 1), and we are interested in competitors
which exhibit the symmetry

u
(
eπ i/(k+1)x

)
= e−πki/(k+1)u(x) for k ∈ N. (4.5)

This is the symmetry exhibited by the configurations in Figs. 8 and 9. The construc-
tion will proceed by issuing characteristics off ∂� and by adhering to the condition
(4.3).

Owing to the condition (4.5), we construct a critical point of E∞
0 in the sector S

corresponding to [0, π/(k + 1)] and then extend the construction to the rest of the
domain by symmetry. Shifting out of complex notation and parametrizing ∂�∩ ∂S
by (cos s, sin s) for s ∈ [0, π/(k+1)], we will insist that u|∂�

= (− cos ks, sin ks),
rather than just having agreement between the normal component of u and that of
the data.
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Integrating the characteristic equations then yields

(x1(s, t), x2(s, t)) = (cos s, sin s) − t (sin ks, cos ks) (4.6)

u (x1(s, t), x2(s, t)) = (− cos ks, sin ks), (4.7)

with s ∈ [0, π/(k + 1)], t � 0. We represent the interface in the form

(p(s), q(s)) := (x1(s, t (s)), x2(s, t (s)))

for an appropriate arrival time t (s) � 0. Here, for each s, a characteristic arrives at
the interface at the time t (s) and we require that u at the point of arrival is tangent
to the interface, that is

(
p′(s), q ′(s)

) = α (u(p(s)), u(q(s))) for some α ∈ R.

Using this expression in (4.6), we find that

x ′
1(s, t (s)) = − sin s − t ′(s) sin ks − kt (s) cos ks = −α cos ks,

x ′
2(s, t (s)) = cos s − t ′(s) cos ks + kt (s) sin ks = α sin ks.

Upon rearrangement, we have

− sin s + α cos ks − kt (s) cos ks = t ′(s) sin ks,
cos s − α sin ks + kt (s) sin ks = t ′(s) cos ks.

Multiplying these equations by sin ks and cos ks, respectively, and adding the results
gives

t ′ = − sin s sin ks + cos s cos ks = cos(k + 1)s.

Integration then yields

t (s) = 1

k + 1
sin(k + 1)s + c.

Motivated by numerics, we seek an interface that meets ∂� at (1, 0), so that t (0) =
0. Then c = 0, so that t (s) = 1

k+1 sin(k + 1)s. The parametric equation of the
interface in the sector S is now given by

p(s) = cos s − 1

k + 1
sin(k + 1)s sin ks =

(
1 − 1

2(k + 1)

)
cos s

+ 1

2(k + 1)
cos(2k + 1)s, (4.8)

q(s) = sin s − 1

k + 1
sin(k + 1)s cos ks

=
(
1 − 1

2(k + 1)

)
sin s − 1

2(k + 1)
sin(2k + 1)s. (4.9)

Extending the interface to all of � via the symmetry condition (4.5), we obtain a
closed curvewith 2(k+1) evenly-spaced cusps.When k = 1one checks that p(s) =
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Fig. 10. Contour line |u| = 0.5 for the critical point with (k, α) = (−1, π) obtained via

gradient flow (red) and the plot of x2/31 + x2/32 = 1 (blue). Here L = 2 and ε = 0.005 (color
figure online)

cos3 s and q(s) = sin3 s and the interface satisfies the equation x2/31 + x2/32 = 1.
In Fig. 10 we compare the graph of this curve with the contour line |u| = 0.5 for
the critical point obtained numerically via gradient flow when L = 2. It is clear
that the two curves are very close to each other, which is quite striking since one
might only expect a strong connection between the critical points of Eε and E∞

0
for L large.

One can also check that for the construction obtained above, the area of the
isotropic island increases with |k|. In fact, a calculation that we omit goes to show
that in the k → ∞ limit, the isotropic region fills the entire disk!

The preceding calculation can also be used in the case of L < ∞ in order to
reconstruct parts of critical points of E0. Recall that, in this case, by Corollary 3.13,
the characteristics are circular arcs of finite radii that may run directly from the
interface to ∂�. In Fig. 8, for example, red curves correspond to level sets of div u
and thus the characteristics for u connect large portions of the interface to the
boundary. In order to fully reproduce the critical point of E0 completely, however,
one needs to allow for the presence of walls, as evidenced by the gradient flow
numerics in Fig. 8. Although a similar approach yielded critical points of (1.3) for
degree −1 boundary data in [18], such a construction will be more elaborate here
and we do not pursue this issue further in the present paper.

We conclude this section by considering the boundary data in (4.4) correspond-
ing to k positive and α = 0. The results of the gradient flow simulations are shown
in Fig. 11. Not surprisingly, when L is small for k = 2, the stable configuration con-
sists of two degree one vortices looking locally like 
eθ , see Fig. 11a. As L increases,
however, these vortices collapse onto and spread along ∂�while forming twowalls
along the upper and lower halves of the boundary, respectively, cf. Fig. 11b. Indeed
this simulation suggests that for E0 with L large, the preferred state is u ≡ 
e1.
In fact, if one tries to construct a competitor u having a ‘boundary wall’ for this
boundary data, that is, a unit vector field such that the normal component of the
data is met but the tangential component switches sign, then one finds

u · ν∂� = (cos 2s, sin 2s) · (cos s, sin s) = cos s = 
e1 · (cos s, sin s)
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(a) L = 0.04, ε = 0.005 (b) L = 10, ε = 0.001

(c) L = 0.04, ε = 0.005

Fig. 11. Critical points of Eε for a–b (k, α) = (2, 0) and c (k, α) = (3, 0). The red curves
represent level sets of div u while |u| = 0.5 on the black curves that enclose the isotropic
phase. The wall adjacent to the boundary in plot (b) is indicated in yellow (color figure
online)

and

u · τ∂� = −(cos 2s, sin 2s) · (− sin s, cos s) = − sin s = 
e1 · (− sin s, cos s).

Thus such a competitor u must have trace 
e1 along ∂� and there is no need then to
accumulate divergence inside the disk by varying from constancy.

In the case of a degree 3 boundary data, cf. Fig. 11c, the behavior is more
complex—the degree 3 vortex appears to split into four degree 1 vortices and one
degree −1 vortex. The four +1 vortices approach the boundary of the domain with
an increasing L while the degree −1 vortex remains at the center of the disk.

We use the simulations in the case of (k, α) = (2, 0) to test Conjecture (3.12) on
the one-dimensional character of the wall cost. The walls in this example turn out
to be significantly deeper than in other cases that we considered and it is therefore
easier to compare the numerically computed wall profiles with the corresponding
heteroclinic connection. Consider the critical point for Eε depicted in Fig. 11b. For
a large value of L the defects present inside� for small ε spread along the boundary
to form two boundary walls. Due to symmetry, it is sufficient to consider the wall in
the first quadrant. Then along each ray emanating at angle θ from the origin, thewall
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Fig. 12. Wall cost is one-dimensional for the critical point shown in Fig. 11b. a Cross-
sections of Fig. 11b in the direction of angle θ . Only parts of cross-sections closest to the
boundary are shown; b Comparison between the numerical and analytical wall profiles

connects the vector 
e1 = (1, 0) to the vector (cos 2θ, sin 2θ). Because the normal to
the boundary/interface is (cos θ, sin θ), the normal component of the vector field is
continuous across the wall, while the tangential component reverses sign. The jump
in the tangential component across the wall grows as θ changes from 0 to π/2. In
Fig. 12a we plot cross-sections of |u| for the critical point of Eε shown in Fig. 11b,
where the cross-sections are shown along several rays θ = const . In Fig. 12b,
the same scaled and translated profiles are shown together with the corresponding
solutions of the ODE that describes a heteroclinic connection associated with Eε,
assuming one-dimensional cost. As Fig. 12b demonstrates, the graphs are close to
each other for all respective values of θ—this is in agreement with our conjecture
that the cost is one-dimensional.

4.3. Examples for Degree Zero Boundary Data

In this section, we analytically and numerically construct an example with an
isotropic tactoid which exhibits two defects on the phase boundary. Let us describe
a key feature of this example. Recall that at a nematic-isotropic interface for E0,
the trace of a BV ∩ Hdiv competitor u from the nematic region is tangent to the
interface, cf. (3.4). If, for example, u is smooth and does not change the sense of
tangency along the interface, then the degree of u around any connected component
of the interface is 1. If we specify a degree 0 boundary condition around ∂� or
at infinity, this mismatch can be rectified by the presence of two defects along the
interface, similar to the construction of the recovery sequence in Section 2. This is
the effect we will see in the following example.

We begin with some numerics. Figure 15a shows the result of gradient flow
simulation in a large rectangular domainwith constant boundarydata 
e1.Weobserve
in Fig. 15a that (i) the interface surrounds a single isotropic island, (ii) there appear
to be twowallswhich intersect the twodefects on the interface, and (iii) the solutions
possess the symmetries

(u1(x1, x2), u2(x1, x2)) = (u1(x1,−x2),−u2(x1,−x2))
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and

(u1(x1, x2), u2(x1, x2)) = (u1(−x1, x2),−u2(x1,−x2)).

Furthermore, in Fig. 15awe see that (iv) thewalls divide the plane into three regions,
with

u ≡ 
e1 in the two regions not containing the isotropic tactoid. (4.10)

This simulation, though depicting transient behavior, leads us to seek a critical
point of E∞

0 satisying (i)–(iv) consisting of an isotropic tactoid in an infinite sea
of nematic, where in the far field, u → 
e1. To induce a static—and presumably
stable—critical point having an isotropic phase, we will enforce an area constraint
of the form |{u = 0}| = const.

The complication here—and it is a significant one—is that an interface and a
wall are rigidly linked via the straight-line characteristics lying in between them,
and the requirement of tangency of u along the interface and agreement of the
normal component of u with that of 
e1 along the wall make the construction rather
daunting.

Somewhat surprisingly, we are able to achieve this construction by deriving a
formula of the form

E∞
0 (u) =

∫
∂{|u|=1}

f (θ) dH1 (4.11)

for an explicit f , for competitors u satisfying (i)–(iv), where θ is the angle the
tangent vector to ∂{|u| = 1} makes with the horizontal. For such u, the energy E∞

0
therefore only depends on the interface, a reflection of the afore-mentioned rigidity
of this problem. We then consider variations of the interface to derive an ODE
(4.35) for θ along with the junction condition (4.36) at the intersection of walls and
interfaces. Numerically integrating this ODE yields a configuration which closely
resembles the results of the simulations shown in Fig. 15a, cf. Fig. 15b.

The Role of Walls Before embarking on this construction, let us comment on the
role of walls in this example. A natural question is: given these conditions, namely
an area constraint on the isotropic region and the requirement that u ≡ 
e1 in the far
field, is it necessary for a critical point to have walls? While we do not as yet have
a proof, we believe the answer is yes. Let us present some heuristic arguments to
this effect. Working within the symmetry assumption (iii), consider the possibility
of constructing a competitor without walls. Then one of the two configurations
depicted in Fig. 13 are possible where the isotropic island either has two corners and
nowalls or it has two cusps andnowalls. In the former case, one can show that partial
vortices should form near the corners in the nematic phase, causing the divergence
contribution to the energy to blow up; see Fig. 5 above. If there are two cusps
and no walls, Fig. 13 demonstrates that this is not possible as the characteristics
emanating from the interface would have to intersect non-tangentially. In light
of these observations, junctions between interfaces and walls appear to be fairly
generic, making in particular the junction condition (3.73) potentially important
when analyzing candidates for possible critical points or minimizers when L is
finite.
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Fig. 13. An isotropic island (marked in gray) surrounded by the nematic medium in R
2

without wall singularities and satisfying u = 
e1 at infinity. The vector field is tangent to the
boundary of the island and switches the sense of tangency at the boundary singularities. Left:
the island has a corner and thus an infinite energy E0 due to the bulk divergence term—cf.
Fig. 5. Right: the island has a cusp—impossible without a wall since the characteristics will
intersect. Characteristics are indicated by the dashed lines

r̃(σ) = r(σ) + t(σ)ν(σ)

r(σ)

τ(σ) ν(σ)

{u = �e1}
{u = 0}

Fig. 14. The isotropic island is surrounded by the nematic region. The dotted line represents
a straight line characteristic, and the dashed line represents the wall

Example 4.2. For this calculation, by (iii), it suffices to consider the problem in
the first quadrant Q1. Let us assume that ∂{|u| = 1} ∩ Q1 is smooth and can be
parametrized by r(σ ) where r : [0, L] → Q1, with r(0) on the x1-axis and r(L)

on the x2-axis; see Fig. 14. We do not assume that the interface is parametrized by
the arclength variable s in this derivation. Then

r ′(σ )/|r ′(σ )| = τ(σ ) = (cos θ(σ ), sin θ(σ )) = −u(r(σ )). (4.12)

Let us define

ρ(σ) = |r ′(σ )|,
and the normal vector

ν(σ ) = (sin θ(σ ),− cos θ(σ )).
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(a) (b)

Fig. 15. Isotropic island in R2 with u = 
e1 at infinity: a Gradient flow simulation in a large
domain intended to represent R2. The isotropic region is shrinking and the solution shown
is a transient. Here L = 10, ε = 0.02; b Solution of (4.35)–(4.36) for λ = 1

We now deduce the location of the wall, which we will see is determined
by the interface. Recall that in light of (4.3), u is perpendicular to the straight
characteristics, which themselves intersect the interface perpendicularly, so we can
parametrize the wall by shooting characteristics off of the interface until they hit
the wall. We can write a parametrized path r̃ for the wall then as

r̃(σ ) := r(σ ) + t (σ )ν(σ ). (4.13)

Hence by (4.12) the trace of u on the wall from the left, denoted here by ũ, is given
by

ũ(σ ) = − (cos θ(σ ), sin θ(σ )). (4.14)

We define a function ψ by the equation

r̃ ′(σ ) = |r̃ ′(σ )|(cosψ(σ), sinψ(σ)).

Then the tangent and normal vectors to the wall are given by

τ̃ = (cosψ, sinψ) and ν̃ = (sinψ,− cosψ). (4.15)

Next, we collect some relations between several of the above quantities which
will be useful in the following calculations. From the continuity of the normal traces
across a wall, we have

ũ · ν̃ = 
e1 · ν̃,
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which we rewrite using (4.14), (4.15), and the angle subtraction identity for sin as

sin(θ − ψ) = sinψ. (4.16)

Similarly, the condition ũ · τ̃ = −
e1 ·τ for the tangential components across a wall,
cf. (3.4), can be expressed as

cos(θ − ψ) = cosψ. (4.17)

From (4.16), (4.17) it follows that ψ = θ/2 + kπ for some integer k, and k is in
fact 0 since at σ = 0, ψ(0) � θ(0) � ψ(0) + π/2. Thus

ψ = θ/2. (4.18)

We can now write the energy E0(u, Q1) in the first quadrant as

E0(u, Q1) = K (0)

2
PerQ1({|u| = 1}) +

∫
Ju∩{|u|=1}

K (u · ν) dH1

=
∫ L

0

(
K (0)

2
|r ′(σ )| + K (
e1 · ν̃(σ ))|r̃ ′(σ )|

)
dσ. (4.19)

One can use (4.13) and the orthogonality of τ and ν to easily calculate

|r̃ ′| =
(
(ρ + tθ ′)2 + (t ′)2

)1/2
.

Substituting this and


e1 · ν = sinψ = sin(θ/2)

into (4.19) yields

E0(u, Q1) =
∫ L

0

(
K (0)

2
|r ′| + K (sin(θ/2))

(
(ρ + tθ ′)2 + (t ′)2

)1/2)
dσ

=
∫

∂{|u|=1}
K (0)

2
dH1

+
∫ L

0

(
K (sin(θ/2))

(
(ρ + tθ ′)2 + (t ′)2

)1/2)
dσ. (4.20)

In order to obtain a formula for E0 depending only on the interface, it remains to
simplify

(
(ρ + tθ ′)2 + (t ′)2

)1/2
. (4.21)

We begin this simplification by finding an expression for t in terms of θ and ρ.
Using the definitions (4.12), (4.13), and (4.15) for r , r̃ , and ν̃, respectively, along
with (4.18), we calculate

0 = r̃ ′ · ν̃

= (
r ′ + t ′ν + tν′) · ν̃

= [
ρ(cos θ, sin θ) + t ′(sin θ,− cos θ) + tθ ′(cos θ, sin θ)

]
· (sin(θ/2),− cos(θ/2)). (4.22)
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Expanding out (4.22) and using the angle subtraction formulae for sine and cosine
eventually gives

t ′ cos(θ/2) − (ρ + tθ ′) sin(θ/2) = 0. (4.23)

Now we observe from our symmetry assumption on u that u ≡ 
e1 on the x2-axis,
so that θ(L) = π . If we assume that θ(σ ) does not reach π until θ(L) = π , which
in terms of the interface means that

the tangent vector to the interface is not horizontal in the interior of Q1,

(4.24)

then we can divide (4.23) by cos(θ/2). This results in the following ODE for t :

t ′ − sin(θ/2)

cos(θ/2)
θ ′t = ρ tan(θ/2). (4.25)

Multiplying both sides of (4.25) by the integrating factor

M = exp

(
−2

∫
sin(θ/2)

cos(θ/2)

θ ′

2

)
= exp (2 ln(cos(θ/2))) = cos2(θ/2)

results in

(t cos2(θ/2))′ = ρ sin(θ/2) cos(θ/2) = 1

2
ρ sin θ.

Integrating both sides, dividing by cos2(θ/2), and using the half angle formula for
cosine, we obtain

t = 1

2 cos2(θ/2)

∫ σ

0
ρ(y) sin θ(y) dy = 1

1 + cos θ

∫ σ

0
ρ sin θ dy. (4.26)

Finally, let us record the identity

ρ + tθ ′ = t ′ cos(θ/2)

sin(θ/2)
, (4.27)

which follows from rearranging (4.23).
We now use the formula (4.26) for t to calculate (4.21), the quantity we set out

to simplify. Let us assume that t ′ > 0, which means that

the length of characteristics connecting the interface to the wall increases in σ.

(4.28)

Then plugging in (4.27) for (4.21) and using the assumptions (4.24) and (4.28),
namely θ/2 � π/2 and t ′ > 0, we write

(
(ρ + tθ ′)2 + (t ′)2

)1/2 =
(

(t ′)2 cos
2(θ/2)

sin2(θ/2)
+ (t ′)2

)1/2

= t ′

sin(θ/2)
.
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Utilizing the formula (4.26) to calculate t ′ and then a half angle formula for cosine
and a double angle formula for sine, we arrive at

(
(ρ + tθ ′)2 + (t ′)2

)1/2 = 1

sin(θ/2)

[
ρ sin θ

1 + cos θ
+ θ ′ sin θ

(1 + cos θ)2

∫ σ

0
ρ sin θ dy

]

= sin θ

2 sin(θ/2)(1 + cos θ)

[
ρ + θ ′

1 + cos θ

∫ σ

0
ρ sin θ dy

]

= 2 sin(θ/2) cos(θ/2)

2 sin(θ/2) cos2(θ/2)

[
ρ + θ ′

1 + cos θ

∫ σ

0
ρ sin θ dy

]

= 1

cos(θ/2)

[
ρ + θ ′

1 + cos θ

∫ σ

0
ρ sin θ dy

]
. (4.29)

Now we are ready to use the expression (4.29) for (4.21) in the E0 energy
(4.20). We have

E0(u, Q1) = E0(ρ, θ)

=
∫

∂{|u|=1}
K (0)

2
dH1

+
∫ L

0

(
K (sin(θ/2))

cos(θ/2)

[
ρ + θ ′

1 + cos θ

∫ σ

0
ρ sin θ dy

])
dσ.

We focus on the term∫ L

0

(
K (sin(θ/2))

cos(θ/2)

θ ′

1 + cos θ

∫ σ

0
ρ sin θ dy

)
dσ. (4.30)

Let us define the function H(v) by the equations

H ′(v) = K (v)

(1 − v2)2
, H(0) = 0.

It follows from (3.8) that H remains finite as v approaches 1 so long as V (t)
approaches 0 as t ↗ 1 at least as fast as c(1 − t2)p for some p > 1 and c > 0, an
assumption which is satisfied by WCSH . A straightforward calculation, which we
omit, using the chain rule, the definition of H ′, and some trigonometric identities
yields

(H(sin(θ/2)))′ = K (sin(θ/2))θ ′

cos(θ/2)(1 + cos θ)
. (4.31)

Inserting this expression into the last integral in (4.30), that term becomes
∫ L

0
(H(sin(θ/2)))′

(∫ σ

0
ρ sin θ dy

)
dσ, (4.32)

which we integrate by parts to obtain

[
H(sin(θ/2))

∫ σ

0
ρ sin θ dy

]∣∣∣∣
L

0

−
∫ L

0
H(sin(θ/2))ρ sin θ dσ.
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Note that by our symmetry assumptions, θ(L) = π , so that

[
H(sin(θ/2))

∫ σ

0
ρ sin θ dy

]∣∣∣∣
L

0

−
∫ L

0
H(sin(θ/2))ρ sin θdσ

= H(1)
∫ L

0
ρ sin θ dσ −

∫ L

0
H(sin(θ/2))ρ sin θ dσ. (4.33)

We combine (4.31)–(4.33) to rewrite (4.30):

∫ L

0

(
K (sin(θ/2))

cos(θ/2)

θ ′

1 + cos θ

∫ σ

0
ρ sin θ dy

)
dσ

=
∫ L

0
(H(1) − H(sin(θ/2))ρ sin θ dσ. (4.34)

Using the right hand side of (4.34) for (4.30), we finally have

E0(u, Q1)

= E0(ρ, θ)

=
∫

∂{|u|=1}
K (0)

2
dH1

+
∫ L

0

(
K (sin(θ/2))

cos(θ/2)

[
ρ + θ ′

1 + cos θ

∫ σ

0
ρ sin θ dy

])
dσ

=
∫

∂{|u|=1}
K (0)

2
dH1

+
∫ L

0

(
K (sin(θ/2))

cos(θ/2)
+ (H(1) − H(sin(θ/2)) sin θ

)
ρ dσ

=:
∫

∂{|u|=1}
f (θ) dH1.

Thus we arrive at (4.11).
We turn now to the criticality conditions for θ . For any u with smooth interface,

we parametrize the interface of length l by arclength s. Then the standard derivation
[3] gives the following condition on the interface

( f ′′(θ) + f (θ))θ ′ + λ = 0. (4.35)

along with the the junction condition

f ′(θ) sin θ − f (θ) cos θ = 0 (4.36)

at s = 0, the intersection of ∂{|u| = 1} with the x1-axis.
The solution of (4.35)–(4.36) for λ = 1 is depicted in Fig. 15b and bears a

strong resemblance to a configuration observed in gradient flow dynamics shown
in Fig. 15a.
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5. Appendix

We present here the Proof of Theorem 3.15. See Fig. 4 for a guide to the notation.

Proof. The derivation of (5.18) follows the same general lines as those appearing
in the proof of Theorem 3.14. However, a major complicating consideration is that
it is no longer possible to assume that the deforming vector field X is normal to
all four curves �i j since they all meet at p. Instead we will have to incorporate
tangential components of X along these four curves as well.
To this end, we assume simply that X ∈ C1

0(B(p, R);R2) and again introduce the
map � via (3.56). We assume that each �i j is smoothly parametrized by arclength
through a map ri j : [0, s0] → �i j for some s0 > 0 with ri j (0) = p. Then we
replace (3.55) by

X (ri j (s)) = hτ
i j (s)τi j (s) + hν

i j (s)νi j (s) for s ∈ [0, s0], (5.1)

where

hτ
i j := X (ri j (s)) · τi j (s) and hν

i j (s) := X (ri j (s)) · νi j (s).

As a consequence of the compact support of X , we have that

hτ
i j (s0) = hν

i j (s0) = 0 for all functions hτ
i j and hν

i j (5.2)

but we stress that none of these functions is assumed to vanish at s = 0, namely at
the location of the junction P .
We now deform each region � j , for j = 0, 1, 2, 3 by the map � to form four
contiguous regions �t

j := �(� j , t) and we deform the four boundary curves �i j

to form four new boundary curves �t
i j := �(�i j , t). Of course the junction point

P is also carried along by this flow.
The four curves �t

i j are parametrized by s �→ �(ri j (s), t) which we denote by
r ti j (s) though s no longer represents arclength. Indeed one calculates that

r ti j (x) ∼ ri j (s) + t
(
hτ
i j (s)τi j (s) + hν

i j (s)νi j (s)
)

(5.3)

from which it follows that∣∣∣r ti j ′(s)
∣∣∣ ∼ 1 + t

(
hτ
i j

′(s) − hν
i j (s)κi j (s)

)
, (5.4)
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whereκi j (s)denotes the curvature of�i j at ri j (s) (comparewith (3.61)) andwehave
invoked the Frenet relations τ ′

i j = κi jνi j and ν′
i j = −κi jτi j . A related calculation

goes to show that the unit normal νti j to �t
i j is given by

νti j ∼ νi j − t
(
hν
i j

′ + κi j h
τ
i j

)
τi j . (5.5)

Now in the ball B(p, R) the unperturbed critical point is given by

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x ∈ �0,

u1(x) for x ∈ �1,

u2(x) for x ∈ �2,

u3(x) for x ∈ �3

and we wish to perturb it into a new function ut given by

ut (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x ∈ �t
0,

ut1(x) for x ∈ �t
1,

ut2(x) for x ∈ �t
2,

ut3(x) for x ∈ �t
3

.

To carry this out, as in the previous proof, we extend the domain of definition of
u j to a neighborhood of � j in such a way that the extension is constant along the
normals to the boundary of its original domain of definition. Then we introduce
three functions φ1, φ2 and φ3 such that

utj (x) ∼ u j (x) + tφ j (x)u j (x)
⊥ for x ∈ �t

j and for j = 1, 2, 3 (5.6)

so as to preserve the required S
1-valued nature of utj .

Wemust also take care to preserve the property ut ∈ Hdiv in the sense of (3.38) and
this requires that the following four conditions hold to O(t) along �01, �12, �23
and �03 respectively:

ut1(r
t
01(s)) · νt01(s) = 0, ut1(r

t
12(s)) · νt12(s) = ut2(r

t
12(s)) · νt12(s),

ut2(r
t
23(s)) · νt23(s) = ut3(r

t
23(s)) · νt23(s) and

ut3(r
t
03(s)) · νt03(s) = 0 for s ∈ [0, s0]. (5.7)

We note that the first and last of these conditions implies at t = 0 that either
u1 ≡ τ01 or ≡ −τ01 along �01 and likewise either u3 ≡ τ03 or ≡ −τ03 along �03.
Substituting (5.3) and (5.5) into the four conditions of (5.7), and expanding to
O(t), a tedious but straight-forward calculation leads to the following requirements
relating the traces of the φ j to hν

i j,s :

φ1
(
r01(s)

) = hν
01,s(s), (5.8)

1

2

(
φ1

(
r12(s)

) + φ2
(
r12(s)

)) = hν
12,s(s), (5.9)

1

2

(
φ2

(
r23(s)

) + φ3
(
r23(s)

)) = hν
23,s(s), (5.10)

φ3
(
r03(s)

) = hν
03,s(s), (5.11)
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for s ∈ [0, s0], where s in the subscript denotes the derivative with respect to s
With the perturbations of the four curves �i j and three functions utj defined, we
are ready to compute the variation of E0 in a neighborhood of the junction point
P . Carrying out the calculation (3.70) in � j for j = 1, 2, 3 and then applying the
divergence theorem we find with the aid of (3.39) that

d

dt

3∑
j=1

(∫
�t

j

(div utj )
2 dx

)∣∣∣∣∣∣
t=0

= −
∫

�01

(
(div u1)

2 hν
01 + 2(div u1)(u1 · τ01)φ1

)
ds

+
∫

�12

(
(div u1)

2 hν
12 + 2(div u1)(u1 · τ12)φ1

)
ds

−
∫

�12

(
(div u2)

2 hν
12 + 2(div u2)(u2 · τ12)φ2

)
ds

+
∫

�23

(
(div u2)

2 hν
23 + 2(div u2)(u2 · τ23)φ2

)
ds

−
∫

�23

(
(div u3)

2 hν
23 + 2(div u3)(u3 · τ23)φ3

)
ds

−
∫

�03

(
(div u3)

2 hν
03 + 2(div u3)(u3 · τ03)φ3,

)
ds.

where we have used the fact that u⊥
1 · ν01 = u1 · τ01, u⊥

1 · ν12 = u1 · τ12, etc.
Now we appeal to the relations (5.8)–(5.11), along with the conditions u2 · τ12 =
−u1 · τ12 and u3 · τ23 = −u2 · τ23 and perform an integration by parts to find

d

dt

3∑
j=1

(∫
�t

j

(div utj )
2 dx

)∣∣∣∣∣∣
t=0

=
∫

�01

{
− (div u1)

2 + 2(div u1)
′(u1 · τ01)

}
hν
01 ds

+
∫

�12

{(
(div u1)

2 − (div u2)
2

− 4
[
(div u2)

′(u1 · τ12) + (div u2)(u1 · τ12)
′]) hν

12

+ 2(div u1 − div u2)(u1 · τ12)φ1

}
ds

+
∫

�23

{(
(div u2)

2 − (div u3)
2

− 4
[
(div u3)

′(u2 · τ23) + (div u3)(u2 · τ23)
′]) hν

23

+ 2(div u2 − div u3)(u2 · τ23)φ2

}
ds
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+
∫

�03

{
− (div u3)

2 + 2(div u3)
′(u3 · τ03)

}
hν
03 ds

+ 2(div u1(p))(u1(p) · τ01(0)) h
ν
01(0) − 4 div u2(p)(u1(p) · τ12(0)) h

ν
12(0)

− 4 div u3(p)(u2(p) · τ23(0))h
ν
23(0)

+ 2 (div u3(p))(u3(p) · τ03(0)) h
ν
03(0). (5.12)

We turn now to calculating the variations of the four jump energies. We begin by
invoking (5.4) to compute

d

dt

(∫
�t
01

1 ds +
∫

�t
03

1 ds

)∣∣∣∣∣
t=0

= d

dt

(∫ s0

0

∣∣r t01,s(s)
∣∣ ds +

∫ s0

0

∣∣r t03,s
∣∣ ds

)∣∣∣∣
t=0

= d

dt

(∫ s0

0
1 + t

(
hτ
01,s − hν

01(s)κ01(s)
)
ds +

∫ s0

0
1

+ t
(
hτ
03,s − hν

03(s)κ03(s)
)
ds

)∣∣
t=0

=
∫ s0

0

(
hτ
01,s − hν

01(s)κ01(s)
)
ds +

∫ s0

0

(
hτ
03,s − hν

03(s)κ03(s)
)
ds

Thus,

K (0)

2

d

dt

(
H1(�t

01) + H1(�t
03)

)∣∣∣∣
t=0

= −K (0)

2

(∫
�01

hν
01κ01 ds +

∫
�03

hν
03κ03 ds + hτ

01(0) + hτ
03(0)

)
. (5.13)

To compute the variation in the jump energies over �t
12 and �t

23 requires an expan-
sion to O(t) of the quantities ut · νt12 and ut · νt23. Substituting the expression for
r t12 from (5.3) into the formula for ut1 from (5.6) and Taylor expanding in t we find
with the use of (5.5) that along �t

12 we have

ut · νt12 ∼
(
u1(r

t
12(s)) + tu⊥

1 (r12(s))φ1(r12(s))

)
· νt12

∼
(
u1

(
r12 + t

[
hτ
12τ12 + hν

12ν12
] ) + tφ1(r12)u

⊥
1 (r12)

)

·
(

ν12 − t
(
hν
12,s + κ12h

τ
12

)
τ12

)

∼ u1 · ν12 + t

[ (
φ1 − hν

12,s − κ12h
τ
12

)
(u1 · τ12) + hτ

12(u
′
1 · ν12)

]
, (5.14)

where u1 and φ1 in the expression above are evaluated at x = r12(s) and u′
1 =

d
ds u1(r12(s)). In the last linewe have also used that our extension of u1 was constant



A model problem for nematic-isotropic transitions 1801

along ν12 to eliminate the term ∇u1 · ν12 that would other have been present upon
Taylor expanding.
Similarly, we calculate that along �23 we have

ut · νt23 ∼ u2 · ν23 + t

[ (
φ2 − hν

23,s − κ23h
τ
23

)
(u2 · τ23) + hτ

23(u
′
2 · ν23)

]
.

(5.15)

From (5.14) and (5.15), along with (5.4) we can compute that

d

dt

(∫
�12

K
(
ut · νt12

)
ds +

∫
�23

K
(
ut · νt23) ds

)∣∣∣∣
t=0

= d

dt

(∫ s0

0
K
(
ut (r t12(s)) · νt12(s)

) ∣∣r t12,s
∣∣ ds

+
∫ s0

0
K
(
ut (r t23(s)) · νt23(s)

) ∣∣r t23,s
∣∣ ds

)∣∣∣∣
t=0

=
∫

�12

K (u1 · ν12)
(
hτ
12,s − hν

12κ12
)
ds

+
∫

�12

K ′(u1 · ν12)

((
φ1 − hν

12,s − hτ
12κ12

)
(u1 · τ12) + hτ

12(u
′
1 · ν12)

)
ds

+
∫

�23

K (u2 · ν23)
(
hτ
23,s − hν

23κ23
)
ds

+
∫

�23

K ′(u2 · ν23)

((
φ2 − hν

23,s − hτ
23κ23

)
(u2 · τ23) + hτ

23(u
′
2 · ν23)

)
ds.

Now, since

d

ds

[
K
(
u1 · ν12)

] = (u′
1 · ν12) − κ12(u1 · τ12)

and

d

ds

[
K
(
u2 · ν23)

] = (u′
2 · ν23) − κ23(u2 · τ23),

we have that

K (u1 · ν12)h
τ
12,s + K ′(u1 · ν12)

(
(u′

1 · ν12) − κ12(u1 · τ12)
)
hτ
12

= d

ds

[
K
(
u1 · ν12)h

τ
12

]

and

K (u2 · ν23)h
τ
23,s + K ′(u2 · ν23)

(
(u′

2 · ν23) − κ23(u2 · τ23)
)
hτ
23

= d

ds

[
K
(
u2 · ν23)h

τ
23

]
.
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Using these last two identities in (5.16) and integrating by parts implies that

d

dt

(∫
�12

K
(
ut · νt12

)
ds +

∫
�23

K
(
ut · νt23,s)

)∣∣∣∣
t=0

= −
∫

�12

K (u1 · ν12)h
ν
12κ12 ds +

∫
�12

K ′(u1 · ν12)(φ1 − hν
12,s)(u1 · τ12) ds

−
∫

�23

K (u2 · ν23)h
ν
23κ23 ds +

∫
�23

K ′(u2 · ν23)(φ2 − hν
23,s)(u2 · τ23) ds

− K
(
u1(p) · ν12(0))h

τ
12(0) − K

(
u2(p) · ν23(0))h

τ
23(0). (5.16)

Then invoking the criticality condition (3.40) from Theorem 3.11 and integrating
by parts we can rewrite this identity as

d

dt

(∫
�12

K
(
ut · νt12

)
ds +

∫
�23

K
(
ut · νt23) ds

)∣∣∣∣
t=0

= −
∫

�12

K (u1 · ν12)h
ν
12κ12 ds

+ L
∫

�12

(
div u2 − div u1

)
(φ1 − hν

12,s)(u1 · τ12) ds

−
∫

�23

K (u2 · ν23)h
ν
23κ23 ds

+ L
∫

�23

(
div u3 − div u2

)
(φ2 − hν

23,s)(u2 · τ23) ds

− K
(
u1(p) · ν12(0))h

τ
12(0) − K

(
u2(p) · ν23(0))h

τ
23(0)

=
∫

�12

{
L
(
div u2 − div u1

)′
(u1 · τ12) + L

(
div u2 − div u1

)
(u1 · τ12)

′

− K (u1 · ν12)κ12

}
hν
12 ds + L

∫
�12

(
div u2 − div u1

)
(u1 · τ12)φ1 ds

+
∫

�23

{
L
(
div u3 − div u2

)′
(u2 · τ23) + L

(
div u3 − div u2

)
(u2 · τ23)

′

− K (u2 · ν23)κ23

}
hν
23 ds + L

∫
�23

(
div u3 − div u2

)
(u2 · τ23)φ2 ds

− K
(
u1(p) · ν12(0))h

τ
12(0) + L

(
div u2(p)

− div u1(p)
)
(u1(p) · τ12(0))h

ν
12(0)

− K
(
u2(p) · ν23(0))h

τ
23(0) + L

(
div u3(p)

− div u2(p)
)
(u2(p) · τ23(0))h

ν
23(0). (5.17)

Now we can combine (5.12), (5.13) and (5.17), and through a use of the criticality
conditions (3.53) and (3.54) of Theorem 3.14 we find that all integrals over the four
curves �i j drop, leaving only
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d

dt
E0(u

t )|t=0

= −K (0)

2

(
hτ
01(0) + hτ

03(0)
) − K

(
u1(p) · ν12(0)

)
hτ
12 − K

(
u2(p) · ν23(0)

)
hτ
23

+ L

{
div u1(p)(u1(p) · τ01(0))h

ν
01(0) + div u3(p)(u3(p) · τ03(0))h

ν
03(0)

}

− L

{(
div u1(p) + div u2(p)

)(
u1(p) · τ12(0)

)
hν
12 + (

div u2(p)

+ div u3(p)
)(
u2(p) · τ23(0)

)
hν
23

}

Recall now that hτ
01(0) = X (p) · τ01(0), hν

01(0) = X (p) · ν01(0), etc. Thus,
the arbitrary value of the vector X (p), implies that a vanishing first variation
d
dt |t=0

E0(ut ) = 0 leads to the necessary condition at a junction P of the form

K (0)

2

(
τ01 + τ03

) + K
(
u1 · ν12

)
τ12 + K

(
u2 · ν23

)
τ23

= L

{
div u1(u1 · τ01)ν01 + div u3(u3 · τ03)ν03

}

− L

{(
div u1 + div u2

)(
u1 · τ12

)
ν12 + (

div u2 + div u3
)(
u2 · τ23

)
ν23

}
,

(5.18)

where all quantities above are evaluated at the junction P . ��
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