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Adapting to Extreme Heat: Social,
Atmospheric, and Infrastructure
Impacts of Air-Conditioning
in Megacities—The Case
of New York City
Extreme heat events are becoming more frequent and intense. In cities, the urban heat
island (UHI) can often intensify extreme heat exposure, presenting a public health challenge
across vulnerable populations without access to adaptive measures. Here, we explore the
impacts of increasing residential air-conditioning (AC) adoption as one such adaptive
measure to extreme heat, with New York City (NYC) as a case study. This study uses AC
adoption data from NYC Housing and Vacancy Surveys to study impacts to indoor heat
exposure, energy demand, and UHI. The Weather Research and Forecasting (WRF)
model, coupled with a multilayer building environment parameterization and building
energy model (BEP–BEM), is used to perform this analysis. The BEP–BEM schemes are
modified to account for partial AC use and used to analyze current and full AC adoption
scenarios. A city-scale case study is performed over the summer months of June–August
2018, which includes three different extreme heat events. Simulation results show good
agreement with surface weather stations. We show that increasing AC systems to 100%
usage across NYC results in a peak energy demand increase of 20%, while increasing
UHI on average by 0.42 °C. Results highlight potential trade-offs in extreme heat adapta-
tion strategies for cities, which may be necessary in the context of increasing extreme heat
events. [DOI: 10.1115/1.4048175]
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1 Introduction
Extreme heat events are becoming more frequent and intense

worldwide. According to the Intergovernmental Panel on Climate
Change (IPCC) report [1], the risk of heatwaves will increase
during the twenty-first century, requiring adaptation measures to
reduce impacts on health and comfort, particularly in vulnerable
populations like the elderly and low-income communities [2,3].
The 2020 New York City Panel on Climate Change (NPCC) also
reported that summer heat waves are expected to become more fre-
quent, longer, and more intense in New York City (NYC), the
largest city in the US [4]. The Urban Heat Island (UHI) has been
shown to further exacerbate this problem in cities, which tend to
have higher ambient temperatures than the surrounding regions
[5,6]. The UHI effect is a result of how built-up areas modify
land-air processes as a result of high heat capacity materials, high
density of vertical structures with varying heights, limited green
spaces, and anthropogenic heat release [7–9]. This UHI may inten-
sify periods of extreme heat locally due to a lack of surface moisture
in urban areas, low wind speed associated with heat waves, and
increased heat storage and generation [6,10–15]. As a result,
these intensified heatwaves are projected to cause an increased
demand in air-conditioning (AC) [16,17] with a rise in global AC
ownership of about two-thirds of all households by 2050 [18]. Fur-
thermore, around 55% of the world’s population currently reside in
urban areas. This is projected to increase to 68% by 2050 [19,20],

further increasing the health and economic risks associated with
intense heat waves.
Higher urban ambient temperatures present challenges that are

likely to cause social, environmental, and infrastructural impacts.
For instance, urban overheating will cause an increase in energy
demand for space cooling, with global residential cooling energy
demand projected to increase between 320% (low development sce-
nario) and 2270% (high development scenario) [21]. Urban over-
heating will also have a drastic impact on the most vulnerable
populations in the cities in terms of health and comfort. In NYC,
premature mortality is projected to grow between 47% and 95%
by mid-century as a result of heat waves [22]. Lower income and
vulnerable populations, like the elderly, experience disproportion-
ally higher heat-related mortality rates [2,23,24]. One reason to
explain this disparity can be a result of a building envelope with
low thermal quality that presents significant overheating [25,26].
Another reason can be the low prevalence of AC as reported by
O’Neil et al. [27] and Ito et al. [28], who also found that areas
with lower AC adoption coincide with higher rates of heat-related
mortality and hospitalizations. As a result, the most vulnerable
will be exposed to higher indoor temperatures while also needing
more energy than the average to fully meet the cooling demand
[26] ultimately bearing a higher energy cost burden [29].
In this investigation, we explore the overall impacts of increasing

AC system adoption in residences to 100% as an adaptive measure
to reduce human health risks under heat waves, with NYC as a case
study. To account for the interaction between weather, buildings,
and energy demand, an urbanized version of the Weather and
Research Forecasting (WRF) [30] model is used. This urbanized
model couples WRF to a multilayer building environment parame-
terization and building energy model (BEP–BEM) that has been
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used extensively to study urban climate and energy demand [31–
37]. In particular, Takane et al. [35] found that the base configura-
tion of BEP–BEM significantly overestimated the electricity
demand in Osaka City, a megacity located in Japan. This is due
to the assumption of BEP–BEM that all spaces inside the building
undergo air-conditioning. To correct this error, the authors intro-
duced three new constant parameters (a - ratio of in-use building
to all buildings, b - ratio of air-conditioned floor area to total
floor area, and c - the ratio of AC usage for cooling or heating to
all the cooling and heating equipment) to consider the use of
partial AC systems in the model leading to improvements in both
the surface temperature and electricity demand outputs of the
model. Xu et al. [37] reported similar results over Beijing, China,
but instead introduced a constant cool fraction parameter as a func-
tion of urban land class. These developments were found to signif-
icantly improve the AC electric load on a district level when
compared to observation data.
In this study, we introduce AC adoption data from the 2017

New York City Housing and Vacancy Surveys to study the
impacts of full AC adoption to indoor heat exposure, energy
demand, and UHI within the urbanized WRF framework.

2 Methods
2.1 Experimental Design. Three case setups were used to

evaluate the social, environmental, and infrastructural implications
of increasing residential AC adoption to 100%. Each of these cases
used a fully resolved urbanized WRF setup with differences in the
AC adoption percentage input data used as input to the building
energy model. The first case, referred to onward as the NO_AC
case, simulates a 0% adoption scenario to model potential indoor
health exposure throughout the city. The second case, referred to
onward as the CURRENT_AC adoption case, used data from the
NYC Housing and Vacancy Survey 2017 to represent the current
AC adoption rate in NYC as shown in Fig. 1 highlighting the per-
centage of households with AC. The final case, referred to onward
as the Full_AC adoption case, represents the 100% AC adoption
case in NYC with the assumption that the AC was used to cool
each building to maintain a set temperature of 22.22 °C. The
second and third cases were used to explore the differences on
impacts using the CURRENT_AC case as the baseline setup that
closely represents NYC. A summary of these cases is shown in
Table 1.

2.2 Urbanized Weather and Research Forecasting
Description. WRF is a non-hydrostatic mesoscale numerical
weather prediction (NWP) system used for weather-related research
and forecasting [30]. Mesoscale meteorological models provide the
capability to explore these questions using a detailed model repre-
sentation of the atmosphere and the city that can compute the con-
servation equations of mass, momentum, energy, and air humidity
[30]. At the mesoscale, many processes affect how the atmospheric
circulation is resolved. This includes the interaction of the land-use
type and surface characteristics, complex topography, water bodies
and atmospheric composition. In cities, the urban canopy can also
significantly influence the dynamical state of the environment.
Urban areas, characterized by significant building area coverage,
high density of vertical surfaces with varying heights, and high
heat capacity materials, cause surface–atmosphere interactions to
differ in comparison with the natural environment. This modified
surface energy balance tends to cause the urban areas to be
warmer with increases in temperature of up to 10 °C [8,38]
leading to the UHI. When coupled with BEP–BEM, the mesoscale
model can serve as an appropriate urban climate modeling frame-
work that is proven to capture these unique UHI effects
[31,39,40]. Most of the previous urban WRF applications have
explored extreme heat events in cities, including for New York
City [6,33,40,41], which is the case study of interest of this
research.
BEP is a multilayer urban parameterization that models the atmo-

spheric effects caused by urban buildings and includes heat flux
adjustments to account for radiation shadowing, reflection, and
entrapment within the street canyons [42]. BEM is then coupled
with the BEP to account for urban heat fluxes caused by heat
exchanges between the buildings and the environment. This
includes the heat transfer between the walls, floors, and roofs of a
building, the solar radiation heat exchange through windows and
the effects of air-conditioning, heating, and ventilation [31].
Within this system, the indoor air temperature and indoor air

humidity are found by calculating the cooling/heating load on a
simplified box-type heat budget model that pile up like boxes to
consider several floors in a building. This model is driven by the
inputs of the WRF model like the outdoor air temperature, humid-
ity, and radiation reaching the walls and roof of the building. The
indoor air temperature Tr and indoor air humidity qvr are estimated
by solving the following equations [31]:

QB
dTr
dt

= Hin − Hout (1)

lρVB
dqvr
dt

= Ein − Eout (2)

where QB= ρCpVB(JK
−1) and VB(m

3) represent the overall heat
capacity and total volume of the indoor air on the floor, respectively.
The total sensible heat load Hin(W ) and total latent heat load Ein(W )
are computed within the model using WRF inputs mentioned previ-
ously. The sensible heat load includes the heat exchange between
the indoor air and each component of the building surface like the
roof, walls, and windows. It also includes the sensible heat
exchange that occurs through ventilation, and finally, the internal

Fig. 1 AC % data: 2017 New York City Housing and Vacancy
Survey data of households with AC in terms of percentage

Table 1 Numerical experiments performed in this study

Case Description of case

NO_AC Case associated with regions that currently have no
AC using 0% AC data in the model

CURRENT_AC Case representing the current AC adoption rate in
NYC using data from the NYCHousing and Vacancy
Survey 2017

FULL_AC Case representing full AC adoption in NYC using
100% AC data in the model
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sensible heat that is generated from sources like equipment and
occupants. The latent heat load includes the water vapor mixing
that occurs from ventilation and considers the component for the
evaporation from occupants. The remaining components Hout(W )
and Eout(W ) in Eqs. (2) and (3) indicate the sensible and latent
heat needed for cooling/heating the indoor air for the floor when
a target temperature is set. From this formulation, the electricity
demand EC can then be found using the following equation:

EC =
1
cop

(Hout + Eout) (3)

This modeling approach makes no distinction between window
AC units and central AC systems, with the assumption that all
heat releases is at the top of the building. An air-cooled approach
is used for the residential land class while the water cooled is
used for the commercial land class. Sensible or latent heat partition-
ing from the AC system then follows the work by Gutierrez et al.
[43]. Figure 2 shows a visual representation of this entire built–
environment–buildings coupled process. We refer to WRF
coupled to BEP+BEM as urban WRF (or uWRF). In general,
this framework is a simplified version of more detailed BEMs,
such as EnergyPlus [44], but they reduce computational cost and
are suitable for studies at the city scale [35]. Model performance
of uWRF for city-scale energy demands have been reported for
Beijing, China [37], and for New York City [34], with very good
results when compared with actual observations.
To obtain the city-scale energy loads from BEM outputs, the

gridded 1-km resolution model air-conditioning consumption (W/
m2) was multiplied by the building area fraction and the actual
grid spacing area (1 km2), yielding the total building energy
demand per grid point. This was then added to a city-wide baseline
load as shown in Fig. 3 which represents the nonbuilding associated
loads in NYC. The baseline load was calculated following the
approach described by Salamanca et al. [32] and Ortiz et al. [34].
To make use of the BEP/BEM parametrization, sub-grid urban

building data sets were required to represent the urban landscape
and drive the uWRF model. From these data sets, an urban
land-use map was created for three land-use categories including
low-intensity residential (LIR), high-intensity residential (HIR),
and finally commercial or industrial (COI). In this work, the
urban building data set requirements were obtained from the Prop-
erty Land Use Tax-Lot Output (PLUTO) data set, a resource pro-
vided by the NYC municipality through the NYC open data
initiative, at a spatial resolution of 100 m. This data was then
upscaled to a 1 km× 1 km domain to match the high-resolution
WRF domain as shown in Figs. 4(a)–4(c). This provides the
required building height and building area fraction for the NYC
region to classify each land class as previously described. Different
urban canopy parameters were also prescribed within the BEM.
This includes the thermal surface properties of the roof, wall and

Fig. 2 uWRF BEP–BEM modeling representation

Fig. 3 Baseline city-wide load derived from the NYISO load data

Fig. 4 uWRF model inputs reinterpolated to 1 km WRF domain:
(a) building area fraction (%), (b) building height (m), (c) land-use
type, and (d ) AC distribution (%)
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road and AC model parameters, as summarized in Table 2. The
thermal properties were adopted from Salamanca et al. [45] while
the AC model parameters follow previous work [43,46].
In this investigation, the BEM within uWRF was modified to

include the AC percentage data information from the NYC
Housing and Vacancy Survey 2017. This was done by modulating
the sensible Hout(W ) and Latent Eout(W ) heat fluxes with the spe-
cific AC household percentage parameter α as follows:

Ep
c =

1
cop

(Hp
out + Ep

out) (4)

Hp
out = Hout × α (5)

Ep
out = Eout × α (6)

Some preprocessing was performed to re-grid the data from a com-
munity district level grouping (Fig. 1) to the 1 km×1 km domain
used in the uWRF model, the results of this exercise can be seen
in Fig. 4(d ).

2.3 Model Setup. Each of the three model cases as shown in
Table 1 was set up using WRF v 3.9.1 and configured with three
two-way nested domains at horizontal resolutions of 9, 3, and
1 km as shown in Fig. 5. The 1 km× 1 km domain was the
primary focus of this investigation, as it is the domain primarily
encompassing the NYC region with the highest urban density.
Each of these model cases was configured to use the Noah land
surface model [47], the Rapid Radiative Transfer Model for
Global Circulation Models (RRTMG) for longwave radiation
[48], the RRTMG scheme for shortwave radiation [48], the
Mellor–Yamada–Janjic planetary boundary layer scheme [49],
and the Aerosol aware Thompson microphysics scheme [50]. A
summary of the model’s physics parameterizations used in this
investigation is given in Table 3. The model outputs consist of
0-24-hour forecasts simulated with a time ranging from June 1,
2018 to August 30, 2018. A detail description of the uWRF config-
uration is given in Ortiz et al. [34].

2.4 Evaluation Methods. Model performance was evaluated
against ground station weather data using weather data from the
New York State Mesonet network for the summer months of June
to August 2018.2 The CURRENT_AC case was chosen as the
model setup to evaluate since it closely represents NYC with the
added AC information. Hourly outputs of temperature, wind
speed, and wind direction were compared at five different stations
in the city’s five boroughs (Brooklyn, Bronx, Queens, Staten
Island, and Manhattan as shown in Fig. 6) using different suitable
performance metrics. These metrics included the root-mean-square
error (RMSE), mean absolute error (MAE), and the correlation
coefficient (R2) to measure the degree of error in comparison with
the observations. For this evaluation, weekends were excluded as
the model only considers a weekday work schedule from Monday
to Friday.

2.5 Socioeconomic and Health Impacts. We quantify the
present exposure to hazardous heat conditions using the heat
index metric [51] that combines both the temperature and relative
humidity to quantify the “apparent” temperature a person can expe-
rience, making it more representative of indoor human comfort.
The NO_AC case was used to estimate the indoor heat index
using the uWRF BEM outputs of indoor air temperature and
humidity as inputs for the heat index algorithm. The indoor heat
index was then calculated following the National Weather
Service (NWS) algorithm as outlined by Anderson et al. [52].
Although the NWS heat index was designed for outdoor condi-
tions, in this study it was used as a departure from reference
indoor human comfort conditions of 22 °C and 50% relative
humidity following American Society of Heating, Refrigeration
and Air Conditioning (ASHRAE) standards [53]. The indoor heat
index has also been previously used as a metric for indoor
human comfort. Vant-Hull et al. [54] studied the impact of
indoor residential heat waves in NYC and found that nearly
two-thirds of the residences experience elevated heat index condi-
tions compared to the ambient conditions. Uejio et al. [55] used the
indoor heat index to conclude that a higher heat index increased the
odds of making a respiratory distress call to paramedics in NYC. It
has also been used in practice when defining policy that relates to

Table 2 Urban parameters used in each uWRF simulation

Parameters Units LIR HIR COI

Roof heat capacity Jm−3K−1 × 106 1.32 1.32 1.32
Roof thermal conductivity Jm−1s−1K−1 0.67 0.67 0.67
Roof albedo 0.2 0.2 0.2
Roof emissivity 0.9 0.9 0.9
Roof insulation thickness m 0.06 0.06 0.06
Roof insulation heat capacity Jm−3K−1 × 106 0.382 0.382 0.382
Roof insulation thermal conductivity Jm−1s−1K−1 0.09 0.09 0.09
Wall heat capacity Jm−3K−1 × 106 1.32 1.32 1.32
Wall thermal conductivity Jm−1s−1K−1 0.67 0.67 0.67
Wall albedo 0.2 0.2 0.2
Wall emissivity 0.9 0.9 0.9
Wall insulation thickness m 0.06 0.06 0.06
Wall insulation heat capacity Jm−3K−1 × 106 0.382 0.382 0.382
Wall insulation thermal conductivity Jm−1s−1K−1 0.09 0.09 0.09
Road heat capacity Jm−3K−1 × 106 1.4 1.4 1.4
Road thermal conductivity Jm−1s−1K−1 0.74 0.74 0.74
Road albedo 0.125 0.125 0.125
Road emissivity 0.95 0.95 0.95
Temperature set point °C 22.22 22.22 22.22
Humidity set point kgkg−1 0.01 0.01 0.01
Coefficient of performance of AC 3.5 3.5 3.5
Window area fraction 0.33 0.33 0.33
Peak occupancy personm−2 0.25 0.25 0.05
Initial and end times of AC system Local time 0–24 0–24 8–19

2http://www.nysmesonet.org/
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indoor occupational exposure to heat and hot environments [56,57].
Finally, heat exposure hours were computed for each risk category
for every grid point in the 1 km NO_AC model run for the summer
of 2018. Table 4 shows the Heat Index risk categories used for this
study.
We also estimate the energy burden associated with the cost of

AC operations during the summer of 2018 using an energy
burden metric that is a function of costAC,household and the
Incomehousehold as follows:

EnergyBurden =
costAC,household
Incomehousehold

(7)

Here, the costAC,household is the cost of electricity during the summer
as a function of AC electricity use for cooling. This value was
derived using the CURRENT_AC case on a 1 km× 1 km grid
point scale that resolves how much AC is used in terms of kW/
m2. AC cost per kWh was obtained from Consolidated Edison
(ConEd), the primary energy service provider in the NYC region,
by using the schedule 2 ConEd rate at the residential scale for the

Table 3 Summary of physics parameterization

Model physics Scheme

Land surface model NOAH LSM [47]
Longwave radiation RRTMG [48]
Shortwave radiation RRTMG [48]
Planetary boundary layer Mellor–Yamada–Janjic [49]
Microphysics Aerosol aware Thompson [50]
Urban surface BEP + BEM [31,42]

Fig. 5 Model domain: outer (d01) and nested domains (d02, d03)
used by the urbanized model

Fig. 6 Weather station locations

Table 4 Heat Index risk categories and ranges

Risk classification Heat index range (°F)

Very warm 80–90
Hot 90–105
Very hot 105–130
Extremely hot >130

Fig. 7 Five-year medium household income: estimated from the
2017 ACS, interpolated on the WRF 1-km domain

Table 5 Model evaluation metrics

Temperature Wind direction Wind speed

Stations R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

BKLN 66% 3.02 2.34 32% 76.38 45.74 34% 1.64 1.31
BRON 74% 2.80 2.16 17% 99.11 57.68 34% 1.14 0.89
MANH 74% 2.76 2.17 20% 94.86 57.43 7% 1.39 1.08
QUEE 65% 3.20 2.54 25% 84.73 47.57 37% 1.47 1.14
STAT 72% 2.93 2.28 21% 87.61 50.09 45% 1.88 1.47
Average 70% 2.94 2.30 23% 88.54 51.70 31% 1.50 1.18
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2018 summer period. The price was 0.2493 US$/kWh for the
months of May to September. Incomehousehold was then derived
from the American Community Survey (ACS) 2017 5-year estimate
with data interpolated to a 1-km resolution to match the uWRF
CURRENT_AC domain resolution as shown in Fig. 7.

3 Results
3.1 Model Evaluation. Model performance was evaluated

against ground weather station data from the New York State
Mesonet network for the entire summer of 2018, and the results
of this evaluation are shown in Table 5. Modeled temperatures
were compared favorably with observations across every station
with an average R2 value of 70%, average RMSE of 2.94 °C, and
average MAE of 2.30 °C. A similar analysis was done for wind
direction and wind speed resulting in an average R2 value of
23%, average RMSE of 89 deg and average MAE of 51 deg for
wind direction and an average R2 value of 31%, average RMSE
of 1.5 m/s, and average MAE of 1.18 m/s for wind speed. The
months of July and August had a lot more precipitation in compar-
ison with June 2018; thus, an evaluation of the single month of June
led to a surface temperature R2 value of 82%, average RMSE of

2.17 °C, and average MAE of 1.71 °C. These results compare
favorably with recent studies in New York City for similar heat
wave events [6,40] as well as a recent case study over two major
cities in Arizona: Phoenix and Tucson [36] in which the authors
evaluated the uWRF system over a 15-d time period of clear sky
conditions. A time series comparison between the model outputs
and the observed data was also conducted for every weather
station used as shown in Figs. 8–12 with an included distribution
plot on the right of these figures. The distribution plots compare
the range and frequency of the observation data and model results
with the bars representing a count percentage of occurrence. The
timing of the peak temperature was captured very well across
every station with similar performance in tracking the diurnal
profile. Figure 8 shows that the model was able to track the
dynamic change of temperature during each heatwave in the Man-
hattan site. The dashed vertical bands in each figure mark the start
and end of the respective heatwave event. The model had a ten-
dency to under predict the temperature across each station as
well, with the most extreme case happening in the Queens location
as shown in Fig. 9. This is highlighted by the associated distribution
plot that shows the peak model occurrence shifted lower than the
observed temperature occurrence. In terms of wind direction, the
time series plot shows that the model did very well in capturing

Fig. 9 Queens time series of model and observation used for evaluation

Fig. 8 Manhattan time series of model and observation used for evaluation

Fig. 10 Bronx time series of model and observation used for evaluation

031005-6 / Vol. 1, AUGUST 2020 Transactions of the ASME



the diurnal behavior across every station. The distribution plot also
shows that the model was able to capture the multimodal behavior
of the distribution. Finally, in terms of wind speed, the model was
able to perform very well in the Queens (Fig. 9) and Bronx (Fig. 10)
site with a very similar distribution in comparison with the observed
wind speed. For the Manhattan (Fig. 8) and Brooklyn (Fig. 11) sites,
the model tended to underpredict the wind speed while the model
overpredicted the wind speed in the final Staten Island (Fig. 12)
location.
A surface plot showing the model outputs for four different times

during one of the 2018 heatwaves (Aug. 6, 2018) is also shown in
Fig. 13. Here, the five surface observations were overlaid on the plot
to explore the spatial performance of the model, including observed
wind as shown by the bolded wind barbs and the surface tempera-
ture with corresponding error overlaid in text. From these results,
it is shown that the model was able to capture the low winds
and surface temperature at 14:00 UTC (Fig. 13(a)) well at each
station. As time progressed, the model was able to capture the
dynamic behavior of the wind, especially in the Brooklyn region
in which the observed wind direction and wind speed matched
the model at every time-step. Although the model captured the stag-
nant air during the peak heat period of 18:00 UTC (Fig. 13(c)) in
the Bronx and Manhattan regions, the model tended to overpredict
the peak surface temperature. These errors were then reduced at the
20:00 UTC (Fig. 13(d)) mark, as the model performed very well in
terms of temperature and wind.

3.2 Socioeconomic Impacts. The NO_AC uWRF case was
used to estimate the indoor heat exposure level for the population
of people who had no access to AC. Figure 14 shows a set of
spatial indoor air temperature plots at four different times during
the same day (Aug. 6, 2018). At 14:00 UTC (Fig. 14(a)), the
average ambient air temperature was about 29 °C while the
average indoor air temperature was about 38 °C across the entire
domain. Although the indoor air temperature was relatively
uniform across the domain during this time, the Bronx region expe-
rienced a slightly higher indoor air temperature of about 4 °C. As
the time progressed to 20:00 UTC (Fig. 14(c)), average ambient

air temperature was about 33 °C while average indoor air tempera-
ture was about 46 °C across the entire domain. The increase in
indoor air temperature was noticeably higher in the same Bronx
region in comparison to the earlier 14:00 UTC time with an

Fig. 11 Brooklyn time series of model and observation used for evaluation

Fig. 12 Staten Island time series of model and observation used for evaluation

Fig. 13 Surface plot of model and surface station data during
Aug. 6, 2018 heatwave: circles represent temperature observa-
tions, bolded wind barbs represent surface observation
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indoor air temperature condition of about 49 °C, the highest temper-
ature in comparison to the other four boroughs. The Brooklyn loca-
tion had the second highest indoor air temperature at 20:00 UTC but
also experienced the highest change in comparison to the ambient
outside air temperature with a delta of about 17 °C. Lower Manhat-
tan experienced the coolest indoor temperatures throughout the four
time periods, which is expected with its highest AC % in the
domain. The lower Queens area also had a cooler indoor tempera-
ture at 20:00 UTC, which did not seem to change much as time pro-
gressed. This can potentially be explained by the large amounts of
sea breeze wind it experienced during the 16:00–20:00 UTC time as
shown in the previous Fig. 13. The relatively high indoor tempera-
tures simulated are likely due to the minimum natural ventilation
that uWRF can represent retaining most of the energy within the
building envelope. However, very warm conditions were reported
from actual indoor measurements in mid-rise residential conditions
in NYC by Vant-Hull et al. [54]. A similar study in Detroit, MI,
found that maximum indoor temperatures were an average of
13.8 °C warmer than outdoor temperatures [58].
We quantify extreme heat hazard using total number of hours

exposed to dangerous levels of heat index using the NO_AC case
(Fig. 15). These results show the spatial variability of hours
exposed to heat in terms of heat index, grouped into four different
plots defined by the NWS risk category for the entire summer of
2018. The first risk group, labeled VERY WARM (Fig. 15(a)),
had low amounts of exposure in terms of hours with total hours
less than 500 across the entire domain. The second risk group
labeled HOT (Fig. 15(b)) had a similar geospatial pattern in compar-
ison to the VERY WARM case, but with an increased intensity of
exposure to about 900 h. The primary feature between these two
categories included the peak intensity surrounding the midtown/
downtown Manhattan region. The following risk group labeled
VERY HOT (Fig. 15(c)), on the other hand, experienced the
highest numbers of exposed hours across the entire domain. This
is clearly shown in Fig. 15(c), where regions in upper Manhattan
and the Bronx were exposed to more than 1300 h of VERY HOT
heat. The final risk group labeled EXTREMELY HOT
(Fig. 15(d )) had a similar geospatial pattern in comparison with
that labeled the VERY HOT case, but had a much lower intensity
of exposure to about 300 h. The final two cases have a stark shift
in exposure level in contrast to the first two risk levels of VERY
WARM and HOT that includes peak intensities surrounding the
Manhattan region. The heat index exposure ended up shifting
toward the lower income regions like uptown Manhattan and
South Bronx in comparison with lower Manhattan where the
exposed hours to VERY HOT conditions dropped to nearly zero.

CURRENT_AC results were used to estimate the energy burden
associated with the cost of AC operations during the summer of
2018 and are presented in Fig. 16. Results show that the AC
burden had a peak of about 0.020% of total income per cooled
square meter in areas like the South Bronx and Central/Eastern
Brooklyn (boundaries highlighted in Fig. 16), while also coinciding
with regions of low AC adoption rates, low household incomes, and
peak heat exposure hours. These results highlight some of the trade-

Fig. 14 Model indoor air temperature surface plot during Aug. 6, 2018 heatwave

Fig. 15 Number of hours of indoor exposure: for (a) very warm,
(b) hot, (c) very hot, and (d ) extremely hot heat index conditions
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offs involved in the discussion of heat adaptation measures.
Although low-income neighborhoods experience the longest expo-
sure time to indoor heat, they also see the highest relative costs of
AC operation.

3.3 Environmental Impacts. The CURRENT_AC case and
FULL_AC case were used to explore the environmental impacts
on the domain if we assume that 100% AC was used to cool
every building in NYC and maintain a temperature of 23 °C. In
this study, the increase in adoption was attributed in residential
land classes, which impacts the sensible heat flux from AC
systems into the environment, while latent heat fluxes remain cons-
tant (attributed to commercial sites). As such, Fig. 17 shows the sen-
sible heat flux released into the environment as a result of the AC
use for each case during a heat wave in NYC. While Manhattan
maintained a similar peak across both cases, there was a noticeable
increase across every borough, especially within the regions that
previously had a low percentage of AC. Taking for example
upper Manhattan and the Bronx, from Fig. 17(c), there was an addi-
tional 65 W/m2 of sensible heat flux released into the environment

due to the AC adoption. When looking at downtownManhattan and
Staten Island, there was not much of a change.
This trend was also evident when looking into how the UHI was

affected due to the additional AC. Figure 18 shows a spatial plot of
the temperature difference between the FULL_AC case and the
CURRENT_AC case. Here, higher values represent a hotter
ambient temperature within the environment due to the additional
heat released by the FULL_AC case. Regions like the Bronx and
central Queens experienced a peak of about 1.1 °C and 0.9 °C,
respectively, during this heatwave following the spatial trend pre-
sented by the heat flux plot in Fig. 17. A time series plot was also
used to explore how this temperature difference varied throughout
the summer of 2018 and is presented in Fig. 19. Here, two different
locations were chosen to contrast the differences of AC adoption.
The Bronx location had an AC adoption of about 75% while the
Staten island location had an AC adoption of about 95%. During
the first heatwave as shown in Fig. 19, the temperature difference
hit a peak difference of about 2.50 °C in the Bronx and about
1.50 °C for Staten Island. The Bronx location also had a much
higher spread of temperature differences as shown by the histogram
plot to the right of Fig. 19. The Bronx location had a wider range
between 1.00 °C and −1.00 °C as compared to the Staten island
case, which fell between 0.50 °C and −0.50 °C.

3.4 Infrastructure Impacts. The CURRENT_AC case and
FULL_AC case were used to explore the impacts on infrastructure
based on the increased peak energy demand brought on by 100%
AC in NYC. Figure 20 shows the total city-scale load (MW)
during the three heat wave events from 2018. The CURRENT_AC
case had an average peak of about 9000 MW during the most
intense points of each heat wave. The FULL_AC case, on the
other hand, had an average increase of about 20%with a peak reach-
ing 10750 MW on July 2, 2018 and August 29, 2018. Figure 21
shows the spatial distribution of AC electrical consumption in
terms of W/m2 for every grid point across the NYC domain
during the second heat wave event. From The CURRENT_AC
case shown in Fig. 21(a), Manhattan had the highest consumption
of about 55 W/m2. Areas with very low AC adoption had an
average load of about 4 W/m2 as evident in the Bronx and
Queens location point on Fig. 21. With the FULL_AC case as
shown in Fig. 21(b), there was a drastic difference in these two loca-
tions with a 300–500% increase, respectively. The moderate AC
case shown by the Brooklyn location with 93% AC experienced
an increase consumption of about 50% while the Manhattan site
stayed relatively the same. These results can be further verified by

Fig. 16 AC utility cost burden: upper bounday represents South
Bronx region, while lower boundary represents EAST and
Central Brooklyn

Fig. 17 Spatial plot of model-sensible heat flux for (a) CURRENT_AC, (b) FULL_AC case, and
(c) difference between both (a) and (b)
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Fig. 22 in which the percent difference between the two cases was
plotted for the early August heat wave. The Manhattan site had no
change during this heat wave while the Bronx location with an AC
% difference of 24% had a peak increase of about 550%. This is an
expected result as Manhattan has most high-rise buildings with the
current highest percentage of AC in the buildings.

4 Conclusions
This work explored the impact of increasing residential AC

system adoption to 100% as an adaptive measure to reduce
human health risks under heat waves in NYC. This study used
AC adoption data from the 2017 New York City Housing and
Vacancy Survey to study impacts to health, energy demand, and
UHI. A mesoscale WRF model was chosen and coupled with the
multilayer building environment parameterization and building
energy model (BEP–BEM) to provide an appropriate urban
climate modeling framework to investigate these questions.
Three different case setups were used to evaluate the impacts of

going to full AC adoption of 100%. The NO_AC case presented
results associated with regions that currently had no AC to highlight
the current health risks associated with extended heat exposure. The
second CURRENT_AC adoption case used the data from the NYC
Housing and Vacancy Survey 2017 to represent the current AC
adoption rate in NYC. The final Full_AC adoption case represented
the 100% AC adoption case in NYC.

Fig. 18 Model temperature comparison: temperature difference
between FULL_AC case and CURRENT_AC case

Fig. 19 Model temperature difference time series: temperature time series difference between
FULL_AC case and CURRENT_AC case at two different point

Fig. 20 Total NYC Load for three heat waves: total NYC load for FULL_AC case and CURRENT_AC case
during three heat wave events
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A detailed model evaluation was first performed on the CUR-
RENT_AC adoption case which showed that the uWRF system
compared favorably in terms of surface temperature with observa-
tions across every station with an average R2 value of 70%,
average RMSE of 2.9 °C, and average MAE of 2.3 °C. As time pro-
gressed, the model was also able to capture the dynamic behavior of
the wind, especially in the Brooklyn region, with matching
observed wind direction and wind speed with the model at every
time-step.
To quantify the exposure to extreme heat, the NO_AC case was

used to estimate the total number of hours exposed to different
levels of indoor heat index. Results showed that regions in upper
Manhattan and the Bronx had been exposed to more than 1300 h
of VERY HOT heat. There was also a shift toward lower income
regions like uptown Manhattan and the South Bronx in comparison
with lower Manhattan in which the exposed hours to VERY HOT
conditions dropped to nearly zero. The CURRENT_AC case was
used to estimate the energy burden associated with the cost of AC
operations during the summer of 2018. Results showed that the
AC burden had a peak of about 0.020% of total income per
cooled square meter in regions coinciding with low AC adoption
rates, low household incomes, and peak heat exposure hours.
These results highlight some of the trade-offs involved in the dis-
cussion of heat adaptation measures. Although low-income neigh-
borhoods experience the longest exposure time to indoor heat,
they also see the highest relative costs of AC operation.
The CURRENT_AC case and FULL_AC case were used to

explore the environmental and infrastructural impact on the
domain if we supposed that 100% AC was used to cool every build-
ing in NYC. During the first heatwave in the study timeframe, the

temperature difference hit a peak difference of about 2.50 °C in
the Bronx and about 1.50 °C for Staten Island. Increases over The
Bronx may be particularly important, as studies have shown the
core of the daytime UHI to occur over it [6,59]. In terms of
energy consumption, The FULL_AC case had an average increase
of about 20% with a peak reaching 10750 MW on July 2, 2018 and
August 29, 2018. This additional electric load may have necessi-
tated significant investments to upgrade and maintain low-adoption
neighborhoods. For example, in July 2019, when neighborhoods in
Brooklyn and Queens experienced higher than expected electric
loads during a heat wave, the electric utility shut off their power
to prevent hardware damage, leaving thousands without power on
one of the hottest days of the year [60]. Increasing AC use in
lower adoption neighborhoods will increase the likelihood of this
type of failure unless utilities commit significant resources to
prevent them. Nevertheless, our study shows the different impacts
associated with 100% AC and can serve as a guideline when deter-
mining policy changes that affect the low-income communities and
most vulnerable.
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