2006.08183v2 [eess.SP] 5 Aug 2020

arxiv

Computing Large-Scale Matrix and Tensor
Decomposition with Structured Factors: A Unified
Nonconvex Optimization Perspective

Xiao Fu, Nico Vervliet, Lieven De Lathauwer, Kejun Huang and Nicolas Gillis

I. INTRODUCTION

In the past 20 years, low-rank tensor and matrix decompo-
sition models (LRDMs) have become indispensable tools for
signal processing, machine learning, and data science. LRDMs
represent high-dimensional, multi-aspect, and multimodal data
using low-dimensional latent factors in a succinct and parsi-
monious way. LRDMs can serve for a variety of purposes, e.g.,
data embedding (dimensionality reduction), denoising, latent
variable analysis, model parameter estimation, and big data
compression; see [1]-[5] for surveys of applications.

LRDM often poses challenging optimization problems. This
article aims at introducing the recent advances and key com-
putational aspects in structured low-rank matrix and ten-
sor decomposition (SLRD). Here, “structured decomposition”
refers to the techniques that impose structural requirements
(e.g., nonnegativity, smoothness, and sparsity) onto the latent
factors when computing the decomposition (see Figs. 1-
3 for a number of examples and the references therein).
Incorporating structural information is well-motivated in many
cases. For example, adding constraints/regularization terms
typically enhances performance in the presence of noise and
modeling errors, since constraints and regularization terms
impose prior information on the latent factors. For certain
tensor decompositions like the canonical polyadic decom-
position (CPD), adding constraints (such as nonnegativity
or orthogonality) converts ill-posed optimization problems
(where optimal solutions do not exist) into well-posed ones
[6]. In addition, constraints and regularization terms can make
the results more “interpretable”; e.g., if one aims at estimating
probability mass functions (PMFs) or power spectra from data,
adding probability simplex or nonnegativity constraints to the

X. Fu is supported by the National Science Foundation under projects
ECCS-1608961, ECCS-1808159, and III-1910118, and the Army Research
Office under projects ARO WO911INF-19-1-0247 and ARO WO911INF-19-
1-0407. N. Vervliet is supported by a junior postdoctoral fellowship
(12ZM220N) from the Research Foundation—Flanders (FWO). The work
of the Belgian team is also supported by (1) the Fonds de la Recherche
Scientifique—FNRS and the Fonds Wetenschappelijk Onderzoek—Vlaanderen
under EOS Project no 30468160 (SeLMA), (2) KU Leuven Internal Funds
C16/15/059 and ID-N project no 3E190402, and (3) the Flemish Government
(AI Research Program). N. Gillis acknowledges the support by the European
Research Council (ERC starting grant no 679515).

X. Fu is with Oregon State University, Corvallis, OR 97331,
USA; E-mail: xiao.fu@oregonstate.edu. N. Vervliet and L. De Lath-
auwer are with KU Leuven, Leuven, Belgium; E-mail: (Nico.Vervliet,
Lieven.DeLathauwer) @kuleuven.be. K. Huang is with University of Florida,
Gainesville, FL 32611, USA; E-Mail: kejun.huang@ufl.edu. N. Gillis is with
the University of Mons, Mons, Belgium; E-Mail: nicolas.gillis@umons.ac.be.

emission excitation
(smooth, nonnegative) (smooth, nonnegative)

LA L

+-+
concentration
(nonnegative)

A

Fig. 1. An SLRD model in fluorescence data analytics. The rank-one
components correspond to different analytes constituting the data samples. The
latent factors have a physical meaning, and using prior structural information
improves decomposition performance.

spectral signature
(nonnegative, smooth)

abundance map
(nonnegative, small total variance, low rank)

Fig. 2. The linear mixture model for hyperspectral unmixing (HU). The
HU problem can be either considered as a nonnegative matrix factorization
problem [1], [4] or a block-term tensor decomposition problem [7]. Both are
SLRDs.

latent factors makes the outputs consistent with the design
objectives. For matrix decomposition, adding constraints is
even more critical—e.g., adding nonnegativity to the latent
factors can make highly nonunique matrix decompositions
have essentially unique latent factors [1], [4]—as model
uniqueness is a core consideration in parameter identification,
signal separation, and unsupervised machine learning.

Due to the importance of LRDMs, a plethora of algorithms
have been proposed. The overview papers on tensor decom-
position [2], [5] have discussed many relevant models, their
algebraic properties, and popular decomposition algorithms
(without emphasizing on structured decomposition). In terms
of incorporating structural information, nonnegativity and
sparsity-related algorithms have been given the most attention,
due to their relevance in image, video and text data analytics;
see, e.g., the tutorial articles published in 2014 [9] and [1] for

community-community interaction probability
(bounded, nonnegative, symmetric)

member community l member

Aunwwod

member
2
member

N -~
identical (symmetry)

_community membership
(sum-to-one, nonnegative)

o "8 o

adjacency matrix

Fig. 3. An SLRD perspective for community detection under the mixed
membership stochastic blockmodel [8]. The binary adjacency matrix can be
considered as a noisy structured low-rank model. Again, a series of model
priors can be used as structural constraints on the latent factor matrices on
the right hand side.

LRDMs with nonnegativity constraints.

In this article, instead of offering a comprehensive overview
of algorithms under different low-rank decomposition models
or particular types of constraints, we provide a unified and
principled nonconvex nonsmooth optimization perspective for
SLRD. We will pay particular attention to the following two
aspects. First, we will introduce how different nonconvex
optimization tools (in particular, block coordinate descent,
Gauss—Newton algorithms, and stochastic optimization) can
be combined with tensor/matrix structures to come up with
lightweight algorithms while considering various structural
requirements. Second, we will touch upon the key consid-
erations for ensuring that these algorithms have convergence
guarantees (e.g., guarantees for convergence to a stationary
point), since convergence guarantees are important for de-
signing stable and disciplined algorithms. Both nonconvex
nonsmooth optimization and tensor/matrix decomposition are
nontrivial. We hope that this article could entail the readers
(especially graduate students) an entry point for understanding
the key ingredients that are needed for designing structured
decomposition algorithms—in a disciplined way.

Notation. We follow the established conventions in signal
processing, and use 7, X and x to denote a tensor, a matrix
and a vector, respectively. The notations ®, ®, ®, and o
denote the Kronecker product, Khatri-Rao product, Hadamard
product, and outer product, respectively. The matlab notation
X (m,:) is used to denote the mth row of X, and other
matlab notations such as X (:,n) and X (i,j) are also used.
In some cases, [X];; and [x]; denote the (7,j)th entry of
X and the jth element of x, respectively. The notation X =
[X1;...; Xn] =[X],..., X4]" denotes the concatenation of
the matrices {X;}Y_,.

II. PROBLEM STATEMENT
A. Low-rank Matrix and Tensor Decomposition Models

Under a noiseless setting, matrix decomposition aims at
finding the following representation of a data matrix X:

R
X =A1A) =) Ai(,1) 0 Ay(,1), (1

r=1

where X € RIi*I2 A, € RIVXE and A, € R2XE. The
integer R < min{I;, I} is the smallest integer such that the

equality above holds—PR denotes the matrix rank. If the data
entries have more than two indices, the data array is called a
tensor. Unlike matrices whose rank decomposition is defined
as in (1), there are a variety of tensor decomposition models
involving different high-order generalizations of matrix rank.
One of the most popular models is CPD [10]. For an Nth-order
tensor 7 € RV X XN jts CPD representation is as follows:

R
T=>Y Ai(,r)o...0 An(;,r) = [A1,...,AN], ()
r=1

where R is again the smallest integer such that the equality
holds (i.e., R is the CP rank of 7), and A,, € RI»*F denotes
the mode-n latent factor (see the visualization of a third-order
case in Fig. 1). Besides CPD, there is, for instance, the Tucker
decomposition model, i.e., T = G x1 A1 Xa...xX n Ay, where
G denotes the so-called core tensor, and X, is the mode-
n product. More recently, a series of extensions and hybrid
models have also emerged, including the block-term decom-
position (BTD), multilinear rank-(L,,L,,1) decomposition
(LL1), coupled CPD/BTD models (see the insert “Handling
Special Constraints via Parameterization” and references
therein), the tensor train model, and the hierarchical Tucker
model; see [2] and the references therein. In this article, we
will mainly focus on the models in (1) and (2), and use them to
illustrate different algorithm design principles. Generalization
to other models will also be briefly discussed at the end.

In their general formulation, most SLRD problems are NP-
hard [11]-[13]. Apart from that, the era of big data brings
its own challenges. For example, a 2000 x 2000 x 2000
tensor (i.e., I, = I = 2000 for all n) requires 58 GB
memory (if the double precision is used). Already when there
is no constraint or regularization on the latent factors, using
first-order optimization techniques (e.g., gradient descent or
block coordinate descent) under the “optimization-friendly”
Euclidean loss costs O (RI 3) floating point operations (flop)
per iteration for the rank-R CPD of this tensor. With con-
straints and regularization terms, the complexity might be
higher. The situation gets worse when one deals with higher-
order tensors. Hence designing effective algorithms requires
synergies between sophisticated optimization tools and the
algebraic structures embedded in LRDMs.

B. Structured Decomposition as Nonconvex Optimization

SLRD can be viewed from a model fitting perspective.
That is, we hope to find a tensor/matrix model that best
approximates the data tensor or matrix under a certain distance
measure, with prior information about the model parame-
ters. This point of view makes a lot of sense. In practice,
the data matrix/tensor often consists of low-rank “essential
information” and high-rank noise—and thus using a model
fitting formulation instead of seeking an exact decomposition
as in (1) or (2) is more meaningful. Conceptually, the SLRD
problems can be summarized as follows:

i g penalty for
modre?galram. dist (data7 mOdel) + <Structure Violation)
under structural constraints, 3)

where dist (X,Y) is a “distance measure” between X and
Y in a certain sense. The most commonly used measure is
the (squared) Euclidean distance, i.e.,

dist (X,Y) = | X - Y|2.

In addition, a number of other measures are of interest in data
science. For example, the Kullback—Leibler (KL) divergence is
often used for measuring the “distance” between distributions
of random variables, and it is also commonly used in integer
data fitting problems (since it is closely related to the max-
imum likelihood estimators (MLEs) that are associated with
discrete RVs, e.g., those following the Poisson or Bernoulli
distributions). The ¢; norm, the Huber function, and their
nonconvex counterparts (e.g., the £, function where 0 < p < 1
[14]) are used for outlier-robust data analytics; see more
discussions in Section VI. The “structural constraints” and
“structure violation penalty” are imposed upon the model
parameters [e.g., the A,,’s in (2)]. For example, consider CPD
under sparsity and nonnegativity considerations, which finds
applications in many data analytics problems [15]:

N
. 1
min = |7 —[A1,..., AN]IE + A [[Anlh
{An}711\,7:1 2 n=1

s.t. A, > 0. 4

From an optimization viewpoint, these SLRD problems can
be summarized in a succinct form:

min f(6) +h(6), ®)

where 0 collects all the latent parameters of the tensor/matrix
model of interest, f(@) represents the data fitting part, and
h(8) represents regularization terms added on the latent factor.
Note that the expression in (5) also includes the case where 6
is subject to hard constraints; i.e., @ € C can also be expressed
as a penalty term, where h(0) is the indicator function of the
set C. For example, in Problem (4), @ = [01;...;60y] where
0,, = vec(A,,). Here, h(0) = 25:1 hn(0y), and h,(6,) =
A (0n)+h%2) (6,,)—in which K'Y is the indicator function of
the nonnegativity orthant and hﬁf)(en) the L, regularization.

Several observations can be made on the model (4). First,
the SLRD problems are usually nonconvex, since the model
approximation part (@) is nonconvex; in some cases, h(0)
is also nonconvex; see, e.g., volume minimization-based NMF
[4]. Second, the objective function in (5) is oftentimes non-
smooth, especially when a non-differentiable regularization
term h(0) is involved (e.g., an indicator function for enforcing
“hard constraints” or an L; norm regularization term). Like
many nonconvex nonsmooth optimization problems, the SLRD
problems are NP-hard in most cases [11], [13]. For general
nonconvex optimization algorithms, the analytical tool for
characterizing their global optimality-attaining properties has
been elusive. The convention from the optimization literature
is to characterize the algorithms’ stationary point-approaching
properties, since 0 being a stationary point of (5) is a necessary
condition for @ being an optimal solution. Simply speaking,
assume that the data fitting part f(@) is differentiable and
dom(f +h) = R? where d is the number of variables. Denote

F(0) = f(0)+h(0). Then, any stationary point of Problem (5)
satisfies the following:

0 € OF(60) = V£(8) + Oh(8), ©6)

where Oh(0) denotes the limiting Fréchet subdifferential of
h(-), which is the subgradient when h(-) is convex [16]-[18].

III. BCD-BASED APPROACHES

One of the workhorses for LRDMs is block coordinate
descent (BCD). The rationale behind BCD-based structured
factorization is straightforward: The factorization problems
with respect to (w.r.t.) a single block variable A, in (4) is
convex under various models and F(-)’s. BCD alternatingly
updates the parameters 6,, (the nth block of 8) while fixing
the others: OT(f) g updated using
6D 6,0 .

yYm—1 >

argmin f (0§t+1), e

95@) i (0,),
0,

(N
where h,,(-) is the part of h(-) that is imposed onto 6,,, and
0") denotes the optimization variables in iteration ¢. In the
sequel, we will use the shorthand notation f(@n;a(le) =
FOFTY 6t g, 0 6\)).

BCD and LRDMs are linked together through the “matrix
unfolding” operation. Unfolding is a way of rearranging the
elements of a tensor to a matrix. The mode-n unfolding
(matricization) of T is as follows [2]': for all iy,...,in,

X’n(]vzn) = T(ilv ey ZN)v

where j = 1+ 3, 1 (e — Voo Jo =TIty s Ine
For tensors with CP rank R, the unfolding has the following
compact and elegant expression:

I,)XR

N
where the matrix H,, € RUTe=1,02n is defined as:

H,=ANG...0A,,10A4, 10...0 A

The readers are referred to [2], [5] for details of unfolding. The
unfolding operation explicitly “pushes” the latent factors to
the rightmost position in the unfolded tensor representation—
which helps efficient algorithm design. Note that many ten-
sor factorization models, e.g., Tucker, BTD, and LL1, have
similar multilinearity properties in their respective unfolded
representations [19]. Representing the tensor using matrix
unfolding, the BCD algorithm for structured CPD consists of
the following updates in a cyclical manner:

1
A, — argrgin §||Xn ~HYA"Z + h,(An), ()

where H\) = A ©...0 A, 0 Al o0 A1,

since Ay for £ < n has been updated.

INote that tensor unfolding admits several forms in the literature. For
example, the unfolding expressions in the two tutorial papers [2] and [5]
are different. In this article, we follow the convention in [2].

A. Classic BCD based Structured Decomposition

If h,(A,,) is absent, Problem (9) admits an analytical solu-
tion, i.e., Agfﬂ) — (Hff))TXn, which recovers the classic al-
ternating least squares (ALS) algorithm for the unconstrained
least squares loss based CPD [10]. In principle, if h,,(A,) is
convex, then any off-the-shelf convex optimization algorithms
can be utilized to solve (9). However, in the context of SLRD,
the algorithms employed should strike a good balance between
complexity and efficiency. The reason is that (9) can have a
very large size, because the row size of H ,(Lt) is Hévzl on Le—
which can reach millions even when I,, is small.

First-order optimization algorithms (i.e., optimization algo-
rithms only using the gradient information) are known to be
scalable, and thus are good candidates for handling (9). Prox-
imal/projected gradient descent (PGD) [20], [21] is perhaps
the easiest to implement. PGD solves Problem (9) using the
following iterations:

AU+ o Prox;, (Agf) —aVa f (Agf); A(EL)) :

where k indexes the iterations of the PGD algorithm. The
notation Prox;,(Z) is defined as

1
Proxy, (Z) = argn%/i_n YY) + §||Y - Z|3,

and Va, fF(A®, AD) = AWEHYTHD — XTH?. For
a variety of h(-)’s, the proximal operator is easy to compute.
For example, if 2(Z) = || Z||1, we have [Proxy|., (£)]i; =
sign(Z;;)(1Z;; — M)+, and if h(Z) is the indicator func-
tion of a closed set H, then the proximal operator be-
comes a projection operator, i.e., Prox, (Z) = Projy(Z) =
argminy ey ||Y —Z|%. A number of h(-)’s that admit simple
proximal operations (e.g., L1-norm) can be found in [20].

PGD is easy to implement when the proximal operator is
simple. When the regularization is complicated, then using
algorithms such as the alternating directional method of mul-
tipliers (ADMM) to replace PGD may be more effective; see
[22] for a collection of examples of ADMM-based constrained
least squares solving. Beyond PGD and ADMM, many other
algorithms have been employed for handling the subproblem
in (9) for different structured decomposition problems. For
example, accelerated PGD, active set, and mirror descent have
all been considered in the literature; see, e.g., [23], [24].

B. Inexact BCD

Using oft-the-shelf solvers to handle the subproblems under
the framework of BCD is natural for many LRDMs. However,
when the block variables 6_,, is only roughly estimated, it
is not necessarily efficient to exactly solve the subproblem
w.r.t. 8,,—after all, 8_,, will change in the next iteration. This
argument leads to a class of algorithms that solve the block
subproblems in an inexact manner [16], [18].

Instead of directly minimizing f(A,; A")) + h,(A,), in-
exact BCD updates A,, via minimizing a local approximation
of f(Ay; A(le) + hp(Ap) at A, = Agf) which we denote

9(An; AD) ~ f(A,; AD) + b, (A,),

where A®) = {Al"TD AUFD A0

inexact BCD updates A,, using
AFD argnAin g(A,; AD).

., ADY. That is,

If g(A,; A®) admits a simple minimizer, then the algorithm
can quickly update A,, and move to the next block. One of
the frequently used g(A,; A®) is as follows:

9(An AY) = F(AD; AY) + ha(A,) - (10)
1
+Va, [(AD; AU (A, - AD) + A, - AP,
0}

which is obtained via applying the Taylor’s expansion on the
smooth term f(8). Using the above local approximation, the
update admits the following form:

(1)

which is equivalent to running PGD for one iteration to
solve (9)—and this echoes the term “inexact”. A number of
frequently used local approximations can be seen in [18]. Note
that inexact BCD is not unfamiliar to the SLRD community,
especially for nonnegativity constraints. One of the most
important early algorithms for NMF, namely, the multiplicative
updates (MU) [25], is an inexact BCD algorithm.

AT o Prox,, (Agﬁ —aVa f (Agp; AYZL)) ,

C. Pragmatic Acceleration

Compared to exact BCD, inexact BCD normally needs to
update all block variables many more rounds before reaching a
“good” solution. Nonetheless, when inexact BCD is combined
with the so-called “extrapolation” technique, the convergence
speed can be substantially improved. The procedure of extrap-
olation is as follows: Consider an extrapolated point

AD = (14 wh)AD 4wt AC-D) (12)

where {w!} is a pre-defined sequence (see practical choices
of w! in [16]). Then, the extrapolation-based inexact BCD
replaces (11) by the following:

A Pro, | (25? —aVa,f (AS),A%)) .

In practice, this simple technique oftentimes makes a big
difference in terms of convergence speed; see Fig. 4. The
extrapolation technique was introduced by Nesterov in 1983 to
accelerate smooth single-block convex optimization problems
using only first-order derivative information [26]. It was
introduced to handle nonconvex, multi-block, and nonsmooth
problems in the context of tensor decomposition by Xu et al.
in 2013 [16]. In this case, no provable acceleration has been
shown, which leaves a challenging and interesting research
question open.

D. Convergence Properties and Computational Complexity

Convergence properties of both exact BCD and inexact
BCD are well studied in the literature [18], [28]. An early
result from Bertsekas [28] shows that every limit point of
{01}, is a stationary point of Problem (3), if F' is absent
or is the indicator function of a convex closed set, and if

10%
MSE A1 1074 -
without
extrapolation
P with extrapolation
10710 &, \ \ : J
0 100 200 300
iteration ¢
Fig. 4. Speed-up for inexact BCD via extrapolation. The performance is

measured by the mean squared error (MSE) on the estimated latent factor;
see [27]. The tensor size is 30 X 30 x 30 x 30 and R = 10. The inexact BCD
and extrapolated version use the updates in (11) and (12) [16], respectively.

the subproblems in (7) can be exactly solved with unique
minimizers while the objective function is non-increasing in
the interval between two consecutive iterates. This can be
achieved if the subproblems in (7) are strictly (quasi-)convex.
Nonetheless, since Hr(f) may be rank deficient, stationary-
point convergence under this framework is not necessarily
easy to ensure. In addition, this early result does not cover
nonsmooth functions.

For inexact BCD, it was shown in [18] that if h,(A,) is
convex, and if the local surrogate is strictly (?uasi-)convex
and is “tangent” to F(An;A(fZL) at A, = A (e, it is
tight and shares the same directional derivatives at this point),
then every limit point of the produced solution sequence is a
stationary point. This is a somewhat more relaxed condition
relative to those for BCD, since the upper bound g(A,,; A®))
can always be constructed as a strictly convex function, e.g.,
by using (10).

In terms of per-iteration complexity, BCD combined with
first-order subproblem solvers for structured tensor decompo-
sition is not a lot more expensive than solving unconstrained
ones in many cases—which is the upshot of using algorithms
like PGD, accelerated PGD, or ADMM. The most expensive
operation is the so-called matricized tensor times Khatri—-Rao
product (MTTKRP), i.e., XIHr(f). However, even if one uses
exact BCD with multiple iterations of PGD and ADMM for
solving (9), the MTTKRP only needs to be computed once for
every update of A,,, which is the same as in the unconstrained
case; see more discussions in [22].

E. Block Splitting and Ordering Within BCD

In this paper, we focus on the most natural choice of blocks
to perform BCD on low-rank matrix/tensor decomposition
models, namely, {An}ﬁ’:l. However, in some cases, it might
be preferable to optimize over smaller blocks because the
subproblems are simpler. For example, with nonnegativity
constraints, it has been shown that optimizing over the blocks
made of the columns of the A,,’s is rather efficient (because
there is a closed-form solution) and outperforms exact BCD
and the MU [1], [9] that are based on A,,-block splitting. An-
other way to modify BCD and possibly improve convergence
rates is to update the blocks of variables in a non-cyclic way;
for example, using random shuffling at each outer iteration, or
picking the block of variables to update using some criterion
that increases our chances to converge faster (e.g., pick the
block that was modified the most in the previous iteration, i.e.,

pick argmin,, [|AY — ALV |/ ALYV) see, ez, [29],
[30].

IV. SECOND-ORDER APPROACHES

Combining SLRD and optimization techniques that exploit
(approximate) second-order information has a number of
advantages. Empirically, these algorithms converge in much
fewer iterations relative to first-order methods, are less sus-
ceptible to the so-called swamps, and are often more robust
to initializations [31], [32]; see, e.g., Fig. 5.

There are many second-order optimization algorithms, e.g.,
the Newton’s method that uses the Hessian and a series
of “quasi-Newton” methods that approximate the Hessian.
Among these algorithms, the Gauss—Newton (GN) framework
specialized for handling nonlinear least squares (NLS) prob-
lems fits Euclidean distance based tensor/matrix decomposi-
tions particularly well. Under the GN framework, the structure
inherent to some tensor models (e.g., CPD and LL1) can be
exploited to make the per-iteration complexity of the same
order as the first-order methods [31].

10°
A
10710 [

10720 -

fun. value

f(6W)

ALS (5.55)

10—30 - 1GN (0-6s)
0 200

| | |
400 600 800

Iteration t

J
1000

Fig. 5. While ALS initially improves the function value faster, the Gauss—
Newton (GN) method converges more quickly, both in terms of time and
number of iterations. Results shown for a 100 x 100 x 100 rank R = 10
tensor with highly correlated rank-1 terms (average angle is 59°), starting
from a random initialization.

A. Gauss—Newton Preliminaries

Consider the unconstrained tensor decomposition problem:

1
meinf(e) with f(0):§|\[[A1,...,AN]]—T||%. (13)
F(8)

The GN method starts from a linearization of the residual F:

dvec (F)

dvec (0) 14)

vec (F(0)) ~ vec (f(O(t))) +

a(t)

= +J0p, (15)

where J® is the Jacobian of F w.r.t. the variables 6, p=

6 — 0", and) = vec (F(0™)). Substituting (15) in (13)
results in a quadratic optimization problem

1 T 1
p" « argmin §||f(t) 12+ p+ §pT45(t)p, (16)
p

GN with TR Plue .
100 —
92
converged (%) 55 I I
oL
gllué l

distribution entries 6(?)

Fig. 6.
always converge to a stationary point; by using a dogleg trust region (TR)
based globalization, GN converges for every initialization 8(9). Results shown
for a 20 x 20 x 20 rank-10 tensor in which all factor matrix entries @y are
draw from the normal distribution N'(0, 1), and 100 different initializations
for three scenarios ranging from good (left) to bad (right).

Without globalization strategy, pure Gauss—Newton (GN) does not

in which the gradient is given by g® = J®' £ and the
T

Gramian (of the Jacobian) by &(*) = J® J(*) The variables

are updated as ¢+ «— 0 1 p() We have

Qs(t)p(t) — _g(t)7 (17)
by the optimality condition of the quadratic problem in (16).
In the case of CPD, the Gramian J®'J® is a positive
semidefinite matrix instead of a positive definite one?, which
means that p(t) is not an ascent direction, but may not be
a descent direction either. This problem can be avoided by
the Levenberg—Marquardt (LM) method, i.e., using) =
JO'J® 4 \T for some A > 0, or using a trust region which
implicitly dampens the system. The GN method can exhibit up
to quadratic convergence rate near an optimum if the residual
is small [28], [31].

Second-order methods converge fast once (") is near a
stationary point, while there is a risk that 8*) may never come
close to any stationary point. To ensure global convergence,
i.e., that 8®) converges to a stationary point from any starting
point 80, globalization strategies can be used [28]. Global-
ization is considered crucial for nonconvex optimization based
tensor decomposition algorithms and makes them robust w.r.t.
the initial guess 0 as is illustrated in Fig. 6.

The first effective globalization strategy is determining a(*)
via solving the following:

o) = = arg1 min £(8%9 4 ap®), (18)
which is often referred to as exact line search in the optimiza-
tion literature. Solving the above can be costly in general, but
when the objective is to minimize a multilinear error term in
least squares sense as in (13), the global minimum of this
problem can be found exactly, as the optimality conditions
boil down to a polynomial root finding problem; see [33] and
references therein. This exact line search technique ensures
that the maximal progress is made in every step of GN,
which helps improve the objective function quickly. Similarly,
exact plane search can be used to find the best descent

2The Gramian J®' J®) has at least (N — 1) R zero eigenvalues because
of the scaling indeterminacy.

direction in the plane spanned by p(*) and g(*) by searching for
coefficients o and /3 that minimize f(0")+ap® +pg(*) [33].
Empirically, the steepest descent direction —g(*) decreases the
objective function more rapidly during earlier iterations, while
the GN step allows fast convergence. Note that plane search
can be used to speed up BCD techniques as well [33].
Another effective globalization strategy uses a trust region
(TR). There, the problems of finding the step direction p(*)
and step size are combined, i.e., 8¢+ = () 4 p(*) with

p) = argminm(p) s.t. (19)

p

Ipll < A,

where m(p) = 1|f®|? + g9'p + 1p'®Wp under the
GN framework. Intuitively, the TR is employed to prevent
the GN steps to be too aggressive to miss the contraction
region of a stationary point. The TR radius A is determined
heuristically by measuring how well the model predicts the
decrease in function value [28]. Often, the search space is
restricted to a two-dimensional subspace spanned by g(*) and
p®). Problem (19) can then be solved approximately using the
dogleg step, or using plane search [31], [33].

B. Exploiting Tensor Structure

The bottleneck operation in the GN approach is constructing
and solving the linear system in (17), i.e.,

J'Jp=—g, (20)

where the superscripts (-)(t) have been dropped for simplicity
of notation. Note that this system is easily large scale, since
J € RIL.InxT where T = R(Zszl I,,). Using a general-
purpose solver for this system costs O(7T') flop, which may
be prohibitive for big data problems. Fortunately, the Jacobian
and the Gramian are both structured under certain decompo-
sition models (e.g., CPD and LL1), which can be exploited to
come up with lightweight solutions.

The gradient g = V f(6) of f(0) can be partitioned as

g = [vec(G1);...;vec (Gy)], in which the G,, w.r.t. factor
matrix A,, is given by

G,=F H,, 21)
in which F', is the unfolding of the residual F; see (8). The

operation F'H,, is the well-known MTTKRP as we have
seen in the BCD approaches. However, the factor matrices A,,
(n = 1,...,N) have the same value for every gradient G,
in contrast to BCD algorithms which uses updated variables
in every inner iteration. This can be exploited to reduce the
computational cost [34].

Similarly to the gradient, the Jacobian J can also be

partitioned as J = [Jq, ..., Jy] in which J, 32:0(%))-

in which IT,, is a matrix corresponding to permutation of mode
1 to mode n of vectorized tensors. By exploiting the block
and Kronecker structures, constructing & requires only O (TQ)
flop, as opposed to O(T3); for details, see [32], [35].
Instead of solving (20) exactly, an iterative solver such as
conjugate gradients (CG) can be used. As in power iterations,

the key step in a CG iteration is a Gramian-vector product,
i.e., given v compute y as:

Yy = JJv. 23)

Both y and v can be partitioned according to the variables,
hence v = [vy;...;vn] and y = [y1;...;yn]- Eq. (23) can
then be written as y,, = J;';Z s—1 JxUk, which is computed
efficiently by exploiting the structure in J,, [cf. Eq. (22)]:

N
Y, =VaW,+ A, Y Wi ®(V/A), (24

k=1
k#n

where Y,,,V,, € RI"*f and y, = vec(Y,,) and v, =

vec (V,,), resp. W,, and Wy, are defined as follows:

N
k=1
k#m,n

N
Wn = ® A—kI:AkH Wmn = (25)
K
Hence, to compute J'Jwv only products of small I,, x R and
R x R matrices are required. As CG performs a number of it-
erations with constant A,,, the inner products AZA,L required
for W,, and Wy, can be precomputed. This way, the com-
plexity per Gramian-vector product is only O (R2 >on In).
Note that for both GN and the BCD methods, the computation
of the gradient—which requires O (R Hfz[:l I,) operations—
usually dominates the complexity. Therefore, the GN approach
is also an excellent candidate for parallel implementations as
it reduces the number of iterations and expensive gradient
computations, while the extra CG iterations have a negligible

communication overhead.

In practice, it is important to notice that a well-conditioned
JTJ makes solving the system in (20) much faster using CG.
In numerical linear algebra, the common practice is to precon-
dition J'.J, leading to the so-called preconditioned CG (PCG)
paradigm. Preconditioning can be done rather efficiently under
some LRDMs like CPD; see the insert “Acceleration via
Preconditioning”.

Acceleration via Preconditioning As the convergence
speed of CG depends on the ‘clustering of the eigenval-
ues’ of J'J, a preconditioner is often applied to improve
this clustering. More specifically, the system

M 'JJp=-M1g (26)

is solved instead of (20) and the preconditioner M is
chosen to reduce the computational cost. In practice,
a Jacobi preconditioner, i.e., M is a diagonal matrix
with entries diag(JTJ), or a block-Jacobi preconditioner,
i.e., a block-diagonal approximation to J'.J, are often
effective for the unconstrained CPD [31]. For example,
the latter preconditioner is given by

Mgy = blkdiag(Wy @ I, ..., Wy I1,). (27)

Because of the block-diagonal and Kronecker structure
in Mpj, the system v = M];le can be solved in N
steps, i.e., V;, = Y,W, ! for n = 1,..., N. Applying
My, only involves inverses of small R x R matrices

which are constant in one GN iteration. Interestingly,
Mgy appears in the ALS algorithm with simultaneous
updates—i.e., without updating A,, every inner iteration.
The PCG algorithm can therefore be seen as a refinement
of ALS with simultaneous updates by taking the off-
diagonal blocks into account [31].

C. Structured Decomposition

As mentioned, the GN framework is specialized for NLS
problems, i.e., objectives can be written as || F(8)||2. If there
are structural constraints on @, incorporating such structural re-
quirements is often nontrivial. In this subsection, we introduce
a number of ideas for handling structural constraints under the
GN framework.

Parametric constraints: One way to handle constraints is to
use parametrization to convert the constrained decomposition
problem to an unconstrained NLS problem. To see how it
works, let us consider the case where h,(6,,) is an indicator
function of set C,, i.e., the constrained decomposition case
where 0,, € C,,. In addition, we assume that every element in
C,, can be parameterized by an unconstrained variable. Assume
0, = vec(A,,) and every factor matrix A,, is a function g,
of a disjoint set of parameters o, i.e., A, = qn(a,), n =
1,..., N. For example, if C,, = R{;LXR, i.e., the nonnegative
orthant, one can parameterize A,, using the following:

A,=D®D, DecR*E

In this case, o, = vec(D) and g,(-) : RI»f — RI»E denotes
the elementwise squaring operation. If no constraint is imposed
on some A, ¢, (o) = unvec(a,); see many other examples
for different constraints in [35].

By substituting the constraints in the optimization problem
(13), we obtain a problem in variables & = [ax1;. .. ; an]:

1
H}in§||7——[[Q1(al)>~--aQN(aN)]]||12:- (28)

Applying GN to (28) follows the same steps as before. Central
to this unconstrained problem is the solution of

Pp = —g, (29)
where we denote quantities related to parameters by tildes to
distinguish them from quantities relates to factor matrices. The
structure of the factorization models can still be exploited if
we use the chain rule for derivation [36]. This way, (29) can
be written as

JeJp=-J'g, (30)
in which @ and g are exactly the expressions as derived before
in the unconstrained case. The Jacobian J is a block diagonal
matrix containing the Jacobian of each factor matrix w.r.t. the
underlying variables, i.e.,

J = blkdiag(Jy, ..., Jn). (31)
The Jacobians jn are often straightforward to derive. For
example, if A, is unconstrained, J,, = I g; if nonneg-

ativity is imposed by squaring variables, A, = D ® D
and J,, = diag(vec (2D)); in the case of linear constraints,

e.g., A, = BXC with B and C known, J, = C"® B.
More complicated constraints can be modeled via composite
functions and by applying the chain rule repeatedly [35], [36].

When computing the Gramian or Gramian vector products
in (30), we can exploit the multilinear structure from the
CPD as well as the block-diagonal structure of the constraints.
Moreover, depending on the constraint, J » may, for example,
also have diagonal or Kronecker product structure. Therefore,
the Gramian-vector products can be computed in three steps:

N

. TZ . =T
Up = JpUnp, Yn = Jn kakv Yn = JpYn,
k=1

(32)

which may all be computed efficiently using similar ideas as
in the unconstrained case [cf. Eq. (24)]. Leveraging the chain
rule and the Gramian-vector product based PCG method for
handling the unconstrained GN framework, it turns out that
many frequently used constraints in signal processing and data
analytics can be handled under this framework in an efficient
way. Examples include nonnegativity, polynomial constraints,
orthogonality, matrix inverses, Vandermonde, Toeplitz or Han-
kel structure; see details in [35].

We should mention that the parametrization technique can
also handle some special constraints that are considered quite
challenging in the context of tensor and matrix factorization,
e.g., (partial) symmetry and coupling constraints; see the insert
in “Handling Special Constraints via Parametrization”.

Handling Special Constraints via Parameterization
Factorizations are often (partially) symmetric, e.g., in
blind source separation and topic modeling (see examples
in the tutorial [2]). Symmetry here means that some A,,’s
are identical. The conventional BCD treating each A,
as a block is not straightforward anymore. For example,
cyclically updating the factor matrices A; = As =
Az = A in the decomposition [A, A, A] breaks sym-
metry, while the subproblems are no longer convex when
enforcing symmetry; see also Sec. III-E. Nevertheless, the
GN framework handles such constraints rather naturally.
A (partially) symmetric CPD can be modeled by set-
ting two or more factors to be identical. For example,
consider the model [Ay,...,Ay_2, AN_1,AN_1], ie.,
the last two factor matrices are identical. This symmetry
constraint leads to a J with the following form:

J =blkdiag(I1, g, ..., I1y_ors Iin 5 T1n_\R)),

in which J,,, n = 1,..., N—1, are identity matrices as no
constraints are imposed on A,,. Because of the structure
in J, the extra steps in the Gramian-vector products in
(23) only involve summations.

Coupled decomposition often arises in data fusion,
e.g., integrating hyperspectral and multispectral images
for super-resolution purposes [37], spectrum cartography
from multiple sensor-acquired spatio-spectral information
[38], or jointly analyzing primary data and side infor-
mation [15]. These problems involve jointly factorizing
tensors and/or matrices: the decompositions can share, or

are coupled through, one or more factors or underlying
variables. For example, consider the coupled matrix ten-
sor factorization problem:

A A
{AfggzlleﬂAl,A27ASH—T||§+§2||[[A3,A4]]—MH§
where the two terms are coupled through Ajs. Coupled
decomposition can be handled via BCD. However, in
some cases, the key steps of BCD boil down to solving
Sylvester equations in each iteration, which can be costly
for large-scale problems [37]. Using parametrization and
GN, the influence of the coupling constraint and the
decomposition can be separated in the CG iterations [35],
[36]—and thus easily puts forth efficient and flexible data
fusion algorithms. This serves as the foundation of the
structured data fusion (SDF) toolbox in Tensorlab.

Proximal Gauss—Newton: To handle more constraints and
the general cost function f(6)+h(8) in a systematic way, one
may also employ the proximal GN (ProxGN) approach. To be
specific, in the presence of a nonsmooth h(8), the ProxGN
framework modifies the per-iteration sub-problem of GN into

1
00+ arg min | FO+TO0 0|2+ h(0). (33)

This is conceptually similar to the PGD approach: linearizing
the smooth part (using the same linearization as in uncon-
strained GN) while keeping the nonsmooth regularization term
untouched. The subproblem in (33) is again a regularized
least squares problem w.r.t. 6. Similar to the BCD case [cf.
Eq. (9)], there exists no closed-form solution for the sub-
problem in general. However, subproblem solvers such as PGD
and ADMM can again be employed to handle the (33).

A recent theoretical study has shown that incorporating the
proximal term does not affect the overall super-linear conver-
gence rate of the GN-type algorithms within the vicinity of the
solution. The challenge, however, is to solve (33) in the context
SLRD with lightweight updates. This is possible. The recent
paper in [39] has shown that if ADMM is employed, then the
key steps for solving (33) are essentially the same as that of
the unconstrained GN, namely, computing (J®TJ® 4 p1)~1
for a certain p > 0 once per ProxGN iteration. Note that this
step is nothing but inverting the regularized Jacobian Gramian,
which, as we have seen, admits a number of economical
solutions. In addition, with judiciously designed ADMM steps,
this Gramian inversion never needs to be instantiated—the
algorithm is memory-efficient as well; see details in [39] for
an implementation for NMF.

V. STOCHASTIC APPROACHES

Batch algorithms such as BCD and GN could have seri-
ous memory and computational issues, especially when the
data tensor or matrix is large and dense. Recall that the
MTTKRP (ie., H] X,) costs O(R[]_, I,) operations, if
no structure of the tensor can be exploited. This is quite
expensive for large I,, and high-order tensors. For big data
problems, stochastic optimization is a classic workaround for
avoiding memory/operation explosion. In a nutshell, stochastic

algorithms are particularly suitable for handling problems
having the following form:

L
min 3" f(6) + h(6)
(=1

where the first term is often called the “empirical risk” function
in the literature. The classic stochastic proximal gradient
descent (SPGD) updates the optimization variables via

(34)

6"V « Prox;, (B(t) — oz(t)g(e(t)))) (35)
where g(0(®) is a random vector (or, “stochastic oracle”)
evaluated at %), constructed through a random variable
(RV) £(). The idea is to use an easily computable stochas-
tic oracle to approximate the computationally expensive full
gradient Vf(0) = %25:1 Vf(0), so that (35) serves as
an economical version of the PGD algorithm. A popular
choice is g(8®)) = Vf, (1), where ¢ € {1,...,L} is
randomly selected following the probability mass function
(PMF) Pr(¢® = ¢) = 1/L. This simple construction has a
nice property: g(8(*)) is an unbiased estimator for the full
gradient given the history of random sampling, i.e.,

Vi) Zm 61)) = Eccr |9(0D) O],

where H®) collects all the RVs appearing before iteration t.
The unbiasedness is often instrumental in establishing con-
vergence of stochastic algorithms?. Another very important
aspect is the variance of g(0(")). Assume that the variance is
bounded, i.e., V [g(B(t))|H(t)} < 7. Naturally, one hopes 7 to
be small—so that the average deviation of g(6(*)) from the full
gradient is small—and thus the SPGD algorithm will behave
more like the PGD algorithm. Smaller 7 can be obtained via
using more samples to construct g(O(t)), e.g., using

g(e" > Vi(6Y),

B<t
éeB(f)

where B®) denotes the index set of the f,(8(*))’s sampled at
iteration ¢. This leads to the so-called “mini-batch” scheme.
Note that if |[B®)| = L, then 7 = 0 and SPGD becomes the
PGD. As we have mentioned, a smaller 7 would make the
convergence properties of SPGD more like the PGD, and thus
is preferred. However, a larger |B®*)| leads to more operations
for computing the stochastic oracle. In practice, this is a
tradeoff that oftentimes requires some tuning to balance.

The randomness of stochastic algorithms makes character-
izing the convergence properties of any single instance not
meaningful. Instead, the “expected convergence properties” are
often used. For example, when h(6) is absent, a convergence
criterion of interest is expressed as follows:

lim inf E [HW (0“>)Hj —0, (36)

t—o0

3Biased stochastic oracle and its convergence properties are also discussed
in the literature; see, e.g., [17]. However, the analysis is more involved. In
addition, some conditions (e.g., bounded bias) are not easy to verify.

where the expectation is taken over all the random variables
that were used for constructing the stochastic oracles for
all the iterations (i.e., the “total expectation”). Equation (36)
means that every limit point of {#(Y)} is a stationary point in
expectation. When h(6) is present, similar ideas are utilized.
Recall that 0 € OF(0") is the necessary condition for
attaining a stationary point [cf. Eq. (6)]. In [17], the expected
counterpart of (6), i.e.,

lim inf E[dist(0, 0F(0®))] =0 (37)

t—o0
is employed for establishing the notion of stationary-point
convergence for nonconvex nonsmooth problems under the
stochastic settings. For both (36) and (37), when some more
assumptions hold (e.g., the solution sequence is bounded),
the “inf” notation can be removed, meaning that the whole
sequence converges to a stationary point on average.

A. Entry Sampling

Many SLRD problems can be re-expressed in a similar form
as that in (34). One can rewrite the constrained CPD problem
under the least squares fitting loss as follows:

I In
1
min — Z o) firein (0) + 1(6) (38)
{An}n 1 11:1 in=1
N N
where L = [[/_; In, h(0) = > hyn(Ay) and fi iy

(T (i1, -yiN) — Zle ngl A, (in,7))% Assume B is a
set of indices of the tensor entries that are randomly sampled
[see Fig. 7 (left)]. The corresponding SPGD update is as
follows: 8(+1) is given by

(t)
t _ @
Prox, <9 B0

S o). o

(i1,0.sin) EBM®)

It is not difficult to see that many entries of V f;, ;. (O(t))
are zero, since Vf;, ZN(G(“) only contains the informa-
tion of A, (i,,:); we have [Vfih,,,,m(e(t))]g = 0 for all
0y ¢ {An(in,7) | (i1,...,in) € BD}. The derivative w.r.t.
A, (in,:) for the sampled indices is easy to compute; see
[2]. This is essentially the idea in [15] for coupled tensor
and matrix decompositions. This kind of sampling strategy
ensures that the constructed stochastic oracle is an unbiased
estimation for the full gradient, and features very lightweight
updates. Computing the term) V f;, . ,ZN(G(t)) requires

only O(R|BM|) operations, instead of O(R Hn 1 I,) opera-
tions for computing the full gradient.
Lijk Tsub mode 2 mode 1

mode 3

entry fiber

subtensor
Fig. 7. Various sampling strategies used in stochastic optimization algorithms.

B. Subtensor Sampling

Entry-sampling based approaches are direct applications of
the conventional PSGD for tensor decomposition. However,
these methods do not leverage existing tensor decomposition
tools. One way to take advantage of existing tensor decomposi-
tion algorithms is sampling subtensors, instead of entries. The
randomized block sampling (RBS) algorithm [40] considers
the unconstrained CPD problem. The algorithm samples a
subtensor

R
T =T(S1,....88) = Y Au(S1.r)0...0 Ay(Sn,7)
r=1

at every iteration ¢ and updates the latent variables by com-
puting one optimization step using:

0(t+1)

sub

0(t+1)

—sub

¢ arg min

sub
(t)
—sub?

2
7;512?3 - [[Aslub’ R A?\ITIb]]HF)

(40)
— 0
where all variables affected by 7;51?) are collected in Oy, =
[vec(A5UP);. .., vec(AP)], AP = A, (S,,:), and O_gy,
contains all the other optimization variables. As each update
in (40) involves one step in a common tensor decomposition
problem, many off-the-shelf algorithms, such as ALS or GN,
can be leveraged [40].

The above algorithm works well, especially when the ten-
sor rank is low and the sampled subtensors already have
identifiable latent factors—under such cases, the estimated
A" from subtensors can serve as a good estimate for the
corresponding part of A,, after one or two updates. In practice,
one needs not to exactly solve the subproblems in (40).
Combining with some trust region considerations, the work
in [40] suggested using a one-step GN or one-step regularized
ALS to update Oy,3,. Note the sampled subtensors are typically
not independent under this framework, since one wishes to
update every unknown parameter in an equally frequent way;
see [40]. This is quite different from established conventions in
stochastic optimization, which makes convergence analysis for
RBS more challenging than the entry sampling based methods.

C. Fiber Sampling

In principle, the entry sampling and SPGD idea in (39)
can handle any h(-) that admits simple proximal operators. In
addition, the RBS algorithm can be applied together any con-
straint compatible with the GN framework as well. However,
such sampling strategies are no longer viable when it comes
to constraints/regularizers that are imposed on the columns of
the latent factors, e.g., the probability simplex constraint that
is often used in statistical learning (1T A,, = 1T, A,, > 0), the
constraint || A, |21 = Zfi"zl || A, (4n, :)||2 used for promoting
row-sparsity, or the total variation/smoothness regularization
terms on the columns of A,. The reason is that 7, only
contains information of A,,(S,,:)—which means that enforc-
ing column constraints on A, is not possible if updates in
(39) or (40) are employed.

Recently, the works in [27], [41] advocate to sample a
(set of) mode-n “fibers” for updating A,,. A mode-n fiber

of the tensor 7 is an I,-dimensional vector that is obtained
by varying the mode-n index while fixing others of 7 [see
Fig. 7 (right)]. The interesting connection here is that

T(ilv .. -;Z’nfh :ain+17 .. aZN) = Xn(]'ru :)7

a mode-n fiber

where jn, =1+37,_; 1, (ie—1)J; and J, = an_:le;én In,.
Under this sampling strategy, the whole A,, can be updated
in one iteration. Specifically, in iteration ¢, the work in [41]
updates A, forn = 1,..., N sequentially, as in the BCD case.
To update A,,, it samples a set of mode-n fibers, indexed by
ng) and solve a ‘sketched least squares’ problem:

(4D

n

2
min || X,(Q0,5) — HY Q)47
whose solution is
A — (HP(QP,)T X, (Q1,).

This simple sampling strategy makes sure that every entry of
A, can be updated in iteration ¢. The rationale behind is also
reasonable: If the tensor is low-rank, then one does not need
to use all the data to solve the least squares subproblems—
using randomly sketched data is enough, if the system of
linear equations X,, = H (t)(ng), :)A—,E is over-determined,
it returns the same solution as solving X,, = H® AT .

The work in [41] did not explicitly consider structural
information on A,,’s, and the convergence properties of the
approach are unclear. To incorporate structural information
and to establish convergence, the recent work in [27] offered
a remedy. There, a block-randomized sampling strategy was
proposed to help establish unbiasedness of the gradient estima-
tion. Then, PGD is combined with fiber sampling for handling
structural constraints. The procedure consists of two sampling
stages: first, randomly sample a mode n € {1,..., N} with
random seed () such that Pr(¢(®¥) = n) = 1/N. Then,
sample a set of mode-n fibers indexed by 9, uniformly at
random (with another random seed £(*)). Using the sampled
data, construct

G" =a;...;GY), (42)

where G A,B'B — X,(Q,,)'B with B =
H®QY,), and G = 0 for k # n. This block-
randomization technique entails the following equality:

vec (Egm [G@m(t),c(”]) — VIO, (43)

where ¢ > 0 is a constant; i.e., the constructed stochastic
vector is an unbiased estimation (up to a constant scaling
factor) for the full gradient, conditioned on the filtration. Then,
the algorithm updates the latent factors via

AUD Prox, (Agf) - a(t)G,(f)) . (44)

Because of (43), the above is almost identical to single block
SPGD, and thus enjoys similar convergence guarantees [27].

Fiber sampling approaches as in [41] and [27] are economi-
cal, since they never need to instantiate the large matrix H,, or
to compute the full MTTKRP. A remark is that fiber sampling
is also of interest in partially observed tensor recovery [38],

[42]; in Section VI-C it will actually be argued that under
mild conditions exact completion of a fiber-sampled tensor is
possible via a matrix eigenvalue decomposition [43].

D. Adaptive Step-size Scheduling

Implementing stochastic algorithms oftentimes requires
somewhat intensive hands-on tuning for selecting hyperpa-
rameters, in particular, the step size a®). Generic SGD and
SPGD analyses suggest to set the step size sequence fol-
lowing the Robbins and Monro’s rule, ie., >.,°, a =
00, S, (a®)? < oo. The common practice is to set
a®) = a/t? with B > 1, but the “best” o and 3 for different
problem instances can be quite different. To resolve this issue,
adaptive step-size strategies that can automatically determine
a'™) are considered in the literature. The RBS method in [40]
and the fiber sampling method in [27] both consider adaptive
step-size selection for tensor decomposition. In particular,
the latter combines the insight of adagrad that has been
popular in deep neural network training together with block-
randomized tensor decomposition to come up with an adaptive
step-size scheme (see “Adagrad for Stochastic SLRD”).

Adagrad for Stochastic SLRD In [27], the following
term is updated for each block n under the block-
randomized fiber sampling framework:

1

(b+ i lG2,

where b and € are inconsequential small positive quanti-
ties for regularization purpose. Then, the selected block
is updated via

[g)]i r

)1/2+67

AU o Prox;, (Agp O Ggp) . @5

The above can be understood as a data-adaptive pre-
conditioning for the stochastic oracle G’Ef), Implementing
adagrad based stochastic CPD (AdaCPD) is fairly easy,
but in practice it often saves a lot of effort for fine-tuning
a® while attaining competitive convergence speed; see
Fig. 8. This also shows the potential of adapting the well-
developed stochastic optimization tools in deep neural
network training to serve the purpose of SLRD.

It is shown in [27] that, using the adagrad version of
the fiber sampling algorithm, every limit point of {§(*)}
is a stationary point in expectation, if (@) is absent.
However, convergence in the presence of nonsmooth (8)
is still an open challenge.

In Fig. 8, we show the MSE on the estimated A,,’s obtained
by different algorithms after using a certain number of full
MTTKRP (which serves as a unified complexity measure).
Here, the tensor has size 100 x 100 x 100 and its CP rank
is R = 10. One can see that stochastic algorithms (BrasCPD
and AdaCPD) work remarkably well in this simulation. In
particular, the adaptive step size algorithm exhibits promising
performance without tuning step-size parameters. We also
would like to mention that the stochastic algorithms naturally

APG (inexact BCD)

MSE 103 -

—— AdaCPD (fiber sampling)
BrasCPD‘ (fiber sampling)‘

1076 =,
0 100 200
no. of MTTKRP computed

Fig. 8. Stochastic algorithms [BrasCPD (manually fine-tuned step size) and
AdaCPD (adaptive step size)] use significantly fewer operations to reach a
good estimation accuracy for the latent factors, compared to batch algorithms.
The MSE for estimating the A,,’s against the number of full MTTKRP used.
The CP rank is 10 and I,, = 100 for all n = 1, 2, 3. Figure reproduced from
[27]. Permission will be sought upon publication.

work with incomplete data (e.g., data with missing entries or
fibers), since the updates only rely on partial data.

Table I presents an incomplete summary of structural con-
straints/regularization terms (together with the Euclidean data
fitting-based CPD cost function) that can be handled by the
introduced nonconvex optimization frameworks. One can see
that different frameworks may be specialized for different
types of structural constraints and regularization terms. In
terms of accommodating structural requirements, the AO-
ADMM algorithm [22] and the GN framework offered in
Tensorlab [44] may be the most flexible ones, since they can
handle multiple structural constraints simultaneously.

VI. MORE DISCUSSIONS AND CONCLUSION

A. Exploiting Structure at Data Level

Until now, the focus has been on exploiting the multilinear
structure of the decomposition to come up with scalable SLRD
algorithms. In many cases the tensor itself has additional
structure that can be exploited to reduce complexity of some
“bottleneck operations” such as MTTKRP (which is used
in both GN and BCD) or computing the fitting residual
(needed in GN). Note that for batch algorithms, both com-
putational and memory complexities of these operations scale
as O (tensor entries). For classic methods like BCD, there
is rich literature on exploiting data structure, in particular
sparsity, to avoid memory or flop explosion; see [2], [5] and
references therein. For all batch methods, it is crucial to
exploit data structure in order to reduce the complexity of
computing f and g to O (parameters in representation). The
key is avoiding the explicit construction of the residual F. The
techniques for second-order methods and constraints outlined
in Sec. VI-A can be used without changes, as the computation
of the Gramian as well as the Jacobians J resulting from
parametric, symmetry or coupling constraints are independent
of the tensor [49], which can be verified from (20). This way
the nonnegative CPD of GB size tensors, or deterministic BSS
problems with up to millions of samples can be handled easily
on simple laptops or desktops; see [49] for examples.

TABLE 1
AN INCOMPLETE SUMMARY OF STRUCTURAL CONSTRAINTS THAT CAN BE HANDLED BY SOME REPRESENTATIVE
ALGORITHMS.

Structural constraint or regularization A(()e-glc)‘l\fsl\élgﬂ @ APG [BIE]D) Te“sf’gﬁ}’) (441 ’}f&gﬁi&gl
Nonnegativity (A, > 0) v v v v
Sparsity (|| Anl1 = 3272, SR [An (i) v v v+ v
Column group sparsity (|| Anl/2,1 = E:l [|An(:,7)|2) v v v+ v
Row group sparsity (| A} [|21 = 37, [An (i,) 2) v v v v
Total variation (|1 An]|1)" v v v+ v
Row prob. simplex (A1 =1, A, > 0) 4 v v v
Column prob. simplex (1TA, =17, A, > 0) v v v v
Tikhonov smoothness (|| T2 An||2)" v v v v
Decomposition symmetry (A, = A,) v

Boundedness (a < Ap(i,7) < b) 4 v v v
Coupled factorization (see [42], [45]-[47]) v v v v
Multiple structures combined (e.g., || T2 An|l1 + [[An|l2,1) v v

* The operators T and T are sparse circulant matrices whose expressions can be found in the literature, e.g., [48].
* GN-based methods (except for ProxGN in [39]) work with differentiable functions. In Tensorlab, the ¢1; norm-related
non-differentiable terms are handled using function-smoothing techniques as approximations; see details in [35].

B. Other Loss Functions

In the previous sections, we have focused on the standard

Euclidean distance to measure the error of the data fitting
term. This is by no means the best choice in all scenarios. It
corresponds to the MLE assuming the input tensor is a low-
rank tensor to which additive i.i.d. Gaussian noise is added. It
may be crucial in some cases to adopt other data fitting terms.
Let us mention an array of important examples:
e For count data, such as documents represented as vectors
of word counts (this is the so-called bag-of-words model),
the matrix/tensor is nonnegative and typically sparse (most
documents do not use most words from the dictionary) for
which Gaussian noise is clearly not appropriate. Let us focus
on the matrix case for simplicity. If we assume the noise added
to the entry (4,5) of the input matrix X is Poissonian of
parameter A\ = (A1 Az); ;, we have Pr(X; ; = k) = ¢ " \/i
with k € Z. The MLE leads to minimizing the KL divergence
between X and A;As:

X,
F— — X, ;+ (A1 A}), ;.

_ i 46
(A, AL, (o)

AH11-,i£2 — Xiglog
s

The KL divergence is also widely used in imaging because
the acquisition can be seen as a photon-counting process (note
that, in this case, the input matrix is not necessarily sparse).
e Multiplicative noise, for which each entry of the low-rank
tensor is multiplied with some noise, has been shown to be
particularly well adapted to audio signals. For example, if
the multiplicative noise follows a Gamma distribution, the
MLE minimizes the Itakura-Saito (IS) divergence between the
observed tensor and its low-rank approximation [50]; in the
matrix case with X ~ A; A}, it is given by

Xij 4

(A1 A]);

) X j
AR (A Al) B
1,432 i,j 1412)i,5

log (47)

o In the presence of outliers, that is, the noise has some entries
with large magnitude, using the component-wise ¢;-norm is

more appropriate

2.

01,82, ,0N

R N
T, in) = Y] Anlin,)|, @8)
r=1n=1

and corresponds to the MLE for Laplace noise [51]. This is
closely related to robust PCA and can be used for example to
extract the low-rank background from moving objects (treated
as outliers) in a video sequence [12]. When “gross outliers”
heavily corrupt a number of slabs of the tensor data (or
columns/rows of the matrix data), optimization objectives in-
volving nonconvex mixed s /¢, functions (where 0 < p <1)
may also be used [14], [52]. For example, the following fitting
cost may be used when one believes that some columns of X
are outliers [14]:

I

Z HAX(7 ZQ) — AlAQ(ig,)THIQ) ,

=1
where 0 < p < 1 is used to downweight the impact of the
outlying columns.
e For quantized signals, that is, signals whose entries have
been rounded to some accuracy, an appropriate noise model is
the uniform distribution*. For example, if each entry of a low-
rank matrix are rounded to the nearest integer, then each entry
of the noise can be modeled with the uniform distribution
in the interval [—0.5,0.5]. The corresponding MLE mini-
mizes the component-wise £, norm; replacing >
by mMaXi, iy,...inN in (48)
e If the noise is not identically distributed among the entries
of the tensor, a weight should be assigned to each entry. For
example, for independently distributed Gaussian noise, the
MLE minimizes

2
I In (T(il,...,iN) *Zle nyzl An(inar)>

Sy

i1=1 inN=1

11,82,..,0N

)

02(i17...,iN)

4 For the £, norm to correspond to the MLE, all entries must be rounded
with the same absolute accuracy (e.g., the nearest integer), which is typically
not the case in most programming languages.

where o2(i1,...,ix) is the variance of the noise for the
entry at position (i1, ...,y). Interestingly, for missing entries,
o(i1,...,in) = +0oo corresponds to a weight of zero while,
if there is no noise, that is, o(i1,...,ix) = 0, the weight is
infinite so that the entry must be exactly reconstructed.

In all cases above, we end up with more complicated
optimization problems because the nice properties of the
Euclidean distance are lost; in particular Lipschitz continuity
of the gradient (the ¢; and /., norms are even nonsmooth).
For the weighted norm, the problem might become ill-posed
(the optimal solution might not exist, even with nonnegativy
constraints) in the presence of missing entries because some
weights are zero so that the weighted “norm” is actually not
a norm. For the KL and IS divergences, the gradient of the
objective is not Lipschitz continuous, and the objective not
defined everywhere: X; ; > 0 requires (A1 A}); ; > 0 in (46)
and (47). The most popular optimization method for these
divergences is multiplicative updates which is an inexact BCD
approach; see Section III-B. For the componentwise 1, f
norms and nonconvex f2/¢, functions, subgradient descent
(which is similar to PGD), iteratively reweighed least squares,
or exact BCD are popular approaches; see, e.g., [14], [51],
[52]. Some of these objectives (e.g., the KL divergence and
the component-wise ¢; norm) can also be handled under a
variant of the AO-ADMM framework with simple updates
but possibly high memory complexities [22]. In all cases,
convergence will be typically slower than for the Euclidean
distance.

C. Tractable SLRD Problems and Algorithms

We have introduced a series of nonconvex optimization
tools for SLRD that are all supported by stationary-point
convergence guarantees. However, it is in general unknown
if these algorithms will reach a globally optimal solution (or,
if the LRDMs can be exactly found). While convergence to the
global optimum can be observed in practical applications, es-
tablishing pertinent theoretical guarantees is challenging given
the NP-hardness of the problem, [11]-[13], [53]. Nevertheless,
in certain settings the computation of LRDMs is known to be
tractable. We mention the following:

e In the case where a fully symmetric tensor admits a CPD
with all latent factors identical and orthogonal (i.e., all the
A,’s are identical and ALAn = I), the latent factors can
be computed using a power iteration/deflation-type algorithm
[53]. This is analogous to the computation of the eigendecom-
position of a symmetric matrix through successive power itera-
tion and deflation. A difference is that a symmetric matrix can
be exactly diagonalized by an orthogonal eigentransformation,
while a generic higher-order tensor can only approximately
be diagonalized; the degree of diagonalizability affects the
convergence [54]. By itself, CPD with identical and orthogonal
A, ’s is a special model that is not readily encountered in many
applications. However, in an array of blind source separation
and machine learning problems (e.g., independent component
analysis, topic modeling and community detection), it is under
some conditions possible to transform higher-order statistics so
that they satisfy this special model up to estimation errors.

In particular, the second-order statistics can be used for a
prewhitening that is guaranteed to orthogonalize the latent
factors when the decomposition is exact. For deflation-based
techniques that do not require orthogonality nor symmetry, see
[55], [56].

e Beyond CPD with identical and orthogonal latent factors,
eigendecomposition-based algorithms have a long history for
finding the exact CPD under various conditions. The simplest
scenario is where two factor matrices have full column rank
and the third factor matrix does not have proportional columns.
In this scenario, the exact CPD can be found from the
generalized eigenvalue decomposition of a pencil formed by
two tensor slices (or linear combinations of slices) [57]. The
fact that in the first steps of the algorithm the tensor is
reduced to just a pair of its slices, implies some bounds on the
accuracy, especially in cases where the rank is high compared
to the tensor dimensions, i.e. when a lot of information is
extracted from the two slices [58]. To mitigate this, [56]
presents an algebraic approach in which multiple pencils are
each partially used, in a way that takes into account their
numerical properties.

Moreover, the working conditions of the basic eigendecom-
position approach have been relaxed to situations in which
only one factor is required to be full column rank [59]. The
method utilizes a bilinear mapping to convert the more general
CPD problem to the “simplest scenario” above. This line of
work has been further extended to handle cases where the
latent factors are all allowed to be rank deficient, enabling
exact algebraic computation up to the famous Kruskal bound
and beyond [60], [61]. Algorithms of this type have been
proposed for other tensor decomposition models as well, e.g.,
block-term decomposition and LL.1 decomposition [19], [62],
coupled CPD [63], and CPD of incomplete fiber-sampled ten-
sors [43]. While the accuracy of these methods is sometimes
limited in practical noisy settings, the computed results often
provide good initialization points for the introduced iterative
nonconvex optimization-based methods.

e In [64] noise bounds are derived under which the CPD
minimization problem is well-posed and the cost function has
only one local minimum, which is hence global.

e Many unconstrained low-rank matrix estimation problems
(e.g., compressed matrix recovery and matrix completion) are
known to be solvable via nonconvex optimization methods,
under certain conditions [65]. Structure-constrained matrix
decomposition problems are in general more challenging, but
solvable cases also exist under some model assumptions. For
example, separable NMF tackles the NMF problem under
the assumption that a latent factor contains a column-scaled
version of the identity matrix as its submatrix. This assumption
facilitates a number of algorithms that provably output the
target latent factors, even in the noisy cases; see tutorials
in [1], [4]. Solvable cases also exist in dictionary learning
that identifies a sparse factor in an “overcomplete” basis. If
the sparse latent factor is generated following a Gaussian-
Bernoulli model, then it was shown that the optimization land-
scape under an “inverse filtering” formulation is “benign”—
i.e., all local minima are also global minima. Consequently,
a globally optimal solution can be attained via nonconvex

optimization methods [66].

D. Other Models

The algorithm design principles can be generalized to cover
other models, e.g., BTD, LL1, Tucker, and Tensor Train
(TT)/hierarchical Tucker (hT), to name a few [67]-[72]. Note
that, in their basic form, BTD, LLI1, Tucker and TT/hT
involve subspaces rather than vectors, so that optimization on
manifolds is a natural framework. Some extensions of SLRD
are straightforward. For instance, both BCD and second-order
algorithms for structured Tucker, BTD, and LL1 decompo-
sitions exist [16], [19], [31], [36]. GN-based methods were
also considered for nonnegativity-constrained Tucker decom-
position. LL1 can be regarded as CPD with repeated columns
in some latent factor matrices, and thus the parametrization
techniques can be used to come up with GN algorithms for
LL1, as constrained CPD [31], [35]. However, some extensions
may require more effort. For example, in stochastic algorithm
design, different tensor models and structural constraints may
require custom design of sampling strategies, as we have seen
in the CPD case. This also entails many research opportunities
ahead.

E. Concluding Remarks

In this article, we introduced three types of nonconvex
optimization tools that are effective for SLRD. Several remarks
are in order:

e The BCD-based approaches are easy to understand and
implement. The inexact BCD and extrapolation techniques are
particularly useful in practice. This line of work can potentially
handle a large variety of constraints and regularization terms,
if the subproblem solver is properly chosen. The downside
is that BCD is a first-order optimization approach at a high
level. Hence, the speed of convergence is usually not fast.
Designing effective and lightweight acceleration strategies
may help advance BCD-based SLRD algorithms.

e The GN-based approaches are powerful in terms of conver-
gence speed and per-iteration computational complexity. They
are also the foundation of the tensor computation infrastructure
Tensorlab. On the other hand, the GN approaches are
specialized for NLS and smoothed objective functions. In
other words, they may not be as flexible as BCD-based ap-
proaches in terms of incorporating structural information. Us-
ing ProxGN may improve the flexibility, but the subproblems
arising in the ProxGN framework are not necessarily easy to
solve. Extending the second-order approaches to accommodate
more structural requirements and objective functions other
than the least squares loss promises a fertile research ground.
e The stochastic approaches strike a balance between per-
iteration computational/memory complexity and the overall
decomposition algorithm effectiveness. Different sampling
strategies may be able to handle different types of struc-
tural information. Stochastic optimization may involve more
hyperparameters to tune (in particular, the mini-batch size
and step size), and thus may require more attentive software
engineering for implementation. Convergence properties of
stochastic tensor/matrix decomposition algorithms are not as

clear, which also poses many exciting research questions for
the tensor/matrix and optimization communities to explore.

REFERENCES

[1] N. Gillis, “The why and how of nonnegative matrix factorization,”
Regularization, Optimization, Kernels, and Support Vector Machines,
vol. 12, p. 257, 2014.

[2] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Trans. Signal Process., vol. 65, no. 13, pp.
3551-3582, 2017.

[3] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H.-A. Phan, “Tensor decompositions for signal processing applica-
tions: From two-way to multiway component analysis,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 145-163, 2015.

[4] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, “Nonnegative ma-
trix factorization for signal and data analytics: Identifiability, algorithms,
and applications,” IEEE Signal Process. Mag., vol. 36, no. 2, pp. 59-80,
3 2019.

[5] T.G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.

[6] L.-H. Lim and P. Comon, “Nonnegative approximations of nonnegative
tensors,” J. Chemometrics, vol. 23, no. 7-8, pp. 432-441, 2009.

[71 Y. Qian, F. Xiong, S. Zeng, J. Zhou, and Y. Y. Tang, “Matrix-vector
nonnegative tensor factorization for blind unmixing of hyperspectral
imagery,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1776—
1792, 2017.

[8] K. Huang and X. Fu, “Detecting overlapping and correlated communities
without pure nodes: Identifiability and algorithm,” in Proceedings of
ICML 2019, vol. 97, 09-15 Jun 2019, pp. 2859-2868.

[91 G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, “Nonnegative matrix and

tensor factorizations: An algorithmic perspective,” IEEE Signal Process.

Mag., vol. 31, no. 3, pp. 54-65, 2014.

R. A. Harshman, “Foundations of the PARAFAC procedure: Models

and conditions for an “explanatory” multimodal factor analysis,” UCLA

Working Papers in Phonetics, vol. 16, pp. 1-84, 1970.

C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J.

ACM, vol. 60, no. 6, pp. 45:1-45:39, 2013.

[12] N. Gillis and S. A. Vavasis, “On the complexity of robust PCA and ¢ -

norm low-rank matrix approximation,” Math. Oper. Res., vol. 43, no. 4,

pp- 1072-1084, 2018.

S. A. Vavasis, “On the complexity of nonnegative matrix factorization,”

SIAM J. Optim., vol. 20, no. 3, pp. 1364-1377, 2009.

[14] X. Fu, K. Huang, B. Yang, W. Ma, and N. D. Sidiropoulos, “Robust

volume minimization-based matrix factorization for remote sensing and

document clustering,” IEEE Trans. Signal Process., vol. 64, no. 23, pp.

6254-6268, Dec 2016.

A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Papalexakis, and

E. P. Xing, “Flexifact: Scalable flexible factorization of coupled tensors

on Hadoop,” in Proc. SIAM SDM 2014. SIAM, 2014, pp. 109-117.

Y. Xu and W. Yin, “A block coordinate descent method for regular-

ized multiconvex optimization with applications to nonnegative tensor

factorization and completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp.

1758-1789, 2013.

[17] ——, “Block stochastic gradient iteration for convex and nonconvex

optimization,” SIAM J. Optim., vol. 25, no. 3, pp. 1686-1716, 2015.

M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence

analysis of block successive minimization methods for nonsmooth

optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126-1153, 2013.

L. De Lathauwer and D. Nion, “Decompositions of a higher-order tensor

in block terms—Part III: Alternating least squares algorithms,” SIAM J.

Matrix Anal. Appl., vol. 30, no. 3, pp. 10671083, 2008.

[20] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends

in optimization, vol. 1, no. 3, pp. 123-231, 2013.

C.-J. Lin, “Projected gradient methods for nonnegative matrix factoriza-

tion,” Neural Comput., vol. 19, no. 10, pp. 2756-2779, 2007.

K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and efficient

algorithmic framework for constrained matrix and tensor factorization,”

IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5052-5065, 2016.

N. Guan, D. Tao, Z. Luo, and B. Yuan, “NeNMF: An optimal gradi-

ent method for nonnegative matrix factorization,” IEEE Trans. Signal

Process., vol. 60, no. 6, pp. 2882-2898, 2012.

H. Kim and H. Park, “Nonnegative matrix factorization based on alter-

nating nonnegativity constrained least squares and active set method,”

SIAM J. Matrix Anal. Appl., vol. 30, no. 2, pp. 713-730, 2008.

[10]

(11]

[13]

[15]

[16]

(18]

[19]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

D. Seung and L. Lee, “Algorithms for non-negative matrix factorization,”
Proceedings of NIPS 2001, vol. 13, pp. 556-562, 2001.

Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence O(1/ kz),” in Doklady an USSR, vol. 269,
1983, pp. 543-547.

X. Fu, S. Tbrahim, H.-T. Wai, C. Gao, and K. Huang, “Block-randomized
stochastic proximal gradient for low-rank tensor factorization,” IEEE
Trans. Signal Process., vol. 68, pp. 2170-2185, 2020.

D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent methods with
variable selection for non-negative matrix factorization,” in Proceedings
of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2011, pp. 1064-1072.

Z. Li, A. Uschmajew, and S. Zhang, “On convergence of the maximum
block improvement method,” SIAM Journal on Optimization, vol. 25,
no. 1, pp. 210-233, 2015.

L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based al-
gorithms for tensor decompositions: Canonical polyadic decomposition,
decomposition in rank-(L, L,,1) terms, and a new generalization,”
SIAM J. Optim., vol. 23, no. 2, pp. 695-720, 2013.

A.-H. Phan, P. Tichavsky, and A. Cichocki, “Low complexity damped
Gauss—Newton algorithms for CANDECOMP/PARAFAC,” SIAM J.
Matrix Anal. Appl., vol. 34, no. 1, pp. 126-147, 2013.

L. Sorber, I. Domanov, M. Van Barel, and L. De Lathauwer, “Exact
line and plane search for tensor optimization,” Comput. Optim. Appl.,
vol. 63, no. 1, pp. 121-142, 2015.

A.-H. Phan, P. Tichavsky, and A. Cichocki, “Fast alternating LS algo-
rithms for high order CANDECOMP/PARAFAC tensor factorizations,”
IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4834-4846, 2013.

N. Vervliet and L. De Lathauwer, “Numerical optimization based algo-
rithms for data fusion,” in Data Fusion Methodology and Applications,
Ist ed., ser. Data Handling in Science and Technology, M. Cocchi, Ed.
Elsevier, 2019, vol. 31, ch. 4, pp. 81-128.

L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion,”
IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 586-600, 2015.
Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Fast fusion of multi-band
images based on solving a sylvester equation,” IEEE Trans. Image
Process., vol. 24, no. 11, pp. 4109-4121, 2015.

G. Zhang, X. Fu, J. Wang, X.-L. Zhao, and M. Hong, “Spectrum
cartography via coupled block-term tensor decomposition,” IEEE Trans.
Signal Process. to appear, 2020.

K. Huang and X. Fu, “Low-complexity proximal Gauss—Newton algo-
rithm for nonnegative matrix factorization,” in IEEE Global Conference
on Signal and Information Processing (GlobalSIP). 1EEE, 2019.

N. Vervliet and L. De Lathauwer, “A randomized block sampling
approach to canonical polyadic decomposition of large-scale tensors,”
IEEE J. Sel. Topics Signal Process., vol. 10, no. 2, pp. 284-295, 2016.
C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized CP
tensor decomposition,” SIAM J. Matrix Anal. Appl., vol. 39, no. 2, pp.
876-901, 2018.

C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and M. Akcakaya, “Tensor
completion from regular sub-nyquist samples,” IEEE Trans. Signal
Process., vol. 68, pp. 1-16, 2019.

M. Sgrensen and L. De Lathauwer, “Fiber sampling approach to canoni-
cal polyadic decomposition and application to tensor completion,” SIAM
J. Matrix Anal. Appl., vol. 40, no. 3, pp. 888-917, 2019.

N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer,
“Tensorlab 3.0,” 2016, available online at https://www.tensorlab.net.

S. Ibrahim, X. Fu, N. Kargas, and K. Huang, “Crowdsourcing via
pairwise co-occurrences: Identifiability and algorithms,” in NeuriPS
2019, 2019.

S. Ibrahim and X. Fu, “Stochastic optimization for coupled tensor
decomposition with applications in statistical learning,” in Proc. IEEE
DSW 2019, 2019.

M. Sgrensen and L. De Lathauwer, “Coupled canonical polyadic
decompositions and (coupled) decompositions in multilinear rank-
(Lr,n, Lr,n, 1) terms—Part I: Uniqueness,” SIAM J. Matrix Anal. Appl.,
vol. 36, no. 2, pp. 496-522, 2015.

S. Boyd and L. Vandenberghe, Convex Optimization.
Press, 2004.

N. Vervliet, O. Debals, and L. De Lathauwer, “Exploiting efficient
representations in tensor decompositions,” SIAM J. Sci. Comput., vol. 41,
no. 2, pp. A789-A815, 2019.

C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-
ization with the itakura-saito divergence: With application to music
analysis,” Neural computation, vol. 21, no. 3, pp. 793-830, 2009.

Cambridge Univ.

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman,
“Robust iterative fitting of multilinear models,” IEEE Trans. Signal
process., vol. 53, no. 8, pp. 2678-2689, 2005.

X. Fu, K. Huang, W.-K. Ma, N. Sidiropoulos, and R. Bro, “Joint tensor
factorization and outlying slab suppression with applications,” IEEE
Trans. Signal Process., vol. 63, no. 23, pp. 6315-6328, 2015.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” Journal
of Machine Learning Research, vol. 15, pp. 2773-2832, 2014.

M. Espig, W. Hackbusch, and A. Khachatryan, “On the convergence of
alternating least squares optimisation in tensor format representations,”
arXiv preprint arXiv:1506.00062, 2015.

A.-H. Phan, P. Tichavsky, and A. Cichocki, “Tensor deflation for
candecomp/parafacpart i: Alternating subspace update algorithm,” IEEE
Transactions on signal Processing, vol. 63, no. 22, pp. 5924-5938, 2015.
E. Evert, M. Vandecappelle, and L. De Lathauwer, “The generalized
eigenspace decomposition,” ESAT-STADIUS, KU Leuven, Leuven, Bel-
gium, Tech. Rep. 20-xx, 2020.

S. E. Leurgans, R. T. Ross, and R. B. Abel, “A decomposition for three-
way arrays,” SIAM Journal on Matrix Analysis and Applications, vol. 14,
no. 4, pp. 1064-1083, 1993.

C. Beltran Alvarez, P. Breiding, and N. Vannieuwenhoven, ‘“Pencil-based
algorithms for tensor rank decomposition are not stable,” SIAM Journal
on Matrix Analysis and Applications, vol. 40, no. 2, pp. 739-773, 2019.
L. De Lathauwer, “A link between the canonical decomposition in
multilinear algebra and simultaneous matrix diagonalization,” SIAM J.
Matrix Anal. Appl., vol. 28, no. 3, pp. 642-666, 2006.

I. Domanov and L. De Lathauwer, “‘Canonical polyadic decomposition of
third-order tensors: Reduction to generalized eigenvalue decomposition,”
SIAM J. Matrix Anal. Appl., vol. 35, no. 2, pp. 636-660, 2014.

——, “Canonical polyadic decomposition of third-order tensors: Re-
laxed uniqueness conditions and algebraic algorithm,” Linear Algebra
and its Applications, vol. 513, pp. 342-375, 2017.

I. Domanov and L. D. Lathauwer, “On uniqueness and computation of
the decomposition of a tensor into multilinear rank-(1,l_r,l_r) terms,”
SIAM Journal on Matrix Analysis and Applications, vol. 41, no. 2, pp.
747-803, 2020.

M. Sgrensen, I. Domanov, and L. De Lathauwer, “Coupled canonical
polyadic decompositions and (coupled) decompositions in multilinear
rank-(Ly n, Ly n, 1) terms—Part II: Algorithms,” SIAM J. Matrix Anal.
Appl., vol. 36, no. 3, pp. 1015-1045, 2015.

E. Evert and L. De Lathauwer, “Existence of best low rank approxi-
mations,” ESAT-STADIUS, KU Leuven, Leuven, Belgium, Tech. Rep.
20-xx, 2020.

Y. Chi, Y. M. Lu, and Y. Chen, “Nonconvex optimization meets low-
rank matrix factorization: An overview,” IEEE Trans. Signal Process.,
vol. 67, no. 20, pp. 5239-5269, 2019.

J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over the
sphere I: Overview and the geometric picture,” IEEE Trans. Inf. Theory,
vol. 63, no. 2, pp. 853-884, Feb 2017.

I. V. Oseledets, D. Savostianov, and E. E. Tyrtyshnikov, “Tucker dimen-
sionality reduction of three-dimensional arrays in linear time,” SIAM
Journal on Matrix Analysis and Applications, vol. 30, no. 3, pp. 939—
956, 2008.

B. Savas and L.-H. Lim, “Quasi-Newton methods on Grassmannians
and multilinear approximations of tensors,” SIAM Journal on Scientific
Computing, vol. 32, no. 6, pp. 3352-3393, 2010.

M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer, “Best
low multilinear rank approximation of higher-order tensors, based on
the Riemannian trust-region scheme,” SIAM Journal on Matrix Analysis
and Applications, vol. 32, no. 1, pp. 115-135, 2011.

'W. Hackbusch, Tensor spaces and numerical tensor calculus.
Science & Business Media, 2012, vol. 42.

L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-
rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36,
no. 1, pp. 53-78, 2013.

B. N. Khoromskij, Tensor numerical methods in scientific computing.
Walter de Gruyter GmbH & Co KG, 2018, vol. 19.

Springer

https://www.tensorlab.net

	I Introduction
	II Problem Statement
	II-A Low-rank Matrix and Tensor Decomposition Models
	II-B Structured Decomposition as Nonconvex Optimization

	III BCD-based Approaches
	III-A Classic BCD based Structured Decomposition
	III-B Inexact BCD
	III-C Pragmatic Acceleration
	III-D Convergence Properties and Computational Complexity
	III-E Block Splitting and Ordering Within BCD

	IV Second-order Approaches
	IV-A Gauss–Newton Preliminaries
	IV-B Exploiting Tensor Structure
	IV-C Structured Decomposition

	V Stochastic Approaches
	V-A Entry Sampling
	V-B Subtensor Sampling
	V-C Fiber Sampling
	V-D Adaptive Step-size Scheduling

	VI More Discussions and Conclusion
	VI-A Exploiting Structure at Data Level
	VI-B Other Loss Functions
	VI-C Tractable SLRD Problems and Algorithms
	VI-D Other Models
	VI-E Concluding Remarks

	References

