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ABSTRACT
Indoor localization based on Wi-Fi fingerprints has been an active
research topic for years. However, existing approaches do not con-
sider the instability of access points (APs) which may be unreliable
in practice, particularly the ones deployed by individual users. This
instability impacts the localization accuracy severely, due to the un-
reliable or even wrong Wi-Fi fingerprints. Ideally, the localization
should be done using only the well-deployed APs (e.g., deployed
by facility teams). However, in many places the number of these
APs is too few to achieve a good localization accuracy. To solve this
problem, we leverage emerging smart APs equipped with multi-
mode antennas, and build a new indoor localization system called
MMLOC to reduce the number of necessary APs. The key idea is
controlling the modes of AP antennas to generate more fingerprints
with fewer APs. A clustering based localization strategy is designed
to enable a mobile terminal to figure out the RSSI (Received Signal
Strength Indicator) for different antenna modes without requiring
any synchronization. We have implemented a prototype system us-
ing smart APs and commercial smartphones. Experimental results
demonstrate that MMLOC can reduce the number of necessary APs
by 50%, and achieve the same or even better localization accuracy.
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•Human-centered computing→Ubiquitous andmobile com-
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1 INTRODUCTION
With the rapid evolution of mobile terminals such as smartphones
and laptops, indoor localization service has been increasingly im-
portant in the past ten years. A large number of indoor localization
systems have been proposed, and one of the most widely-used tech-
nologies is the Wi-Fi fingerprint-based method [2, 7, 13, 14, 20, 40].
The main idea is leveraging the diversity of received signal strength
(RSS) from WLAN access points (APs) to create a RSSI fingerprint
for each location. This method is able to achieve acceptable lo-
calization accuracy (about 3 meters [23]), requires no additional
infrastructure besides fingerprint database, and thus is easy to be
deployed in various places such as airports and cleanrooms.

However, existing Wi-Fi fingerprint-based indoor localization
systems largely ignore a very important practical issue: the insta-
bility of APs. They assume that the RSSI fingerprint measured by
a mobile device does not change with time. This is often not true
or even totally wrong in practice. First, many APs are privately
deployed by individual users and thus are not reliable. For example,
in a big shopping mall, besides the APs centrally deployed and
managed by the facility team, the owners of small stores may also
deploy their own private APs. Those private APs are usually not
installed on the ceilings and thus the signal strength from them will
oscillate severely because of the moving barriers. Furthermore, they
may be moved from one location to another and turned on/off from
time to time, depending on the needs of the owners. As a result, the
RSSI fingerprints of those APs are highly dynamic and unreliable.
Second, using techniques of virtual Wi-Fi [26] and Wi-Fi tethering
[12], users may turn a laptop or smartphone into a mobile software
AP. Those software APs come and go on-the-fly and thus their RSSI
fingerprints are not stable at all. Because Wi-Fi fingerprint-based
localization systems fundamentally rely on the stability of RSSI
fingerprints, the instability of those unreliable private and soft-
ware APs severely impacts the localization accuracy of the Wi-Fi
fingerprint-based localization systems, making them inaccurate in
practice.

Ideally, we should only use reliable APs for localization purpose,
for example, the APs deployed by the facility team of a building
or by the IT team of a company. Unfortunately, in many places
the number of these reliable APs is limited. In some large-scale
indoor spaces such as shopping malls and airports, the number of
Wi-Fi access points that cover each location is often small, because
they are deployed to provide network access instead of localization
service [45]. For instance, according to our survey in Shanghai
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Jiao Tong University in China, there are only 5 to 8 fixed APs in
each three-story mess hall, and usually only 2 or 3 of them can be
scanned at each location, which can hardly meet the requirement
of indoor localization. In other large indoor places such as stadiums
and plants, the AP number is even smaller. For those places, it is
also not practical to install more APs just for indoor localization
purpose. Therefore, this lack of reliable APs is a big problem in
practice because it has been shown that the accuracy of localization
decreases severely when the number of APs is no larger than 5 to 6
[18, 41].
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Figure 1: One example for the RSSI fingerprint maps gener-
ated by one two-mode smart AP. The measurement is per-
formed in a 7 × 9 m2 meeting room.

In this paper we propose to address the above practical problem
by leveraging emerging smart APs. Unlike normal APs which are
dumb and not programmable, smart APs run their own operating
system and provide interfaces to control their configurations and
behaviors, e.g., executing more complex tasks such as smart traf-
fic scheduling [4]. Furthermore, as 802.11n and 802.11ac become
increasingly popular, Multi-input Multi-output (MIMO) has been
widely used. As a result, equipping an AP with more than one
antenna is the mainstream of industry. In addition, there are also
techniques to equip APs with the antennas that support multiple
configurable operating modes (sometimes are called as smart an-
tennas) [9]. With the production of smart APs, there is a trend that
smart APs will supersede normal dumb APs and be widely installed
in various places.

We design MMLOC, a multi-mode indoor localization system
based on smart APs with multiple antennas. The main idea is that,
since a change of antennas’ mode also changes the distribution of
RSSI, we can generate more RSSI fingerprints via only one smart AP
by switching the operating modes of its antennas, as shown in Fig.
1. Thus, MMLOC can reduce the total number of APs required for
indoor localization, making it a practical solution for many places
with few APs.

The main challenge is that, the mobile terminal needs to know
the exact current mode of smart APs so that it can map the RSSI
measurement to the corresponding fingerprint. One way to do it
is to introduce time synchronization between the mobile terminal
and the smart APs. However, this can make the system very compli-
cated and hard to deploy in practice. It is even harder to maintain
synchronization if more than one user need to be served by the
localization system at the same time. Therefore, we design the
clustering-based localization strategy and the sliding window-based
clustering mechanism to enable the mobile terminal to differentiate

different modes of smart APs. The intuition is that, since the mean
value of RSSI at a given location changes with different AP modes,
we can distinguish the RSSI values from different modes with the
algorithm of clustering. Moreover, by assigning different durations
to different AP modes, it is possible for the mobile terminal to
recognize the AP modes.

In this work, we have made the following contributions:
• We propose an indoor localization system based on smart
APs. By switching the modes of antennas, we can double the
RSSI fingerprints of each AP and thus reduce the number
of necessary APs by half while the localization accuracy is
maintained. (Section 3)
• To allow mobile terminals to identify the modes of smart
APs, we design the clustering-based localization strategy
and the sliding window-based clustering mechanism to map
RSSI fingerprint measurements to different modes of smart
APs. (Section 4.2)
• We design a modified probability-based localization algo-
rithm to utilize the additional fingerprint maps generated by
smart APs. (Section 5)
• We have implemented a prototype system of MMLOC on
Android platform and conduct comprehensive evaluations.
(Section 7)

We organize the rest of the paper as follows. Section 2 surveys
related work. Section 3 illustrates the system architecture. Section 4
introduces the process of localization and the proposed strategies in
detail. Section 5 presents the algorithm of location estimation. Sec-
tion 6 describes the implementation details of the system. Section 7
evaluates the performance of MMLOC and analyzes the results of
experiments and simulations. We discuss the limitation of MMLOC
and our future work in Section 8. Section 9 concludes our work.

2 RELATEDWORK
Indoor localization system: Indoor location sensing systems have
become extremely popular. There are multiple technologies that
have been applied in this field. For instance, there are indoor local-
ization systems based on RFID [16, 17], UWB [19, 36], Bluetooth
[1, 6] and ultrasonic [32, 34]. Among the typical indoor localization
technologies, we are mostly interested in the WLAN positioning
systems using RSSI fingerprints. Unlike the other technologies such
as AoA (Angle of Arrival) or TDoA (Time Difference of Arrival)-
based approaches [3, 38, 39, 44], the Wi-Fi RSSI fingerprints-based
indoor localization does not need additional infrastructures except
pre-existing commercial WLAN APs. RADAR [2], an in-building
user location and tracking system, adopts the method of kNN to
achieve an accuracy of 2− 3 meters. Yang et al. in [40] leverage user
motions to construct the radio map of a floor, which is previously
obtained only by site survey. Laoudias et al. in [20] adopt Artificial
Neural Networks (ANN) as a function approximation approach to
map vectors of RSSI fingerprints.

However, most of the previous works do not consider the case
where the number of available APs is limited and some of the APs
are unreliable. When a user is covered by only a few APs, the accu-
racy of localization is limited [18, 41]. In [35], a single AP is used to
locate users based on the AoA and ToA (Time of Arrival) informa-
tion. However, the AP needs to conduct AoA and ToAmeasurement,
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which is less practical for commercial APs. SAIL [25] also utilizes a
single AP to locate the user. However, it requires the assistance of
the inertial sensors in the user’s device, which makes the system
impractical for the devices that are not equipped with the extra
sensors. Moreover, the inertial sensor-based localization methods
[21, 29] are vulnerable to magnetic interference [11, 27], because
the magnetometer can be easily interfered, especially for the places
where the magnetic field changes significantly [5, 24, 33, 43]. In
our system, we reduce the demanded quantity of APs by using the
smart APs equipped with two-mode antennas, and no measure-
ment is required at the APs. The user’s device needs to have the
Wi-Fi module only. Meanwhile, the accuracy is still maintained and
comparable to the previous systems based on RSSI fingerprints.

Smart access point: The usage of programmable smart APs in
wireless technologies have also received great attention. Applying
smart APs, SAP in [8] provides seamless handoff experience to
users, while smartly balancing the network load across multiple
interfaces based on users’ time-varying traffic load conditions. Bot-
tigliengo et al. in [4] propose an LLC-layer algorithm implemented
at both AP andWSs to guarantee fair access to the medium to every
user. OpenWrt [28] provides tools to make the channel or antenna
selection on Wi-Fi devices, which enables the programmable con-
trol on APs. In this paper, we leverage programmable APs with
multi-mode antennas to act as the smart APs, and apply the concept
of smart APs in the field of indoor localizations.

Multi-mode antenna: The antennas with more than one work
pattern have already been used in indoor localization systems. The
work in [10] proposes an RF-based localization system that works
using a single anchor node. The anchor is equipped with a switched-
beam directional antenna that collects signal strength information
sufficient for absolute 2D target positioning. However, the designed
antenna can hardly be adopted in commercial APs. The system in
[22] utilizes smart antennas to receive signal from a mobile target.
The signal strength information is combined to find the direction
of arrival of the signal and triangulate the mobile target position.
FIFS [37] applies multiple antennas with spatial diversity to reduce
signal strength variability and improve the accuracy of indoor lo-
calization. However, both the works have not considered the switch
of antennas’ modes. In our system each smart AP is equipped with
two-mode antennas, and the radiation pattern is changeable. Thus
more than one RSSI fingerprint map can be generated by each smart
AP, and the accuracy of localization is also improved.

3 MMLOC SYSTEM ARCHITECTURE
3.1 System Overview
As shown in Fig. 2, our system consists of two parts: smart access
point (smart AP) and localization client. A mobile terminal which
needs to use our system must have installed the localization client
and be covered by at least one smart AP. Each smart AP switches
its antenna modes independently and periodically. When the ter-
minal needs to locate itself, its localization client starts a series of
measurement, clustering and calculation. Multiple users can locate
themselves at the same time, even if the same set of smart APs
are occupied. It should be noted that the smart APs still retain the
function of normal access point, and any mobile terminals can visit
Internet through them.

AP Function

Antenna 

Controller

Network Interface

Localization Client

Database

   RSS

Measurer

Network Interface

Timer

ClusteringTimer

Smart Access Point

Localization 

Calculator

Figure 2: Architecture of MMLOC.

Next, we introduce the architecture of smart AP and localization
client in detail, respectively.

3.2 Architecture of Smart Access Point
Besides the function of normal access point, a smart AP has the
following additional component.

Antenna Controller: It controls the switch of the two-mode anten-
nas. Based on the predefined period lengths of the two modes, the
antenna controller takes the timer as the time source and switches
the mode of the antenna. Note that although all smart APs share the
same two lengths of periods, their periods are not aligned. There-
fore, there is no synchronization among the smart APs. Moreover,
since we assign different period lengths for different modes to allow
mobile terminals to differentiate the two kinds of RSSI measure-
ments, no synchronization is needed between smart APs andmobile
terminals either.

3.3 Architecture of localization client
The localization client is installed in mobile terminals and contains
the following components mainly.

RSSMeasurer: It measures the RSS from available APs for a certain
predefined period of time. This period length is the sum of the period
lengths of the two modes of the antennas. The returned values are
RSSIs. Note that only the signal strength from the reliable smart
APs that have been registered in our system is processed.

Clustering: It divides the measurement results into two clusters.
Then based on the size of the clusters, it maps the two clusters to
the two antenna modes.

Localization Calculator: It estimates the location of a user ac-
cording to the mapped measurement results and the stored RSSI
fingerprints. A localization algorithm based on probability distribu-
tion is followed.

Database: It stores the RSSI fingerprints of different smart APs
in the localization region. Different from previous works, for each
smart AP we store two different RSSI fingerprint maps.

4 PROCESS OF LOCALIZATION
4.1 Basic Process of MMLOC
As introduced before, to reduce the number of APs needed during
the localization process, we make use of the smart APs with two-
mode antennas. When the mode of the antenna is changed, the
distribution of signal strength is also changed. Thus we can get two
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RSSI fingerprint maps for each smart AP. As other typical indoor
location systems, the process of localization in our system consists
of offline data collection and training phase and online localization
phase.

In the offline data collection and training phase, we divide the
localization region into grids with constant size, and measure the
RSS from the smart APs at the center of each grid. Since each smart
AP has two different modes, the RSS should be measured twice
for each smart AP in each mode. All the fingerprint information
collected will be uploaded to a server. The data processing for these
measure results will be shown in Section 5. A mobile terminal needs
to download the RSSI distribution map from the server before it
can use our service. Note that the server is for data processing only
and its operation can be easily implemented on the mobile terminal.
So we does not include the server in the system architecture of
MMLOC.

In the online localization phase, the basic process is that, a mobile
terminal keeps measuring RSS for a certain duration when the mode
of each smart AP has changed at least once. Then the terminal
can estimate its position according to the results based on the
RSSI distribution map. Considering the practicability, our system
cannot require the synchronization between the mobile terminal
and smart APs, and our systemmust be able to serve a large number
of users at the same time. However, the mobile terminal need to
measure the RSS for both the two modes of each smart AP, without
knowing which signal is generated by which antenna mode. To
avoid modifying the protocol followed by the wireless devices,
we do not use the beacons of smart APs to carry antenna mode
information. We design a clustering-based localization strategy to
solve this problem.

4.2 Clustering-based Localization Strategy
For most of the previous works based on RSSI fingerprint, since only
one-mode antennas are used in APs, the clients can measure the
signal strength from these APs at any time for arbitrary duration.
In our system however, every smart AP has two modes, and clients
have no access to know each RSSI belongs to each mode. Two
contiguous measurements may even get the results for two different
modes. Although we find it impractical to synchronize smart APs
and mobile terminals, it is still possible for them to reach certain
consensus about the duration of mode changing, i.e., we can make
the measurement duration of mobile terminal equal to the period
of mode changing in smart APs. We propose the clustering based
localization strategy to utilize this observation.

Strategy on smart APs: Each smart AP changes its antenna mode
following a common period Tc . During the first slot T1 in Tc , the
AP’s antenna works in Mode 1. During the second slot T2, the AP’s
antenna works in Mode 2. Note that T1 +T2 = Tc , and T1 , T2. We
assume T1 > T2 for convenience. Usually the difference T1 − T2
should be large enough. We set T1 = 2T2 in this paper. It is not
necessary for the smart APs to be synchronized. We admit that
changing of mode would lead to unpredictable delay, but that does
not matter a lot, which will be discussed later.

Strategy on mobile device: Once a mobile device need to locate it-
self, it starts the RSS measurement. The duration isTc , during which
the device keeps sampling the RSS for multiple times. In practice,

the sampling rate for RSS would vary with time. However, since the
sampling rate is usually relatively stable during the measurement
duration, the performance of the strategy is still maintained. The
measured results will be processed by the clustering algorithm,
which will be shown in Section 4.3.
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Figure 3: One example of a RSS measurement process.

Weuse an example to show how the clustering-based localization
strategy works. In Fig. 3, there are two smart APs changing their
modes with period Tc . Assume that a mobile terminal starts the
measurement at time point ts . The measurement continues until
ts +Tc . It is shown that during ts to to +T1 and to +Tc to ts +Tc ,
smart AP 1 works in Mode 1. During to +T1 to to +Tc , smart AP
1 works in Mode 2. Thus if the sampling rate of mobile terminal
is relatively stable during the measurement duration, the ratio rM
between the number of RSS measurements belonging to Mode 1
and those belonging to Mode 2 should be around T1/T2 (note that
the mobile terminal has no idea about the values of to + T1 and
to +Tc ). This gives us a chance to figure out which mode that each
RSSI sample belongs to. The same principle also applies for smart
AP 2 in the figure. Thus within a single measurement duration, it is
possible for the mobile terminal to get the RSSI for each smart AP in
each mode. This strategy also works for multiple mobile terminals
at the same time.

Another key feature of our strategy is that, the error of timing
system on each device does not impact the performance of the
strategy. Since no synchronization is used, the timing error on
smart APs is not cumulative. One extreme example is that, even if a
smart AP is down for a short time and starts to work again later, the
following measurements of mobile terminals are still not impacted.
On the other hand, the joggling of a mobile terminal’s sampling rate
will not change rM a lot, as long as the total number of sampling
points in Tc is large enough. These ensure the robustness of our
strategy.

4.3 Sliding Window-based Clustering
Mechanism

We first show that the RSS measurements from each smart AP’s two
antenna modes are distinguishable. We collect RSS measurements
from smart AP 1-2 in both modes. For comparison, we also collect
measurements from normal AP 1-2 at the same time. When the
smart APs are working in Mode 1, the RSS measurements in each
grid are shown in red in Fig. 4. We then turn all smart APs to Mode
2 and the RSS measurements are shown in blue. Fig. 4(c) and Fig.
4(d) show that, for the normal APs, the blue and red points are
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mixed with each other and cannot be separated easily, which is
expected. In contrast, from Fig. 4(a) and Fig. 4(b), we can see that
measurements from each smart AP’s two modes are not mixed up
and thus can be separated by clustering mechanisms.
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Figure 4: RSS measurements in different smart AP modes at
different grids.

The problem of clustering RSS measurements from smart APs to
two modes is actually easier than the common clustering problem.
Notice that we haveTc = T1 +T2 and the measurements are aligned
according to their timestamps. Therefore at least the measurements
of one mode are consecutive within one measurement duration.
This allows us to use a sliding window-based clustering mechanism.

As Fig. 5 shows, the sliding window based clustering algorithm
can be described in the following 5 steps:

(1) We first remove the bad measurements which are outliers to
other measurements. Assume the number of the remaining
measurements is K .

(2) We then form a circle by concatenating the last measurement
with the first one.

(3) A window of length KT1/Tc is moved to find the position
where the absolute difference of the averages inside and out-
side the window is maximized. After this position is found,
we consider the measurements inside the window corre-
sponding to Mode 1 and the others corresponding to Mode
2.

(4) Then we sort the two sets of data respectively.
(5) Finally, we select several measurements around the median

of each set as its representatives to further cancel the effect
of bad or noisy data.

Note that it is possible that the mechanism identifies wrong win-
dow positions for some grids. But this means the RSS measurements
of the two modes in those grids are originally very close so that the

Figure 5: Sliding window-based clustering mechanism.

wrong representatives selected will not affect the final localization
results a lot.

5 LOCALIZATION ALGORITHM
In this section, we present an accurate and scalable algorithm for
determining the user location in an 802.11 WLAN framework. Un-
like that used by normal fingerprint-based localization systems, our
algorithm has been modified to utilize the additional fingerprint
maps generated by smart APs.

5.1 Theoretical Basis
Our algorithm uses probability distributions to enhance accuracy
and tackle the noisy nature of wireless channels.

Location Estimation: Generally, we use l to denote a location in
the indoor localization region, o to denote a training datum of RSSI
from a smart AP, and ō to denote an observation variable of RSSI.

Our algorithm is based on a frequently-used probabilistic model
[42] for the location estimation problem. For any given location l ,
we can obtain a distribution of signal strength p (ō |l ) via measure-
ment and estimation. In kernel method, the p (ō |l ) can be calculated
as

p (ō |l ) =
1
n

n∑
i=1

K (ō;oi ), (1)

where K (ō;oi ) is the kernel function, oi is the ith RSSI training
datum measured at l , and the total number of oi is n. In our system
we use the Gaussian kernel, which is a widely used kernel function:

K (ō;oi ) =
1
√

2πσ
exp(− (ō − oi )

2

2σ 2 ), (2)

where σ is an adjustable parameter that determines the width of
the kernel. Thus we can get a estimate of p (ō |l ) by Equation (1).

Following the Bayes rule, we can obtain the posterior distribution
of the location:

p (l |ō) =
p (ō |l )p (l )

p (ō)
, (3)

where p (l ) is the prior probability of being at location l before
knowing the value of observation variable. In our algorithm we
assume p (l ) as a constant for all grids. p (ō) is also treated as a
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constant since it does not depend on the location variable l . Thus
with Equation (3) we can get the probability that ō is measured at
location l when ō is known.

Most probable location: With the posterior distributions calcu-
lated for each location, when an observation vector Ō = {ō1, ..., ōk }
is given, we need to find l such that P (l |Ō ) is maximized, i.e., we
want argmaxl [P (l |Ō )]. According to Equation (3), and since P (Ō )
and p (l ) are constant for all l , this can be rewritten as:

argmaxl [P (l |Ō )] = argmaxl [P (Ō |l )]. (4)

Assuming that the access points are independent, P (Ō |l ) is calcu-
lated by using:

P (Ō |l ) =
k∏
i=1

p (ōi |l ), (5)

where p (ōi |l ) is estimated by Equation (1).

5.2 Data Processing in Offline Data Collection
and Training Phase

Assume that we have a room with X ·Y grids, where X denotes the
units in length direction and Y denotes the units in width direction.
We use Gi j to denote a grid with coordinate (i, j ), i = 1, ...,X ,
j = 1, ...,Y .

In our smart AP localization algorithm, each mode of each smart
AP will be assigned a fingerprint map denoted by Fms , where s =
1, ...,M andM is the number of smart APs in our system.We usem ∈
{1, 2} to label the twomodes of the AP. For each fingerprint map, we
useGsm

i j to represent a specific grid in it. Each fingerprint map will
be initialized using the fundamental machine learning mechanism.
First, we collect training data using Android smartphones, and for
each fingerprint map, we have a set of training data:

Om
s = {O

sm
i j |i = 1, 2, ...,X , j = 1, 2, ...,Y }, (6)

where
Osm
i j = {o

sm
i jq |q = 1, 2, ...,N }. (7)

Here, each Osm
i j includes N RSSI signals that we will later utilize

to calculate the probability distribution of RSSI in Gsm
i j , and osmi jq is

the qth training observation in Gsm
i j .

According to Equation (1) and (2), for each gridGsm
i j the resulting

density estimate for an observation ō is a mixture of N equally
weighted density functions

p (ō |Gsm
i j ) =

1
N

N∑
q=1

1
√

2πσ
exp(−

(ō − osmi jq )
2

2σ 2 ), (8)

where σ is an adjustable parameter that determines the width of the
kernel. Specifically, according to [31], to get a smoother estimation
for RSSI distribution, we use σ = 10.

We iterate the observation ō from its lower bound to upper bound
to calculate the density distribution in each Gsm

i j . Specifically, we
traverse ō from −150 dBm to 0 dBm and then normalize the density
distribution to probability distribution for each Gsm

i j .
Finally, we train each Gsm

i j in each fingerprint map Fms with
training dataOm

s . Since the value of RSSI measured by smartphones
is discrete, we can previously store p (ō |Gsm

i j ) for each integral value

of ō. Thus for each Fms we get a probability distribution database
denoted by

Dm
s = {D

sm
i j |i = 1, 2...X , j = 1, 2...Y }, (9)

where Dsm
i j is the probability distribution database for the Gsm

i j in
Fms . We store Dm

s in our localization server.

5.3 Location Estimation in Online Localization
Phase

We assume that the client has downloaded Dm
s from the server.

When the client starts the localization process, it has to measure
the RSSI from the smart APs following the strategy in Section 4.2
and 4.3, and the result is denoted by

Ō = {ōsmk |k = 1, ...,K , s = 1, ...,M, m ∈ {1, 2}}, (10)

where K is the number of times the client has measured for the
same AP. Note that if the client is not covered by the sth AP, ōsmk
will be labeled by NaN and thus does not impact the following
calculation.

For each ōsmk , according to Equation (8) we can calculate the
conditional probability p (ōsmk |G

sm
i j ). Since p (ō |Gsm

i j ) has already
been stored in Dm

s , we can get p (ōsmk |G
sm
i j ) directly by accessing

the database stored in the client. Therefore, there is no need to
calculate the probability again, which reduces our system’s energy
consumption and computation complexity.

In this paper we assume that the signal strengths from the smart
APs are independent. This assumption is justifiable for a well de-
signed 802.11 network, where each AP runs on a non-overlapping
channel. Therefore, we could estimate the joint probability using
the marginal probability. According to Equation (5), we get the
probability for that the client observes Ō when it is in Gi j :

P (Ō |Gi j ) =
M∏
s=1

K∏
k=1

[p (ōs1
k |G

s1
i j ) · p (ō

s2
k |G

s2
i j )]. (11)

Thus based on Equation (11), we get the estimated probability for
the client to be in the Gi j when Ō is observed:

P (Gi j |Ō ) = P (Ō |Gi j ). (12)

Finally, the joint probability matrix can be denoted by

Pjoint = {P (Gi j |Ō ) |i = 1, ...,X , j = 1, ...,Y }. (13)

We then simply find the largest P (Gi j |Ō ) in Pjoint and its corre-
sponding Gi j denotes the estimated location for the user.

6 IMPLEMENTATION DETAILS
In this section we describe the implementation details of MMLOC.

The usage of two-mode antenna: In our system, we use 802.11n-
based TP-LINK TL-WN951N to act as a smart AP equipped with
two-mode antennas. Since the network card allows users to change
the antenna mode via software settings, we make no hardware
change and keep a java program running as the antenna controller.
TL-WN951N has three antennas, and the diversity technique of
MIMO is applied. Typically there are two different modes of MIMO:
diversity mode and multiplexing mode [15]. For multiplexing mode,
without refitting the wireless devices in mobile terminals, it is hard
to maintain the connections between mobile terminals and APs
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when we change the power of antennas. Thus we use the diversity
mode to avoid disconnections. In Mode 1 of the smart AP, all of the
three antennas are used, while in Mode 2, we turn off the power
of one antenna, and only two antennas are working in normal
state. Since the three antennas are set in different directions, the
distribution of RSSI fingerprints varies with the two modes.

The expandability of MMLOC:MMLOC can be viewed as a frame-
work of indoor localization systems. For example, although we use
the localization algorithm based on probability alone in this paper,
it is still easy to apply other algorithms such as kNN [2] in the
system. Moreover, other techniques such as crowdsourcing-based
fingerprint collection [30] can also be employed in MMLOC. Thus
MMLOC has good expansibility and other possible advantages can
be achieved in addition to the reduction of necessary APs.

7 MEASUREMENT AND EVALUATION
In this section, we evaluate the performance of our indoor localiza-
tion system by conducting experiments on the testbed consisting of
Android smartphones. We set our test environment at one labora-
tory in a building of a university, which is shown in Fig. 6. The total
area covered is more than 70 m2, and there exist lots of obstacles
and the indoor environments are complex. During the test we use
TP-LINK TL-WN951N to act as the two-mode smart AP, and use the
APs installed in the building to act as the normal APs. Altogether 4
smart APs are deployed in the test region. To ensure the fairness
of comparison, all the 8 normal APs used have the similar RSSI
levels as those of smart APs. The smart APs are deployed at the
four corners of the room. We divide the experiment field into 48
girds and collect the RSSI fingerprints of them using 3 Android
smartphones. All of the smartphones are Nexus S with Android
Jelly Bean (4.2.2) as their operation systems. Each of these smart-
phones is equipped with a 1.5GHz CPU and 2G RAM. The size of
each grid is 1.2 m ×1.2 m, and for each grid we collect 20 RSSI
samples from each AP in each mode. During the online localization
phase, we set T1 = 20 s for Mode 1, T2 = 10 s for Mode 2, and
thus Tc = 30 s. As described before, following the cluster based
localization strategy, the smart APs will change the modes with
period Tc , and the measurement duration of each smartphone is
also Tc . Since the average time needed by a RSSI scan is about 1
s, usually around 30 RSSI points can be measured during Tc . As
described in Section 4.3, for each mode, 10 RSSI points are selected
for localization. We admit that Tc = 30 s is quite long in practice,
and we will discuss this in Section 8.

Figure 6: Photo of the experiment field.

Table 1: Number of the grids that have similar average RSSI
in two fingerprint maps.

AP1/2 AP2/1 AP2/2 AP3/1 AP3/2 AP4/1 AP4/2
AP1/1 15 17 11 12 7 14 11
AP1/2 17 12 12 14 14 13
AP2/1 18 10 10 13 11
AP2/2 11 10 12 10
AP3/1 17 19 13
AP3/2 18 14
AP4/1 16

Note: AP1/2 denotes the map generated by AP1 working in Mode 2, and so on. The gray cells mark
the comparison between the two modes of the same smart AP.

7.1 Diversity between the Fingerprint Maps
Generated by One Smart AP

Before we evaluate the performance of MMLOC, we prove that the
diversity between the two fingerprint maps generated by a smart
AP is obvious enough, so that the two maps can be regarded as
those generated by two different APs.

As mentioned before, the laboratory is divided into 48 grids and
at each grid we measure the average RSSI based on 30 observed
values from each smart AP working in each mode. After the mea-
surement, for each couple of maps, we calculate the number of the
grids that satisfy the following condition: for a grid, there exist at
least one other grid whose average RSSI is within ±5 dBm from
that of this grid in both the two maps.

The result is shown in Table 1. It can be seen that, for the two
maps generated by one smart AP, the number of the grids with
similar RSSI in both the maps is comparable to that of the grids
in the maps from different APs. Thus it is proved that, compared
with the overlap between the normal maps generated by disparate
APs, the extra overlap between the maps from the same smart AP
is negligible.

7.2 Comparison between MMLOC and Normal
AP-based Localization System

In this subsection we compare the performance of MMLOC and a
normal AP-based localization system. To ensure the fairness of the
comparison, all the test girds must have been covered by multiple
smart APs and normal APs at the same time, i.e., at each grid in the
room, the signal from all the 4 smart APs and 8 normal APs can be
received.

The normal AP-based localization system used in this test makes
use of normal APs only. The algorithm it uses to estimate the lo-
cation of users is similar to that used by MMLOC, and the only
difference is that there is only one RSSI fingerprint map for each
AP.

The experiment consists of two stages. For the first stage, we test
the performance of MMLOC and the number of smart APs used
ranges from 1 to 4. For the second stage, we test the performance
of the normal AP-based localization system with 2 to 8 normal APs,
respectively. To select the APs from the AP set, we enumerate all
the possible subsets of APs and select the subset which provides
the best accuracy. This method is applied to both the smart AP and
normal AP selection for fairness. For each stage more than 1440
RSSI points have been sampled, and the errors of localization are
recorded.
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Figure 7: Comparison of average location errors of the two
localization systems.
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Figure 8: CDF of location errors in different cases.

The average errors of different cases in the two stages are shown
in Fig. 7. It can be seen that, the average error of MMLOC is less
than that of the normal AP-based localization system when same
number of smart APs and normal APs are used. With 4 smart APs
covering the experiment field, the average error can be reduced to
2.07 m, while that of the 4 normal AP case is 2.47 m. We should also
respectively compare the system performance using 1, 2, 3, 4 smart
APs with that using 2, 4, 6, 8 normal APs, as shown by the dash
lines in Fig. 7. It is shown that MMLOC can even achieve equivalent
or better accuracy compared with the normal AP-based localization
system but with only half number of APs. In the figure, we can see
that the average error of the normal AP-based localization system
does not always decrease with the increase of AP number. One
major reason is that, given the fact that the number of stable APs are
limited, some unstable APs are included in the selected AP set when
we increase the number of APs. As a result, the accuracy of the entire
system suffers from the use of less-qualified RSS measurements

from unstable APs. However, MMLOC does not have this problem
since less APs are required to achieve equivalent or better accuracy
so that the including of unstable APs can be avoided.

To better compare the performance of the two systems, we also
plot the cumulative distribution (CDF) of location errors in Fig. 8.
As shown in the Fig. 8(a) and Fig. 8(b), in the cases of 1 smart AP v.s.
2 normal APs and 2 smart APs v.s. 4 normal APs, the distributions
of location errors in the two systems similarly match each other.
Moreover, Fig. 8(c) and Fig. 8(d) show that MMLOC outperforms
the normal AP-based system in cases of 3 smart APs v.s. 6 normal
APs and 4 smart APs v.s. 8 normal APs.

Thus we can draw the conclusion that with limited number of
reliable APs, MMLOC can achieve equivalent or better accuracy
compared with normal RSSI-based systems but with only half num-
ber of APs.

7.3 Impact of RSSI Sampling Number
In this section we evaluate the relationship between the number
of RSSI sampling made during the test phase and the accuracy of
localization. Note that the number of sampling is related to the
duration of measurement as well as the mode changing period Tc .
The longerTc is, the more RSSI sampling points are available. Since
the ratio T1/T2 = 2, if Tc = 30 s, after clustering usually Mode 1
gets around 20 RSSI points and Mode 1 gets around 10 RSSI points.
To assign a same weight for the two modes, during the previous
test we select 10 points from the 20 points in Mode 1, as mentioned
in Section 4.3. The same rule applies for the following experiments.

We change the number of RSSI points used for localization from
1 to 10, and recalculate the average error for the case “2 smart APs
/ 4 normal APs” and “4 smart APs / 8 normal APs”. The results are
illustrated in Fig. 9. Although theoretically more sampling points
should lead to higher localization accuracy, it is shown that the aver-
age error is not highly impacted by the number of sampling points.
This would be caused by the phenomenon that two contiguous
samplings for RSSI usually get the same value.
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Figure 9: Average location errors when the number of RSSI
sampling points changes.

The test result also implies that we can reduce the number of
RSSI samplings to reduce the measurement duration. However, we
cannot simply reduce the number of samplings to 1 because we
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need to keep the performance of clustering. To figure out which
sampling point belongs to which mode, the number of sampling
points cannot be too small. During our experiments we set Tc = 30
s to get around 30 RSSI points, so that for each mode clustering
algorithm outputs 10 points for localization. It is still possible to
reduce the number of points, andTc can also be shortened by using
higher sampling rate, which will be discussed in Section 8.

7.4 Transmission Stability for Normal Users
As discussed in Section 6, it is important to ensure the stable trans-
mission of users. In this subsection we will show that the problem
of possible coverage holes caused by changeable antenna modes
is not serious, and the transmission rate of normal users are not
obviously influenced when the modes are switched.

Stability of Wi-Fi Connection: During the test in Section 7.2, at
each position we make our smartphones connect to each smart AP.
For all the 48 grids in the experiment field, we check the state of Wi-
Fi connection for each smartphone during the whole localization
process, and the result shows that none of the links between the
smart APs and the smartphones is broken. The reason is that we
use the diversity mode of MIMO instead of the multiplexing mode,
and thus the wireless links for smartphones can be maintained.
Therefore, in most cases the links between mobile terminals and
smart APs are maintained.

Stability of Wi-Fi Transmission Rate: We have made several mea-
surements to confirm that the switch of antenna mode does not
impact the transmission rate of normal users connected to the smart
APs in our system. Firstly we measure the transmission rate of Wi-
Fi in WLAN when the mode is changed. To exclude the factor of
unstable data rate caused by the Internet, we set a FTP server on a
computer, which is directly connected to a smart AP. Then a file
with size 485 MB is transmitted between a smartphone and the
computer via the smart AP.
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Figure 10: Transmission rate before and after the switch of
antenna mode. The data rates are measured 5 meters away
from a smart AP with sampling frequency 1 Hz.

As shown by the case of WLAN in Fig. 10, the average download
and upload rate in Mode 1 are 1.06 MB/s and 1.80 MB/s, respectively.
The phenomenon that the latter is higher than the former is caused

by the performance difference between the AP’s and cellphone’s
antennas. At the 25th second the mode is switched to Mode 2 and it
can be seen that the data rates are not obviously influenced, and the
swing range is less than 0.1 MB/s. Therefore the download/upload
rate of Wi-Fi in WLAN is not impacted severely by the change of
mode.

Moreover, we also find that, because of the bandwidth limitation
of the Internet, the data rate via the Internet does not necessarily
reach that of Wi-Fi in WLAN, and thus the actually transmission
rate is also not obviously impacted by the switch of antenna mode.
During our measurement we let the smartphone download/upload
the same file via the Internet, and then change the mode of the
smart AP. The case of download/upload rate through the Internet
in Fig. 10 also shows that although the transmission rate keeps
fluctuating, it is not influenced at the 25th second.

Thus it is confirmed that the quality of transmission for normal
users are not impacted during our system’s operation.

8 LIMITATION AND FUTUREWORK
We admit that the duration of Tc = 30 s in our prototype is quite
long. We also observe that for different mobile devices the time
needed to get the same number of RSSI samples is also different. For
instance, with Nexus S we need around 30 s to get 30 RSSI points,
while only around 20 s is needed with Nexus 5. So the measurement
duration can be reduced with more powerful devices. Moreover,
this value can be easily reduced by increasing the sampling rate
for RSSI on the mobile terminal. Currently since we use the API of
Android (WifiManager) directly, the sampling rate is limited. We
believe a much higher sampling rate can be achieved if the support
of driver layer is available. Since this is only a technical problem,
we omit it in our paper.

On the other hand, the test result in Section 7.3 show that it
is also possible to reduce the number of required RSSI points, so
that the duration of measurement can also be shortened. While
this method is promising, too short measurement duration will
lead to the lack of points for clustering. In our paper Tc = 30 s
maintains the good performance of clustering. There exists a trade-
off between the measurement duration and the performance of
clustering, and we leave the further exploration to our future work.

Currently we use only two modes on each smart AP. With three
available antennas, potentially more modes are available, and the
number of required smart APs can be further reduced. However,
more antenna modes also increase the complexity of clustering,
which would in turn reduce localization accuracy. We leave it to
our future work to utilize more antenna modes.

9 CONCLUSION
In this paper we proposed MMLOC, an indoor localization system
based on smart APs. The smart APs are equipped with two-mode
antennas, and by switching the modes, two RSSI fingerprint maps
can be generated by each smart AP. We design the clustering-based
localization strategy and the sliding window-based clustering mech-
anism to allow mobile terminals to recognize the modes of APs,
without any complex synchronization. The experiment results show
that MMLOC can reduce the number of necessary APs by half while
achieving the same or even better accuracy. The main benefit of



MobiQuitous ’18, November 05–07, 2019, Houston, TX

our system is that, it enables us to rely on only a small number
of well-deployed smart APs instead of unreliable private APs, and
thus improves the stability and accuracy of the localization system.
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