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Abstract—Microservice, an architectural design that decom-
poses applications into loosely coupled services, is adopted
in modern software design, including cloud-based scientific
workflow processing. The microservice design makes scientific
workflow systems more modular, more flexible, and easier to
develop. However, cloud deployment of microservice workflow
execution systems doesn’t come for free, and proper resource
management decisions have to be made in order to achieve certain
performance objective (e.g., response time) within constraint
operation cost. Nevertheless, effective online resource allocation
decisions are hard to achieve due to dynamic workloads and the
complicated interactions of microservices in each workflow. In
this paper, we propose an adaptive resource allocation approach
for microservice workflow system based on recent advances in
reinforcement learning. OQur approach (1) assumes little prior
knowledge of the microservice workflow system and does not
require any elaborately designed model or crafted representative
simulator of the underlying system, and (2) avoids high sample
complexity which is a common drawback of model-free reinforce-
ment learning when applied to real-world scenarios. We show that
our proposed approach automatically achieves effective policy
for resource allocation with limited number of time-consuming
interactions with the microservice workflow system. We perform
extensive evaluations to validate the effectiveness of our approach
and demonstrate that it outperforms existing resource allocation
approaches with read-world emulated workflows.

I. INTRODUCTION

Microservice design, which is often referred as a way
to structure software applications as collections of loosely
coupled services, has become increasingly popular in mod-
ern software system architectures. Different from the tra-
ditional monolithic approach, the microservice architecture
offers many benefits, such as the ability to independently
deploy, scale, and develop individual services in different
programming languages. As a result, the applications become
more modular, easier to understand, develop, and test. This
also enables continuous delivery and deployment of applica-
tions (e.g., upgrading and deploying individual services will
not affect other services).

One example of the adoption of microservice architecture
is in scientific workflow systems. Scientific workflow systems
[20][12] have traditionally employed a monolithic approach, in
which each workflow, represented by a directed acyclic graph
of tasks, is implemented as a tightly coupled set of tasks and
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has its own workflow execution plan that specifies how to run
the workflow on a distributed computation infrastructure. With
the transition to the microservice design [27][26], each task
is modeled as a microservice with its own request queue and
computing capacity. Complex task dependencies are separated
from the implementation of individual tasks, and thus, the
microservice design enables more flexible and scalable work-
flow composition (i.e., new workflows can be composed from
existing tasks) and scheduling (i.e., resources can be scheduled
at the fine-grained level of tasks which could potentially take
advantage of the parallelism in workflow structure to speed up
workflow execution). A finer-grained workflow decomposition
could also benefit load balancing among execution machines.'

With the increasing popularity of cloud infrastructure, there
have been efforts to deploy microservice-based applications
on the cloud to take advantage of the elasticity of cloud
infrastructure (e.g., cloud-based workflow systems [1][5]).
While public cloud offerings often support the ability to
scale microservices elastically and on-demand using their
unlimited resources, real-world deployments of microservice
applications are often constrained by limited operation cost.
On the other hand, applications deployed on private cloud
infrastructure are likely faced with bounded resource capacity.
Therefore, in these scenarios it is important to be able to
properly allocate constraint resources of microservices to meet
certain performance objective (e.g., response time, utilization).

However, resource allocation for microservice infrastructure
is challenging due to (1) the variability of dynamic workloads,
(2) complex interactions between microservices that can cause
cascading effects when provisioning resources for interrelated
microservices, and (thus) (3) the demand for either an elabo-
rately crafted model depicting the microservice system, which
necessitates sophisticated prior knowledge of the system, or a
data-driven identification model requiring a lot of training data
(i.e., resource allocation feedback) from the real microservice
system, which potentially consumes tremendous amount of
resources. There has been extensive related work on resource
allocation for cloud-based system (see Section VII). However,
these related approaches either (i) are rule-based, heuristics

! Another example of microservice is in serverless computing [11].



approaches, which depend on complete understanding and/or
an elaborate model of the cloud system, or (ii) do not tackle
with dynamic system status.

In this paper, we propose a novel self-adaptive resource
adaptation approach, MIRAS, for microservice system that
assumes little prior knowledge of its infrastructure. We take
the microservice workflow system (to be introduced in Sec-
tion II) as the target environment where we perform resource
adaptation and leverage recent advances in model-based rein-
Sforcement learning to design a control policy for microservice
workflow system using past experience of interacting with the
microservice infrastructure. We choose reinforcement learning
because it directly optimizes long-term reward in dynamic
environment.

Recently, there have been some related publications that
applied reinforcement learning (RL) to various applications.
However, these efforts are mostly based on the model-free RL
technique that tends to suffer from high sample complexity,
and thus, hinders its use in real-world domains where it is often
time-consuming and costly to obtain samples of interaction
between RL agent and environment, distributed and cloud-
based systems being an example. As a result, their applications
have been mostly limited to where simulated environments
were available. In contrast, MIRAS utilizes a learnt model
of the microservice environment to assist policy learning,
achieving much higher sample efficiency than the model-free
approaches. We are the first to use model-based RL in the
distributed and cloud-based system, and we demonstrate its
effectiveness in tackling real-world tasks where low sample
complexity is crucial.

MIRAS consists of two main components: environment
model learning and policy optimization. In model learning, we
train a neural network model to capture the behavior of the
microservice infrastructure using samples collected from the
real interactions between RL agent and the environment. We
further refine the model to facilitate policy learning. In policy
optimization, we leverage the learnt environment model to
train an RL policy model and optimize long-term reward to im-
prove performance of microservices, subject to resource con-
straints. We use vanilla RL algorithm, actor-critic, equipped
with a novel technique parameter space noise exploration. To
prevent the environment model from overfitting, we employ
an iterative procedure that alternates between model learning
and policy optimization and uses learnt policy to collect
additional data from its interaction with the environment to
further improve the accuracy of environment model.

We demonstrate through our extensive evaluation on the
microservice workflow system that we are able to learn an
accurate model of the environment and effectively use the
learnt model to search for good policy. More importantly,
we show that MIRAS outperforms state-of-the-art model-free
RL technique and other resource allocation approaches in the
actual task of adapting performance of microservice workflow
system under dynamic workloads. It is worth mentioning that
although we implement the learning based resource adaption
approach for microservice workflow system, this approach
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Fig. 1: Microservice workflow infrastructure.

could also be easily adapted to other microservice systems
or microservice-like systems.

In summary, our main contributions of this paper are as
follow:

e We are the first to use model-based RL for resource
adaptation in distributed and cloud-based system, and
to apply this powerful learning technique in real-world
environments where low sample complexity is crucial.

o We fully implement and integrate model-based RL re-
source adaptation mechanism into our microservice work-
flow system. To achieve this goal, we design or utilize
several novel techniques including model refinement and
parameter space noise exploration.

o Through extensive evaluation on real-world emulated
scientific workflow workloads, we demonstrate that our
proposed resource allocation approach achieves good
control policy which outperforms existing algorithms.

II. BACKGROUND: MICROSERVICE WORKFLOW
INFRASTRUCTURE

In this section, we introduce the microservice workflow
infrastructure, which is our targeted microservice environment.
We briefly describe the architecture, resource model, and
various challenges of resource adaptation in this infrastructure.

A. Microservice-Based Workflow Management

Traditional workflow system often employ a monolithic
approach in workflow implementation and execution. In par-
ticular, each workflow is implemented as a tightly coupled
set of tasks and has its own workflow execution plan that
specifies how to run the workflow on a distributed compu-
tation infrastructure. On the contrary, the microservice-based
cloud workflow management approach [27][26] models tasks
as microservices and separate workflow’s task dependencies
from implementations of individual tasks. This design enables
more flexible and scalable workflow composition, fine-grained
resource scheduling (i.e., resource scaling can be done at the
task level, instead of at the workflow level), and load balancing



among computing machines. An architectural overview of this
infrastructure is presented in Figure 1.

In this architecture, each task type is modeled as a microser-
vice that consists of a request queue and a set of consumers
subscribing to the queue to handle requests. Task dependencies
are maintained by a separate task dependency service (or
TDS). Several TDS servers form an ensemble to increase
availability. Figure 2 shows an example of a task dependency
table of workflows type 1 and 2 maintained by TDS. Whenever
a workflow request arrives, the workflow invoker asks the TDS
which task of the workflow should be processed first (step 1 of
Figure 1). Upon receiving response from TDS, given a request
of workflow type 1, for example, the task invoker sends the
request (step 2) to task A’s request queue (i.e., the first task
of workflow type 1) so that it can be processed by one of
A’s consumers (step 3). Besides being a subscriber to its task
request queue, each task consumer also acts as a publisher for
other types of tasks following the workflow’s task dependency
graph. After a task consumer finishes processing a request, it
will query TDS about the subsequent task(s) of the workflow
to “publish” the request to those tasks, which is step 4.

It is worth mentioning that although this paradigm shares
some characteristics with stream processing (e.g., both could
be modeled as DAG), they have some key differences. Stream
processing focuses on online distributed processing of large
chunks of data, while the microservice workflow system deals
with on-demand, (potentially) long tail and computationally
heavier data processing jobs. These discrepancies lead to dif-
ferent resource adaptation considerations. Stream processing
emphasizes resource placement while microservice workflow
system emphasizes allocation of constraint resources.

B. Resource Models

In the following, we describe the microservice workflow
system’s resource model and notations used in the remaining
of the paper.

Let us assume that the supported N workflow types com-
pose of J types of tasks (i.e., each workflow type corresponds
to a DAG of a subset of .J types of tasks). As discussed earlier,
we model each task type j (1 < 5 < J) as a microservice
consisting of a queue that stores the task’s requests, and a set
of task consumers that subscribe to the queue to perform actual
processing of the task’s requests. To abtract away low-level
resource information, we assume that the consumers of a task
have identical computational capacity in terms of CPU and
memory. Hence, the workflow system only needs to control
the number of consumers for each microservce. We divide
time into discrete time windows with identical time interval,
and set time windows to be time units of collecting data
and making resource management decisions. Namely, data
collection and resource management are done at the beginning
of each time window. Note that other options also exist, such
as setting the beginning of each time window to be the time
when a new workflow request arrives. But such a setting tends
to capture the transient behavior of workflows instead of a
more global view and suffers from high randomness originated
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from random workflow request arrival. We use (T, T)11) to
represent the k-th time window. We denote the configuration of
the numbers of consumers over microservices during the time
window (Ty,Ty+1) as m(k) (m1(k), ma(k),....my(k)),
where m; (k) is the number of consumers of task type j during
the k-th time window. Since m(k) determines processing time,
it represents resource allocation decision of the microservice
workflow system.

In terms of performance metrics, at workflow level, we
are interested in the average processing time (or average
delay) of each workflow type i (1 < i < N), as well
as the average processing time over all types of workflows.
The processing time of a workflow request is defined as
the duration between its arrival time and the time when the
workflow’s last task is finished. The average delay of workflow
type ¢ over the time window (7%, Tj41), denoted as d;(k), is
calculated by averaging delays of all requests of type ¢ that
arrive during (Ty, Tx+1). We denote d(k) as the vector form
of the set of average delays of all workflow types in the k-th
time window: d(k) = (dy(k), dz2(k),...,dn(k)). The average
delay of requests over all types of workflows at k-th time
window, d(k), is the most straightforward metric of system
performance. However, workflow processing time could not be
immediately observed in our paradigm, because the processing
of one workflow could stretch over multiple time windows.
Therefore, we propose a task-level performance metric.

At task level, the processing delay of a task request when
it is processed by a microservice is measured from the time
the task arrives at microservice’s request queue until the task
departs the microservice system after being processed by one
of the consumers. According to the Little’s law [10], we
represent the processing delay via the number of task requests
in the microservice (including tasks waiting in the queue and
tasks being processed by consumers), or the number of work-
in-progress (WIP for short), denoted by w;(k) for task j
(1 <j < J) at time window (T}, Tk+1). The more work-in-
progress a microservice has, the longer delay is to be expected.
We use w(k) as the vector representation of WIP over all
microservices at k-th time window.

C. Challenges of Resource Adaptation

To meet certain performance goals, such as minimizing
workflow processing time under constraint resources, it is
necessary to design a resource adaptation algorithm which
elastically scale the numbers of consumers assigned to each
microservice type. However, due to the intrinsic properties of



the microservice-based workflow system, the design of such
an adaptation algorithm faces the following challenges:

1) Workflow requests arrive online, with variant number
of requests in different time windows. This is especially
true for long tail scientific data processing (e.g., material
science microscopic image processing), where the size
of each job is not very large but requests come in at
random time points. Moreover, although one workflow
has fixed microservice set and microservice composition
structure, the processing time of each microservice is
not fixed, due to variant sizes of input data. Some simple
policies, e.g., Earliest Deadline First, might mitigate this
unpredictability, but such solutions are not able to adapt
quickly to vast condition changes, and thus perform
poorly on variant environment conditions which is often
the real-world scenario.

Resource adaptation decisions have cascading effects
on microservices. Workflows might share microservices,
thus a resource adaptation decision on a single microser-
vice type impacts the processing of several workflows
at near future time windows. What’s worse, within a
workflow the tasks have dependency relationship among
them. The completion of one task could immediately
produce some other tasks according to their workflow
topology, or the completed task could wait for syn-
chronization signal. Therefore, it is very difficult to
predict the effect of a resource allocation decision on
microservice work-in-progress of the next and future
time windows.

Cloud services are still costly when scaling up, so the
resources users have access to are often constraint. In our
scenario, the “constraint” has two embodiments. First,
resource adaptation algorithm needs to consider opera-
tion cost and does not use more consumers than what
we allocate to them. Second, if a resource adaptation
approach requires training data obtained from giving the
microservice workflow system control inputs and receiv-
ing feedback in order to profile the microservice system,
it has access to limited number of such interactions (i.e.,
sample complexity should not be high).

2)

3)

III. RESOURCE ADAPTATION FRAMEWORK FOR
MICROSERVICE INFRASTRUCTURE

To tackle the aforementioned challenges, we present MI-
RAS, a model-based reinforcement learning framework for
the microservice workflow infrastructure, whose purpose is
to dynamically adapt system resources to meet certain per-
formance guarantees under changing workloads and limited
resource capacity.

Our resource adaptation framework (Figure 3) consists of
three main components. The first component, the microservice
workflow system component which we discussed in Section 1II,
is the real-world microservice workflow infrastructure that we
work on. To tackle dynamic microservice system status and
microservice cascading effect challenge, we propose to use a
reinforcement learning model to dynamically make decisions

125

Reward Function

Goal at
Training

Resource Croservice Performance metrics

allocation decision

Reinforcement
Learning Model

Performance
Model

Monitor

Performance
prediction

Fig. 3: Model-based reinforcement learning framework for microser-
vice infrastructure.

on microservice resource allocation in order to improve certain
performance metrics. To tackle high sample complexity intro-
duced by reinforcement learning, we use a performance model
that acts as a predictive model of the microservice workflow
system to train the reinforcement learning model.

Reinforcement learning [32], with its closed-loop feedback
from the environment, is an ideal candidate for implementing
resource adaptation framework. In particular, the role of agent
in RL is to learn from experience of interacting with the real
environment to search for improved resource allocation policy.
In fact, RL has been applied to resource adaptation of various
types of applications, including resource management in data
centers [38], real-time scheduling [15], or video streaming
[23], just name a few (c.f. Section VII). These works are all
based on model-free version of RL, in which the agent relies
only on the feedback from actual environment as it learns
to produce better policies. However, model-free technique
suffers from high sample complexity (a tremendous number of
interactions is needed to learn an RL policy), and thus, hinders
its use in real-world application domains where it is extremely
time-consuming (and thus cost-ineffective) to obtain samples.
As a result, the applications of model-free RL have been often
limited to where an elaborate simulated model of environment
is available to facilitate the learning process.

In this work, we propose to use model-based RL to im-
plement the resource adaptation framework for microservice
workflow system. With model-based approach, instead of
using only actual interactions with the real environment like
in model-free approach, we first train a performance model of
the microservice environment and use this model to generate
synthetic interactions with the environment to assist policy
learning. As a result, this approach has significantly smaller
sample complexity compared to model-free approach. This
benefit makes model-based approach suitable for applications
such as microservice workflow system, where obtaining actual
interactions with the real environment is time-consuming (in
the microservice workflow system, one interaction takes tens
of seconds, or even minutes) or where an elaborate simulated
model of environment is difficult to achieve.

IV. MODEL-BASED REINFORCEMENT LEARNING
APPROACH

In the following, we first present some preliminaries on
reinforcement learning and how state, action, and reward are
defined in the context of microservice infrastructure. Then, we
show how we train and refine a model for the environment



(i.e., microservice execution environment), how we leverage
the model to train a policy, and finally, how we integrate model
learning and policy learning in an iterative framework.

A. Preliminary

In general setting of reinforcement learning [32], an agent
interacts with an environment. At k-th time step (i.e., at the be-
ginning of time interval (7}, 7}+1)), the agent observes some
state s(k) and takes an action a(k) sampled from a policy
w(a(k)|s(k)). In general, a policy w(a(k)|s(k)) specifies the
probability of taking action a(k), given current state s(k).
After applying the action, the environment transitions to a new
state s(k + 1) with probability P[s(k + 1)|s(k),a(k)], and
provides a reward r(k). The goal of reinforcement learning
is to learn a policy to maximize the expected cumulative
discounted reward E[R(k)], where R(k) = Y=, v~ Fr(t),
v € [0,1] is the discount factor.

In model-free RL, the state transition is the actual interac-
tion with real environment. In model-based RL, we train a
model of the environment, denoted as fp (with & being the
parameters of the model), and use the model to predict state
transition §(k + 1) = fa(s(k),a(k)). Reward is predicted in
a similar way.

Policy learning includes two main approaches: Q-learning
and policy optimization. With Q-learning, the agent learns
an estimate of the optimal action-value function (or Q-
function) and obtains estimated optimal action by maximizing
Q-function. On the other hand, policy optimization methods
try to learn the optimal policy by directly optimizing on the
policy space. Specifically, if we denote © as the parameters of
the policy model that we are trying to learn, given observations
(s(k),a(k),r(k),s(k+1)), policy optimization tries to update
O so that the policy model will generate better actions. It is
generally believed that policy optimization method is capable
to a wider range of problems (e.g., control problems with
continuous states) and tends to converge faster than Q-learning
method. Therefore, we use actor-critic method, a type of
policy optimization method, for policy learning.

B. Definition: State, Action, and Reward

Before presenting model and policy learning, in this section,
we show how to map various RL concepts, including state, ac-
tion, and reward, to microservice workflow system’s resource
model and performance metrics introduced in Section II.

A natural choice of microservice workflow system state is
the average delays of different workflow types d(k), since
such state definition can be used conveniently to measure the
reward of actions made by the agent. However, average delays
at k-th time step d(k) are only partially observable when new
action is made by the agent at time window (T}, Tk41). This
is because workflow requests that arrive in (7}, T)+1) might
not be finished during that time window.

For MIRAS, instead of using d(k), we use work-in-progress
w (k) as state of microservice workflow system: s(k) = w(k)
2. Since WIP of a microservice is (in the long term) pro-

2In this paper we use s(k) and w(k) interchangably.
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portional to its average delay, WIP across all microservices
can be used to capture average delays of workflow types that
the system supports. In addition, different from d(k) that is
partially observable, w(k) is completely observable at the end
of every k-th time window.

The fewer WIP of microservices, the shorter processing
delays microservices will have and the shorter processing
delays the system can support for different workflows. We
define reward to be negative of the aggregated WIP across
microservices observed at the entji of each time window:

r(k) = 1,ij(k)_ (1

In this way, the cumulative discounted reward R(k) reflects
the total number of finished microservices starting from the
current time window.

As described in Section II, the number of consumers
allocated to microservices m(k) can be used to represent
resource allocation decision of the microservice workflow
system. Therefore, m(k) represents the action that the RL
agent makes at k-th time window: a(k) = m(k) 3.

C. Performance Model Generation

For model learning, we assume little prior knowledge about
the microservice workflow system. We use a neural network to
model the microservice system, because neural networks have
strong function approximation capability. We further refine the
model by adjusting its behavior at boundary point. These steps
are prerequisites for MIRAS policy learning.

1) Model Learning: Our neural network-based environ-
ment model takes input x as the combination of system
states s(k) and action a(k) at the beginning of the current
time window (T, Tx+1): x = (s(k) || a(k))T, and predicts
output as the system states s(k + 1) of the next time window
(Tk+1, Ti42). The neural network model consists of L layers,
with the number of neurons in each layer denoted as N
(1 <1 £ L). Correspondingly, WO and b® (1 <1 < L)
represent the weight matrix and bias of layer /. Each layer
! also includes a non-linear activation function f) (we use
ReLU) to introduce the non-linearity into the network model.
We use yV) to denote the vector of outputs from layer [
(y©@ = x). The output of the model is the predicted state
of the environment in the next time window: §(k+1) = y().
Figure 4 shows an actual neural network architecture of our
environment model.

If we denote ® as the set of parameters of the environment
models: & = {{W®} {b(®}}, the environment model can

3In this paper we use a(k) and m(k) interchangably.



be represented by a function fo: §(k + 1) = fo(s(k),a(k)).
And the objective of the environment model learning is to find
a parameter set ¢ that minimizes the square error of one-step
prediction:

lIs(k +1) = fa(s(k),a(k))|%,
(s(k).a(k).s(k+1))€D
2

where D is the collected training data set, the element of
which is tuple (s(k),a(k),s(k + 1)). The model is trained
using gradient descent optimizer with backpropagation.

2) Model Refinement: The aforementioned neural network
model is able to well capture the performance characteristics
of microservice workflow systems, for the most part. When at
least one dimension of WIP w (k) is small, or close to 0 (w(k)
should be non-negative), neural network model gives “inappro-
priate” outputs which hinders MIRAS from learning a good
policy at small state. Specifically, when WIP approaches 0,
the microservice system itself has high randomness caused by
online workflow arrival and varying microservice processing
time, and no clear connection between w(k) and m(k) could
be observed from the environment or from the model, for the
model is trained based on interactions with the environment.
On the contrary, when WIP is sufficiently large, the learnt
neural network model suffers less from randomness. We call
0 the boundary of WIP. This boundary effect harms policy
learning because the RL agent would not know that 0 should
be the termination point of learning; on the contrary, the agent
would try to assign more consumers to a task type to bring its
WIP down. Therefore, it is ideal for the microservice workflow
system to maintain similar performance characteristics at the
boundary as at a higher state instead of outputting almost
random WIP predictions.

To alleviate the issue at boundary, we take inspiration from
the fact that different microservice types are loosely coupled.
For the j-th dimension of WIP, at next time window w;(k+1)
is majorly determined by w;(k) and m;(k), and the impact
of other dimensions wy, n-;(k) and my (k) is smaller.
Therefore, we “lend” some tasks to a certain task type to get
it far from boundary, calculate the number of microservices
of the same task type at next time window, and take back the
lent tasks from the predicted WIP at next time window to stay
consistent. This Lend - Giveback procedure encapsulates the
aforementioned environment model. The process is shown in
Algorithm 1.

In this algorithm, initially we obtain threshold parameters
through simple statistical analysis on the collected dataset
D, which consists of tuples (s(k),a(k),s(k + 1)). After
initialization, we perform a Lend - Giveback mechanism to
deal with the boundary effect. In Lend phase, we “lend” some
tasks to task type j and feed the adjusted WIP to the predictive
model. In Giveback phase, we take back the “lent” tasks. For
each dimension we perform an independent operation of Lend
- Giveback, minimizing the impact of adjusted dimension on
other dimensions. The idea of the model refinement algorithm
comes from our prior knowledge of the system, but we deem
that the prior knowledge is limited and intuitive.

ming —

D
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Algorithm 1 Model Refinement

. /lInitialization:

: for each dimension j of w(k) in dataset D do
7; < p-percentile of w;(k) in D
w; « (100 — p)-percentile of w;(k) in D

t(k) « s(k)
if s;(k) < 7; then
//Lend:

1

2

3

4

5: for each dimension j of s(k) do

6

7

8

9 generate p;, uniformly sampled from (7;,w;)

tj(k) < t;(k) + p;
11 t(k+1) < fo(t(k),a(k))
12: //Giveback:
13: tj(k+1)<—tj(l€+1)—pj
14: ti(k+1) < maz(tj(k+1),0)

15: 8(k +1) « t(k+1)

D. Policy Learning

After we obtain the predictive environment model of the
microservice workflow system, we train a deep reinforcement
learning agent by letting it interact with the learnt environment
model ﬁp instead of the actual real environment, and observe
rewards and state transitions. To boost RL performance, we
integrate a novel technique, parameter space exploration noise,
to a vanilla RL algorithm.

We use actor-critic method, a policy gradient method, for
policy learning. With this method, we train simultaneously two
neural network-based models: an actor network and a critic
network. The actor network mg, where © is the set of neural
network’s parameters, essentially represents a policy network,
and it produces the probability of selecting an action a(k)
given the current state of the environment s(k). On the other
hand, the critic network is used to evaluate the value of action
made by the actor network. In other words, the critic network
essentially represents function Q. (s(k),a(k)) and its output
is simply the estimated Q-value of the current state and of the
action given by the actor network. To train the critic network,
we can use standard methods as in Q-learning.

In general, the key idea of policy gradient methods is to
estimate the gradient of E[R], the expected total discounted
reward, by observing the trajectories of executions, or state
transitions, obtained by following the policy. The gradient
of the cumulative discounted reward with respect to the
policy parameters © can be computed as VgE,|[R]

E.[Velogme(s,a)Qr, (s,a)] [30]. If we model action as
deterministic decision a(k + 1) = pe(s(k)), Silver et
al. [30] prove that the above gradient can be written as

VoEre[R] = E[Veie(s)VaQue (S, a)|azpe(s)]- As a result,
the updating rule of deterministic policy’s parameter © is
ottl = ot + aE[Veue(s)VaQye (8, a)la=pe(s)], Where a
is learning rate.

While we can leverage vanilla neural network structure for
the critic network, the design of the actor network requires
more considerations to ensure that the output of the actor



network satisfies the resource constraint (i.e., the total number
of consumers across all microservices is bounded). To enforce
such constraint, we design output of actor network as a
categorical distribution over J different possible categories, by
applying a softmax activation function at the output layer. The
categorical distribution can then be translated into numbers of
consumers by multiplying with the total number of consumers
C:mj(k)=[Cxaj(k)],V1<j<J

In our scenario, both state s and action a are integers.
However, we choose continuous action space because of the
extremely large search space (O(C”)). In this paper, we use
deep deterministic policy gradient method (DDPG) [19] to
train the actor and critic networks. DDPG is an actor-critic
algorithm that operates over continuous action spaces and
explores the action space by adding an exploration noise to the
output action sampled from current policy. The exploration lets
the agent try new behaviors to discover the ones with higher
cumulative rewards.

Directly imposing exploration noise to the output action
actually performs poorly in our system. The reason is that
actions added by exploration noise often violate our constraints
on total number of consumers, leading to invalid exploration.
Our approach to tackle with this problem is to use parameter
space noise in exploration [29] instead of action space noise.
Parameter space noise approach adds adaptive noise to the
parameters of the policy neural network model rather than
to the output action. Specifically, this method perturbs policy
network parameters with additive Gaussian noise to generate
explorations. The scale of this parameter noise depends on
the variance in action space it induces. The introduction of
parameter noise solves the action constraint issue of action
space noise based DDPG, makes RL converge fast, and
exhibits a greater variety of behaviors in the learnt policy.

E. Iterative Model-based Reinforcement Learning

Model-based reinforcement learning approach has a limita-
tion: the learnt policy network often explores regions where
scarce training data is available for the environment model. To
overcome this limitation, MIRAS switches iteratively between
i) using the current learnt policy to interact with real environ-
ment and collect more training data of the actual interactions
between agent and the real environment, ii) training envi-
ronment model incrementally with newly collected training
data, and iii) using the updated environment model to improve
the current policy. As a result, we can avoid being stuck
in local optima of environment model and gradually build
more accurate model of environment with the help of newly
collected training data, as well as improve the policy.

The iterative training procedure is presented in Algorithm 2.
The outer loop represents training environment model using
interactions with real environment, and the inner loop repre-
sents policy training using environment model.

V. IMPLEMENTATION
We have implemented the aforementioned microservice

workflow system on Google Cloud Platform [4]. The system
is built upon a cluster of three Google Cloud virtual machines
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Algorithm 2 Iterative Model-based Reinforcement Learning
Procedure

1: Initialize po, fo, and D
2: repeat
3: Collect interactions with real environment using pe &
add to D
Train environment model fq, using D
repeat
Collect synthetic samples from refined f@
Update policy pe using parameter noise DDPG
until Performance of the policy stops improving
: until The policy performs well in real environment

R A A

(nodes), each of which has 1 vCPU (virtual CPU), 16GB
RAM, and 100G B secondary storage. We use 3 Zookeeper
[2] nodes to act as TDS servers to maintain microservice
dependency relationship. RabbitMQ [8] serves as the message
queue engine. We use Docker containers [3] as microservice
consumers which subscribe to RabbitMQ’s message queues.
Whenever a consumer of a specific task type is idle, it con-
sumes the next request of that type from RabbitMQ’s message
queue. We employ an acknowledgement mechanism between
RabbitMQ message queues and consumers to guarantee that
task requests (and the workflows they belong to) do not
get lost in the system. We use Kubernetes [6] as the con-
tainer orchestration engine. Kubernetes abstracts consumers as
Replication Controllers so that the number of consumers for
each microservice could be conveniently scaled. Kubernetes
also manages load balancing of containers among the three
machines in our cluster.

As for predictive model training, we use Python and its
Tensorflow [9] library. We employ OpenAlI’s Baselines project
[7] as implementation of the DDPG algorithm.

VI. EVALUATION

We perform extensive evaluations to validate the perfor-
mance of MIRAS. Specifically, we (1) evaluate how accurate
the learnt predictive model is to depict the microservice
workflow system, (2) validate the convergence of model-
based reinforcement learning, and (3) compare our proposed
approach with existing workflow management algorithms.

A. Experimental Setup

1) Workflow workloads: To evaluate the performance of
MIRAS under different workloads and compare it to exist-
ing workflow processing algorithms, we use two real-world
scientific workflow computing ensembles as requests. The
first workflow ensemble is Material Science Data processing
workflows (MSD) [26][27], which consists of 3 workflows
— Typel to Type3 — and 4 task types. The second workflow
ensemble is Laser Interferometer Gravitational Wave Observa-
tory (LIGO) [17], which consists of 4 workflows — DataFind,
CAT, Full, and Injection — and 9 task types. We use Poisson
process to emulate request traces for both workflow datasets.



2) Time window length setting: As we mention in Section
II, we divide time into discrete time windows and set one time
window to be one interaction of resource allocation. We set 30
seconds to be the length of one time window. This window
length is a trade-off. Firstly, we find that it usually takes 5
to 10 seconds for Kubernetes to generate a new container
or destroy an existing container (container generation and
destruction can be parallelized). Time window length should
be large enough so that the container “start-up” time has small
influence. Secondly, time window length should not be very
high in order to react responsively to environment feedback.
We have tested 5s, 15s, and 30s, and 30s is the best option.

3) MIRAS parameters for models: For MSD dataset, we
use a 3-layer neural network as the predictive model, each
layer has 20 neurons. Its Actor network has 3 layers, each
of which has 256 neurons. We use the same parameters for
the Critic network, except that we insert one of Critic’s inputs
— action — to the second layer. For LIGO, we use a one-
layer 20-neuron neural network as the predictive model. * The
RL networks of the LIGO datasets are similar to those of
MSD, except that both networks of LIGO have 512 neurons
at each layer. When we collect training data of interactions
with the MSD environment, we let the agent interact with the
environment for around 1,000 steps and then we train the
predictive model based on collected samples. After every 25
steps during that process we reset the environment. “Reset”
means to provision sufficient consumers of each microservice
to reduce WIP close to 0. When training the RL agent with the
predictive model, the number of steps within one rollout (one
episode before resetting the predictive model) is also 25. For
LIGO we set the number of steps before training the predictive
model to be 2,000, and rollout step to be 10.

4) Consumer constraints: As we deal with resource al-
location problem under constraints, it’s important to find
the correct constraints for the microservice systems. A good
constraint means that we don’t have redundant resources so
that good resource allocation policies are unnecessary, and
also resources should be sufficient so that feasible resource
allocation solutions can be found. In our experiments we use
14 and 30 to be consumer constraints for MSD dataset and
LIGO dataset respectively. In all following experiments we
make sure that the constraints are enforced.

B. Model Evaluation

In this subsection we evaluate the accuracy of our predictive
model on MSD and LIGO. As mentioned in Section IV-E,
we iteratively learn the predictive model and the RL policy.
The final policy to be used in microservice workflow system
control is obtained from interacting with the predictive model
learnt with all collected data. Thus we evaluate the accuracy of

4For the LIGO workflow which is more complex than MSD, we use a
predictive model with fewer layers, which is counterintuitive. In practice
we find that predictive model training suffers from overfitting if insufficient
training data is provided, which is the case for LIGO, where the input space
of the predictive model is extremely large. Therefore, we use a smaller neural
network to tackle the overfitting problem.
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predictive models learnt with all collected data. For MSD we
collect 14,000 data entries and for LIGO we collect 37,000
data entries. After we obtain predictive models as discussed in
Section IV-C, we use another 100 data points as testing data.
We collect real data trace from the microservice workflow
system and we compare it with predictive data trace. Actions
are randomly selected and vary every 4 steps.

We evaluate the learnt model in two ways. First, like in
traditional supervised learning, we fix the input of the model
— current state and action — and compare the model output
— reward and next state — with ground truth. Second, as the
model we train is expected to have the look-forward capability,
we examine if the model gives consistently reasonable results
when running standalone, as what we do in policy learning.
To do this, we give the model an initial state, which is the
first state in testing data points; we predict subsequent states
and rewards using the predicted state of the last time window.

Model accuracy evaluation result is shown in Figure 5.
Here we compare the prediction accuracy of immediate reward
(average of next state WIP) and the first dimension of next
WIP (other dimensions show similar shape in figure). We
can observe that the prediction on fixed input is considerably
accurate. The iterative prediction trace shows a slightly higher
divergence with the ground truth due to cumulative prediction
error. Also we can observe that LIGO has a higher divergence
than MSD, due to its higher dimension of microservice types
(9 vs 4) and its higher complexity of topology. But predictions
on both datasets have the same trend with ground truth data,
and the models are sufficient for policy learning.

C. Policy Evaluation

In this part we evaluate MIRAS policy training. Namely,
we test whether MIRAS converges to yield good policies. As
mentioned earlier, we continuously switch between running
the RL agent on the real environment for some steps (1,000
for MSD and 2, 000 for LIGO), training the predictive model,
and training RL agent based on the predictive model. At
the end of each iteration, we evaluate the learnt policy by
letting it interact with the environment for some steps and
observe aggregated rewards. As in sample collection phase,
we evaluate MIRAS agent for MSD dataset by letting it run
25 steps on the real microservice system environment. For
LIGO agent, we let it run 100 steps instead of 10 steps as in
training because LIGO is a more complicated workflow, and
we want to eliminate the effect of obtaining small WIP from
throttling upstream microservices.

Resulting training traces of MSD and LIGO are shown in
Figure 6a and Figure 6b. We can observe that at the beginning
iterations policies are not very good. After about 11 iterations
(11,000 steps for MSD and 22,000 steps for LIGO) both
policies begin to converge.

D. Comparing MIRAS with existing algorithms

In this part we use trained MIRAS policies discussed above
and compare them with existing workflow scheduling/resource
allocation algorithms. As our goal of resource allocation is
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to reduce response time of workflow requests, we compare
response time in this part instead of WIP (comparison of WIP
would yield similar results).

We compare MIRAS with 4 other algorithms. The 1st
algorithm is DRS [14], a resource allocation algorithm based
on Jackson open queuing networks proposed for stream pro-
cessing. The 2nd algorithm is heft [37], a scheduling algorithm
for scientific workflow processing. This algorithm gives each
task a priority and assigns machines to tasks according to
their priorities. This is different from our resource allocation
problem, where we focus on a higher level of resource assign-
ment and determine only the number of machines allocated
to each task at one time window. We adapt heft into our
system. Specifically, we assign tasks with priorities using their
proposed method. At the beginning of each time window
we make resource allocation decisions based on both task
number and task priority. The 3rd algorithm is MONAD, a
model predictive control based resource allocation algorithm
for microservice systems. The 4th algorithm is DDPG with no
predictive model, or model-free DDPG. That is, we directly
train DDPG models by interacting with the real environment.
To guarantee fairness, we train DDPG models using the same
number of interactions with MIRAS.

We evaluate the performances of MIRAS and 4 other
algorithms under variant environments by generating bursts
of workflow requests and testing how these algorithms adapt
to vast environment changes. For each of the two workflow
ensembles we generate three categories of bursts. For MSD
dataset, the bursts are 300 requests, 200 requests, 300 requests
for Typel, Type2, and Type3; 1000, 300, 400 for Typel to
Type3; and 500, 500, 500. For LIGO dataset the bursts are
100, 100, 50, 30 for DataFind, CAT, Full, Injection; 150,
150, 80, 50; and 80, 80, 80, 80 for the 4 workflows. These
request bursts are fed into the system at the beginning of each
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Fig. 5: Predictive model accuracy. Red dashed line represents ground truth of the testing data. Blue line represents model predictive data on
fixed input. Green dotted line represents iterative prediction data when we fix actions and the initial state.

evaluation. We also feed the system with continuous workflow
requests sampled from Poisson process.

The results are shown in Figure 7 and Figure 8. As we can
see, MIRAS is better than or at least as good as the other
algorithms under the testing conditions, especially in long-
term returns. For the MSD dataset, which is less complicated,
we observe that MIRAS is significantly better than other
algorithms. For the LIGO dataset, MIRAS performs well under
small burst. When larger bursts, burst 2 and burst 3, are
fed into the system, we can see an increase followed by
a decrease of response time for MIRAS. In fact, when we
look into WIP variation at high burst scenarios, we observe
that MIRAS is very smart and puts aside certain tasks, e.g.,
Coire in workflows CAT, Full, and Injection, at the beginning
and focuses on other tasks. This causes the response times
of CAT, Full, and Injection workflows to increase. At a later
time when some other task queue is low, MIRAS turns back
to deal with Coire queues. Therefore, although at 20-th step
in Figure 8b and Figure 8c the response times of MIRAS
are higher than stream and heft, MIRAS is able to recover
quickly to a low response time level afterwards. We think
that this is the advantage of using reinforcement learning
in resource allocation. Reinforcement learning does not only
consider immediate return, more importantly, it considers all
future returns. Therefore, it considers long-term returns and
achieves a better global solution.

It’s worth mentioning that we find algorithms DRS,
MONAD, and DDPG fail to control the system under the
constraints. DRS is designed for stream processing and it
does not react responsively to condition changes. MONAD
focuses on short-term returns and is not suitable to yield a
global optimal solution. DDPG without predictive model could
perform well when supplied with sufficient training data, but
with limited interactions with the real environment it doesn’t
converge to a good policy, showing its poor sample efficiency.

VII. RELATED WORK
A. Resource Allocation for Cloud-based Systems

Cloud system based autonomous resource allocation or
scheduling has been intensively studied in literature. In [16],
Grandl et al. propose to adapt heuristics for multidimensional
bin packing problem to cluster scheduling. In [37] the authors
propose a scheduling algorithm for grid computing workflow
processing, but they focus on resource placement instead
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of resource allocation. For cloud system or grid computing
scheduling, several algorithms have been proposed based on
heuristics [34][36][28]. Their works differ from ours in that
they emphasize on data transmission improvement, and often
fail to effectively incorporate future rewards. Suresh et al. [31]
propose a cloud-based resource management framework for
workflow processing, but they focus on large-scale Web ap-
plications and adopt a distributed approach, which makes it
difficult to achieve fine-grained policies like MIRAS.

Meanwhile, there have also been works on cloud systems
using reinforcement learning. Zhou et al. present a RL-based
algorithm for adaptive resource management to optimize QoS
and power consumption goals [38]. In [15], RL is applied in
scheduling strategies which is learned online through inter-
action with the system. Wang et al. explore the application
of deep RL to the problem of provisioning cloud resources
[33], but they don’t deal with the workflow problem as we
do. Mao et al. present DeepRM, a system that translates the
problem of packing tasks with multiple resource demands into
a deep reinforcement learning problem [22]. However, the
experiment was simulated on a synthetic dataset and hasn’t
been employed in real systems. In addition, it doesn’t take
workflow management into account. Liu et al. proprose an
RL-based hierarchical control framework for cloud resource
allocation and power management in [21], but they don’t
consider workflow management either. Besides, they adopt
the model-free approach and thus their approach suffers from
expensive interactions with the real system, limiting their
evaluation to only simulation.
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B. Deep Reinforcement Learning Based Systems

Apart from task scheduling or resource management, re-
inforcement learning, especially deep deinforcement learning
(DRL) [24], has been adopted gradually in building computer
or networking systems to fully take advantage of its outstand-
ing performance in decision making. In [35], Xu et al. propose
a DRL-based approach model-free control framework that
tackles traffic engineering. In [23], the authors implements a
system which uses DRL to select appropriate video bitrates
to improve quality of service. Li et al. implement an Apache
Storm based DRL system for scheduling in distributed stream
data processing systems [18].

VIII. CONCLUSION

Resource allocation for microservice workflow systems is
difficult due to dynamic workloads and complicated interac-
tions between microservices in each workflow. In this paper,
we propose to make resource allocation decisions based on
deep reinforcement learning control policy. To tackle the high
sample complexity problem of reinforcement learning, we
propose MIRAS, a model-based approach. Specifically, we let
a DDPG agent interact with the real microservice workflow
system and collect interacting profiling data. We use the
collected data to train a predictive model of the environment
and use this model to further train the DDPG agent. We iterate
among these three phases until the learnt agent is able to
make good resource allocation decisions in the microservice
workflow system. Our evaluations confirm the performances
of the learnt policy.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under grant NSF 1827126.



[1
[2

— =

[3]
[4]

[5

—

[6]
[71

[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Amazon Simple Workflow Service. https://aws.amazon.com/swf/. Ac-
cessed: 2018-05-10.

Apache ZooKeeper. https://zookeeper.apache.org. Accessed: 2019-01-
10.

Docker. https://www.docker.com. Accessed: 2019-01-10.

Google Cloud Platform. https://cloud.google.com. Accessed: 2019-01-
10.

Goolge Cloud Composer. https://cloud.google.com/composer/.  Ac-
cessed: 2018-05-10.

Kubernetes. https://kubernetes.io/. Accessed: 2019-01-10.

OpenAl Baselines. https://github.com/openai/baselines/.  Accessed:

2019-01-10.

RabbitMQ. https://www.rabbitmq.com. Accessed: 2019-01-10.
Tensorflow. https://www.tensorflow.org/. Accessed: 2019-01-10.
ALLEN, A. O. Probability, statistics, and queueing theory. Academic
Press, 2014.

BALDINI, I., CASTRO, P., CHANG, K., CHENG, P., FINK, S.,
ISHAKIAN, V., MITCHELL, N., MUTHUSAMY, V., RABBAH, R.,
SLOMINSKI, A., ET AL. Serverless computing: Current trends and open
problems. In Research Advances in Cloud Computing. Springer, 2017,
pp. 1-20.

DEELMAN, E., GANNON, D., SHIELDS, M., AND TAYLOR, I. Work-
flows and e-science: An overview of workflow system features and
capabilities. Future Generation Computer Systems 25, 5 (2009), 528—
540.

DEISENROTH, M. P., RASMUSSEN, C. E., AND FOX, D. Learning
to control a low-cost manipulator using data-efficient reinforcement
learning.

Fu, T. Z., DING, J., MA, R. T., WINSLETT, M., YANG, Y., AND
ZHANG, Z. Drs: dynamic resource scheduling for real-time analytics
over fast streams. In Distributed Computing Systems (ICDCS), 2015
IEEE 35th International Conference on (2015), IEEE, pp. 411-420.
GLAUBIUS, R., TIDWELL, T., GILL, C., AND SMART, W. D. Real-time
scheduling via reinforcement learning. In Proceedings of the Twenty-
Sixth Conference on Uncertainty in Artificial Intelligence (2010), ACM,
pp. 201-209.

GRANDL, R., ANANTHANARAYANAN, G., KANDULA, S., RAO, S.,
AND AKELLA, A. Multi-resource packing for cluster schedulers. ACM
SIGCOMM Computer Communication Review 44, 4 (2015), 455-466.
JUVE, G., CHERVENAK, A., DEELMAN, E., BHARATHI, S., MEHTA,
G., AND VAHI, K. Characterizing and profiling scientific workflows.
Future Generation Computer Systems 29, 3 (2013), 682—692.

L1, T., Xu, Z., TANG, J., AND WANG, Y. Model-free control for
distributed stream data processing using deep reinforcement learning.
Proceedings of the VLDB Endowment 11, 6 (2018), 705-718.
LILLICRAP, T. P., HUNT, J. J., PRITZEL, A., HEESS, N., EREZ, T.,
TASSA, Y., SILVER, D., AND WIERSTRA, D. Continuous control with
deep reinforcement learning. In International conference on learning
representations (2016).

L1u, J., PACITTI, E., VALDURIEZ, P., AND MATTOSO, M. A survey
of data-intensive scientific workflow management. Journal of Grid
Computing 13, 4 (2015), 457-493.

Liu, N, L1, Z., XU, J.,, XU, Z., LIN, S., QIu, Q., TANG, J., AND
WANG, Y. A hierarchical framework of cloud resource allocation
and power management using deep reinforcement learning. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS) (2017), IEEE, pp. 372-382.

132

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

MAO, H., ALIZADEH, M., MENACHE, I., AND KANDULA, S. Resource
management with deep reinforcement learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks (2016), ACM, pp. 50—
56.

MAoO, H., NETRAVALIL, R., AND ALIZADEH, M. Neural adaptive video
streaming with pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017), ACM, pp. 197-
210.

MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUsu, A. A., VENESS,
J., BELLEMARE, M. G., GRAVES, A., RIEDMILLER, M., FIDJELAND,
A. K., OSTROVSKI, G., ET AL. Human-level control through deep
reinforcement learning. Nature 518, 7540 (2015), 529.

NAGABANDI, A., KAHN, G., FEARING, R. S., AND LEVINE, S. Neural
network dynamics for model-based deep reinforcement learning with

model-free fine-tuning. arXiv preprint arXiv:1708.02596 (2017).
NGUYEN, P., AND NAHRSTEDT, K. Resource management for elastic

publish subscribe systems: A performance modeling-based approach. In
Cloud Computing (CLOUD), 2016 IEEE 9th International Conference
on (2016), IEEE, pp. 561-568.

NGUYEN, P., AND NAHRSTEDT, K. Monad: Self-adaptive micro-service
infrastructure for heterogeneous scientific workflows. In Autonomic
Computing (ICAC), 2017 14th IEEE International Conference on (2017),
IEEE.

PANDEY, S., WU, L., GURU, S. M., AND BUYYA, R. A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments. In Advanced information networking
and applications (AINA), 2010 24th IEEE international conference on
(2010), IEEE, pp. 400-407.

PLAPPERT, M., HOUTHOOEFT, R., DHARIWAL, P., SIDOR, S., CHEN,
R. Y., CHEN, X., ASFOUR, T., ABBEEL, P., AND ANDRYCHOWICZ,
M. Parameter space noise for exploration. In International conference
on learning representations (2018).

SILVER, D., LEVER, G., HEESS, N., DEGRIS, T., WIERSTRA, D., AND
RIEDMILLER, M. Deterministic policy gradient algorithms. In /CML
(2014).

SURESH, L., BODIK, P., MENACHE, I., CANINI, M., AND CIUCU,
F. Distributed resource management across process boundaries. In
Proceedings of the 2017 Symposium on Cloud Computing (2017), ACM,
pp. 611-623.

SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An
introduction, vol. 1. MIT press Cambridge, 1998.

WANG, Z., GWON, C., OATES, T., AND IEZzI, A. Automated cloud
provisioning on aws using deep reinforcement learning. arXiv preprint
arXiv:1709.04305 (2017).

WIECZOREK, M., PRODAN, R., AND FAHRINGER, T. Scheduling of
scientific workflows in the askalon grid environment. Acm Sigmod
Record 34, 3 (2005), 56-62.

Xu, Z., TANG, J., MENG, J., ZHANG, W., WANG, Y., Liu, C. H.,
AND YANG, D. Experience-driven networking: A deep reinforcement
learning based approach. In [EEE INFOCOM 2018-IEEE Conference
on Computer Communications (2018), IEEE, pp. 1871-1879.

YU, J., AND BUYYA, R. Scheduling scientific workflow applications
with deadline and budget constraints using genetic algorithms. Scientific
Programming 14, 3-4 (2006), 217-230.

YU, J., BUYYA, R., AND RAMAMOHANARAO, K. Workflow scheduling
algorithms for grid computing. In Metaheuristics for scheduling in
distributed computing environments. Springer, 2008, pp. 173-214.
ZHOU, X., WANG, K., JIA, W., AND GUO, M. Reinforcement learning-
based adaptive resource management of differentiated services in geo-
distributed data centers. In Quality of Service (IWQoS), 2017 IEEE/ACM
25th International Symposium on (2017), IEEE, pp. 1-6.



