
MIRAS: Model-based Reinforcement Learning for
Microservice Resource Allocation over

Scientific Workflows

Zhe Yang∗, Phuong Nguyen∗, Haiming Jin†, Klara Nahrstedt∗
∗University of Illinois at Urbana-Champaign

†Shanghai Jiao Tong University
∗{zheyang3, pvnguye2, klara}@illinois.edu

†{jinhaiming}@sjtu.edu.cn

Abstract—Microservice, an architectural design that decom-
poses applications into loosely coupled services, is adopted
in modern software design, including cloud-based scientific
workflow processing. The microservice design makes scientific
workflow systems more modular, more flexible, and easier to
develop. However, cloud deployment of microservice workflow
execution systems doesn’t come for free, and proper resource
management decisions have to be made in order to achieve certain
performance objective (e.g., response time) within constraint
operation cost. Nevertheless, effective online resource allocation
decisions are hard to achieve due to dynamic workloads and the
complicated interactions of microservices in each workflow. In
this paper, we propose an adaptive resource allocation approach
for microservice workflow system based on recent advances in
reinforcement learning. Our approach (1) assumes little prior
knowledge of the microservice workflow system and does not
require any elaborately designed model or crafted representative
simulator of the underlying system, and (2) avoids high sample
complexity which is a common drawback of model-free reinforce-
ment learning when applied to real-world scenarios. We show that
our proposed approach automatically achieves effective policy
for resource allocation with limited number of time-consuming
interactions with the microservice workflow system. We perform
extensive evaluations to validate the effectiveness of our approach
and demonstrate that it outperforms existing resource allocation
approaches with read-world emulated workflows.

I. INTRODUCTION

Microservice design, which is often referred as a way

to structure software applications as collections of loosely

coupled services, has become increasingly popular in mod-

ern software system architectures. Different from the tra-

ditional monolithic approach, the microservice architecture

offers many benefits, such as the ability to independently

deploy, scale, and develop individual services in different

programming languages. As a result, the applications become

more modular, easier to understand, develop, and test. This

also enables continuous delivery and deployment of applica-

tions (e.g., upgrading and deploying individual services will

not affect other services).

One example of the adoption of microservice architecture

is in scientific workflow systems. Scientific workflow systems

[20][12] have traditionally employed a monolithic approach, in

which each workflow, represented by a directed acyclic graph

of tasks, is implemented as a tightly coupled set of tasks and

has its own workflow execution plan that specifies how to run

the workflow on a distributed computation infrastructure. With

the transition to the microservice design [27][26], each task

is modeled as a microservice with its own request queue and

computing capacity. Complex task dependencies are separated

from the implementation of individual tasks, and thus, the

microservice design enables more flexible and scalable work-

flow composition (i.e., new workflows can be composed from

existing tasks) and scheduling (i.e., resources can be scheduled

at the fine-grained level of tasks which could potentially take

advantage of the parallelism in workflow structure to speed up

workflow execution). A finer-grained workflow decomposition

could also benefit load balancing among execution machines.1

With the increasing popularity of cloud infrastructure, there

have been efforts to deploy microservice-based applications

on the cloud to take advantage of the elasticity of cloud

infrastructure (e.g., cloud-based workflow systems [1][5]).

While public cloud offerings often support the ability to

scale microservices elastically and on-demand using their

unlimited resources, real-world deployments of microservice

applications are often constrained by limited operation cost.

On the other hand, applications deployed on private cloud

infrastructure are likely faced with bounded resource capacity.

Therefore, in these scenarios it is important to be able to

properly allocate constraint resources of microservices to meet

certain performance objective (e.g., response time, utilization).

However, resource allocation for microservice infrastructure

is challenging due to (1) the variability of dynamic workloads,

(2) complex interactions between microservices that can cause

cascading effects when provisioning resources for interrelated

microservices, and (thus) (3) the demand for either an elabo-

rately crafted model depicting the microservice system, which

necessitates sophisticated prior knowledge of the system, or a

data-driven identification model requiring a lot of training data

(i.e., resource allocation feedback) from the real microservice

system, which potentially consumes tremendous amount of

resources. There has been extensive related work on resource

allocation for cloud-based system (see Section VII). However,

these related approaches either (i) are rule-based, heuristics

1Another example of microservice is in serverless computing [11].

122

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00021

approaches, which depend on complete understanding and/or

an elaborate model of the cloud system, or (ii) do not tackle

with dynamic system status.

In this paper, we propose a novel self-adaptive resource

adaptation approach, MIRAS, for microservice system that

assumes little prior knowledge of its infrastructure. We take

the microservice workflow system (to be introduced in Sec-

tion II) as the target environment where we perform resource

adaptation and leverage recent advances in model-based rein-
forcement learning to design a control policy for microservice

workflow system using past experience of interacting with the

microservice infrastructure. We choose reinforcement learning

because it directly optimizes long-term reward in dynamic

environment.

Recently, there have been some related publications that

applied reinforcement learning (RL) to various applications.

However, these efforts are mostly based on the model-free RL

technique that tends to suffer from high sample complexity,

and thus, hinders its use in real-world domains where it is often

time-consuming and costly to obtain samples of interaction

between RL agent and environment, distributed and cloud-

based systems being an example. As a result, their applications

have been mostly limited to where simulated environments

were available. In contrast, MIRAS utilizes a learnt model

of the microservice environment to assist policy learning,

achieving much higher sample efficiency than the model-free

approaches. We are the first to use model-based RL in the

distributed and cloud-based system, and we demonstrate its

effectiveness in tackling real-world tasks where low sample

complexity is crucial.

MIRAS consists of two main components: environment

model learning and policy optimization. In model learning, we

train a neural network model to capture the behavior of the

microservice infrastructure using samples collected from the

real interactions between RL agent and the environment. We

further refine the model to facilitate policy learning. In policy

optimization, we leverage the learnt environment model to

train an RL policy model and optimize long-term reward to im-

prove performance of microservices, subject to resource con-

straints. We use vanilla RL algorithm, actor-critic, equipped

with a novel technique parameter space noise exploration. To

prevent the environment model from overfitting, we employ

an iterative procedure that alternates between model learning

and policy optimization and uses learnt policy to collect

additional data from its interaction with the environment to

further improve the accuracy of environment model.

We demonstrate through our extensive evaluation on the

microservice workflow system that we are able to learn an

accurate model of the environment and effectively use the

learnt model to search for good policy. More importantly,

we show that MIRAS outperforms state-of-the-art model-free

RL technique and other resource allocation approaches in the

actual task of adapting performance of microservice workflow

system under dynamic workloads. It is worth mentioning that

although we implement the learning based resource adaption

approach for microservice workflow system, this approach

Fig. 1: Microservice workflow infrastructure.

could also be easily adapted to other microservice systems

or microservice-like systems.

In summary, our main contributions of this paper are as

follow:

• We are the first to use model-based RL for resource

adaptation in distributed and cloud-based system, and

to apply this powerful learning technique in real-world

environments where low sample complexity is crucial.

• We fully implement and integrate model-based RL re-

source adaptation mechanism into our microservice work-

flow system. To achieve this goal, we design or utilize

several novel techniques including model refinement and

parameter space noise exploration.

• Through extensive evaluation on real-world emulated

scientific workflow workloads, we demonstrate that our

proposed resource allocation approach achieves good

control policy which outperforms existing algorithms.

II. BACKGROUND: MICROSERVICE WORKFLOW

INFRASTRUCTURE

In this section, we introduce the microservice workflow

infrastructure, which is our targeted microservice environment.

We briefly describe the architecture, resource model, and

various challenges of resource adaptation in this infrastructure.

A. Microservice-Based Workflow Management

Traditional workflow system often employ a monolithic

approach in workflow implementation and execution. In par-

ticular, each workflow is implemented as a tightly coupled

set of tasks and has its own workflow execution plan that

specifies how to run the workflow on a distributed compu-

tation infrastructure. On the contrary, the microservice-based

cloud workflow management approach [27][26] models tasks

as microservices and separate workflow’s task dependencies

from implementations of individual tasks. This design enables

more flexible and scalable workflow composition, fine-grained

resource scheduling (i.e., resource scaling can be done at the

task level, instead of at the workflow level), and load balancing

123

among computing machines. An architectural overview of this

infrastructure is presented in Figure 1.

In this architecture, each task type is modeled as a microser-

vice that consists of a request queue and a set of consumers

subscribing to the queue to handle requests. Task dependencies

are maintained by a separate task dependency service (or

TDS). Several TDS servers form an ensemble to increase

availability. Figure 2 shows an example of a task dependency

table of workflows type 1 and 2 maintained by TDS. Whenever

a workflow request arrives, the workflow invoker asks the TDS

which task of the workflow should be processed first (step 1 of

Figure 1). Upon receiving response from TDS, given a request

of workflow type 1, for example, the task invoker sends the

request (step 2) to task A’s request queue (i.e., the first task

of workflow type 1) so that it can be processed by one of

A’s consumers (step 3). Besides being a subscriber to its task

request queue, each task consumer also acts as a publisher for

other types of tasks following the workflow’s task dependency

graph. After a task consumer finishes processing a request, it

will query TDS about the subsequent task(s) of the workflow

to “publish” the request to those tasks, which is step 4.

It is worth mentioning that although this paradigm shares

some characteristics with stream processing (e.g., both could

be modeled as DAG), they have some key differences. Stream

processing focuses on online distributed processing of large

chunks of data, while the microservice workflow system deals

with on-demand, (potentially) long tail and computationally

heavier data processing jobs. These discrepancies lead to dif-

ferent resource adaptation considerations. Stream processing

emphasizes resource placement while microservice workflow

system emphasizes allocation of constraint resources.

B. Resource Models

In the following, we describe the microservice workflow

system’s resource model and notations used in the remaining

of the paper.

Let us assume that the supported N workflow types com-

pose of J types of tasks (i.e., each workflow type corresponds

to a DAG of a subset of J types of tasks). As discussed earlier,

we model each task type j (1 ≤ j ≤ J) as a microservice

consisting of a queue that stores the task’s requests, and a set

of task consumers that subscribe to the queue to perform actual

processing of the task’s requests. To abtract away low-level

resource information, we assume that the consumers of a task

have identical computational capacity in terms of CPU and

memory. Hence, the workflow system only needs to control

the number of consumers for each microservce. We divide

time into discrete time windows with identical time interval,

and set time windows to be time units of collecting data

and making resource management decisions. Namely, data

collection and resource management are done at the beginning

of each time window. Note that other options also exist, such

as setting the beginning of each time window to be the time

when a new workflow request arrives. But such a setting tends

to capture the transient behavior of workflows instead of a

more global view and suffers from high randomness originated

Type From To
1 Start A
1 A B
1 B End
2 Start A
2 A C
2 A D
2 C E
2 D E
2 E End

… … …

Start A B End

Start A

C

E

D

End

Workflow type 1

Workflow type 2

Task dependencies

Fig. 2: Example of workflow types and the corresponding task
dependencies.

from random workflow request arrival. We use (Tk, Tk+1) to

represent the k-th time window. We denote the configuration of

the numbers of consumers over microservices during the time

window (Tk, Tk+1) as m(k) = (m1(k),m2(k), ...,mJ(k)),
where mj(k) is the number of consumers of task type j during

the k-th time window. Since m(k) determines processing time,

it represents resource allocation decision of the microservice

workflow system.

In terms of performance metrics, at workflow level, we

are interested in the average processing time (or average

delay) of each workflow type i (1 ≤ i ≤ N), as well

as the average processing time over all types of workflows.

The processing time of a workflow request is defined as

the duration between its arrival time and the time when the

workflow’s last task is finished. The average delay of workflow

type i over the time window (Tk, Tk+1), denoted as di(k), is

calculated by averaging delays of all requests of type i that

arrive during (Tk, Tk+1). We denote d(k) as the vector form

of the set of average delays of all workflow types in the k-th

time window: d(k) = (d1(k), d2(k), ..., dN (k)). The average

delay of requests over all types of workflows at k-th time

window, ¯d(k), is the most straightforward metric of system

performance. However, workflow processing time could not be

immediately observed in our paradigm, because the processing

of one workflow could stretch over multiple time windows.

Therefore, we propose a task-level performance metric.

At task level, the processing delay of a task request when

it is processed by a microservice is measured from the time

the task arrives at microservice’s request queue until the task

departs the microservice system after being processed by one

of the consumers. According to the Little’s law [10], we

represent the processing delay via the number of task requests

in the microservice (including tasks waiting in the queue and

tasks being processed by consumers), or the number of work-
in-progress (WIP for short), denoted by wj(k) for task j
(1 ≤ j ≤ J) at time window (Tk, Tk+1). The more work-in-

progress a microservice has, the longer delay is to be expected.

We use w(k) as the vector representation of WIP over all

microservices at k-th time window.

C. Challenges of Resource Adaptation

To meet certain performance goals, such as minimizing

workflow processing time under constraint resources, it is

necessary to design a resource adaptation algorithm which

elastically scale the numbers of consumers assigned to each

microservice type. However, due to the intrinsic properties of

124

the microservice-based workflow system, the design of such

an adaptation algorithm faces the following challenges:

1) Workflow requests arrive online, with variant number

of requests in different time windows. This is especially

true for long tail scientific data processing (e.g., material

science microscopic image processing), where the size

of each job is not very large but requests come in at

random time points. Moreover, although one workflow

has fixed microservice set and microservice composition

structure, the processing time of each microservice is

not fixed, due to variant sizes of input data. Some simple

policies, e.g., Earliest Deadline First, might mitigate this

unpredictability, but such solutions are not able to adapt

quickly to vast condition changes, and thus perform

poorly on variant environment conditions which is often

the real-world scenario.

2) Resource adaptation decisions have cascading effects

on microservices. Workflows might share microservices,

thus a resource adaptation decision on a single microser-

vice type impacts the processing of several workflows

at near future time windows. What’s worse, within a

workflow the tasks have dependency relationship among

them. The completion of one task could immediately

produce some other tasks according to their workflow

topology, or the completed task could wait for syn-

chronization signal. Therefore, it is very difficult to

predict the effect of a resource allocation decision on

microservice work-in-progress of the next and future

time windows.

3) Cloud services are still costly when scaling up, so the

resources users have access to are often constraint. In our

scenario, the “constraint” has two embodiments. First,

resource adaptation algorithm needs to consider opera-

tion cost and does not use more consumers than what

we allocate to them. Second, if a resource adaptation

approach requires training data obtained from giving the

microservice workflow system control inputs and receiv-

ing feedback in order to profile the microservice system,

it has access to limited number of such interactions (i.e.,
sample complexity should not be high).

III. RESOURCE ADAPTATION FRAMEWORK FOR

MICROSERVICE INFRASTRUCTURE

To tackle the aforementioned challenges, we present MI-

RAS, a model-based reinforcement learning framework for

the microservice workflow infrastructure, whose purpose is

to dynamically adapt system resources to meet certain per-

formance guarantees under changing workloads and limited

resource capacity.

Our resource adaptation framework (Figure 3) consists of

three main components. The first component, the microservice
workflow system component which we discussed in Section II,

is the real-world microservice workflow infrastructure that we

work on. To tackle dynamic microservice system status and

microservice cascading effect challenge, we propose to use a

reinforcement learning model to dynamically make decisions

Fig. 3: Model-based reinforcement learning framework for microser-
vice infrastructure.

on microservice resource allocation in order to improve certain

performance metrics. To tackle high sample complexity intro-

duced by reinforcement learning, we use a performance model
that acts as a predictive model of the microservice workflow

system to train the reinforcement learning model.

Reinforcement learning [32], with its closed-loop feedback

from the environment, is an ideal candidate for implementing

resource adaptation framework. In particular, the role of agent

in RL is to learn from experience of interacting with the real

environment to search for improved resource allocation policy.

In fact, RL has been applied to resource adaptation of various

types of applications, including resource management in data

centers [38], real-time scheduling [15], or video streaming

[23], just name a few (c.f. Section VII). These works are all

based on model-free version of RL, in which the agent relies

only on the feedback from actual environment as it learns

to produce better policies. However, model-free technique

suffers from high sample complexity (a tremendous number of

interactions is needed to learn an RL policy), and thus, hinders

its use in real-world application domains where it is extremely

time-consuming (and thus cost-ineffective) to obtain samples.

As a result, the applications of model-free RL have been often

limited to where an elaborate simulated model of environment

is available to facilitate the learning process.

In this work, we propose to use model-based RL to im-

plement the resource adaptation framework for microservice

workflow system. With model-based approach, instead of

using only actual interactions with the real environment like

in model-free approach, we first train a performance model of

the microservice environment and use this model to generate

synthetic interactions with the environment to assist policy

learning. As a result, this approach has significantly smaller

sample complexity compared to model-free approach. This

benefit makes model-based approach suitable for applications

such as microservice workflow system, where obtaining actual

interactions with the real environment is time-consuming (in

the microservice workflow system, one interaction takes tens

of seconds, or even minutes) or where an elaborate simulated

model of environment is difficult to achieve.

IV. MODEL-BASED REINFORCEMENT LEARNING

APPROACH

In the following, we first present some preliminaries on

reinforcement learning and how state, action, and reward are

defined in the context of microservice infrastructure. Then, we

show how we train and refine a model for the environment

125

(i.e., microservice execution environment), how we leverage

the model to train a policy, and finally, how we integrate model

learning and policy learning in an iterative framework.

A. Preliminary

In general setting of reinforcement learning [32], an agent
interacts with an environment. At k-th time step (i.e., at the be-

ginning of time interval (Tk, Tk+1)), the agent observes some

state s(k) and takes an action a(k) sampled from a policy
π(a(k)|s(k)). In general, a policy π(a(k)|s(k)) specifies the

probability of taking action a(k), given current state s(k).
After applying the action, the environment transitions to a new

state s(k + 1) with probability P [s(k + 1)|s(k),a(k)], and

provides a reward r(k). The goal of reinforcement learning

is to learn a policy to maximize the expected cumulative

discounted reward Eπ[R(k)], where R(k) =
∑∞

t=k γ
t−kr(t),

γ ∈ [0, 1] is the discount factor.

In model-free RL, the state transition is the actual interac-

tion with real environment. In model-based RL, we train a

model of the environment, denoted as f̂Φ (with Φ being the

parameters of the model), and use the model to predict state

transition ŝ(k + 1) = f̂Φ(s(k),a(k)). Reward is predicted in

a similar way.

Policy learning includes two main approaches: Q-learning

and policy optimization. With Q-learning, the agent learns

an estimate of the optimal action-value function (or Q-

function) and obtains estimated optimal action by maximizing

Q-function. On the other hand, policy optimization methods

try to learn the optimal policy by directly optimizing on the

policy space. Specifically, if we denote Θ as the parameters of

the policy model that we are trying to learn, given observations

(s(k),a(k), r(k), s(k+1)), policy optimization tries to update

Θ so that the policy model will generate better actions. It is

generally believed that policy optimization method is capable

to a wider range of problems (e.g., control problems with

continuous states) and tends to converge faster than Q-learning

method. Therefore, we use actor-critic method, a type of

policy optimization method, for policy learning.

B. Definition: State, Action, and Reward

Before presenting model and policy learning, in this section,

we show how to map various RL concepts, including state, ac-

tion, and reward, to microservice workflow system’s resource

model and performance metrics introduced in Section II.

A natural choice of microservice workflow system state is

the average delays of different workflow types d(k), since

such state definition can be used conveniently to measure the

reward of actions made by the agent. However, average delays

at k-th time step d(k) are only partially observable when new

action is made by the agent at time window (Tk, Tk+1). This

is because workflow requests that arrive in (Tk, Tk+1) might

not be finished during that time window.

For MIRAS, instead of using d(k), we use work-in-progress

w(k) as state of microservice workflow system: s(k) = w(k)
2. Since WIP of a microservice is (in the long term) pro-

2In this paper we use s(k) and w(k) interchangably.

Fig. 4: Neural network model of microservice environment.

portional to its average delay, WIP across all microservices

can be used to capture average delays of workflow types that

the system supports. In addition, different from d(k) that is

partially observable, w(k) is completely observable at the end

of every k-th time window.

The fewer WIP of microservices, the shorter processing

delays microservices will have and the shorter processing

delays the system can support for different workflows. We

define reward to be negative of the aggregated WIP across

microservices observed at the end of each time window:

r(k) = 1−
J∑

j=1

wj(k). (1)

In this way, the cumulative discounted reward R(k) reflects

the total number of finished microservices starting from the

current time window.

As described in Section II, the number of consumers

allocated to microservices m(k) can be used to represent

resource allocation decision of the microservice workflow

system. Therefore, m(k) represents the action that the RL

agent makes at k-th time window: a(k) = m(k) 3.

C. Performance Model Generation

For model learning, we assume little prior knowledge about

the microservice workflow system. We use a neural network to

model the microservice system, because neural networks have

strong function approximation capability. We further refine the

model by adjusting its behavior at boundary point. These steps

are prerequisites for MIRAS policy learning.

1) Model Learning: Our neural network-based environ-

ment model takes input x as the combination of system

states s(k) and action a(k) at the beginning of the current

time window (Tk, Tk+1): x = (s(k) ‖ a(k))T , and predicts

output as the system states s(k+ 1) of the next time window

(Tk+1, Tk+2). The neural network model consists of L layers,

with the number of neurons in each layer denoted as N (l)

(1 ≤ l ≤ L). Correspondingly, W(l) and b(l) (1 ≤ l ≤ L)

represent the weight matrix and bias of layer l. Each layer

l also includes a non-linear activation function f (l) (we use

ReLU) to introduce the non-linearity into the network model.

We use y(l) to denote the vector of outputs from layer l
(y(0) = x). The output of the model is the predicted state

of the environment in the next time window: ŝ(k+1) = y(L).

Figure 4 shows an actual neural network architecture of our

environment model.

If we denote Φ as the set of parameters of the environment

models: Φ = {{W(l)}, {b(l)}}, the environment model can

3In this paper we use a(k) and m(k) interchangably.

126

be represented by a function f̂Φ: ŝ(k + 1) = f̂Φ(s(k),a(k)).
And the objective of the environment model learning is to find

a parameter set Φ that minimizes the square error of one-step

prediction:

minΦ
1

|D|
∑

(s(k),a(k),s(k+1))∈D
||s(k + 1)− f̂Φ(s(k),a(k))||2,

(2)
where D is the collected training data set, the element of

which is tuple (s(k),a(k), s(k + 1)). The model is trained

using gradient descent optimizer with backpropagation.

2) Model Refinement: The aforementioned neural network

model is able to well capture the performance characteristics

of microservice workflow systems, for the most part. When at

least one dimension of WIP w(k) is small, or close to 0 (w(k)
should be non-negative), neural network model gives “inappro-

priate” outputs which hinders MIRAS from learning a good

policy at small state. Specifically, when WIP approaches 0,

the microservice system itself has high randomness caused by

online workflow arrival and varying microservice processing

time, and no clear connection between w(k) and m(k) could

be observed from the environment or from the model, for the

model is trained based on interactions with the environment.

On the contrary, when WIP is sufficiently large, the learnt

neural network model suffers less from randomness. We call

0 the boundary of WIP. This boundary effect harms policy

learning because the RL agent would not know that 0 should

be the termination point of learning; on the contrary, the agent

would try to assign more consumers to a task type to bring its

WIP down. Therefore, it is ideal for the microservice workflow

system to maintain similar performance characteristics at the

boundary as at a higher state instead of outputting almost

random WIP predictions.

To alleviate the issue at boundary, we take inspiration from

the fact that different microservice types are loosely coupled.

For the j-th dimension of WIP, at next time window wj(k+1)
is majorly determined by wj(k) and mj(k), and the impact

of other dimensions wn,n �=j(k) and mn,n �=j(k) is smaller.

Therefore, we “lend” some tasks to a certain task type to get

it far from boundary, calculate the number of microservices

of the same task type at next time window, and take back the

lent tasks from the predicted WIP at next time window to stay

consistent. This Lend - Giveback procedure encapsulates the

aforementioned environment model. The process is shown in

Algorithm 1.

In this algorithm, initially we obtain threshold parameters

through simple statistical analysis on the collected dataset

D, which consists of tuples (s(k),a(k), s(k + 1)). After

initialization, we perform a Lend - Giveback mechanism to

deal with the boundary effect. In Lend phase, we “lend” some

tasks to task type j and feed the adjusted WIP to the predictive

model. In Giveback phase, we take back the “lent” tasks. For

each dimension we perform an independent operation of Lend
- Giveback, minimizing the impact of adjusted dimension on

other dimensions. The idea of the model refinement algorithm

comes from our prior knowledge of the system, but we deem

that the prior knowledge is limited and intuitive.

Algorithm 1 Model Refinement

1: //Initialization:
2: for each dimension j of w(k) in dataset D do
3: τj ← p-percentile of wj(k) in D
4: ωj ← (100− p)-percentile of wj(k) in D
5: for each dimension j of s(k) do
6: t(k)← s(k)
7: if sj(k) < τj then
8: //Lend:
9: generate ρj , uniformly sampled from (τj , ωj)

10: tj(k)← tj(k) + ρj
11: t(k + 1)← f̂Φ(t(k),a(k))
12: //Giveback:
13: tj(k + 1)← tj(k + 1)− ρj
14: tj(k + 1)← max(tj(k + 1), 0)

15: ŝ(k + 1)← t(k + 1)

D. Policy Learning

After we obtain the predictive environment model of the

microservice workflow system, we train a deep reinforcement

learning agent by letting it interact with the learnt environment

model f̂Φ instead of the actual real environment, and observe

rewards and state transitions. To boost RL performance, we

integrate a novel technique, parameter space exploration noise,

to a vanilla RL algorithm.

We use actor-critic method, a policy gradient method, for

policy learning. With this method, we train simultaneously two

neural network-based models: an actor network and a critic
network. The actor network πΘ, where Θ is the set of neural

network’s parameters, essentially represents a policy network,

and it produces the probability of selecting an action a(k)
given the current state of the environment s(k). On the other

hand, the critic network is used to evaluate the value of action

made by the actor network. In other words, the critic network

essentially represents function QπΘ
(s(k),a(k)) and its output

is simply the estimated Q-value of the current state and of the

action given by the actor network. To train the critic network,

we can use standard methods as in Q-learning.

In general, the key idea of policy gradient methods is to

estimate the gradient of Eπ[R], the expected total discounted

reward, by observing the trajectories of executions, or state

transitions, obtained by following the policy. The gradient

of the cumulative discounted reward with respect to the

policy parameters Θ can be computed as ∇ΘEπΘ [R] =
EπΘ

[∇Θ log πΘ(s,a)QπΘ
(s,a)] [30]. If we model action as

deterministic decision a(k + 1) = μΘ(s(k)), Silver et
al. [30] prove that the above gradient can be written as

∇ΘEπΘ [R] = E[∇ΘμΘ(s)∇aQμΘ(s,a)|a=μΘ(s)]. As a result,

the updating rule of deterministic policy’s parameter Θ is

Θt+1 = Θt + αE[∇ΘμΘ(s)∇aQμt
Θ
(s,a)|a=μΘ(s)], where α

is learning rate.

While we can leverage vanilla neural network structure for

the critic network, the design of the actor network requires

more considerations to ensure that the output of the actor

127

network satisfies the resource constraint (i.e., the total number

of consumers across all microservices is bounded). To enforce

such constraint, we design output of actor network as a

categorical distribution over J different possible categories, by

applying a softmax activation function at the output layer. The

categorical distribution can then be translated into numbers of

consumers by multiplying with the total number of consumers

C: mj(k) = �C ∗ aj(k)	, ∀1 ≤ j ≤ J.
In our scenario, both state s and action a are integers.

However, we choose continuous action space because of the

extremely large search space (O(CJ)). In this paper, we use

deep deterministic policy gradient method (DDPG) [19] to

train the actor and critic networks. DDPG is an actor-critic

algorithm that operates over continuous action spaces and

explores the action space by adding an exploration noise to the

output action sampled from current policy. The exploration lets

the agent try new behaviors to discover the ones with higher

cumulative rewards.

Directly imposing exploration noise to the output action

actually performs poorly in our system. The reason is that

actions added by exploration noise often violate our constraints

on total number of consumers, leading to invalid exploration.

Our approach to tackle with this problem is to use parameter

space noise in exploration [29] instead of action space noise.

Parameter space noise approach adds adaptive noise to the

parameters of the policy neural network model rather than

to the output action. Specifically, this method perturbs policy

network parameters with additive Gaussian noise to generate

explorations. The scale of this parameter noise depends on

the variance in action space it induces. The introduction of

parameter noise solves the action constraint issue of action

space noise based DDPG, makes RL converge fast, and

exhibits a greater variety of behaviors in the learnt policy.

E. Iterative Model-based Reinforcement Learning

Model-based reinforcement learning approach has a limita-

tion: the learnt policy network often explores regions where

scarce training data is available for the environment model. To

overcome this limitation, MIRAS switches iteratively between

i) using the current learnt policy to interact with real environ-

ment and collect more training data of the actual interactions

between agent and the real environment, ii) training envi-

ronment model incrementally with newly collected training

data, and iii) using the updated environment model to improve

the current policy. As a result, we can avoid being stuck

in local optima of environment model and gradually build

more accurate model of environment with the help of newly

collected training data, as well as improve the policy.

The iterative training procedure is presented in Algorithm 2.

The outer loop represents training environment model using

interactions with real environment, and the inner loop repre-

sents policy training using environment model.

V. IMPLEMENTATION

We have implemented the aforementioned microservice

workflow system on Google Cloud Platform [4]. The system

is built upon a cluster of three Google Cloud virtual machines

Algorithm 2 Iterative Model-based Reinforcement Learning

Procedure

1: Initialize μΘ, f̂Φ, and D
2: repeat
3: Collect interactions with real environment using μΘ &

add to D
4: Train environment model f̂Φ using D
5: repeat
6: Collect synthetic samples from refined f̂Φ
7: Update policy μΘ using parameter noise DDPG

8: until Performance of the policy stops improving

9: until The policy performs well in real environment

(nodes), each of which has 1 vCPU (virtual CPU), 16GB
RAM, and 100GB secondary storage. We use 3 Zookeeper

[2] nodes to act as TDS servers to maintain microservice

dependency relationship. RabbitMQ [8] serves as the message

queue engine. We use Docker containers [3] as microservice

consumers which subscribe to RabbitMQ’s message queues.

Whenever a consumer of a specific task type is idle, it con-

sumes the next request of that type from RabbitMQ’s message

queue. We employ an acknowledgement mechanism between

RabbitMQ message queues and consumers to guarantee that

task requests (and the workflows they belong to) do not

get lost in the system. We use Kubernetes [6] as the con-

tainer orchestration engine. Kubernetes abstracts consumers as

Replication Controllers so that the number of consumers for

each microservice could be conveniently scaled. Kubernetes

also manages load balancing of containers among the three

machines in our cluster.

As for predictive model training, we use Python and its

Tensorflow [9] library. We employ OpenAI’s Baselines project

[7] as implementation of the DDPG algorithm.

VI. EVALUATION

We perform extensive evaluations to validate the perfor-

mance of MIRAS. Specifically, we (1) evaluate how accurate

the learnt predictive model is to depict the microservice

workflow system, (2) validate the convergence of model-

based reinforcement learning, and (3) compare our proposed

approach with existing workflow management algorithms.

A. Experimental Setup

1) Workflow workloads: To evaluate the performance of

MIRAS under different workloads and compare it to exist-

ing workflow processing algorithms, we use two real-world

scientific workflow computing ensembles as requests. The

first workflow ensemble is Material Science Data processing

workflows (MSD) [26][27], which consists of 3 workflows

— Type1 to Type3 — and 4 task types. The second workflow

ensemble is Laser Interferometer Gravitational Wave Observa-

tory (LIGO) [17], which consists of 4 workflows — DataFind,

CAT, Full, and Injection — and 9 task types. We use Poisson

process to emulate request traces for both workflow datasets.

128

2) Time window length setting: As we mention in Section

II, we divide time into discrete time windows and set one time

window to be one interaction of resource allocation. We set 30
seconds to be the length of one time window. This window

length is a trade-off. Firstly, we find that it usually takes 5
to 10 seconds for Kubernetes to generate a new container

or destroy an existing container (container generation and

destruction can be parallelized). Time window length should

be large enough so that the container “start-up” time has small

influence. Secondly, time window length should not be very

high in order to react responsively to environment feedback.

We have tested 5s, 15s, and 30s, and 30s is the best option.

3) MIRAS parameters for models: For MSD dataset, we

use a 3-layer neural network as the predictive model, each

layer has 20 neurons. Its Actor network has 3 layers, each

of which has 256 neurons. We use the same parameters for

the Critic network, except that we insert one of Critic’s inputs

— action — to the second layer. For LIGO, we use a one-

layer 20-neuron neural network as the predictive model. 4 The

RL networks of the LIGO datasets are similar to those of

MSD, except that both networks of LIGO have 512 neurons

at each layer. When we collect training data of interactions

with the MSD environment, we let the agent interact with the

environment for around 1, 000 steps and then we train the

predictive model based on collected samples. After every 25
steps during that process we reset the environment. “Reset”

means to provision sufficient consumers of each microservice

to reduce WIP close to 0. When training the RL agent with the

predictive model, the number of steps within one rollout (one

episode before resetting the predictive model) is also 25. For

LIGO we set the number of steps before training the predictive

model to be 2, 000, and rollout step to be 10.

4) Consumer constraints: As we deal with resource al-

location problem under constraints, it’s important to find

the correct constraints for the microservice systems. A good

constraint means that we don’t have redundant resources so

that good resource allocation policies are unnecessary, and

also resources should be sufficient so that feasible resource

allocation solutions can be found. In our experiments we use

14 and 30 to be consumer constraints for MSD dataset and

LIGO dataset respectively. In all following experiments we

make sure that the constraints are enforced.

B. Model Evaluation

In this subsection we evaluate the accuracy of our predictive

model on MSD and LIGO. As mentioned in Section IV-E,

we iteratively learn the predictive model and the RL policy.

The final policy to be used in microservice workflow system

control is obtained from interacting with the predictive model

learnt with all collected data. Thus we evaluate the accuracy of

4For the LIGO workflow which is more complex than MSD, we use a
predictive model with fewer layers, which is counterintuitive. In practice
we find that predictive model training suffers from overfitting if insufficient
training data is provided, which is the case for LIGO, where the input space
of the predictive model is extremely large. Therefore, we use a smaller neural
network to tackle the overfitting problem.

predictive models learnt with all collected data. For MSD we

collect 14, 000 data entries and for LIGO we collect 37, 000
data entries. After we obtain predictive models as discussed in

Section IV-C, we use another 100 data points as testing data.

We collect real data trace from the microservice workflow

system and we compare it with predictive data trace. Actions

are randomly selected and vary every 4 steps.

We evaluate the learnt model in two ways. First, like in

traditional supervised learning, we fix the input of the model

— current state and action — and compare the model output

— reward and next state — with ground truth. Second, as the

model we train is expected to have the look-forward capability,

we examine if the model gives consistently reasonable results

when running standalone, as what we do in policy learning.

To do this, we give the model an initial state, which is the

first state in testing data points; we predict subsequent states

and rewards using the predicted state of the last time window.

Model accuracy evaluation result is shown in Figure 5.

Here we compare the prediction accuracy of immediate reward

(average of next state WIP) and the first dimension of next

WIP (other dimensions show similar shape in figure). We

can observe that the prediction on fixed input is considerably

accurate. The iterative prediction trace shows a slightly higher

divergence with the ground truth due to cumulative prediction

error. Also we can observe that LIGO has a higher divergence

than MSD, due to its higher dimension of microservice types

(9 vs 4) and its higher complexity of topology. But predictions

on both datasets have the same trend with ground truth data,

and the models are sufficient for policy learning.

C. Policy Evaluation

In this part we evaluate MIRAS policy training. Namely,

we test whether MIRAS converges to yield good policies. As

mentioned earlier, we continuously switch between running

the RL agent on the real environment for some steps (1, 000
for MSD and 2, 000 for LIGO), training the predictive model,

and training RL agent based on the predictive model. At

the end of each iteration, we evaluate the learnt policy by

letting it interact with the environment for some steps and

observe aggregated rewards. As in sample collection phase,

we evaluate MIRAS agent for MSD dataset by letting it run

25 steps on the real microservice system environment. For

LIGO agent, we let it run 100 steps instead of 10 steps as in

training because LIGO is a more complicated workflow, and

we want to eliminate the effect of obtaining small WIP from

throttling upstream microservices.

Resulting training traces of MSD and LIGO are shown in

Figure 6a and Figure 6b. We can observe that at the beginning

iterations policies are not very good. After about 11 iterations

(11, 000 steps for MSD and 22, 000 steps for LIGO) both

policies begin to converge.

D. Comparing MIRAS with existing algorithms

In this part we use trained MIRAS policies discussed above

and compare them with existing workflow scheduling/resource

allocation algorithms. As our goal of resource allocation is

129

(a) MSD Average (b) MSD 1st dim (c) LIGO Average (d) LIGO 1st dim
Fig. 5: Predictive model accuracy. Red dashed line represents ground truth of the testing data. Blue line represents model predictive data on
fixed input. Green dotted line represents iterative prediction data when we fix actions and the initial state.

(a) MSD policy training trace (b) LIGO policy training trace
Fig. 6: Training traces for MSD and LIGO. The vertical axises
represent aggregated rewards over 25 steps for MSD or 100 steps
for LIGO and the horizontal axises represent training iterations.

to reduce response time of workflow requests, we compare

response time in this part instead of WIP (comparison of WIP

would yield similar results).

We compare MIRAS with 4 other algorithms. The 1st
algorithm is DRS [14], a resource allocation algorithm based

on Jackson open queuing networks proposed for stream pro-

cessing. The 2nd algorithm is heft [37], a scheduling algorithm

for scientific workflow processing. This algorithm gives each

task a priority and assigns machines to tasks according to

their priorities. This is different from our resource allocation

problem, where we focus on a higher level of resource assign-

ment and determine only the number of machines allocated

to each task at one time window. We adapt heft into our

system. Specifically, we assign tasks with priorities using their

proposed method. At the beginning of each time window

we make resource allocation decisions based on both task

number and task priority. The 3rd algorithm is MONAD, a

model predictive control based resource allocation algorithm

for microservice systems. The 4th algorithm is DDPG with no

predictive model, or model-free DDPG. That is, we directly

train DDPG models by interacting with the real environment.

To guarantee fairness, we train DDPG models using the same

number of interactions with MIRAS.

We evaluate the performances of MIRAS and 4 other

algorithms under variant environments by generating bursts

of workflow requests and testing how these algorithms adapt

to vast environment changes. For each of the two workflow

ensembles we generate three categories of bursts. For MSD

dataset, the bursts are 300 requests, 200 requests, 300 requests

for Type1, Type2, and Type3; 1000, 300, 400 for Type1 to

Type3; and 500, 500, 500. For LIGO dataset the bursts are

100, 100, 50, 30 for DataFind, CAT, Full, Injection; 150,

150, 80, 50; and 80, 80, 80, 80 for the 4 workflows. These

request bursts are fed into the system at the beginning of each

evaluation. We also feed the system with continuous workflow

requests sampled from Poisson process.

The results are shown in Figure 7 and Figure 8. As we can

see, MIRAS is better than or at least as good as the other

algorithms under the testing conditions, especially in long-

term returns. For the MSD dataset, which is less complicated,

we observe that MIRAS is significantly better than other

algorithms. For the LIGO dataset, MIRAS performs well under

small burst. When larger bursts, burst 2 and burst 3, are

fed into the system, we can see an increase followed by

a decrease of response time for MIRAS. In fact, when we

look into WIP variation at high burst scenarios, we observe

that MIRAS is very smart and puts aside certain tasks, e.g.,
Coire in workflows CAT, Full, and Injection, at the beginning

and focuses on other tasks. This causes the response times

of CAT, Full, and Injection workflows to increase. At a later

time when some other task queue is low, MIRAS turns back

to deal with Coire queues. Therefore, although at 20-th step

in Figure 8b and Figure 8c the response times of MIRAS

are higher than stream and heft, MIRAS is able to recover

quickly to a low response time level afterwards. We think

that this is the advantage of using reinforcement learning

in resource allocation. Reinforcement learning does not only

consider immediate return, more importantly, it considers all

future returns. Therefore, it considers long-term returns and

achieves a better global solution.

It’s worth mentioning that we find algorithms DRS,

MONAD, and DDPG fail to control the system under the

constraints. DRS is designed for stream processing and it

does not react responsively to condition changes. MONAD
focuses on short-term returns and is not suitable to yield a

global optimal solution. DDPG without predictive model could

perform well when supplied with sufficient training data, but

with limited interactions with the real environment it doesn’t

converge to a good policy, showing its poor sample efficiency.

VII. RELATED WORK

A. Resource Allocation for Cloud-based Systems

Cloud system based autonomous resource allocation or

scheduling has been intensively studied in literature. In [16],

Grandl et al. propose to adapt heuristics for multidimensional

bin packing problem to cluster scheduling. In [37] the authors

propose a scheduling algorithm for grid computing workflow

processing, but they focus on resource placement instead

130

(a) 1st burst (b) 2nd burst (c) 3rd burst
Fig. 7: Performance comparison under different conditions for MSD. In this figure and the next figure, stream refers to DRS algorithm, rl
refers to the original DDPG algorithm trained with the same number of interactions as MIRAS.

(a) 1st burs (b) 2nd burst (c) 3rd burst

Fig. 8: Performance comparison under different conditions for LIGO. We crop the y-axis in (a) and (c) for better visualization. Note that
part of stream trace is discarded in (a).

of resource allocation. For cloud system or grid computing

scheduling, several algorithms have been proposed based on

heuristics [34][36][28]. Their works differ from ours in that

they emphasize on data transmission improvement, and often

fail to effectively incorporate future rewards. Suresh et al. [31]

propose a cloud-based resource management framework for

workflow processing, but they focus on large-scale Web ap-

plications and adopt a distributed approach, which makes it

difficult to achieve fine-grained policies like MIRAS.

Meanwhile, there have also been works on cloud systems

using reinforcement learning. Zhou et al. present a RL-based

algorithm for adaptive resource management to optimize QoS

and power consumption goals [38]. In [15], RL is applied in

scheduling strategies which is learned online through inter-

action with the system. Wang et al. explore the application

of deep RL to the problem of provisioning cloud resources

[33], but they don’t deal with the workflow problem as we

do. Mao et al. present DeepRM, a system that translates the

problem of packing tasks with multiple resource demands into

a deep reinforcement learning problem [22]. However, the

experiment was simulated on a synthetic dataset and hasn’t

been employed in real systems. In addition, it doesn’t take

workflow management into account. Liu et al. proprose an

RL-based hierarchical control framework for cloud resource

allocation and power management in [21], but they don’t

consider workflow management either. Besides, they adopt

the model-free approach and thus their approach suffers from

expensive interactions with the real system, limiting their

evaluation to only simulation.

B. Deep Reinforcement Learning Based Systems

Apart from task scheduling or resource management, re-

inforcement learning, especially deep deinforcement learning

(DRL) [24], has been adopted gradually in building computer

or networking systems to fully take advantage of its outstand-

ing performance in decision making. In [35], Xu et al. propose

a DRL-based approach model-free control framework that

tackles traffic engineering. In [23], the authors implements a

system which uses DRL to select appropriate video bitrates

to improve quality of service. Li et al. implement an Apache

Storm based DRL system for scheduling in distributed stream

data processing systems [18].

VIII. CONCLUSION

Resource allocation for microservice workflow systems is

difficult due to dynamic workloads and complicated interac-

tions between microservices in each workflow. In this paper,

we propose to make resource allocation decisions based on

deep reinforcement learning control policy. To tackle the high

sample complexity problem of reinforcement learning, we

propose MIRAS, a model-based approach. Specifically, we let

a DDPG agent interact with the real microservice workflow

system and collect interacting profiling data. We use the

collected data to train a predictive model of the environment

and use this model to further train the DDPG agent. We iterate

among these three phases until the learnt agent is able to

make good resource allocation decisions in the microservice

workflow system. Our evaluations confirm the performances

of the learnt policy.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation

under grant NSF 1827126.

131

REFERENCES

[1] Amazon Simple Workflow Service. https://aws.amazon.com/swf/. Ac-
cessed: 2018-05-10.

[2] Apache ZooKeeper. https://zookeeper.apache.org. Accessed: 2019-01-
10.

[3] Docker. https://www.docker.com. Accessed: 2019-01-10.
[4] Google Cloud Platform. https://cloud.google.com. Accessed: 2019-01-

10.
[5] Goolge Cloud Composer. https://cloud.google.com/composer/. Ac-

cessed: 2018-05-10.
[6] Kubernetes. https://kubernetes.io/. Accessed: 2019-01-10.
[7] OpenAI Baselines. https://github.com/openai/baselines/. Accessed:

2019-01-10.
[8] RabbitMQ. https://www.rabbitmq.com. Accessed: 2019-01-10.
[9] Tensorflow. https://www.tensorflow.org/. Accessed: 2019-01-10.

[10] ALLEN, A. O. Probability, statistics, and queueing theory. Academic
Press, 2014.

[11] BALDINI, I., CASTRO, P., CHANG, K., CHENG, P., FINK, S.,
ISHAKIAN, V., MITCHELL, N., MUTHUSAMY, V., RABBAH, R.,
SLOMINSKI, A., ET AL. Serverless computing: Current trends and open
problems. In Research Advances in Cloud Computing. Springer, 2017,
pp. 1–20.

[12] DEELMAN, E., GANNON, D., SHIELDS, M., AND TAYLOR, I. Work-
flows and e-science: An overview of workflow system features and
capabilities. Future Generation Computer Systems 25, 5 (2009), 528–
540.

[13] DEISENROTH, M. P., RASMUSSEN, C. E., AND FOX, D. Learning
to control a low-cost manipulator using data-efficient reinforcement
learning.

[14] FU, T. Z., DING, J., MA, R. T., WINSLETT, M., YANG, Y., AND

ZHANG, Z. Drs: dynamic resource scheduling for real-time analytics
over fast streams. In Distributed Computing Systems (ICDCS), 2015
IEEE 35th International Conference on (2015), IEEE, pp. 411–420.

[15] GLAUBIUS, R., TIDWELL, T., GILL, C., AND SMART, W. D. Real-time
scheduling via reinforcement learning. In Proceedings of the Twenty-
Sixth Conference on Uncertainty in Artificial Intelligence (2010), ACM,
pp. 201–209.

[16] GRANDL, R., ANANTHANARAYANAN, G., KANDULA, S., RAO, S.,
AND AKELLA, A. Multi-resource packing for cluster schedulers. ACM
SIGCOMM Computer Communication Review 44, 4 (2015), 455–466.

[17] JUVE, G., CHERVENAK, A., DEELMAN, E., BHARATHI, S., MEHTA,
G., AND VAHI, K. Characterizing and profiling scientific workflows.
Future Generation Computer Systems 29, 3 (2013), 682–692.

[18] LI, T., XU, Z., TANG, J., AND WANG, Y. Model-free control for
distributed stream data processing using deep reinforcement learning.
Proceedings of the VLDB Endowment 11, 6 (2018), 705–718.

[19] LILLICRAP, T. P., HUNT, J. J., PRITZEL, A., HEESS, N., EREZ, T.,
TASSA, Y., SILVER, D., AND WIERSTRA, D. Continuous control with
deep reinforcement learning. In International conference on learning
representations (2016).

[20] LIU, J., PACITTI, E., VALDURIEZ, P., AND MATTOSO, M. A survey
of data-intensive scientific workflow management. Journal of Grid
Computing 13, 4 (2015), 457–493.

[21] LIU, N., LI, Z., XU, J., XU, Z., LIN, S., QIU, Q., TANG, J., AND

WANG, Y. A hierarchical framework of cloud resource allocation
and power management using deep reinforcement learning. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS) (2017), IEEE, pp. 372–382.

[22] MAO, H., ALIZADEH, M., MENACHE, I., AND KANDULA, S. Resource
management with deep reinforcement learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks (2016), ACM, pp. 50–
56.

[23] MAO, H., NETRAVALI, R., AND ALIZADEH, M. Neural adaptive video
streaming with pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017), ACM, pp. 197–
210.

[24] MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VENESS,
J., BELLEMARE, M. G., GRAVES, A., RIEDMILLER, M., FIDJELAND,
A. K., OSTROVSKI, G., ET AL. Human-level control through deep
reinforcement learning. Nature 518, 7540 (2015), 529.

[25] NAGABANDI, A., KAHN, G., FEARING, R. S., AND LEVINE, S. Neural
network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. arXiv preprint arXiv:1708.02596 (2017).

[26] NGUYEN, P., AND NAHRSTEDT, K. Resource management for elastic
publish subscribe systems: A performance modeling-based approach. In
Cloud Computing (CLOUD), 2016 IEEE 9th International Conference
on (2016), IEEE, pp. 561–568.

[27] NGUYEN, P., AND NAHRSTEDT, K. Monad: Self-adaptive micro-service
infrastructure for heterogeneous scientific workflows. In Autonomic
Computing (ICAC), 2017 14th IEEE International Conference on (2017),
IEEE.

[28] PANDEY, S., WU, L., GURU, S. M., AND BUYYA, R. A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments. In Advanced information networking
and applications (AINA), 2010 24th IEEE international conference on
(2010), IEEE, pp. 400–407.

[29] PLAPPERT, M., HOUTHOOFT, R., DHARIWAL, P., SIDOR, S., CHEN,
R. Y., CHEN, X., ASFOUR, T., ABBEEL, P., AND ANDRYCHOWICZ,
M. Parameter space noise for exploration. In International conference
on learning representations (2018).

[30] SILVER, D., LEVER, G., HEESS, N., DEGRIS, T., WIERSTRA, D., AND

RIEDMILLER, M. Deterministic policy gradient algorithms. In ICML
(2014).

[31] SURESH, L., BODIK, P., MENACHE, I., CANINI, M., AND CIUCU,
F. Distributed resource management across process boundaries. In
Proceedings of the 2017 Symposium on Cloud Computing (2017), ACM,
pp. 611–623.

[32] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An
introduction, vol. 1. MIT press Cambridge, 1998.

[33] WANG, Z., GWON, C., OATES, T., AND IEZZI, A. Automated cloud
provisioning on aws using deep reinforcement learning. arXiv preprint
arXiv:1709.04305 (2017).

[34] WIECZOREK, M., PRODAN, R., AND FAHRINGER, T. Scheduling of
scientific workflows in the askalon grid environment. Acm Sigmod
Record 34, 3 (2005), 56–62.

[35] XU, Z., TANG, J., MENG, J., ZHANG, W., WANG, Y., LIU, C. H.,
AND YANG, D. Experience-driven networking: A deep reinforcement
learning based approach. In IEEE INFOCOM 2018-IEEE Conference
on Computer Communications (2018), IEEE, pp. 1871–1879.

[36] YU, J., AND BUYYA, R. Scheduling scientific workflow applications
with deadline and budget constraints using genetic algorithms. Scientific
Programming 14, 3-4 (2006), 217–230.

[37] YU, J., BUYYA, R., AND RAMAMOHANARAO, K. Workflow scheduling
algorithms for grid computing. In Metaheuristics for scheduling in
distributed computing environments. Springer, 2008, pp. 173–214.

[38] ZHOU, X., WANG, K., JIA, W., AND GUO, M. Reinforcement learning-
based adaptive resource management of differentiated services in geo-
distributed data centers. In Quality of Service (IWQoS), 2017 IEEE/ACM
25th International Symposium on (2017), IEEE, pp. 1–6.

132

