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ABSTRACT
Magnetic Resonance Imaging (MRI) is a noninvasive imag-
ing technique that provides exquisite soft-tissue contrast with-
out using ionizing radiation. The clinical application of MRI
may be limited by long data acquisition times; therefore, MR
image reconstruction from highly undersampled k-space data
has been an active area of research. Many works exploit rank
deficiency in a Hankel data matrix to recover unobserved k-
space samples; the resulting problem is non-convex, so the
choice of numerical algorithm can significantly affect per-
formance, computation, and memory. We present a simple,
scalable approach called Convolutional Framework (CF). We
demonstrate the feasibility and versatility of CF using mea-
sured data from 2D, 3D, and dynamic applications.

Index Terms— parallel imaging, low rank, calibration-
less, multi-level block Hankel.

1. INTRODUCTION

MRI reconstruction from undersampled data implicitly relies
on priors to provide regularizing assumptions. Priors in MRI
reconstruction may be considered in two classes: coil proper-
ties and image structure. The spatial smoothness of coil sensi-
tivity maps may be modeled as filters with finite k-space sup-
port, leading to a shift-invariant prediction property for multi-
coil k-space data. GRAPPA [1] uses a fully-sampled auto-
calibration signal (ACS) region to solve for a linear prediction
kernel and applies the kernel to recover missing k-space sam-
ples. SPIRiT [2] is a generalization of GRAPPA that enforces
the linear predictability across the entire k-space. PRUNO [3]
generalizes SPIRiT further by using multiple kernels satisfy-
ing the linear prediction property. The shift invariant linear
prediction property may be expressed as a nullspace of a con-
volution operator, which is a multi-level Hankel-structured
matrix. And, the finite k-space support of coil sensitivities
translates to low-rank for the structured Hankel data matrix.
Calibration-free methods, such as SAKE [4], employ low-
rank structured matrix completion to recover missing k-space
samples. To improve computational efficiency, alternatives to
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the Cadzow’s algorithm (used in SAKE) have been proposed
for single-coil [5] and multi-coil [6] MRI.

Sparsity in the image domain also leads to existence of
approximate annihilating filters in the k-space and yields the
shift-invariant linear prediction property [7]. Any linear filter-
ing that sparsifies the image also yields annihilating filters in
the resulting weighted k-space. In this vein, ALOHA uses a
low-rank matrix completion method to recover missing sam-
ples in the weighted k-space [8].

We present a viewpoint and computational approach,
called Convolutional Framework (CF), that unifies many
reconstruction techniques and provides an algorithmic ap-
proach for structured matrix completion. Memory efficiency
permits high-dimensional imaging cases not demonstrated
previously. Numerical evaluations are presented for three
imaging applications: 2D, 2D cine, and 3D. Discussion and
summary conclude the manuscript.

2. METHODS

We first define notation for organizing k-space data into struc-
tured arrays. A tensor denotes a multidimensional array. Let
∗, ~, and � denote linear convolution, circular convolution,
and valid convolution, respectively. Valid convolution maps
to output points that do not depend on any boundary condi-
tions (i.e., no padding of the input). For example, for n-point
vector a and m-point vector b, m ≥ n, the lengths of a ∗ b
and a � b are m + n − 1 and m − n + 1, respectively. Let
s(A) be the row vector that lists the sizes of tensor A. Let
Hs(A){B} denote multi-level block Hankelization of the ten-
sor B such that right multiplication of the matrix Hs(A){B}
with vectorized A (vec{A}) is the vectorization of the valid
convolution result between B and A, i.e.,

Hs(A){B}vec{A} = vec{B � A}. (1)

Finally, ◦ denotes Hadamard multiplication between tensors
of the same size, and (·)H denotes conjugate transpose.

For generality, we denote the k-space by D with five di-
mensions: frequency encoding, first phase encoding, second
phase encoding, coil, and time; dimensions are ordered and
indexed by kx, ky, kz, l, t. We choose the kernel size s =
[fx, fy, fz, Nc, ft], where NC is the number of coils.
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Based on the shift-invariant linear predictability assump-
tion, CF leverages linear prediction in all dimensions, i.e., an-
nihilating filters exist for jointly processing all dimensions.
An iterative algorithm to apply the property has two simple
steps: (i) Estimate all annihilating filters from the current es-
timate of k-space; and (ii) Enforce annihilation for the whole
k-space and update the unobserved k-space. The CF process-
ing is summarized in Algorithm 1.

Algorithm 1 Pipeline of CF
Input:

Do: Observed k-space with zero filling
M: Sampling mask
s: Kernel size
r: Rank
tol: Tolerance

Output:
D̂(n): Recovered k-space
Initialization: n = 0, δ =∞, D̂(n) = Do

1: while δ > tol do
2: n = n+ 1
3: [Λ2,V ] = EIG(H H

s (D̂(n))Hs(D̂(n)))
4: V = [V‖ | V⊥] based on r
5: Split, reshape and flip V⊥ into kernels F1,F2, · · ·
6: D̂(n)

u = argminX
∑

i ‖(Do+X)�Fi‖2F s.t. X ◦M = 0

7: D̂(n) = Do + D̂(n)
u

8: δ = ‖D̂(n) − D̂(n−1)‖F /‖D̂(n−1)‖F
9: end while

The eigendecomposition in Step 3 extracts a null space (V⊥)
of the product of two Hankel operators; this avoids a singular
value decomposition of the explicit – and very large – convo-
lutional matrix H H

s . The operator product in Step 3 may be
calculated with limited memory and computation using con-
volution with small kernels, in lieu of explicit matrices. Step
6 is a large scale least squares problem; to limit memory re-
quirements, we avoid direct computation and instead rely on
the implicit convolution operator in a gradient descent (GD)
method with exact linear search (ELS). The memory require-
ment for GD + ELS is approximately only the original data
size, in contrast to explicit construction of Hankel matrices.
Step 6 minimizes null space energy while simultaneously pre-
serving Hankel structure and data consistency. In contrast,
SAKE enforces the Hankel structure, rank deficiency, and
data consistency as three separate projections. Also, spatial,
coil, and time dimensions are jointly incorporated in CF.

If there is an ACS region, we may directly estimate the
null space V⊥ from DACS, then enforce it to hold for the whole
k-space. This variant, which for 2D static MRI shares the as-
sumptions with PRUNO, avoids the iterative step to estimate
V⊥. Also, the type of convolution (linear, circular, or valid)
may differ across k-space dimensions; for example, we may
adopt circular convolution for the time dimension and valid
convolution for the others.

3. EXPERIMENTS AND RESULTS

We implement CF and compare to several existing techniques
for 2D, 3D, and 2D cine (“2D+t”) imaging. For a fair com-
parison, we set the kernel size to be 5kx × 5ky × NC for
CF, SAKE, and ALOHA. Since P-LORAKS [6] uses a disk-
shaped kernel, we choose a radius 3 for P-LORAKS (“C”
version) which leads to a similar but slightly larger kernel
including 29 > 5 × 5 = 25 k-space points per coil. The
reconstruction SNR generally increases with the kernel size
but so does the computation burden. The stopping tolerance,
relative change in the whole k-space, is 10−3 for all meth-
ods. A maximum of 200 iterations is used, except for SAKE,
in which case we also continue beyond 200 iterations until
the SNR of SAKE matches that of CF. This reconstruction
is referred to as SAKE*. We fine-tuned rank selection for
all methods with respect to the first dataset, then applied that
choice of rank to all other datasets. For other parameters,
e.g., regularization parameter λ for P-LORAKS, we employ
published default values. For the recruitment and consent of
human subjects used in this study, the ethical approval was
given by an Internal Review Board (2005H0124) at The Ohio
State University.

For 2D, we retrospectively downsampled three 3T brain
datasets using three different acceleration rates, R = 4, 6, and
8 and four different sampling patterns: (i) 2D random; (ii) 2D
random + 7kx × 7ky ACS region; (iii) 2D random + 17kx ×
17ky ACS region; (iv) 1D random + 5 ACS readout lines.
The data were compressed to eight virtual coils. Quantitative
results and representative frames are in Table 1 and Figure 1,
respectively. Not surprisingly, the performances of CF and
SAKE* are similar because they essentially solve the same
2D problem, but CF converges in fewer iterations and has a
significantly smaller memory footprint.

For 3D, we truncated a 3T knee dataset (downloaded from
mridata.org) to 160kx × 80ky × 64kz , then retrospectively
downsampled in ky and kz using 2D random sampling, with
15ky × 15kz ACS and fully sampled kx. The data were com-
pressed to four virtual coils for faster processing. A represen-
tative slice is shown in Figure 2. Since 3D CF reconstruction
utilizes similarity and redundancy in three dimensions, with
smaller degrees of freedom, it is able to outperform 2D CF re-
construction, which was separately applied to individual 2D
slices. Due to prohibitive memory requirements, it was not
feasible to extend SAKE’s implementation to 3D.

For 2D+t, we retrospectively downsampled three 3T car-
diac cine datasets at four different acceleration rates, R =
4, 6, 8, and 10 using a variable density sampling pattern [9].
The data were compressed to four virtual coils for faster pro-
cessing. We fine-tuned parameters for all methods with re-
spect to the first dataset, then applied these parameters to
other two datasets. We averaged the reconstruction SNR for
the other two different datasets. Quantitative results and rep-
resentative frames are in Table 2 and Figure 3. We compare
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to SENSE-based techniques, as SAKE and LORAKS do not
provide extension to these cases. The CF is consistently bet-
ter than L+S [10] and TV [11] by 1.1 to 2.3 dB in terms of
k-space SNR. With square-root sum of squared coils (SSoS),
the margin is even larger.

R=4 R=6 R=8
CF 22.4 dB 19.4 dB 15.8 dB

147.3 s 306.6 s 382.7 s
SAKE 20.5 dB 16.3 dB 13.7 dB

301.2 s 320.7 s 293.7 s
SAKE∗ 22.4 dB 19.4 dB 15.8 dB

593.5 s 772.2 s 722.8 s
P-LORAKS 22.3 dB 18.2 dB 14.4 dB

123.6 s 158.6 s 156.2 s

Table 1. 2D k-space reconstruction SNR (dB) and time (s)
comparison. Median time and average k-space SNR are com-
puted across two datasets and four different sampling pat-
terns. SAKE∗ denotes continuing SAKE past 200 iterations
until reaching CF SNR.

R=4 R=6 R=8 R=10
CF 29.5 28.2 27.3 26.3

L+S 27.1 26.4 25.5 25.1
TV 27.2 26.1 25.1 24.1

Table 2. 2D+t k-space reconstruction SNR (dB) averaged
over two datasets. CF offers more than one dB advantage
across all acceleration rates.

4. DISCUSSION AND CONCLUSION

Many parallel imaging approaches interpolate missing k-
space points by solving a rank-deficient matrix comple-
tion. Choice of solution method can affect performance
and memory requirements for this non-convex problem. CF
provides an effective, memory-efficient solution and can
subsume modeling choices found in existing GRAPPA-
inspired methods. The memory requirement for CF pro-
cessing (EIG + GD + ELS) is approximately the storage
of the fully sampled k-space tensor D. For example, for
a 3D static double-precision complex k-space tensor with
size 256kx × 256ky × 256kz × 8coils and a kernal size
10kx × 10ky × 10kz × 8coils, a SAKE computation requires
2 TB of memory, while CF only needs 2 GB.

Computation speed of CF can be further enhanced by us-
ing the following properties and processing steps. Automatic
filter size adaptation: Many annihilating relationships can
be efficiently and approximately captured by a small kernel.
Thus, the CF computation can be sped up by adaptively pro-
gressing from small kernels to larger ones as iterations evolve.
Automatic center to full k-space reconstruction: Because the

Fig. 1. A representative 2D reconstruction from dataset 2 with
sampling pattern without the ACS region and acceleration rate
4. Left: SSoS images. Right: 10× absolute error. (a) fully
sampled; (b) CF (23.0 dB SNR); (c) P-LORAKS (20.8 dB);
(d) SAKE (14.9 dB).

annihilation relationship holds for the entire k-space, we can
apply CF for a small region of k-space and extract the null
space, then enforce the estimated null space for the whole
k-space. Highly parallizable: All convolutions inside each
iterative step are independent and thus highly parallizable.
Thus, we can fully utilize multi-cluster, multi-core CPU,
or GPU architectures to accelerate the processing. John-
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Fig. 2. A representative slice from the 3D knee dataset. SSoS
image (top row); 10× absolute error (bottom row). Columns
are: fully sampled image; 3D reconstruction via CF (23.2 dB)
and slice-by-slice reconstruction via CF (22.8 dB). Compared
to CF 3D, the error map of CF 2D has more structure.

Fig. 3. A representative frame from 2D+t reconstruction.
SSoS images (left) and 20× absolute error (right). (a)
fully sampled; (b) CF (29.0 dB); (c) TV (27.1 dB); (d) L+S
(26.8 dB). Compared to CF, the error maps of TV and L+S
have more structure.

son–Lindenstrauss Lemma (JLL): The dimensionality of the
null space and thus the size of the least squares problem can
be further reduced by applying JLL in each iteration. In

summary, simple conceptual framework, broad applicability,
unifying nature, memory efficient computation, and a poten-
tial to further improve the computation speed make CF an
attractive framework for MRI reconstruction.
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