

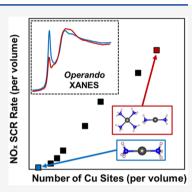
pubs.acs.org/JPCL Perspective

# Combining Kinetics and *Operando* Spectroscopy to Interrogate the Mechanism and Active Site Requirements of $NO_x$ Selective Catalytic Reduction with $NH_3$ on Cu-Zeolites

Siddarth H. Krishna, Casey B. Jones, Jeffrey T. Miller, Fabio H. Ribeiro, and Rajamani Gounder\*



Cite This: J. Phys. Chem. Lett. 2020, 11, 5029-5036




**ACCESS** I

III Metrics & More

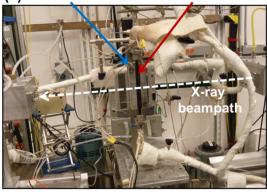
Article Recommendations

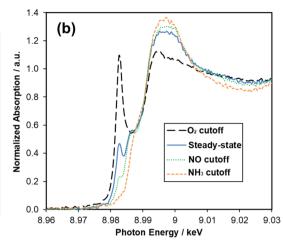
ABSTRACT: NO<sub>x</sub> selective catalytic reduction (SCR) with NH<sub>3</sub> on Cu-zeolites is a commercial emissions control technology for diesel and lean-burn engines. Mitigating low-temperature emissions remains an outstanding challenge, motivating an improved understanding of the reaction mechanism, active site requirements, and rate-determining processes at low temperatures (<523 K). In this Perspective, we discuss how *operando* spectroscopy provides crucial information about how the structures, coordination environments, and oxidation states of Cu active sites depend on reaction conditions and sample composition; when combined with kinetic measurements, such *operando* data provide insights into the Cu site and spatial density requirements for reduction and oxidation steps relevant to the Cu(II)/Cu(I) SCR redox cycle. Isolated Cu ions coordinated to zeolite oxygen atoms *ex situ* become coordinated to NH<sub>3</sub> *in situ* and dynamically interconvert between mononuclear and binuclear NH<sub>3</sub>-solvated Cu complexes to catalyze SCR turnovers. We conclude with future research directions that can benefit from combining quantitative kinetic measurements with *operando* spectroscopy.



u-CHA zeolites (e.g., Cu-SSZ-13) are used as catalysts for the selective catalytic reduction (SCR) of nitrogen oxides (NO<sub>x</sub>, x = 1, 2) with NH<sub>3</sub>, commercially implemented a decade ago as the preferred technology for NO<sub>x</sub> emissions abatement in diesel and lean-burn engines. The majority of NO<sub>x</sub> emissions from diesel engine exhaust occur at the low temperatures (<523 K) experienced during "cold-start" conditions and "low-load" operation; thus, mitigating NO<sub>x</sub> emissions at low temperatures remains an outstanding challenge to meet future emissions regulations. As such, basic research efforts in the scientific community have focused on understanding the NO<sub>x</sub> SCR reaction mechanism, the Cu active site requirements, and the nature of the rate-determining processes at low temperatures.

These research questions have been studied using a diverse range of scientific tools and methodologies common to the heterogeneous catalysis and inorganic materials communities. SCR reactivity is typically assessed by measuring the dependence of NO conversion on temperature (i.e., "light-off curves") in reactant pressure and reactor hydrodynamic regimes resembling those of practical operation. The temperature corresponding to a specific NO conversion (i.e.,  $T_{50}$  or  $T_{90}$ , corresponding to 50% or 90% conversion) is often used as a figure of merit for the onset of reactivity at low temperature (i.e., the "light-off" temperature). Yet, such figures of merit convolute the effects of properties that are extrinsic (e.g., gas composition, residence time) and intrinsic (e.g., framework


topology, elemental composition, atomic arrangement) to Cuzeolites, each of which influences the microscopic kinetic and mechanistic details that underpin the observed catalytic behavior. Kinetic and mechanistic details are interrogated more directly through reaction rate measurements, rigorously normalized to the number of catalytically active sites,<sup>5</sup> in differential hydrodynamic regimes that result in uniform temperature and concentration profiles throughout catalyst beds and within zeolite crystallites; such hydrodynamic regimes are not guaranteed solely by operating under differential reactant conversion. The implementation of differential (i.e., gradient-less) reactor hydrodynamics ensures that spectroscopic measurements made on any portion of the catalyst bed are representative of the entire bed, validating the use of operando measurements to directly link kinetic and spectral data.


As evidenced by a growing body of literature,  $^{6-12}$  operando characterization is critical to obtain accurate descriptions of the working state of Cu-zeolite catalysts during low-temperature NO<sub>x</sub> SCR with NH<sub>3</sub>, because the oxidation state, coordination

Received: March 22, 2020 Accepted: June 4, 2020 Published: June 4, 2020

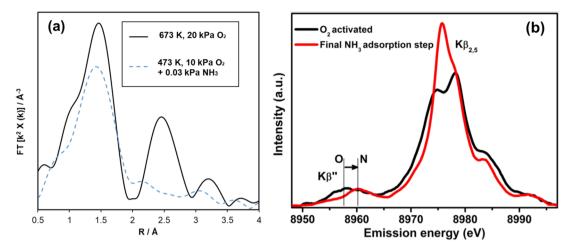


# (a) Heater block Glassy carbon reactor





**Figure 1.** (a) Reactor apparatus for *operando* XAS measurements including gas lines, heater block, and glassy carbon reactor, as originally described by Kispersky et al. <sup>15</sup> The front plate of the heater block has been removed to show the position of the glassy carbon reactor. (b) *Operando* XANES spectra of Cu-SSZ-13 during low-temperature NO<sub>x</sub> SCR with NH<sub>3</sub> ("steady-state") and after cutoff of O<sub>2</sub>, NO, or NH<sub>3</sub> from the SCR reactant stream. Adapted from Paolucci et al. <sup>9</sup> with permission from John Wiley and Sons. Copyright 2014.


environment, and nuclearity of Cu active sites change in response to the reaction temperature and gas composition. To this end, X-ray absorption techniques are particularly useful, because the X-ray absorption near-edge structure (XANES) region can provide information about metal coordination environments and oxidation states, while the extended X-ray absorption fine structure (EXAFS) region can provide information about the identity, number, and distance of other atoms in surrounding coordination spheres. A broader commentary on the role of operando spectroscopy in active site elucidation is provided by Weckhuysen, 13 and a more extensive review of how kinetic measurements can be combined with operando and transient X-ray absorption spectroscopy (XAS) to investigate the nature of active sites in heterogeneous catalysts is provided by Kondrat and van Bokhoven. 14 This Perspective will highlight research efforts to combine quantitative kinetic measurements and operando spectroscopic data to probe the structure and function of Cu-zeolites during low-temperature NO<sub>x</sub> SCR with NH<sub>3</sub>, in order to study the following scientific questions regarding the mechanism, kinetics, and Cu active site requirements for different elementary steps in the SCR reaction:

- (i) What are the prevalent Cu oxidation states during SCR, and how do their relative proportions respond to changes in reaction conditions?
- (ii) How does the Cu coordination environment evolve with reaction conditions and temperature, and what are the resulting implications for the low-temperature SCR reaction mechanism?
- (iii) What are the Cu active site requirements for the different Cu(II) reduction and Cu(I) oxidation processes that may occur during low-temperature SCR?

The measurement of X-ray spectra under operando conditions requires a synchrotron X-ray source in order to obtain high-quality spectra under the temperature and pressure conditions relevant for reaction and a reactor capable of maintaining differential hydrodynamic regimes while being able to transmit X-rays, such as a vitreous (i.e., glassy) carbon reactor. Such an apparatus (Figure 1a) was originally used by Kispersky et al. 15 to show that Cu-exchanged zeolites and

silicoaluminophosphates (ZSM-5, SSZ-13, and SAPO-34, containing ~2-3 wt % Cu) prepared to contain solely Cu(II) ions after oxidative pretreatments evolve to a mixture of Cu(I) and Cu(II) under low-temperature SCR conditions (473 K; 0.03 kPa NO, 0.03 kPa NH<sub>3</sub>, 5 kPa O<sub>2</sub>, 5 kPa H<sub>2</sub>O, 5 kPa CO<sub>2</sub>, balance He). SCR rates did not correlate solely with the amount of either Cu(II) or Cu(I) present under operando conditions, implying that a Cu(II)/Cu(I) redox cycle is involved in the SCR reaction mechanism. <sup>15</sup> The mixture of Cu(I) and Cu(II) oxidation states observed under operando conditions further indicates that both Cu(I) oxidation and Cu(II) reduction half-cycles are kinetically relevant under typical SCR reaction conditions. In contrast, XANES spectra collected in situ on catalyst wafers exposed to SCR reactant gases show only minority amounts of Cu(I), likely because of non-differential hydrodynamic (e.g., gas bypassing) and transport (e.g., intracrystalline concentration gradients) artifacts. 15 These data demonstrate the necessity of operando measurements in obtaining accurate kinetic and mechanistic insights on the working state of Cu-zeolite catalysts.

The implication of both Cu(I) and Cu(II) species in the SCR redox mechanism motivates questions regarding which Cu structures present in Cu-SSZ-13 ex situ are able to evolve to the active Cu(I) and Cu(II) states under operando conditions and how the relative proportions of active Cu(I) and Cu(II) states vary in response to changes in the reaction environment.<sup>3</sup> Bates et al. performed spectroscopic (UV-visible, XAS) measurements on Cu-SSZ-13 zeolites (Si/Al = 4.5, Cu/ Al = 0-0.35) to show that initially hydrated, isolated Cu(II) ions (but not bulk Cu-oxide clusters<sup>16</sup>) convert to a mixture of Cu(II) or Cu(I) states under low-temperature SCR conditions (473 K; 0.032 kPa NO, 0.032 kPa NH<sub>3</sub>, 10 kPa O<sub>2</sub>, 6 kPa H<sub>2</sub>O, 8 kPa CO<sub>2</sub>, balance He), consistent with the ex situ and in situ characterization data (XAS and XRD) reported by Deka et al. 17,18 A subsequent report by Paolucci et al. showed that different isolated Cu(II) site motifs in Cu-SSZ-13 present ex situ (Cu(II) or Cu(II)OH, for sample compositions containing Si/Al = 4.5-25, Cu/Al = 0-0.45) were able to evolve to similar Cu(II) and Cu(I) structures under low-temperature SCR conditions.<sup>6</sup> Starting from steady-state SCR catalysis on Cu-SSZ-13 samples that contained a mixture of Cu(I) (~30%) and Cu(II) (~70%) under operando conditions (Cu-SSZ-13,



**Figure 2.** (a) EXAFS spectra of Cu-SSZ-13 (Si/Al = 4.5, Cu/Al = 0.09) measured at 298 K after high-temperature oxidative treatment (673 K, 20 kPa O<sub>2</sub>), and measured at 473 K after subsequent low-temperature exposure to NH<sub>3</sub> (473 K, 0.03 kPa NH<sub>3</sub>, 10 kPa O<sub>2</sub>). Adapted from Paolucci et al. Copyright 2016 American Chemical Society. (b) Background-subtracted vtc-XES spectra of Cu-SSZ-13 (Si/Al = 13, Cu/Al = 0.44) following high-temperature oxidative treatment (673 K, 50 kPa O<sub>2</sub> in He) and after subsequent low-temperature exposure to NH<sub>3</sub> (393 K, 0.13 kPa NH<sub>3</sub> in He). Reprinted from Giordanino et al. Copyright 2014 American Chemical Society.

Si/Al = 5, Cu/Al = 0.11–0.16; 473 K; 0.032 kPa NO, 0.032 kPa NH<sub>3</sub>, 10 kPa O<sub>2</sub>, 5 kPa H<sub>2</sub>O, balance He), Paolucci et al. showed that removing either NH<sub>3</sub> or NO from SCR reactant streams resulted in the transient oxidation of the majority of the Cu to its Cu(II) state (Figure 1b), indicating that both NO and NH<sub>3</sub> are required for complete Cu(II) reduction, as also observed by Janssens et al. Analogous experiments that instead removed O<sub>2</sub> from SCR reactant streams resulted in the transient reduction of the majority of the Cu to its Cu(I) state (Figure 1b), indicating that O<sub>2</sub> is required for Cu(I) oxidation.

Further kinetic and spectroscopic investigations showed that NH3 not only acts as a co-reductant in NOx SCR but also coordinates to and solvates isolated Cu(I) and Cu(II) ions under low-temperature SCR reaction conditions. Using operando XAS measurements of Cu-SSZ-13 at low temperatures (<523 K), Paolucci et al.,6 Janssens et al.,11 and Lomachenko et al. 10 independently demonstrated that the Cu(I) and Cu(II) species observed in XANES spectra are essentially identical to homogeneous Cu(I)(NH<sub>3</sub>)<sub>2</sub> and Cu(II)(NH<sub>3</sub>)<sub>4</sub> complexes. Moreover, the EXAFS region shows first-shell Cu-X coordination numbers of ~2 for Cu(I) and ~4 for Cu(II) species, while the second-shell region shows the absence of scattering to T atoms (T = Si and Al) in the zeolite lattice (Figure 2a). In agreement with these findings, Giordanino et al. 19 used valence-to-core X-ray emission spectroscopy (vtc-XES) to show that exposure of Cu-SSZ-13 (Si/Al = 13, Cu/Al = 0.44) to  $NH_3$  (393 K, 0.13) kPa NH<sub>3</sub> in He) causes Cu ions to become ligated by N rather than O atoms (Figure 2b). Peden and co-workers used in situ diffuse reflectance IR spectroscopy (DRIFTS) to show that the perturbation of lattice T-O-T vibrations of Cu-SSZ-13 (Si/Al = 10, Cu/Al = 0.14), which results from coordination of metal ions within siloxane rings, decreases in the presence of  $\rm NH_3$  (523 K, 0.05 kPa  $\rm NH_3$ ). These observations support the interpretation that Cu ions are coordinated to NH3 ligands rather than to zeolitic oxygen atoms. In contrast, at higher temperatures, Deka et al. observed that Cu ions in Cu-SSZ-13 (Si/Al  $\approx$  18, Cu/Al  $\approx$  0.65) show XANES features indicative of dehydrated Cu ions (573 K; 0.1 kPa NO, 0.1 kPa NH<sub>3</sub>, 5 kPa O<sub>2</sub>, balance He).<sup>17</sup> Consistent with these findings, Paolucci et al. observed that Cu ions in Cu-SSZ-13 (Si/Al =

4.5, Cu/Al = 0.08) at high temperature in the presence of NH $_3$  and O $_2$  (673 K, 0.03 kPa NH $_3$ , 10 kPa O $_2$ ) show second-shell scattering to T atoms in the zeolite lattice, as also reported by Lomachenko et al. <sup>10</sup>

The preponderance of evidence indicates that isolated Cu ions in Cu-zeolites are solvated by  $NH_3$  under low-temperature (<523 K) SCR-relevant reaction conditions. *Operando* 

Operando structural characterization reveals signatures solely for homogeneous Cu—amine coordination complexes during low-temperature NO<sub>x</sub> SCR; from these data alone, one could not determine that a solid zeolite powder was actually placed in the path of the X-ray beam.

structural characterization reveals signatures solely for homogeneous Cu—amine coordination complexes during low-temperature  $NO_x$  SCR; from these data alone, one could not determine that a solid zeolite powder was actually placed in the path of the X-ray beam. The fact that Cu ion active sites are  $NH_3$ -solvated under low-temperature conditions but zeolite-bound under high-temperature conditions suggests that there is a transition in the mechanism of  $NO_x$  SCR with temperature, which has been invoked as an explanation for the "seagull dip" in NO-conversion observed in light-off curves in an intermediate temperature range (523–623 K).

Kinetic measurements on Cu-CHA samples with widely varying Cu content, combined with *operando* and transient XAS measurements, have been used to better understand the effects of Cu structure and coordination by NH<sub>3</sub> on the mechanism of low-temperature NO<sub>x</sub> SCR. Low-temperature NO<sub>x</sub> SCR rates (per mass, 473 K) were observed by Peden et al.  $^{23}$  (Si/Al = 12, Cu/Al = 0–0.033; 473 K; 0.035 kPa NO, 0.035 kPa NH<sub>3</sub>, 14 kPa O<sub>2</sub>, 2.5 kPa H<sub>2</sub>O, balance N<sub>2</sub>) and Paolucci et al. (Si/Al = 15, Cu/Al = 0–0.12; 473 K; 0.03 kPa

NO

 $N_2 + H_2O$ 

NH+

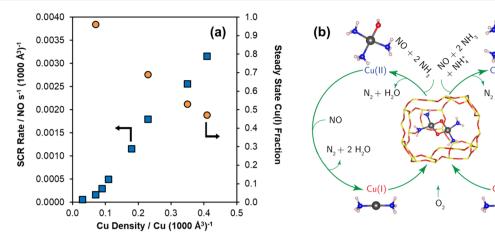



Figure 3. (a) SCR rate (per pore volume) and steady-state Cu(I) fraction versus Cu density (per pore volume) for Cu-SSZ-13 (Si/Al = 15, Cu/Al = 0–0.44; 473 K; 0.03 kPa NO, 0.03 kPa NH<sub>3</sub>, 10 kPa O<sub>2</sub>, 2.5 kPa H<sub>2</sub>O, 5 kPa CO<sub>2</sub>, balance N<sub>2</sub>). Adapted from Paolucci et al. Reprinted with permission from AAAS. Copyright 2017. (b) Proposed mechanism of low-temperature NO<sub>x</sub>-SCR. The reduction half-cycle proceeds on NH<sub>3</sub>-solvated Cu(II) ions residing near one (left-hand cycle) or two (right-hand cycle) framework Al atoms, while the O<sub>2</sub>-oxidation half-cycle proceeds via restricted diffusion of two NH<sub>3</sub>-solvated Cu(I) ions into single cages to form binuclear intermediates. Gray, Cu; yellow, Si; red, O; blue, N; and white, H. From Paolucci et al. Reprinted with permission from AAAS. Copyright 2017.

NO, 0.03 kPa NH<sub>3</sub>, 10 kPa O<sub>2</sub>, 2.5 kPa H<sub>2</sub>O, 5 kPa CO<sub>2</sub>, balance N<sub>2</sub>) to increase with a second-order dependence on Cu content for Cu-SSZ-13 samples with low Cu content (Figure 3a). In contrast, Gao et al. reported that hightemperature NO<sub>x</sub> SCR rates (per mass, 623 K) increase linearly with Cu content even for Cu-SSZ-13 samples with low Cu content (Si/Al = 6, Cu/Al = 0-0.016; 0.035 kPa NO, 0.035 kPa NH<sub>3</sub>, 14 kPa O<sub>2</sub>, 2.5 kPa H<sub>2</sub>O, balance N<sub>2</sub>),  $^{24}$ suggesting that different active site requirements and mechanisms prevail in low- and high-temperature regimes. Operando XAS measurements were used by Paolucci et al. to provide insights into the mechanistic origin of the non-single site kinetic regime observed at low temperature. With decreasing Cu content on Cu-SSZ-13 samples, the fraction of Cu(I) under low-temperature SCR conditions increases systematically and approaches unity, indicating that Cu(I) oxidation becomes increasingly rate-limiting at lower Cu content. These operando XAS measurements provide a direct link between the observed second-order dependence of SCR rates on Cu concentration and the rates of SCR-relevant Cu(I) oxidation processes (Figure 3a).

Operando XAS measurements provide a direct link between the observed second-order dependence of SCR rates on Cu concentration and the rates of SCR-relevant Cu(I) oxidation processes.

Transient XAS measurements have been used by Paolucci et al. to further isolate the kinetic behavior of the Cu(I) oxidation half-cycle, after first fully reducing Cu-SSZ-13 samples of different Cu content (0.5–3.7 wt %) to the Cu(I) state in an NO and NH<sub>3</sub> environment (473 K, 0.03 kPa NH<sub>3</sub>, 0.03 kPa NO). Transient changes to the Cu oxidation state were monitored during subsequent O<sub>2</sub>-assisted oxidation (473 K, 10 kPa O<sub>2</sub>) to show that rates of Cu(I) oxidation are best

described by a rate equation that is second-order in Cu concentration (Figure 4a). This kinetic behavior implies that two mononuclear Cu(I) complexes, which were nominally isolated after the NO + NH3 reduction step, are able to react with O2 and become oxidized to the Cu(II) state. This proposal is supported by a combination of density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations by Paolucci et al. which showed that NH3-solvated Cu ions are bound ionically to anionic (i.e., framework Al) centers in the zeolite lattice, and that NH3 solvation endows mobility to Cu ions that is sufficient to enable their diffusion between adjacent cages in the CHA structure and formation of binuclear O<sub>2</sub>-bridged Cu complexes within a single cage. Furthermore, a fraction of Cu(I) remains unoxidized at the end of the transient O<sub>2</sub>-assisted oxidation of Cu-SSZ-13 (Figure 4a). This fraction of unoxidizable Cu(I) decreases systematically with increasing Cu density, implying that a fraction of Cu(I) ions are isolated from other Cu(I) ions and thus unable to pair and become oxidized by O<sub>2</sub>. Similarly, Liu et al. reported that O<sub>2</sub>-assisted oxidation (473 K, 10 kPa O<sub>2</sub>) of prereduced Cu-CHA (Si/Al = 15) resulted in a higher percentage of unoxidizable Cu(I) on a sample of lower Cu content (47% Cu(I), Cu/Al = 0.03) than on a sample with a higher Cu content (5% Cu(I), Cu/Al = 0.29). XANES and EXAFS measurements of the final state of Cu(II) in the O<sub>2</sub>oxidation transient experiments by Paolucci et al. were consistent with a binuclear O2-bridged Cu complex, such as that shown in Figure 3b, which contains Cu in oxidation states of +2.1 according to DFT-computed Bader charge analysis.

In contrast to  $O_2$ -assisted oxidation, Paolucci et al. showed that  $NO_2$ -assisted oxidation (473 K, 0.01 kPa  $NO_2$ ) of  $Cu(I)(NH_3)_2$  complexes in Cu-SSZ-13 was best described by a rate model that is first-order in Cu concentration, and that all Cu(I) became oxidized to the Cu(II) state (Figure 4b). These experimental findings are consistent with DFT calculations indicating that  $NO_2$  can oxidize single Cu(I) sites to form  $Cu(II)-NO_2^{-.9}$  Ueda et al. used transient XAS measurements to study the reduction and oxidation half cycles for low-temperature (398 K)  $NO_x$  SCR on fully reduced Cu-ZSM-5 samples (Si/Al = 20, Cu/Al = 0.50; 0.1 kPa NO, 0.1 kPa  $NH_3$ ), finding that only a fraction (~0.50) of Cu(I) could be

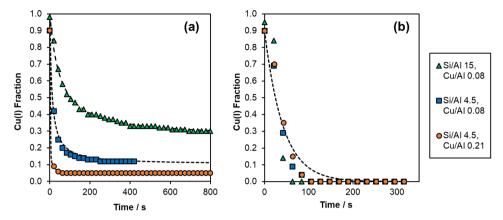



Figure 4. Transient oxidation (473 K) of pre-reduced Cu-SSZ-13 with varying Cu content using (a) 10 kPa  $O_2$  or (b) 0.01 kPa  $NO_2$  as the oxidant. Adapted from Paolucci et al. Reprinted with permission from AAAS. Copyright 2017.

oxidized to Cu(II) in  $O_2$  (10 kPa), but that all Cu(I) could be oxidized in a mixture of NO and  $O_2$  (0.1 kPa NO, 10 kPa  $O_2$ ), potentially because of *in situ* NO oxidation to form NO<sub>2</sub>. Taken together, the different kinetic behavior of  $O_2$ -assisted and NO<sub>2</sub>-assisted oxidation of Cu(I)(NH<sub>3</sub>)<sub>2</sub> complexes in Cu-SSZ-13 imply that the "standard" SCR reaction (eq 1;  $O_2$  as the oxidant) has different active site requirements than the "fast" SCR reaction (eq 2; NO<sub>2</sub> as the oxidant):

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$
 (1)

$$2NO_2 + 2NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$
 (2)

Thus, the ratio of  $NO_2$  and  $O_2$  present in diesel exhaust streams, which depends on the reaction conditions of the combustion and oxidation processes located upstream of the SCR catalyst, <sup>27</sup> influences low-temperature SCR "light-off" behavior, given the prevalence of Cu(I) species at these conditions (Figure 3a) that implies Cu(I) oxidation processes are kinetically relevant.

These experimental kinetic and operando XAS measurements provide evidence that Cu-zeolites cannot be treated as conventional heterogeneous catalysts under low-temperature NO<sub>x</sub> SCR reaction conditions, given that low-temperature (<523 K) SCR rates on Cu-SSZ-13 samples that nominally contain isolated Cu ions show both first-order and second-order dependences on Cu concentration for different oxidation and reduction processes in the SCR cycle. NH<sub>3</sub>-solvation mobilizes Cu ions in a manner regulated by electrostatic interactions with anionic centers (i.e., framework Al) in the zeolite lattice, such that the spatial proximity of Cu ions influences rates of the O<sub>2</sub>-assisted SCR oxidation half-cycle. The mobility of ionic active sites regulated by electrostatic tethering to the support falls outside canonical descriptions of homogeneous or heterogeneous catalysis.

The mobility of ionic active sites regulated by electrostatic tethering to the support falls outside canonical descriptions of homogeneous or heterogeneous catalysis.

The combination of *operando* XAS and quantitative kinetic measurements has been instrumental in developing our current

understanding of the reaction mechanism and active site and spatial density requirements of low-temperature  $NO_x$  SCR with  $NH_3$ . The currently proposed reaction mechanism involves reduction of  $NH_3$ -solvated Cu(II) ions by NO and  $NH_3$  and  $O_2$ -assisted oxidation of two  $NH_3$ -solvated Cu(I) ions to form binuclear  $O_2$ -bridged Cu intermediates (Figure 3b). As we discuss next, investigations that combine kinetic measurements and *operando* spectroscopy can continue to provide new insights into the three research questions outlined earlier in our Perspective.

Concerning the first question regarding Cu oxidation states and the extent to which reduction and oxidation half-cycles determine overall SCR rates, we note that typically used SCR reaction conditions cause both half-cycles to behave as kinetically relevant, as evidenced by the mixture of Cu(I) and Cu(II) observed during steady-state turnover (Figure 3a). Yet, the intrinsic rates of the two half-cycles should depend on the specific reaction conditions used (e.g., gas pressures, temperatures). Doronkin et al. performed spatially resolved operando XANES measurements on Cu-SAPO-34 (3.48 wt % Cu) during NO, SCR reactions (528 K; 0.1 kPa NO, 0.1 kPa NH<sub>3</sub>, 10 kPa O<sub>2</sub>, 1.5 kPa H<sub>2</sub>O, balance He) and found that the Cu(II) fraction systematically increased down the length of the catalyst bed as NO conversions increased and led to higher oxidant (O<sub>2</sub>) to reductant (NO and NH<sub>3</sub>) ratios.<sup>28</sup> Greenaway et al. used modulation excitation of the inlet NO gas pressure during operando XANES, which caused oscillation in the Cu(I) and Cu(II) fractions (Cu-SSZ-13, Si/Al = 13, Cu/Al = 0.39; 523 K; 0.126 kPa NO, 0.126 kPa NH<sub>3</sub>, 10 kPa O<sub>2</sub>, balance N<sub>2</sub>), indicating that the relative oxidant-to-reductant pressures affect the distribution of Cu oxidation states.<sup>29</sup> Furthermore, Liu et al. demonstrated that decreasing the O2 pressure (0-10 kPa O2) systematically increases the Cu(I) fraction observed using operando XANES of Cu-SSZ-13 (Si/Al = 15, Cu/Al = 0.03 or 0.29; 473 K; 0.1 kPa NO, 0.1 kPa NH<sub>3</sub>, balance He). Thus, varying the reaction conditions (e.g., O<sub>2</sub> pressure) should perturb the redox cycle so as to allow the isolation of reduction-limited and oxidation-limited kinetic regimes. We recently showed that NO<sub>x</sub>-SCR rates (per Cu) display a Langmuirian dependence on O2 pressure, while operando XAS reveals that the prevalent Cu oxidation state transitions from Cu(I) to Cu(II) with increasing O<sub>2</sub> pressure.<sup>30</sup> Such measurements allow extracting rate constants in limiting kinetic regimes: oxidation-limited rate constants (per Cu) increase with an approximately linear dependence on Cu density, consistent with a non-mean field dual-site oxidation mechanism; reduction-limited rate constants increase more gradually Cu density, in part reflecting changes in the fraction of Cu ions that can form binuclear intermediates and thus participate in SCR turnovers. This approach enables interrogating how reaction conditions (e.g., temperature, gas composition) and catalyst composition (e.g., zeolite topology, active site density and arrangement) affect the kinetics of the oxidation and reduction half cycles separately, providing insights into the kinetic and mechanistic factors that determine low-temperature  $\mathrm{NO}_x$  conversion and "light-off" behavior during practical operation.

Regarding the second question about the coordination environment of Cu ions, although prior work has demonstrated that NH3 participates as both a reactant and a solvent during low-temperature NO<sub>x</sub> SCR, an NH<sub>3</sub> inhibition effect has also been reported in several studies. 22,31,32 After establishing steady-state NO<sub>x</sub> SCR under predominantly oxidation-limited conditions (463-498 K; 0.1 kPa NO, 0.1 kPa NH<sub>3</sub>, 6 kPa O<sub>2</sub>, 2 kPa H<sub>2</sub>O, balance N<sub>2</sub>), Marberger et al. removed NH3 from the reactant stream and monitored transient changes in the oxidation state of Cu-SSZ-13 (Si/Al = 14, Cu/Al = 0.17) and the gas composition of the product stream; 31 as NH<sub>3</sub> was depleted from the system with increasing time-on-stream, NO conversions increased to a maximum value and then subsequently decreased, although the mechanistic origin of such NH<sub>3</sub> inhibition effects remains unclear. Additionally, when a stoichiometric NO and NH3 ratio is present in the feed stream, the coordination environment of Cu ions may change with increasing conversion and in turn increasing H<sub>2</sub>O/NH<sub>3</sub> ratios, as it is plausible that H<sub>2</sub>O progressively replaces NH<sub>3</sub> in the Cu ligand environment. Such changes in the extent of NH<sub>3</sub> and H<sub>2</sub>O coordination, which can be identified spectroscopically using vtc-XES (Figure 2b) to identify Cu coordination to N or O atoms, 19 could influence Cu ion mobility and thus the rates of different elementary steps in the SCR redox cycle. A combination of kinetic and operando spectroscopic measurements under varying NH<sub>3</sub> and H<sub>2</sub>O pressures would provide additional insights into the mechanism of NH3 inhibition and the coordination environment of Cu ions under the integral (and near complete) NO and NH3 conversions experienced during practical application.

Finally, regarding the third question about the active site requirements of low-temperature NO<sub>x</sub> SCR and the dual Cu(I)-site dependence of the O<sub>2</sub>-assisted oxidation process, we hypothesize that the rate of this half-cycle is influenced by the mobility and spatial distribution of Cu ions during Cu(I) ion pairing. 7,30 Even though Cu(II) reduction by NO + NH<sub>3</sub> is hypothesized to be a "single-site" process, reduction-limited rates also depend on Cu spatial density because not all Cu ions can participate in the full SCR redox cycle if some are isolated and thus unable to react in the Cu(I) oxidation half-cycle.<sup>30</sup> Kinetic parameters for both oxidation and reduction halfcycles, in turn, could be sensitive to the density and arrangement of cationic Cu sites and their charge-compensating anionic lattice sites, as well as the zeolite framework topology.<sup>30</sup> Chen et al. used a combination of DFT and AIMD methods to predict that the stability of two proximal Cu(I)(NH<sub>3</sub>)<sub>2</sub> species in CHA is dependent on the framework Al arrangement.<sup>33</sup> EPR spectroscopic measurements by Godiksen et al. during transient oxidation (473 K; 0.1 kPa NO, 10 kPa O<sub>2</sub>) of pre-reduced Cu(I)(NH<sub>3</sub>)<sub>2</sub> (Cu-SSZ-13;

Si/Al = 15, Cu/Al = 0.04 or 0.09) were reported to reveal distinct spectroscopic signatures for Al–O–Si–O–Al versus Al–O–Si–O–Si–O–Al within the six-membered ring (6-MR) of CHA,  $^{34}$  and  $\rm O_2$ -assisted oxidation of the (Al–O–Si–O–Al) site was reported to be an order of magnitude faster than oxidation of the (Al–O–Si–O–Si–O–Al) site. Synthetic strategies to vary the arrangement of Al atoms in the CHA framework  $^{35-37}$  can be used to study such effects of Al arrangement on the kinetic behavior of different steps in SCR redox cycles. These hypotheses can be tested using steady-state and transient kinetic measurements combined with XAS, while varying the reaction conditions to probe oxidation-limited and reduction-limited kinetic regimes.

More broadly, while mean-field rate expressions have been able to describe a wide variety of catalytic processes and represent the standard approach in catalysis research, the mechanism of low-temperature NO<sub>x</sub> SCR cannot strictly be described by traditional heterogeneous "single-site" kinetic models, nor by homogeneous "dual-site" oxidation kinetic models. As stated by Boudart, the turnover rate of a catalytic process, rigorously normalized to the number of (purported) active sites, is a quantitative measurement useful in interrogating the active site requirements for a catalytic reaction.<sup>5</sup> According to transition-state theory, turnover rate constants reflect Gibbs free energy differences between transition states and kinetically relevant intermediates, thus serving as a characterization tool of the reaction coordinate. Combining

Combining intrinsic kinetic measurements (rather than non-quantitative assessments such as "light-off" curves) with operando spectroscopy (rather than ex situ or in situ measurements) is critical to understanding the rate-limiting processes and most abundant reactive intermediates under reaction conditions.

intrinsic kinetic measurements (rather than non-quantitative assessments such as "light-off" curves) with *operando* spectroscopy (rather than *ex situ* or *in situ* measurements) is critical to understanding the rate-limiting processes and most abundant reactive intermediates under reaction conditions. This approach led to the discovery of the dual-site and non-meanfield behavior of the  $O_2$ -assisted Cu(I) oxidation half-cycle of low-temperature  $NO_x$  SCR, and it will be necessary to further decouple the intrinsic reactivity of Cu active sites from the fraction of Cu sites that participate in steady-state turnover.

## AUTHOR INFORMATION

# **Corresponding Author**

Rajamani Gounder — Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States; oorcid.org/0000-0003-1347-534X; Email: rgounder@purdue.edu

#### **Authors**

- Siddarth H. Krishna Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Casey B. Jones Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Jeffrey T. Miller Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States: Occid.org/0000-0002-6269-0620
- Fabio H. Ribeiro Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpclett.0c00903

#### **Notes**

The authors declare no competing financial interest.

# **Biographies**

Siddarth H. Krishna is currently a Henson postdoctoral fellow in the Davidson School of Chemical Engineering at Purdue University under the supervision of Rajamani Gounder. He received his B.S. in Chemical Engineering from the University of California, Berkeley in 2014 and his Ph.D. in Chemical Engineering from the University of Wisconsin, Madison in 2019. His research interests focus on fundamental catalytic principles to address sustainability challenges including automotive pollution abatement and the production of fuels and chemicals from alternative feedstocks.

- Casey B. Jones is currently pursuing his Ph.D. in Chemical Engineering at Purdue University under the guidance of co-advisors Rajamani Gounder and Fabio Ribeiro. He received his B.S. in Chemical Engineering from the University of Wisconsin in 2010 and worked at Virent, Inc. researching the catalytic conversion of biomass to fuels and chemicals. His current research focuses on studying Cuzeolites for the selective catalytic reduction of NO<sub>x</sub>.
- Jeffrey T. Miller spent 25 years working in R&D for the refining and petrochemical industry at Amoco-BP. In 2008, he became the heterogeneous catalysis group leader at Argonne National Laboratory and has been a professor in the Davidson School of Chemical Engineering at Purdue University since 2015. His research interests include energy and environmental catalysis, especially the characterization of catalysts using *in situ* synchrotron X-ray characterizations.

Fabio H. Ribeiro is the R. Norris and Eleanor Shreve Professor of Chemical Engineering and Director of the National Science Foundation Engineering Research Center on the Innovative and Strategic Transformation of Alkane Resources (CISTAR) at the Davidson School of Chemical Engineering at Purdue University. He received his Ph.D. from Stanford University in 1989 and completed a postdoctoral fellowship at the University of California, Berkeley. His research interests are centered on the kinetics of heterogeneous catalytic reactions and catalyst characterization under reaction conditions. He has been working on automotive catalysts for over 20 years.

Rajamani Gounder is the Larry and Virginia Faith Associate Professor in the Davidson School of Chemical Engineering at Purdue University. He received his B.S. in Chemical Engineering from the University of Wisconsin in 2006 and his Ph.D. in Chemical Engineering from the University of California, Berkeley in 2011; he completed a postdoctoral appointment at the California Institute of Technology in 2013. His research interests include studying the fundamentals and applications of catalysis for energy and the

environment, focusing on converting conventional and emerging carbon feedstocks to fuels and chemicals, and automotive pollution abatement.

#### ACKNOWLEDGMENTS

We acknowledge financial support provided by the National Science Foundation DMREF program under award number 1922173-CBET. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. MRCAT operations and beamline 10-BM are supported by the Department of Energy and the MRCAT member institutions.

### REFERENCES

- (1) Gounder, R.; Moini, A. Automotive NO<sub>x</sub> Abatement Using Zeolite-Based Technologies. *React. Chem. Eng.* **2019**, *4*, 966–968.
- (2) Lambert, C. K. Perspective on SCR NO<sub>x</sub> Control for Diesel Vehicles. *React. Chem. Eng.* **2019**, *4*, 969–974.
- (3) Paolucci, C.; Di Iorio, J. R.; Ribeiro, F. H.; Gounder, R.; Schneider, W. F. Chapter One Catalysis Science of  $NO_x$  Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. In *Adv. Catal.*; Song, C., Ed., Academic Press, 2016; Vol. 59, pp 1–107.
- (4) Peden, C. H. F. Cu/Chabazite Catalysts for 'Lean-Burn' Vehicle Emission Control. *J. Catal.* **2019**, *373*, 384–389.
- (5) Boudart, M. Turnover Rates in Heterogeneous Catalysis. *Chem. Rev.* 1995, 95, 661–666.
- (6) Paolucci, C.; Parekh, A. A.; Khurana, I.; Di Iorio, J. R.; Li, H.; Albarracin Caballero, J. D.; Shih, A. J.; Anggara, T.; Delgass, W. N.; Miller, J. T.; et al. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. J. Am. Chem. Soc. 2016, 138, 6028–6048.
- (7) Paolucci, C.; Khurana, I.; Parekh, A. A.; Li, S.; Shih, A. J.; Li, H.; Di Iorio, J. R.; Albarracin-Caballero, J. D.; Yezerets, A.; Miller, J. T.; et al. Dynamic Multinuclear Sites Formed by Mobilized Copper Ions in  $NO_x$  Selective Catalytic Reduction. *Science* **2017**, 357, 898–903.
- (8) Bates, S. A.; Verma, A. A.; Paolucci, C.; Parekh, A. A.; Anggara, T.; Yezerets, A.; Schneider, W. F.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. Identification of the Active Cu Site in Standard Selective Catalytic Reduction with Ammonia on Cu-SSZ-13. *J. Catal.* **2014**, *312*, 87–97.
- (9) Paolucci, C.; Verma, A. A.; Bates, S. A.; Kispersky, V. F.; Miller, J. T.; Gounder, R.; Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F. Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13. *Angew. Chem., Int. Ed.* **2014**, *53*, 11828–11833.
- (10) Lomachenko, K. A.; Borfecchia, E.; Negri, C.; Berlier, G.; Lamberti, C.; Beato, P.; Falsig, H.; Bordiga, S. The Cu-CHA DeNO $_{\rm x}$  Catalyst in Action: Temperature-Dependent NH $_3$ -Assisted Selective Catalytic Reduction Monitored by Operando XAS and XES. *J. Am. Chem. Soc.* **2016**, *138*, 12025–12028.
- (11) Janssens, T. V. W.; Falsig, H.; Lundegaard, L. F.; Vennestrøm, P. N. R.; Rasmussen, S. B.; Moses, P. G.; Giordanino, F.; Borfecchia, E.; Lomachenko, K. A.; Lamberti, C.; et al. A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. *ACS Catal.* **2015**, *5*, 2832–2845.
- (12) Günter, T.; Carvalho, H. W. P.; Doronkin, D. E.; Sheppard, T.; Glatzel, P.; Atkins, A. J.; Rudolph, J.; Jacob, C. R.; Casapu, M.; Grunwaldt, J.-D. Structural Snapshots of the SCR Reaction Mechanism on Cu-SSZ-13. *Chem. Commun.* **2015**, *51*, 9227–9230.
- (13) Weckhuysen, B. M. Determining the Active Site in a Catalytic Process: Operando Spectroscopy Is More than a Buzzword. *Phys. Chem. Chem. Phys.* **2003**, *5*, 4351–4360.
- (14) Kondrat, S. A.; van Bokhoven, J. A. A Perspective on Counting Catalytic Active Sites and Rates of Reaction Using X-Ray Spectroscopy. *Top. Catal.* **2019**, *62*, 1218–1227.

- (15) Kispersky, V. F.; Kropf, A. J.; Ribeiro, F. H.; Miller, J. T. Low Absorption Vitreous Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic Reduction of NO<sub>x</sub> by NH<sub>3</sub>. Phys. Chem. Chem. Phys. **2012**, 14, 2229–2238.
- (16) Verma, A. A.; Bates, S. A.; Anggara, T.; Paolucci, C.; Parekh, A. A.; Kamasamudram, K.; Yezerets, A.; Miller, J. T.; Delgass, W. N.; Schneider, W. F.; et al. NO Oxidation: A Probe Reaction on Cu-SSZ-13. *J. Catal.* **2014**, *312*, 179–190.
- (17) Deka, U.; Juhin, A.; Eilertsen, E. A.; Emerich, H.; Green, M. A.; Korhonen, S. T.; Weckhuysen, B. M.; Beale, A. M. Confirmation of Isolated Cu<sup>2+</sup> Ions in SSZ-13 Zeolite as Active Sites in NH<sub>3</sub>-Selective Catalytic Reduction. *J. Phys. Chem. C* **2012**, *116*, 4809–4818.
- (18) Beale, A. M.; Lezcano-Gonzalez, I.; Slawinksi, W. A.; Wragg, D. S. Correlation between Cu Ion Migration Behaviour and DeNO $_{\rm x}$  Activity in Cu-SSZ-13 for the Standard NH $_3$ -SCR Reaction. *Chem. Commun.* **2016**, 52, 6170–6173.
- (19) Giordanino, F.; Borfecchia, E.; Lomachenko, K. A.; Lazzarini, A.; Agostini, G.; Gallo, E.; Soldatov, A. V.; Beato, P.; Bordiga, S.; Lamberti, C. Interaction of NH<sub>3</sub> with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study. *J. Phys. Chem. Lett.* **2014**, *5*, 1552–1559.
- (20) Luo, J.; Gao, F.; Kamasamudram, K.; Currier, N.; Peden, C. H. F.; Yezerets, A. New Insights into Cu/SSZ-13 SCR Catalyst Acidity. Part I: Nature of Acidic Sites Probed by NH<sub>3</sub> Titration. *J. Catal.* **2017**, 348, 291–299.
- (21) Zhang, Y.; Peng, Y.; Li, K.; Liu, S.; Chen, J.; Li, J.; Gao, F.; Peden, C. H. F. Using Transient FTIR Spectroscopy to Probe Active Sites and Reaction Intermediates for Selective Catalytic Reduction of NO on Cu/SSZ-13 Catalysts. ACS Catal. 2019, 9, 6137–6145.
- (22) Fahami, A. R.; Günter, T.; Doronkin, D. E.; Casapu, M.; Zengel, D.; Vuong, T. H.; Simon, M.; Breher, F.; Kucherov, A. V.; Brückner, A.; et al. The Dynamic Nature of Cu Sites in Cu-SSZ-13 and the Origin of the Seagull NO<sub>x</sub> Conversion Profile during NH<sub>3</sub>-SCR. React. Chem. Eng. **2019**, *4*, 1000–1018.
- (23) Gao, F.; Mei, D.; Wang, Y.; Szanyi, J.; Peden, C. H. F. Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis. J. Am. Chem. Soc. 2017, 139, 4935–4942.
- (24) Gao, F.; Walter, E. D.; Kollar, M.; Wang, Y.; Szanyi, J.; Peden, C. H. F. Understanding Ammonia Selective Catalytic Reduction Kinetics over Cu/SSZ-13 from Motion of the Cu Ions. *J. Catal.* **2014**, 319, 1–14.
- (25) Liu, C.; Kubota, H.; Amada, T.; Kon, K.; Toyao, T.; Maeno, Z.; Ueda, K.; Ohyama, J.; Satsuma, A.; Tanigawa, T. In Situ Spectroscopic Studies on the Redox Cycle of NH<sub>3</sub>–SCR over Cu-CHA Zeolites. *ChemCatChem* **2020**, *12*, 3050–3059.
- (26) Ueda, K.; Ohyama, J.; Satsuma, A. In Situ XAFS Study of Dynamic Behavior of Cu Species in MFI-Zeolite under Element Gases of Ammonia Selective Catalytic Reduction. *Chem. Lett.* **2017**, 46, 1390–1392.
- (27) Cavataio, G.; Girard, J.; Patterson, J. E.; Montreuil, C.; Cheng, Y.; Lambert, C. K. Laboratory Testing of Urea-SCR Formulations to Meet Tier 2 Bin 5 Emissions. In *SAE World Congress & Exhibition*; SAE International, 2007.
- (28) Doronkin, D. E.; Casapu, M.; Günter, T.; Müller, O.; Frahm, R.; Grunwaldt, J.-D. Operando Spatially- and Time-Resolved XAS Study on Zeolite Catalysts for Selective Catalytic Reduction of NO<sub>x</sub> by NH<sub>3</sub>. J. Phys. Chem. C 2014, 118, 10204–10212.
- (29) Greenaway, A. G.; Marberger, A.; Thetford, A.; Lezcano-González, I.; Agote-Arán, M.; Nachtegaal, M.; Ferri, D.; Kröcher, O.; Catlow, C. R. A.; Beale, A. M. Detection of Key Transient Cu Intermediates in SSZ-13 during NH<sub>3</sub>-SCR DeNO<sub>x</sub> by Modulation Excitation IR Spectroscopy. *Chem. Sci.* **2020**, *11*, 447–455.
- (30) Jones, C. B.; Khurana, I.; Krishna, S. H.; Shih, A. J.; Delgass, W. N.; Miller, J. T.; Ribeiro, F. H.; Schneider, W. F.; Gounder, R. Effects of Dioxygen Pressure on Rates of  $NO_x$  Selective Catalytic Reduction with  $NH_3$  on Cu-CHA Zeolites. *J. Catal.* **2020**, in press, DOI: 10.1016/j.jcat.2020.05.022.
- (31) Marberger, A.; Petrov, A. W.; Steiger, P.; Elsener, M.; Kröcher, O.; Nachtegaal, M.; Ferri, D. Time-Resolved Copper Speciation

- during Selective Catalytic Reduction of NO on Cu-SSZ-13. *Nat. Catal.* **2018**, 1, 221–227.
- (32) Clark, A. H.; Nuguid, R. J. G.; Steiger, P.; Marberger, A.; Petrov, A. W.; Ferri, D.; Nachtegaal, M.; Kröcher, O. Selective Catalytic Reduction of NO with NH<sub>3</sub> on Cu-SSZ-13: Deciphering the Low and High-Temperature Rate-Limiting Steps by Transient XAS Experiments. *ChemCatChem* **2020**, *12*, 1429–1435.
- (33) Chen, L.; Falsig, H.; Janssens, T. V. W.; Jansson, J.; Skoglundh, M.; Grönbeck, H. Effect of Al-Distribution on Oxygen Activation over Cu–CHA. *Catal. Sci. Technol.* **2018**, *8*, 2131–2136.
- (34) Godiksen, A.; Isaksen, O. L.; Rasmussen, S. B.; Vennestrøm, P. N. R.; Mossin, S. Site-Specific Reactivity of Copper Chabazite Zeolites with Nitric Oxide, Ammonia, and Oxygen. *ChemCatChem* **2018**, *10*, 366–370.
- (35) Di Iorio, J. R.; Gounder, R. Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. *Chem. Mater.* **2016**, 28, 2236–2247.
- (36) Di Iorio, J. R.; Nimlos, C. T.; Gounder, R. Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity. ACS Catal. 2017, 7, 6663–6674.
- (37) Di Iorio, J. R.; Li, S.; Jones, C. B.; Nimlos, C. T.; Wang, Y.; Kunkes, E.; Vattipalli, V.; Prasad, S.; Moini, A.; Schneider, W. F.; et al. Cooperative and Competitive Occlusion of Organic and Inorganic Structure-Directing Agents within Chabazite Zeolites Influences Their Aluminum Arrangement. *J. Am. Chem. Soc.* **2020**, *142*, 4807–4819.