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Abstract. A single micro-electromechanical (MEMS) resonator can be shown to exhibit behaviors unexpected in
a simple resonant structure. For small driving forces, the resonator displays typical simple harmonic oscillator re-
sponse. As the driving force is increased, the resonator shows the slightly more complex, but well understood, Duffing
response. Rather unexpected response behavior can appear when the resonator frequency is detuned by nonlinear-
ity to where two oscillatory modes of the resonator begin to interact through nonlinear coupling due to an internal
resonance. The paper focuses on how the resonator response changes as the internal resonance is approached in the
operating parameter space and how that behavior is conveniently represented in a bifurcation diagram. This behavior
is accurately captured by a generic mathematical model. We describe an analysis of the model which shows how this
coupled response varies with the system and drive parameters, especially focusing on the nonlinear coupling strength
between the two modes.
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1 Introduction

Resonant MEMS and NEMS structures are used in a wide variety of fields, including force1–6 and

mass sensing,7–11 timing and frequency control12,13 and quantum information science.14–16 In the

majority of these applications, the resonant structures have been restricted to operate with a linear

response. The primary reasons behind this limitation is to eliminate noise from non-linear effects,

to reduce mixing and modulations, and to manage the dynamic range of the response. However, in

recent years, more focus has been placed on operating a resonator in its nonlinear range. Benefits

have been found in applications with non-linear resonators, including simplified operation of reso-

nant structures in closed-loop operation,17 increased synchronization range,18 and frequency tuning

of the nonlinear mode.19 One of the biggest benefits of frequency tuning of a nonlinear mode is

to simplify the process of creating nonlinearly coupled modes in a resonator. Mode coupling, in

turn, has many interesting and unexpected consequences, including improved phase and frequency
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stability of oscillators,20,21 enhanced sensitivity of mass detectors,22 controlled tuning of the rate

of energy dissipation to the environment,23,24 and parametric amplification in inertial measuring

devices.25 Here, we will focus on understanding the response of a nonlinear resonator experienc-

ing mode coupling by describing how the frequency response changes as a function of parameters,

including its bifurcation structure. The dynamics of the response are described by two oscillator

equations with a single coupling parameter as described in the modeling section below. By vary-

ing the coupling parameter, the model describes how the mode coupling evolves from a relatively

simple single mode nonlinear resonance to the complicated coupled mode response observed in

the experiments.

2 Experiment

The MEMS resonator used for this research is fabricated from single crystal silicon and is com-

prised of 3 beams mutually attached at their centers to allow for tuning of a flexural and a torsional

mode. Each beam is 500 µm long, 3 µm wide, and 10 µm tall (Fig. 1a). For force actuation and

signal transduction, the resonator has a pair of comb drives, one on each side, at the center of the

beams. The resonator is operated in a vacuum chamber to reduce air damping. To characterize

the response, an output voltage from a lock-in amplifier is applied to one of the comb drives. The

signal from the opposite comb drive is sent to a transimpedance amplifier and then a second stage

voltage amplifier and then input into the lock-in amplifier. The frequency and amplitude of an ap-

plied harmonic voltage are varied to explore the device dynamic response. The linear response of

the resonator is characterized by an in-plane flexural mode with fflex = 64850 Hz and linear decay

rate of �flex = 0.6 Hz (Fig. 1b), and a higher order out-of-plane torsional mode with ftor = 199599

Hz and �tor = 1.6 Hz (Fig. 1c). A schematic of the resonator deformation for each mode is shown
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Fig 1 MEMS resonator and characterization. (a) Scanning electron micrograph of the MEMS resonator. (b) Voltage
response of the flexural mode of the resonator in its linear range. (c) Voltage response of the torsional mode of the
resonator in its linear range. (d) Schematic showing the two resonator modes with their dissipation rates, �flex and �tor,
and coupling strength, .

below the frequency responses (Fig. 1d), and the dissipation for each mode and the nonlinear mode

coupling are also depicted.

When the drive voltage is increased, the resonator frequency response deviates from the sim-

ple harmonic response and follows Duffing behavior.26 For different driving voltages, different

resonant levels of detuning can be achieved, as shown in Fig. 2a. The frequencies at which the

resonator response transitions abruptly to the noise floor for different drive voltages are shown by

the arrows above each curve. Eventually, for large enough driving voltage, an internal resonance

is found to occur at a frequency, fIR, as indicated by the black arrow, at which these jumps ac-

cumulate. The creation of a bifurcation diagram (Fig. 2b) from the frequency response of the

resonator is described elsewhere.27 It is important to note that the bifurcation diagram shows var-

ious types of stability changes that occur in the parameter plane of the applied voltage amplitude
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Fig 2 Nonlinear response of a MEMS resonator. (a) Graph showing the response of the MEMS resonator to different
levels of applied harmonic voltages (gray: 10 mV, red: 20 mV, green: 30 mV, blue: 40 mV, and black: 50 mV) as
the drive frequency is increased. The arrows indicate the frequencies corresponding to an abrupt change in response
amplitude of the flexural mode of the resonator. The black arrow is at the frequency of the internal resonance fIR.
(b) Graph of the bifurcation conditions indicating qualitative changes in response as a function of drive amplitude and
drive frequency. The black squares and blue triangles are the data points represented in (a). The solid green and red
lines are obtained from the mathematical model using parameters fitted from the experimental device.

versus frequency. The curves are obtained from the model described below and indicate predicted

qualitative changes in the response, and the symbols show corresponding experimental data points,

demonstrating the validity and accuracy of the model. The response shown here is significantly

different than the linear response plot shown in (Fig. 2a), and from the usual Duffing response,

which occurs until the jump point reaches fIR. This difference is represented by the complicated

bifurcation pattern seen in the narrow frequency range near fIR in (Fig. 2b) where the red and the

vertical green curves are seen to occur above the normal Duffing bifurcation curve (green). The

region in frequency space between the vertical green curve on the left, the red curve on the right,

and below the red curve on top represents an area in operating space where stable oscillations are

not found. This void in operating space is unexpected from such a simple system and could result

in significant operating problems if not properly accounted for.
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3 Mathematical Model

We consider the essential model that captures the dynamic response of the system. The model is

comprised of a Hamiltonian with two vibration modes characterized by coordinates qk and mo-

menta pk (k = 1, 2). The primary mode (k = 1) is a flexural mode and is subjected to harmonic

drive and has a quartic Duffing nonlinearity. The secondary mode (k = 2) is a torsional mode,

which is modeled by a linear harmonic oscillator. The modes are coupled via a nonlinear resonant

term that describes the energy exchange between the modes.26
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Linear friction forces are added to each mode and complex amplitudes A1,2 are used to de-

scribe the amplitudes and phases of the modes relative to a frame of reference that rotates with

the harmonic drive. The rotating wave approximation is employed to average out fast oscillations,

resulting in a pair of equations in (A1, A2) that describe their time evolution on a slow scale related

to the relaxation time of the modes.20 These equations are given by

Ȧ1 = �[1 + i(�!1 � |A1|2)]A1 + iA2Ā
2
1 � iF, (2)

Ȧ2 = �(�21 + i�!2)A2 +
i

9
A

3
1, (3)

where �!1 = 2⇡(fD � fflex)/�flex, �!2 = 2⇡(3fD � ftor)/�flex, �21 = �tor/�flex,  is the

normalized coupling parameter, and F is the normalized driving amplitude, which is proportional

to the drive voltage Vo via a calibration factor (for details see28). This model provides a means

3URF��RI�63,(�9RO������������������
'RZQORDGHG�)URP��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�FRQIHUHQFH�SURFHHGLQJV�RI�VSLH�RQ����6HS�����
7HUPV�RI�8VH��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�WHUPV�RI�XVH



of predicting the system response as drive parameters (Vo and fD) are varied for a given set of

device parameters. The stationary response (A1s, A2s) of the coupled system can be found by

solving Ȧ1,2 = 0. Due to the linearity of the second mode, A2s is easily found to be A2s =

iA
3
1s/9(�21 + i�!2), which is essentially a Lorentzian with amplitude dictated by the coupling

strength. This is used in the equation for A1s to yield a single implicit expression for A1s in terms

of the system and drive parameters,

F = i


1 + i(�!1 � |A1s|2) +


2|A1s|4

9(�21 + i�!2)

�
A1s. (4)

This equation can be used to obtain nonlinear frequency response curves for different drive ampli-

tudes and device parameters. One sees that the flexural mode response, obtained by solving Eq.

(4), approaches the standard Duffing response29 as the coupling term  tends to zero, while the

effects of mode coupling are strongest near the IR, which occurs when |(�21 + i�!2)| is small,

namely, when �!2 ! 0.

In previous work, the stability of the stationary response was analyzed using a linear stability

analysis and considered the behavior of small perturbations to the stationary response.27 In this

analysis, two generic types of instabilities and attendant bifurcations occur. Saddle-node bifurca-

tions are found when two response branches merge and annihilate one another when system or

drive parameters are varied. Hopf bifurcations result in periodic modulation of the resonator vibra-

tional amplitude and can be stable or unstable. Saddle-node (green) and Hopf (red) bifurcations

are plotted in Fig. 2b, overlaid with the experimental data. The bifurcation values are determined

using a the modal coupling coefficient with value ̃ = 2.964 · 1012 V �2
s
�2.

As is evident from Fig. 2, in the vicinity of the IR (i.e., for drive frequency of nearly one third
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of the torsional mode), the response of the flexural mode deviates dramatically from the standard

Duffing response of a single mode. Therefore, in the remainder of this section we explore how

this anomalous behavior evolves as we vary the coupling parameter . For the sake of simplicity

we consider only the stationary response of the flexural mode and its saddle-node bifurcations.

While this analysis is incomplete, as it ignores the Hopf bifurcations and the fascinating dynamical

outcomes that are not stationary responses, it depicts the essential difference in the response curve

of the flexural mode due to the resonant interaction with the torsional mode.

From Eq. (4) we find that the stationary magnitude and phase of the steady-state response can

be implicitly expressed as

|A1s|2 =
F

2

h
1 + 2�21

9(�2
21+�!2

2)
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i2
+
h
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9(�2
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2)
|A1s|4
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9(�2
21+�!2

2)
|A1s|4

, (6)

and the condition for saddle-node bifurcations can be found by requiring29 that dfD/d|A1s|2 = 0.

Starting with a small coupling strength  ! 0, we recover the standard Duffing response (Fig.

3, top panel), where from Eq. (5) we can have, at most, three stationary responses for a single

frequency [since the equation for the stationary response, Eq. (5), is cubic], a maximal response at

�!1 = |A1s|2 where the phase change signs [Eq. (6)], and two saddle-node bifurcation points [the

condition for the bifurcation points is a quadratic equation, which stems from the differentiation

of Eq. (5)]. As we increase the coupling strength to moderate and large values (Fig. 3, middle

and bottom panels), we see that the small divisor 2
/(�2

21 + �!
2
2) in Eqs.(5)-(6) starts to play a

crucial rule when �!2 ! 0. Mathematically, the equation for the stationary response [Eq. (5)] is
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Fig 3 Frequency response curves of the flexural mode for different values of the coupling strength . The red, green
and blue curves correspond to low, moderate and high drive levels; the loci of the saddle-node bifurcations are indicated
by the dashed black curves and are overlaid by the specific bifurcation points (⌅) of the different drive levels. Top
panel—the standard Duffing response for low coupling strength. Middle panel—quasi standard Duffing response for
moderate coupling strength, where in the vicinity of the IR there is a small gap in which the response decays to zero
(similar to the experimental device). Bottom panel—non-standard Duffing response for high coupling strength, where
in the vicinity of the IR there is strong veering of the response resulting in a profound gap with no large amplitude
response.

quintic, and therefore, we can have up to five stationary responses for a single frequency, and up

to four saddle-node bifurcation points in the response curve. Physically, this phenomenon can be
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understood in terms of the Fermi golden rule, where  is the “matrix element” of the interaction

and 1/(�2
21 + �!

2
2) is the “density of states” of the effective reservoir provided by the torsional

mode at triple the eigenfrequency of the flexural mode, which drains energy from the flexural

mode in the vicinity of the IR. It is interesting to note that the response of the flexural mode, which

is hardening (that is, the frequency increases with increasing amplitude) when isolated from the

torsional mode, can become mixed, going from hardening to softening, when the coupling and

drive levels are sufficienly strong.

4 Summary

In this paper, we have described the frequency response of a MEMS resonator with two interact-

ing modes, a flexural mode and a torsional mode, to different levels of harmonic drive. When the

device is tuned to an internal resonance via increased driving force amplitude, the response shows

behaviors that differ in unexpected ways from a simple oscillator. The coupling at internal reso-

nance creates a void in the operating space of the non-linear resonator due to a mechanism similar

to an anti-crossing effect. A minimalistic, nonlinear two-mode model of the system, with a single

nonlinear coupling term, is capable of describing the dynamics observed in the experiments. By

varying the coupling strength, we showed how the void in the operating space evolves from the

expected non-linear Duffing response. In the future, we plan to try to experimentally vary the cou-

pling strength through tunable components of the resonator to further explore the system parameter

space.
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2 Nonlinear response of a MEMS resonator. (a) Graph showing the response of

the MEMS resonator to different levels of applied harmonic voltages (gray: 10

mV, red: 20 mV, green: 30 mV, blue: 40 mV, and black: 50 mV) as the drive

frequency is increased. The arrows indicate the frequencies corresponding to an

abrupt change in response amplitude of the flexural mode of the resonator. The

black arrow is at the frequency of the internal resonance fIR. (b) Graph of the

bifurcation conditions indicating qualitative changes in response as a function of

drive amplitude and drive frequency. The black squares and blue triangles are the

data points represented in (a). The solid green and red lines are obtained from the

mathematical model using parameters fitted from the experimental device.
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3 Frequency response curves of the flexural mode for different values of the coupling

strength . The red, green and blue curves correspond to low, moderate and high

drive levels; the loci of the saddle-node bifurcations are indicated by the dashed

black curves and are overlaid by the specific bifurcation points (⌅) of the different

drive levels. Top panel—the standard Duffing response for low coupling strength.

Middle panel—quasi standard Duffing response for moderate coupling strength,

where in the vicinity of the IR there is a small gap in which the response decays

to zero (similar to the experimental device). Bottom panel—non-standard Duff-

ing response for high coupling strength, where in the vicinity of the IR there is

strong veering of the response resulting in a profound gap with no large amplitude

response.

3URF��RI�63,(�9RO�������������������
'RZQORDGHG�)URP��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�FRQIHUHQFH�SURFHHGLQJV�RI�VSLH�RQ����6HS�����
7HUPV�RI�8VH��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�WHUPV�RI�XVH


