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Abstract— Sensor-specific calibration functions offer superior
performance over global models and single-step calibration
procedures but require prohibitive levels of sampling in the
input feature space. Sensor self-calibration by gathering train-
ing data through collaborative calibration or self-analyzing
predictive results allows these sensors to gather sufficient
information. Resource-constrained edge devices are then stuck
between high communication costs for transmitting training
data to a centralized server and high memory requirements for
storing data locally. We propose online dataset quantization
that maximizes the diversity of input features, maintaining a
representative set of data from a larger stream of training data
points. We test the effectiveness of online dataset quantization
on two real-world datasets: air quality calibration and power
prediction modeling. Online Dataset Quantization outperforms
reservoir sampling and performs equally to offline methods.

I. INTRODUCTION

Sensor nodes at the edge of the Internet of Things often
require sensor-specific calibration functions that relate input
features to a phenomenon of interest. For air quality sensing,
the calibration function transforms input data from onboard
sensors to target pollutant concentrations, and for applica-
tion power prediction, internal performance metrics can be
used to predict device power. Individual calibration requires
substantial time and resources to collect data that adequately
covers the feature space. The best solution is to empower
sensors to gather their own training data.

For air quality sensors, collaborative calibration is a
promising technique that allows edge devices to continually
increase their knowledge of the surrounding world by pairing
a sensor’s internal sensor reading with a target value from
a co-located reference sensor [1]-[3]. For prediction tasks
where the true value will be known in the future, a sensor
can collect relevant data at a current time point and associate
it with the future target value once the event occurs.

To complicate matters, calibration functions can change
over time to due inherent sensors characteristics (e.g. drift
in air quality electrochemical sensors) or different usage
scenarios (e.g. predicting power usage on new applications).
As training data is continually gathered, resource-constrained
edge devices are caught between incurring high computation,
storage, and memory costs by performing training locally or
spending large amounts of power to send data to a central
node. Recent advancements in machine learning on edge
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Fig. 1. Data subsets for Air Quality at 256x compression resulting

from Reservoir Sampling (RS), Kennard-Stone (KS), and Online Dataset
Quantization (ODQ).

devices are tackle these issues by intelligent subset selection
for classification [4], [5] and dedicated machine learning
coprocessors [6], [7]. While novel, these methods focus on
classification tasks and do not extend well to regression tasks.

The only works that the authors found pertaining to
reduced data subset selection for regression tasks were reser-
voir sampling (RS) [8] or methods based on the Kennard-
Stone sampling (KS) algorithm [9]-[12]. The RS algorithm
performs online sampling of a data stream that results in
a uniform random subset selection. The complexity of the
algorithm is very low and the expected distribution as a
result of RS will maintain the original data distribution.
KS takes a different approach: the algorithm iteratively
evaluates a distance metric on the dataset in an offline
manner, selecting points for inclusion that are the farthest
from the set of already selected points. The goal of the KS
selection procedure is to select a subset that has a uniform
distribution over the target feature.

Existing methods select the best representative data subset
based on informativeness, representativeness, and diversity.
Online methods use these concepts, but only for classification
tasks. Offline methods based on KS have been developed for
regression problems, but no solutions exist for performing
subset selection online for regression tasks. A comparison
of subset selection for the air quality dataset can be seen in
Fig. 1.

Contributions. In this work, we propose Online Dataset
Quantization (ODQ), a method to quantize and compress a
continually growing dataset that enables long-term calibra-
tion dataset collection on resource-constrained edge devices.
ODQ evaluates the distance between training samples using
a local approximation of the gradient. The resulting reduced
dataset can be used for training a calibration model with error
minimized over the entire range of the input feature space
for non-linear relationships between input features and target
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values. We also propose a reduced-memory implementation
of KS and an online linear implementation of ODQ (OLDQ)
that has a reduced storage overhead. We compare these
methods to the naive implementation of RS on two real-
world data sets for air quality calibration and device power
prediction using a multi-layer perceptron model.

II. PROBLEM DEFINITION

Consider the problem where we want to train a super-
vised machine learning algorithm for a regression task on
a memory-constrained edge device with dataset D that is
growing over time. Each entry in the dataset consists of
N, input features X = [z1,...,2n,] € RM= and a single
regression target Y € R. The input features X and the
output feature Y are related as X = f~1(Y) + n where
n is additive noise. The aggregation of all N entries forms
the dataset D = {(X;,Y;)}¥,. Our goal is to determine
a reduced subset of the data D = {(X;,Y;)}}L, where
M < N that will produce the best calibration model f(-) that
predicts the target value Y for a given set of input features,
ie. f(X)=Y.In general, X and Y can be points from the
original dataset D or can be artificial prototypes drawn from
the same feature and target space as X and Y, but for this
work, we are selecting a subset of points from D.

Our approach for maximizing the utility J of a calibration
dataset includes notions of representativeness, diversity, and
informativeness. Traditionally, representativeness is a metric
that encourages a distribution to closely match an original
distribution, but our goal is to create a representative dataset
that can build a robust calibration model. Since training data
commonly has imbalanced distributions with large amounts
of redundant information, random sampling results in saving
redundant information in dense regions and losing valuable
information in tail regions as seen in Fig. 1.

We seek to save a reduced subset of points such_that
the probability distribution of the reduced dataset p(Y') is
uniform. A uniform distribution over an arbitrary, finite range
[a,b] represents the maximum level of uncertainty about
the incoming value. When optimizing over a dataset with
a uniform distribution, the resulting model will attempt to
reduce error evenly across the range, which is optimal when
developing a calibration model with the goal of minimizing
error across a measurement range. The original distributions
P(Y') is unlikely to be uniform, so the question becomes how
to sample from D such that D is approximately uniform. For
a single random variable and monotonic region, the desired
distribution is proportional to dy/dxz as shown below:

P(X <2)=P(f'(Y) <) = P(Y < f(x))
f(x)
:/_ Ply)dy = (7(x) — a) )
p(z) = diP X<z “ @

The intuition is that when small changes in X result in
large changes in Y, more points should be captured in the
region to better capture the transition. When changes in X
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result in no change in Y, fewer points should be saved.
Using a Euclidean distance metric weighted by the local
partial derivative, the concept is captured succinctly with the

following cost function:
J=min d;(z;,2;) = min x!diag(Vfil.)z; (3)
1#] i#]

where Vfi = [0f:/dx1,0f1/0xa, ...,
approximations of the gradient.

0f:/dxn,] is the local

ITII. ONLINE DATASET QUANTIZATION

__Our goal is to create a reduced-size representative dataset
D of M samples where M < N that maximizes the
usefulness of the reduced dataset for regression tasks where
utility is measured by interpoint distances weighted by each
feature’s sensitivity to Y. While N will continue to grow
throughout the lifetime of the device, the size of the reduced
dataset remains fixed, representing the limited, fixed memory
reserved for a training dataset in edge devices.

As shown in Fig. 2, initially, all incoming points c; are
added until the memory is full. Then, using local gradient
as calculated from the hyperplane that minimizes a least
squares equation with the K nearest neighbors, the weighted
distance function d; is calculated at point (zy,y:). If the
addition of the new point ¢; would improve the cost .J, then
the worst data point is replaced and local neighborhoods
are recalculated as needed. In the following subsections, we
describe how to determine a Local Neighborhood and how
the utility function J is evaluated.

A. Local Neighborhood Determination

Determining the local neighborhood of a data point is a
compute intensive task. In our algorithm flow in Algorithm
1, local neighborhoods are calculated for each incoming
point, and if it is incorporated into the dataset, local neigh-
borhoods are re-calculated for each point whose neighbor-
hood contained the excised point. Selecting the appropriate
neighborhood for the best estimate of the local gradient is a
difficult problem. The local gradient calculation depends on
the selection of the local neighborhood, but conversely, the
local neighborhood selection depends on the local gradient.

We select a neighborhood by iteratively calculating the
distance between the data point under evaluation ¢; and all
other data points of a set that decreases with each iteration.
Initially, the neighborhood consideration set is reduced by
50% per iteration until its size is 2K then it is decremented
by 1 element. The worst case number of iterations is 2K —

1+ |logy(IN — 2K)|, but during our experimentation, the
algorithm converged much faster.
Wait for Next | o Update All
Datapoint | Affected N;
Calc and Save
N, VE|
m |\ u,( i, ri)

Fig. 2. Algorithm overview for Online Dataset Quantization.

Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 16,2020 at 20:53:28 UTC from IEEE Xplore. Restrictions apply.



Algorithm 1 Local Neighborhood Calculation

Input: =z, K, D¢, Vfi, N;Vi={1,...,M}
Output:  V f;, Ny

1. D+ Dy

2 if t < K then

3: Nt < Dt

4 Calculate local gradient V f;

5 return V f;, Ny

6. end if

7 Ny argmin, . p di(z;, z¢) st [Ny | =K

s while |[D| > K do

9: Calculate local gradient V f

10: Nt new + arg minmieﬁ, di (e, i) st [Ny = K

11: if Ny new = Ny then

12: break

13: end if

14 if |D| > 3K then

15: D™ «arg max, . p di(z¢, ;) st |[D™|=||D]/2]
16: else )

17: ﬁfeargmax”eb di(z¢, i) st |[D7|=1

18: end if

19: D+ D\ D~
20: Ny Nt‘ne'w
21: end while

2: return Vfi, N}

B. Evaluating Dataset Cost

The first M incoming points ¢; = (x¢,y;) are directly
added to the dataset D. Once filled, each successive data
point ¢; needs to be evaluated to determine if its addition
will improve the overall utility J as calculated in Eq. 3.
If minwieﬁdt(xt,xi) < Jy_1 and min, 5 di(zi,xe) <
Ji—1, then the point with the previous minimum distance
is removed from D and ¢; is added to the dataset.

In many cases, the incoming point ¢, will be near another
point ¢, resulting in a small distance, but ¢; may result in an
improvement to utility J over c,. To evaluate this scenario,
the distance metric is calculated using c¢; on the reduced
dataset without c,. If ¢; improves J, then ¢; replaces c;.

C. Metainformation

Each entry ¢; into the dataset D requires a certain
amount of space for storage of the input features and
target values. While the gradient V f; and neighborhood N;
can theoretically be recalculated for each new point, the
computation cost is prohibitively expensive. Instead, V f;,
N, and min; 27 diag(V fitlzi)x; are saved for each data
point, resulting in storage reserved for metainformation.
The memory required for every data point is Mepiry =
Pz| X |+ py|Y| + Mhecader, Where p, and p,, are the number
of bits of precision for X and Y, respectively, and mpeqder
is metainformation pertaining to the sample.

Since |X| = |Vf;| and |Y| < K, the memory required
for the metainformation will always be equal or greater than
memory required for the data itself, assuming the precision of
the data and metainformation is the same. The uncalibrated
device Sp has a limited amount of storage for a training
dataset m,,42, Which allows the first V,,,. entries to be
saved directly where Nz = [ Munaz/Mentry |-

IV. COMPARISON ALGORITHMS
A. Reservoir Sampling

Uniform random sampling is a common comparison met-
ric for subset selection algorithms. The online version of
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random sampling is termed reservoir sampling (RS), which
can be performed efficiently for large datasets and only
requires a random integer number generator [8]. The result
is a reduced subset D that has the same distribution as the
original data D. The algorithm saves the first M incoming
data points. Then, for each subsequent data point c¢;, a
random integer is drawn n, between 1 and ¢. If n,, < M,
then the entry at index n,. is replaced with c;.

B. Reduced-Memory Kennard-Stone

Kennard-Stone algorithm (KS) [9]-[12] is an offline al-
gorithm that operates on the entire dataset, selecting a
subset that is uniformly distributed across the feature space.
Interpoint distances are calculated once using static weights,
stored in a large matrix in memory of scale O(M?), and
evaluated for selecting the optimal subset. While acceptable
for smaller datasets, modern datasets can have 100,000
entries with > 10 features, requiring > 93 GB of storage
for 16-bit values, prohibitive on edge devices.

We propose a modern implementation of KS that ex-
changes a smaller memory footprint for increased compu-
tation. Instead of pre-computing the distance between points
and storing in large matrix, interpoint distance is calculated,
compared to the current max-min distance, and either kept
or discarded in a single vector U, which tracks the mini~mum
distance of the i-th element to any data point in D. At
each iteration, the data point with the max-min distance is
added to D and distances are recalculated with the minimum
interpoint distances being saved in U. The new algorithm
has an increase in distance calculations (T — 1)2/2 +TM
vs (T — 1)?/2) but memory requirements that scale O(M)
instead of O(M?).

C. Online Linear Dataset Quantization

The Online Linear Dataset Quantization (OLDQ) algo-
rithm follows the same algorithmic pattern as ODQ, but
instead of a non-linear approximation of the slope for the
input features, OLDQ uses the Mahalanobis distance and
incorporates both X and Y with a diagonal covariance
matrix that is calculated offline based on prior knowledge.
By saving a sensitivity per feature instead of per sample,
metainformation required for OLDQ will be approximately
50% less than that required for ODQ. The drawback is that
OLDQ uses a linear approximation of the generative function
f, assuming that the input features have uniform sensitivity
across their entire range.

V. EXPERIMENTS

We compare ODQ to the methods in Sec. IV using mean-
squared-error on regression tasks for air quality and power
prediction datasets. For each dataset, we selected a subset of
data and associated metadata that was compressed by ratio
of 16, 128, 256, 512, and 1024. At each compression ratio,
we generated 3 unique splits of the data and randomized
the order of training data. All of the neural networks were
trained using Keras and Tensorflow backend with 5 repeated
experiments at each compression level.

1013

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 16,2020 at 20:53:28 UTC from IEEE Xplore. Restrictions apply.



A. Datasets

The air quality dataset consists of approximately 86,000
measurements for each of 9 devices that were co-located
at 3 different EPA reference stations [13]. The data was
split into 80% train and 20% test with a further split of
the training set into 80% training and 20% validation. The
power prediction dataset consists of 67,017 training and
1241 testing data points and predicts the power a device
would consume for a given, profiled application using 36
input features of performance counters from devices running
example workloads [14]. The split was generated using a set
of training and target applications where the application used
for the test sets was not included in any training.

B. Results

For the air quality dataset, ODQ and OLDQ outperformed
RS once compression rates were above 256x. The data
was collected by stationary sensors, so data redundabct
was expected. The air quality sensor sensitivities to cross-
contaminants and ambient conditions can be approximated
linearly, which explains the comparable performance be-
tween the linear (OLDQ) and non-linear (ODQ) methods.
For the device power dataset, OLDQ and KS maintained
relatively constant accuracy across the compression ratios.
Since reservoir sampling selects a random subset of points,
resulting data subsets were inconsistent with which usage
patterns were captured, resulting in a high level of variance
in dataset quality. When the RS subset overlaps with the
target distribution, then the results showed low error, but
otherwise, the model had poor performance. In the 64x to
264x region, ODQ outperforms all other methods, likely due
to its ability adjust the subset selection methods to account
for nonlinearities in the dataset.

While ODQ and RS appear similar in Fig. 3 (right), we
can analyze the error across the range of values of Y to
determine the source of the error (left). At a 16x compression
ratio, all of the results are similar due to the large number
of available data points for training, but as the compression
ratio increases, ODQ, OLDQ, and KS error levels remain low
while RS error levels increase in regions of low probability.

Due to ODQ requiring more metainformation, at very high
compression ratios, ODQ does not have a sufficient number
of samples to cover the input space, resulting in a decrease
in accuracy for both the air quality and power datasets.
The amount of required metainformation stored with each
point for ODQ is substantially higher than OLDQ, but could
potentially be reduced using code books that contain gradient
information. This is a direction of future research.

VI. CONCLUSIONS

We proposed online dataset quantization (ODQ) that al-
lows a sensor to maintain a representative subset of training
data for regression tasks. ODQ was tested on two common
regression problems on the edge: sensor calibration and
power prediction, outperforming existing online methods
(RS) and performing comparably to offline methods (KSS).
The largest drawback to ODQ is the storage required for
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Fig. 3. (L) Test error (MSE) distribution across Y values for the Power
Approximation dataset. Results from (TR) Air Quality and (BR) Power
Approximation over compression ratios from 16x to 1024x.

metainformation, which reduces the number of samples that
ODQ can save compared to other methods. Despite the
reduced number of saved points, comparable test accuracies
are achieved when training neural networks for regression.
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