
Reverse-Engineering Deep Neural Networks Using
Floating-Point Timing Side-Channels

Cheng Gongye, Yunsi Fei, Thomas Wahl
Northeastern University, Boston, MA, US

gongye.c@husky.neu.edu, yfei@ece.neu.edu, t.wahl@northeastern.edu

Abstract—Trained Deep Neural Network (DNN) models have
become valuable intellectual property. A new attack surface has
emerged for DNNs: model reverse engineering. Several recent
attempts have utilized various common side channels. However,
recovering DNN parameters, weights and biases, remains a
challenge. In this paper, we present a novel attack that utilizes a
floating-point timing side channel to reverse-engineer parameters
of multi-layer perceptron (MLP) models in software implementa-
tion, entirely and precisely. To the best of our knowledge, this is
the first work that leverages a floating-point timing side-channel
for effective DNN model recovery.

Index Terms—Deep learning, floating-point arithmetic, mul-
tilayer perceptrons (MLP), reverse engineering, side-channel
attacks

I. INTRODUCTION

Deep learning (DL) has become a foundational means for
solving grand societal challenges, disrupting many application
domains with superior performance. Trained Deep Neural Net-
works (DNNs) models have become a commodity and widely
deployed in the cloud as services or adopted in edge devices.
These trained models are valuable intellectual properties for
the following reasons. Training DNN models for applications
requires access to high-quality, often proprietary datasets and
also demands a considerable amount of computational re-
sources (e.g., using high-end GPUs [1]). Typically it also
requires machine learning experts and domain experts to work
together towards selecting network structures suitable for the
task at hand, pre-processing the dataset, and fine-tuning the
model structure and hyper parameters.

Given the high value of today’s DNN models, an adversary
has a strong incentive to reverse-engineer a trained DNN
model and recover a near-identical one. Knowing the DNN
model also facilitates other attacks, including membership
inference attacks [2], attacks with adversarial examples that
can look normal to the human eye but yield a wrong output [3],
and active fault injection attacks that maliciously modify the
model parameters to disrupt the services [4].

However, “stealing” model parameters through software
attacks is hard. Models can be encrypted to protect the con-
fidentiality of the parameters. They can also be encapsulated
in trusted environments, e.g., Intel SGX or ARM TrustZone,
and the end-user of the model can only access it by providing
the input and receiving the result, i.e., in a black-box fashion.

This work was supported in part by the National Science Foundation under
grants SaTC-1929300 and SaTC-1563697.

Recently, there have been several attempts to reverse-engineer
DNN models using side-channel attacks, leveraging different
types of side channels, with different attack targets (structure,
hyper parameters, parameters, or inputs), and running on
different implementation platforms (hardware vs. software).
However, they all have limitations; we discuss some in the
following.

A. Related Work

Hua et al. [5] targeted a DNN accelerator on FPGA and
reduced the search space of DNN model architectures (both
structure characteristics and hyper parameters) by observing
off-chip memory access patterns and timing. This attack has
the potential to recover weights when the dynamic zero prun-
ing is used. Cache side-channel attacks have been exploited
for stealing DNN models in software implementations. Yan et
al. [6] reduced the search space of DNN model architectures,
by tracking the usage of tiled general matrix multiplication
(GEMM) in DNN inference. Hong et al. [34] recovered the
DNN structure by observing function invocations through the
Flush+Reload technique. However, their work does not tackle
hyper-parameters. Other side channels, including power, EM,
and timing, are exploited to recover the DNN structure and
weights [7]. However, they can only recover the weights to
low accuracy, e.g., before “4th place after the decimal point”.
They did not address bias recovery. Dong et al. [8] developed
a floating-point timing attack to recover the input images of
a DNN implemented on microcontrollers. Their attack targets
the input images rather than the DNN model; their timing
model is a shorter timing for multiplication with a zero input,
which is only accurate for microcontrollers but not for general-
purpose processors or GPUs.

B. Contributions and Organization

None of the previous work was able to recover all the
parameters of DNN models accurately. In this work, we utilize
the floating-point timing side channel to recover all parameters
(weights and biases) of DNN models executing in software
entirely. To the best of our knowledge, this is the first work
that leverages a floating-point timing side channel in DNN
model recovery. We also show the proposed attack applies to
different DNN model types.

The rest of the paper is organized as follows. Section II-C
introduces some background for our reverse-engineer attack.
Section III describes the procedures and details of the attack.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

We use a case study in Section IV to evaluate the attack
performance. In Section V, we discuss the attack generality
and extendability. We conclude this work in Section VI.

II. BACKGROUND

In this section, we present some background on floating-
point operations, the basic DNN model (multi-layer percep-
tron, MLP), and our threat model.

A. Floating-Point Timing Side-Channel

IEEE-754 is the most widely adopted floating-point (FP)
number standard. For an IEEE-754 single-precision (SP)
floating-point number, the 32-bit encoding is composed of a
single-bit sign (S), an 8-bit exponent (E), and a 23-bit mantissa
(M). We target this format in this work, but the attack is
otherwise agnostic to the FP format.

Depending on the values of the exponent and mantissa, there
are five types of FP numbers, as shown in Table I.

TABLE I
IEEE SINGLE PRECISION FLOATING POINT NUMBER TYPES

Type Exponent Mantissa Formula
normal [1, 254] any (−1)S · 2E−127 · 1.M

zero zero zero 0
subnormal zero non-zero (−1)S · 2E−126 · 0.M
Infinities 255 zero Inf

Not-a-Number 255 non-zero NaN

A subnormal floating-point number represents values
smaller than that of normal floating-point numbers. It en-
ables the correct representation of the result of floating-point
operations that underflow. On commercial CPUs, there are
typically dedicated floating-point arithmetic units and registers
for normal floating-point operations, in addition to the integer
operators in the datapath. However, since subnormal floating-
point numbers are less frequent, there is no dedicated hardware
support for them on modern processors. Instead, processors
may have hardware to detect subnormal operands (whether
they are sources or destination) and implement operations
on them in software (i.e., dispatch them onto microcode
executions), which makes some of them much slower than
normal operations [9].

A longer execution time potentially leaks information about
the nature of the operands—opening up a floating-point timing
side channel. Andrysco et al. exploit this side channel to steal
pixels in a browser [10].

B. Deep Neural Networks

DNN models can be viewed as cascaded connections of
multiple functional layers, such as fully-connected (FC) layer,
convolutional (CONV) layer, and pooling (POOL) layer, to
extract features for classification or detection. A very common
DNN architecture widely used in classification applications
is the multi-layer perceptron (MLP), depicted in Fig. 1. A
MLP consists of multiple FC layers of neurons and features
a feed-forward network that maps input features into outputs.
Each layer is fully connected to the previous and the subse-
quent layer, taking a feature vector from the previous layer,

processing it, and generating an output feature vector for the
next layer. The entire layer computation can be viewed as
a multiplication of a weight matrix with the input vector,
followed by the bias vector addition and activation function
application. For example, a linear algebra representation of
the first hidden layer is:

l1 = Activation (W1 · l0 + b1) (1)

where l0 is the input feature vector of length of m, W1 is
the first-layer weight matrix of dimension n×m, where n is
the number of neurons, b1 is the bias vector of length n, and
l1 is the output feature vector of length n. For the example
in Fig. 1, we have n = 4 and m = 6. Note that each neuron
in the first hidden layer applies one of the row vectors of the
weight matrix to the input vector to generate one item for the
output feature vector. For the second hidden layer, the weight
matrix is of size 3× 4.

Fig. 1. An example multi-layer perceptron

C. Threat Model

Our threat model is a black-box attack targeting DNN
inference. The trained MLP model is either encrypted or
protected in a trusted execution environment. Therefore, the
adversary has no knowledge of the MLP parameters. However,
he can query the model with arbitrary input and can observe
the output in the last layer. He also knows the model structure
in terms of the number of layers and the number of neurons in
each layer, either from commonly available datasets or from
a visualization of the DNN inference through simple power
analysis. He can measure the timing of each layer of operations
with high precision. Timing measurements can be achieved by
either analyzing the cache access pattern [6] or through visual
inspection of power traces [7].

III. THE REVERSE-ENGINEERING ATTACK

In this section, we describe our method of reverse-
engineering the weights and biases of an MLP based on
floating-point timing side-channel leakage. The model is re-
covered layer by layer. The organization of this section is as
fellows. We start with the low-level timing models for floating-
point operations on an x86 processor. Then we reverse-
engineer the weights and biases in the first hidden layer.
Attacking the remaining layers is very similar to attacking
the first layer; we point out the minor differences.

A. Timing Models of x86 Floating-Point Operations

Inference of an MLP is essentially a series of multiplication
and addition operations. Hence, for this work, we only need
to consider abnormal timing of these floating-point operations.
We define abnormal timing as the consumption of noticeably
more CPU cycles by an executing floating-point operation than
by a normal floating-point operation.

1) FP Multiplication Timing Model: Consider a floating-
point multiplication where a, b and c are non-zero: a · b = c.
For most cases, if one of a, b, or c is a subnormal floating-
point number, this operation will feature abnormal timing (take
much longer). However, if either operand or the result is
zero, we will not observe abnormal timing. We develop a
suite of microbenchmarks to characterize the timing model
of x86 floating-point multiplications, shown in Table II. All
experiments are performed on a workstation with Intel i7-
7700 quad-core processor and 2×8GB Dual-channel DDR4
memory. We find an average extra timing of 114 cycles for
abnormal operations, which we denote as σ.

TABLE II
TIMING MODEL FOR FLOATING-POINT MUTIPLICATIONS

Case Operation CPU cycles
1 normal · normal = normal 10
2 normal · normal = subnormal 124
3 subnormal · normal = normal 124
4 subnormal · normal = subnormal 124
5 subnormal · subnormal = 0 10
6 subnormal · 0 = 0 10

2) FP Addition Timing Model: For a floating-point ad-
dition, a + b = c, this operation will have an abnormal
timing when |c| ∈ (1e−43,maxsn) and |a| ∈ (minn, 6e−33)
(from our observations on the experiment platform), where
maxsn is the largest (single-precision) subnormal number
(≈ 1.1754942e−38) and minn is the smallest normal number
(≈ 1.1754944e−38). Similarly, we run microbenchmarks to
characterize the timing model of FP addition and find that the
σ is also about 114 cycles.

Previous work that utilizes floating-point timing side chan-
nels mainly focuses on multiplications and divisions. In this
work, we take advantage of the timing leakage of additions
too (which are frequent in DNN inference). In the following
subsections, we will show how we leverage these two timing
models to reverse-engineer the weights and biases.

B. Recovering the First Layer

The linear algebra representation of the first layer is shown
in Equation (1). Our goal of attacking the first layer is to
recover all the elements of W1 and b1, by only varying l0 and
observing the timing. In this paper, we assume the activation
function to be a rectified linear unit (ReLU), one of the most
effective and widely adopted activation functions.

Our approach proceeds in three steps: 1) recover the abso-
lute values of each column of the weight matrix; 2) arrange
the weights to figure out weights belonging to the same row
and find their relative signs; and 3) recover the bias vector and
the actual signs of all parameters in the first layer.

1) Column Absolute Values: This attack utilizes the first
timing model presented in III-A1. We utilize case 2 in Table II,
where the product is subnormal, and the inputs are normal
numbers within the range of [minn, 1]. As floating-point
numbers are signed values, the signs are processed separately
and do not affect the multiplication timing. We first ignore
the signs and only recover the absolute values. For an FP
multiplication with two operands, assuming one operand is
unknown but fixed (e.g., a weight x), we can control and vary
the other operand (e.g., an input i). By observing the operation
time under different inputs and utilizing the timing model for
multiplications, we can recover the unknown operand with
high precision.

Suppose that, for two inputs a and a′ satisfying a > a′,
the multiplication results in significantly different timing:
T (a · x) < σ < T (a′ · x). Then we conclude that the first
multiplication produces a normal output while the second
produces a subnormal output. Then the unknown value x must
satisfy minn

a ≤ x ≤ maxsn

a′ . We gradually reduce the gap
between a and a′ until the distance between minn

a and maxsn

a′

is less than our choice of precision, ε. Then our guess of the
unknown operand converges to x ≈ minn

a . Values a and a′

can be controlled using binary search in the range [minn, 1].
For the first DNN layer, each neuron performs a vector

multiplication of a weight row and the input vector. In software
implementation without parallelism, these neuron computa-
tions are carried out in a sequence, and all contribute to the
total timing. The finest-grained timing observation we assume
an adversary has is the execution time of the first layer, rather
than individual neurons. By setting the input vector to have
only one non-zero value, each neuron’s operation is reduced
to one multiplication and one addition. For example, to focus
on the first column, we set l0[1] = a, l0[2 : m] = 0 where l0
is the input vector of length m. With n neurons, the observed
first-layer computation time is the sum of the times for n
multiplications with fixed other value. The timing model for
the first layer becomes:

Tlayer1(a) =
n∑

i=1

T (a ·W1[i, 1]) + Tothers

where T (a ·W1[i, 1]) is the computation time of each neuron,
and Tothers captures the execution time of other computations
such as addition and activation function, which is assumed
to be a constant. If all the n multiplications produce normal
results, the total time is minimized: c (e.g., when a = 1), while
if all produce subnormal results, the total time is maximized:
c + n · σ (e.g., when a = minn). As the input a varies, the
total execution time varies within [c, c+ n · σ].

Our attack consists of two steps. First, find a vector A =
{a1, a2, ...an} with the n values in decreasing order, such that
Tlayer1(ai) = c+ i ·σ. That is, as the value a decreases, more
and more subnormal products are generated by the first layer.
The second step is to find the n weight values.

We envision that in the range [minn, 1], there exist n such
values, namely A0[i] = maxsn/V [i], i ∈ [1, n], where V [i]

are the n weight values. We treat these n values as reference
points, which divide the range of [minn, 1] into n+1 segments
for the value of a, with the Tlayer1(a) for each segment
decreases from c+ n · σ to c, from the left most to the right.
We are finding a vector A such that its n values partition the
range of a into n + 1 intervals, where each of the intervals
contains one such reference value A0[i]. If we can trace this
value with the interval known, we can recover the weight.

The trivial way to find A vector is to scan the value of a
from large to small with a well-controlled stride, which incurs
significant computation delay. To improve the speed of the
attack, we employ a recursive binary search method to find
A, as illustrated in Fig. 2.

Fig. 2. The binary search method to find the A vector

We start from the range [minn, 1] for a (as the root node for
a tree), and mark the two ends as L and R with Tlayer1(L) =
c + nσ and Tlayer1(R) = c. We first set m0 = (L + R)/2
the middle point, and evaluate Tlayer1(m0). If Tlayer1(L) −
Tlayer1(m0) > σ and Tlayer1(m0) − Tlayer1(R) > σ, we
keep both the two half ranges [L,m0] and [m0, R] (as two
children nodes of the root node and keep exploring them).
When Tlayer1(m0) = c + iσ, we get ai = m0. However, if
Tlayer1(L) − Tlayer1(m0) ≤ σ, we will not explore the left
half range, i.e., no such left child. Similarly for Tlayer1(R). We
keep growing the binary tree by splitting a range represented
by a parent node into two halves, and use the prior criterion
to decide whether to generate any child. In the graph, each
node represents a range, marked by three T values, Tlayer1(L),
Tlayer1(R), and Tlayer1(m). The binary tree will stop until we
have found all the n ai values (parent nodes in the graph).

After obtaining A, we have all the intervals. Each of the
intervals contains one of the reference points. We adopt a
binary search method again to find the reference point x
(approximate), falling into the user-defined precision ε. We
will recover the weight by maxsn/x. We demonstrate this
method in Algorithm 1; it has a complexity of O(log n). Other
columns are attacked by changing the location of the non-zero
value in the input.

2) Weights with Relative Signs in Each Row: After the first
step, we have recovered all the weights in each column of W1.
However, we do not know the order of the weights, i.e., which
row each weight belongs to. We represent these columns of

Algorithm 1: Algorithm for finding the reference point
in each interval (T represents Tlayer1)

Input : ε, [l, r] (the interval containing the target)
Output: x (the target value)
t← T (r)
while r − l > ε do

mi = (l + r)/2
if T (mi)− t ≥ σ then

l← mi
else

r ← mi

return x = (l + r)/2

weights as m vectors of length n: V1, V2, . . . , Vn. In this
subsection, we present the method and algorithms to identify
the weights of the same row.

Recovering all the locations of weights together is hard
because we can only control the input and observe the timing.
Analyzing the entire weight matrix by evaluating all the com-
binations of weights is possible but may be computationally
prohibitive. We adopt an iterative technique to accomplish this
task. To create a reference point for each row, we pick the first
column of the weight matrix and sort its values. Then, for
each element of the first column, we identify which element
in each of the remaining columns belongs to the same row,
i.e., we recover a weight row vector. We repeat this step for
all elements in the first weight column and recover all the n
weight rows. Hence, we have reduced the original problem of
identifying if two elements from two columns are in the same
row.

In this attack, we employ the timing model of floating-point
addition, described in III-A2. For an addition operation, we
fix one operand to be constant x. We know that the other
operand is an element from a vector which is the product of a
known vector and a variable a, a · [V [1], V [2], V [n]]T where
the values V [i] are all positive absolute values and sorted in
an increasing order. We first let a = ∆/V [1] such that x−∆
will trigger a much longer execution. We then set a = ∆/V1
and a = −∆/V1. If we do not observe different execution
times, it indicates V [1] is not the element in the addition with
x. We repeat this step for all other elements of the vector until
we observe different execution times.

To apply this algorithm to our problem of finding weights
from two columns on the same row, we can set all but the
two corresponding items in the input feature to be non-zero.
For example, to determine which weight in second column is
in the same row as the first element of the input column, we
set l0[1] = a, l0[2] = b, both non-zero normal numbers, and
l0[3 : m] = 0. Then the timing model of the first layer is:

Tlayer1(a, b) =

n∑
i=1

T (a ·W1[i, 1] + b ·W1[i, 2]) + Tothers

where Tothers captures the execution times for other operations
(multiplication, bias addition, etc.) and can be assumed to be

a deterministic constant. Let a = x/V1[1], b = ∆/V2[1],
such that T (x+ ∆) < σ ≤ T (x−∆). Then we measure the
execution time t1 = Tlayer1(a, b), t2 = Tlayer1(a,−b). If t1 6=
t2 with the difference at the level of σ, the timing difference
must come from a subnormal addition. In this situation, we
know that V2[1] is in the same row with V1[1]. Otherwise, it
is not and we need to move on to other elements of Column 2.
We keep a unchanged and set b = ∆/V2[j] (j = 2, ..., n). We
repeat this step until we observe a distinct timing difference.
t1 and t2 are also used to recover the relative signs between

the weights of the same row. Recall that the elements in Vs
are absolute values. If t1 > t2, the two operands have opposite
signs because the abnormal timing is triggered by the operation
of x−∆. Otherwise, the two operands have the same signs.

So far, we have found the weight in the second column V2

that belongs to the same row as V1[1]. We repeat the process
for other columns, and will get the row vector starting with
V1[1] and their relative signs. Finally, we repeat with the rest
of the weights in Column 1, by setting a = x/V1[i], i =
2, · · · , n. Eventually all the row vectors in W1 are recovered.
This Algorithm involves three major loops; the complexity is
O(mn2).

3) Bias Vector: After the previous two attacks, we obtain
a weight matrix W

′

1. The order of the row vectors is possibly
not the same as in W1. We can calculate the absolute values
of the resulting vector of W1

′
· l0, which is all we need for

the attack in this section to recover the actual signs and the
bias vector.

We recover the actual signs of the weights by utilizing the
characteristics of ReLU and observing the output layer. The
ReLU function is defined as:

f(x) =

{
0 (x < 0)
x (x ≥ 0)

The output of ReLU will be zero as long as the input is
negative. We can use this feature to determine if the value
of a neuron before ReLU is negative. For example, we first
define l

′
= W

′

1 · l0. We control the input vector so that the
absolute values of l

′
are much larger than the absolute values

of possible biases (e.g., 0.011). Then, the signs of l
′
+b1 only

depend on l
′
. We create another l

′′
, which only differs from l

′

in their first items (i′′ vs. i′) , which are not equal but have the
same relative sign. Then we observe the outputs of the network
corresponding to l

′
and l

′′
. If the two outputs are different, then

the difference must come from the difference between the first
items passing through the ReLU function. Hence, ReLU(i)
6= ReLU(i

′
), and we know i and i

′
are positive (since same

sign). Then we can recover the actual sign of the first row of
the weight matrix. If the two outputs of the network are the
same, then ReLU(i) = ReLU(i

′
), and we know i and i

′
are

negative. We can repeat this for all the rows until we recover
all the signs of the weight matrix.

So far, we have recovered W1 with all its weights (including
the sign). We can recover the biases using a similar approach

1All models we trained and found online have weights and biases in the
range (−0.02, 0.02)

as the previous step. For an unknown operand x (b1) plus the
other operand a (W1·l0) that we control, we can incrementally
scan a in the possible interval [−b, b] with suitable stride size.
By observing the result of ReLU(a + x), we can recover x
precisely when ReLU(a+x) changes from positive to zero or
zero to positive. I.e., we identify what value of a results in
a+ x = 0, and we can recover x.

C. Recovering the remaining layers

In this subsection, we discuss how to adapt the first-layer
attack to the remaining layers. The key to extending the attack
is that we can control the second layer input l1 with necessary
granularity by only controlling the input layer l0. If we can
achieve this, attacking the remaining layers is very similar to
attacking the first layer. We therefore discuss the necessary
control over l1 required for attacking the second layer, and
evaluate the feasibility.

For recovering the absolute column values, we need to
control one of the input elements and set the others to zero.
To recover the rows, we need to control two of the input
elements and set the others to zero. Zeros can be accomplished
by setting the elements in l = W1 · l0 to be large negative
numbers to go through the ReLU function. We show how we
can control l1 such that two elements can be set to a and b
of our choice, and the others set to negative values.

The problem is formalized as the following claim: for a
system W1 · l0 = l of linear equations where W1, l0, l have
dimensions (n,m), (m, 1), (n, 1), respectively, there exists at
least one l0 that can make l[i] = a, l[j] = b, i, j ∈ [1, n], a, b ∈
R, l[k] < −θ, k 6= i, j, where θ is the largest bias possible.
Here we assume W1 is a full-rank matrix, i.e., its the row
vectors are linearly independent. We argue that considering the
high precision of floating-point numbers, it is unlikely that the
row vectors are linearly dependent. According to the theorem
in [11], l0 exists if and only if rank[W1] ≥ rank[W1|l].
When n ≤ m+1, the rank of W1 is n, and the rank of W1|l
cannot be greater than n; When n > m+1 the rank of W1 is
m. We can set l to be linearly independent from the column
vectors of W0. Then, the rank of W1|l is at most m, and
again we have found a value l0 as required.

IV. EXPERIMENTS

In this section, we reverse-engineer an MLP model that
classifies the MNIST dataset. We also evaluate both the
accuracy of the recovered parameters and the accuracy of
the recovered model. They both turn out to be very high,
demonstrating the effectiveness of our novel floating-point
timing-based side-channel attack.

A. Experimental Setup

The experimental platform is as discussed in subsection
III-A: each timing difference in CPU cycles is measured for
100 times, and the most frequent ones are averaged.

The model we recovered is a four-layer MLP. The input
layer flattens the MNIST dataset; hence it has a size of
28× 28 = 784. The second and third layers both have a size

of 50. The last layer is the output layer before the softmax
function, which has a size of 10. All the activation functions
are ReLU. The model is trained using stochastic gradient
descent (SGD) with a learning rate of 1e−2, a momentum of
5e−1, and a batch size 64 for 5 epochs. The testing loss and
accuracy are 1.342e−1 and 96.04%, respectively. Our entire
reverse-engineering attack takes less than one hour for the
selected MLP model on our testing workstation.

B. Results

We first define the accuracy of a recovered parameter as:
ρp = 1 − |p−p

′|
p , where p′ is the recovered parameter, and

p is the original parameter. We evaluate the accuracies of all
the recovered parameters in the first layer and take an average
of them. We also evaluate the effect of the selected precision
(ε in Algorithm 1) on the average accuracy of the first-layer
parameters, as shown in Table III. When ε is smaller than
1e−39 the accuracy is almost 1. We can set much smaller ε
for our algorithm.

TABLE III
FIRST-LAYER PARAMETER ACCURACY WITH DIFFERENT ε

− log ε 37 38 39 40
ρp 0.838± 0.1180.987± 0.0110.998± 0.0010.999± 1e−4

We plug in the recovered model for testing with the MNIST
dataset, and evaluate the model accuracy. Table IV shows the
recovered model reaches the original testing accuracy when ε
is smaller than 1e−39.

TABLE IV
MODEL ACCURACY IN CLASSIFYING MNIST WITH DIFFERENT ε

− log ε 37 38 39 40
ρmodel 0.9193 0.9598 0.9604 0.9604

V. DISCUSSION

A. Platform Generality

IEEE 754 floating-point arithmetic exists in many modern
processors, and potentially they may all have floating-point
timing leakage. For example, we have observed abnormal tim-
ings of subnormal floating-point operations of ARM Cortext-
A9 processors, though it is less pronounced than on Intel
processors. We believe floating-point timing side-channels are
subtle but pervasive and powerful, leading to complete DNN
model recovery, as demonstrated in this work.

B. Convolutional Neural Networks

With our methodology, we can reverse-engineer other net-
work layers like convolutional layers as well. Convolutional
layers are usually implemented as matrix multiplication to
take advantage of commodity math libraries. For example, a
convolutional computation:

Cov

[k0 k1
k2 k3

]
,

l0,0 l0,1 l0,2
l1,0 l1,1 l1,2
l2,0 l2,1 l2,2



is transformed to:
l0,0 l0,1 l1,0 l1,1
l0,1 l0,2 l1,1 l1,2
l1,0 l1,1 l2,0 l2,1
l1,1 l1,2 l2,1 l2,2

 ·

k0
k1
k2
k3


Then we can adopt the same technique and timing model

in III-B, recover k0 by controlling the input l0,0 and setting
the other inputs to zero.

C. Future Work

We are also considering countermeasures. A straightforward
one is to eliminate subnormal floating-point numbers. Subnor-
mal computations can be disabled, at the expense of accuracy,
which may or may not be sufficient given the application.
However, normal floating-point operations leak information
through timing side channels as well, even if the leakage is
not as strong. We are currently investigating this as a possible
attack surface.

VI. CONCLUSION

In this work, we present the first DNN reverse-engineering
attack that utilizes the floating-point timing side-channel. This
study proves that by combining the floating-point timing side-
channel leakage and analyzing the output of model inference,
one can recover all the parameters of an MLP model accu-
rately. We also argue that this attack can potentially extend to
many other CPU platforms and network structures.

REFERENCES

[1] “Stanford dawn deep learning benchmark (dawn-
bench) imagenet training,” 2019. [Online]. Available:
https://dawn.cs.stanford.edu/benchmark/ImageNet/train.html

[2] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in IEEE Symp. on
Security & Privacy, May 2017, pp. 3–18.

[3] A. Rozsa and T. E. Boult, “Improved adversarial robustness by reducing
open space risk via tent activations,” arXiv preprint arXiv:1908.02435,
2019.

[4] J. Breier, X. Hou, and et. al., “Practical fault attack on deep neural
networks,” in Conf. on Computer & Communications Secruity, Oct.
2018, pp. 2204–2206.

[5] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in Proc. De-
sign Automation Conf., June 2018, pp. 4:1–4:6.

[6] M. Yan, C. Fletcher, and J. Torrellas, “Cache Telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in USENIX Security
Symp., Aug. 2020.

[7] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engi-
neering of neural network architectures through electromagnetic side
channel,” in USENIX Security Symp., Aug. 2019, pp. 515–532.

[8] G. Dong, P. Wang, P. Chen, R. Gu, and H. Hu, “Floating-point
multiplication timing attack on deep neural networs,” in IEEE Int. Conf.
Smart Internet of Things, 2019, pp. 155–161.

[9] A. Rane, C. Lin, and M. Tiwari, “Secure, precise, and fast floating-point
operations on x86 processors,” in USENIX Security Symp., Aug. 2016,
pp. 71–86.

[10] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
IEEE Symp. on Security & Privacy, May 2015, pp. 623–639.

[11] P. Suetin, A. I. Kostrikin, and Y. I. Manin, Linear algebra and geometry.
CRC Press, 1989.

