DYNAMICAL PRUNING OF ROOTED TREES WITH
APPLICATIONS TO 1D BALLISTIC ANNIHILATION
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ABSTRACT. We introduce generalized dynamical pruning on rooted
binary trees with edge lengths that encompasses a number of dis-
crete and continuous pruning operations, including the tree erasure
and Horton pruning. The pruning removes parts of a tree T', start-
ing from the leaves, according to a pruning function defined on
descendant subtrees within 7. We prove the invariance of criti-
cal binary Galton-Watson tree with exponential edge lengths with
respect to the generalized dynamical pruning for an arbitrary ad-
missible pruning function. These results facilitate analysis of the
continuum 1-D ballistic annihilation model A + A — @ for a con-
stant particle density and initial velocity that alternates between
the values of £1. We show that the model’s shock wave is isomet-
ric to the level set tree of the potential function, and the model
evolution is equivalent to the generalized dynamical pruning of the
shock wave tree.
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1. INTRODUCTION

Pruning of tree graphs is a natural operation that induces a con-
tracting map [28] on a suitable space of trees, with the empty tree ¢ as
the fixed point. Examples of prunings studied in probability literature
include erasure from leaves at unit speed [38, 21, 15], cutting the leaves
[14, 31, 33], and eliminating nodes/edges at random [5, 1]. A recent
survey of random tree measures invariant with respect to cutting the
leaves is given in [34].

1.1. Generalized dynamical pruning. We consider here the erasure
of a tree from the leaves down at a non-constant tree-dependent rate.
Specifically, we introduce generalized dynamical pruning S;(¢,T) of a
rooted tree T that eliminates all subtrees A, r (defined as the points
descendant to point x in T) for which the value of a function (A, 1)
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is below t (see Sect. 3 for a formal definition). The generalized dynam-
ical pruning encompasses a number of discrete and continuous pruning
operations, depending on the choice of function . For instance, the
tree erasure from leaves at unit speed [38, 21, 15] corresponds to the
pruning function ¢(7") equal to the height of T'; and the Horton prun-
ing [14, 33] corresponds to ¢(7") equal to the Horton-Strahler order of
T. For most selections of ¢(7'), the map induced by the generalized
dynamical pruning does not have a semigroup property, which distin-
guishes it from the operations studied in the literature.

In Sect. 4.3, Thm. 2 we establish invariance of the space of criti-
cal binary Galton-Watson trees with i.i.d. exponential edge lengths
with respect to the generalized dynamical pruning, independently of
(an admissible) pruning function. The invariance includes scaling of
the edge lengths by the scaling constant equal to the survival proba-
bility P(S;(¢,T) # ¢). The explicit form of the survival probability is
established in Thm. 3 for pruning by tree height (erasure from leaves
at unit speed), by Horton order, and by tree length. The generalized
prune invariance unifies several known invariance results (e.g., [38, 14])
and suggests a framework for studying diverse problem-specific pruning
operations.

As a notable application, we consider the 1-D ballistic annihilation
model and show that its dynamics can be represented as a general-
ized dynamical pruning of the level set tree of the model potential
(Sects. 5,6).

1.2. Ballistic annihilation model. The ballistic annihilation model,
traditionally denoted A + A — &, describes the dynamics of particles
on a real line: a particle with Lagrangian coordinate x moves with the
velocity v(x,0) until it collides with another particle, at which moment
both particles annihilate, hence the model notation. The annihilation
dynamics appears in chemical kinetics and bimolecular reactions; see
18,7, 9, 41, 17, 8, 19, 13, 35, 44].

The annihilation dynamics produces sinks (shocks) that correspond
to the collisions of individual particles with consequent annihilation.
The moving shock waves represent the sinks that aggregate the annihi-
lated particles and hence accumulate the mass of the media. Dynamics
of these sinks resembles a coalescent process that generates a tree struc-
ture for the sink trajectories; we call it a shock wave tree. The dynamics
of a ballistic annihilation model with two coalescing sinks is illustrated
in Fig. 1.

1.3. Ballistic annihilation with two valued initial velocity. In
Sect. 6 we consider a model on a finite interval [a,b] with a constant
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F1GURE 1. Ballistic annihilation model: an illustration.
A particle with Lagrangian coordinate x moves with ve-
locity v(z,0) until it collides with another particle and
annihilates. (Bottom panel): Initial velocity wv(zx,0).
(Top panel): The space-time portrait of the system. The
trajectories of selected particles are depicted by gray thin
lines. The shock wave that describes the motion and co-
alescence of sinks is shown by solid black line. The sink
trajectory in this example forms an inverted Y-shaped
tree.

initial particle density g(z,0) = go and an initial velocity field v(x,0)
that alternates between the values 1, as illustrated in Fig. 2. Equiva-
lently, we work with potential velocity field v(x,t) = —0,1(x, t) where
the initial potential Wo(z) = (x,0) is a piece-wise linear continu-
ous function with slopes 1. We furthermore assume that Wy(x) is
a negative excursion on [a,b]. This choice corresponds to a particu-
larly tractable structure of the shock wave tree, which is completely
described in this work. In particular, the combinatorial structure and
planar embedding of the shock wave tree coincides with that of the level
set tree T' = LEVEL(¢(x,0)) of the initial potential (Sect. 6, Thm. 4).

1.4. Ballistic annihilation as dynamical pruning. The main ap-
plied result of our work (Sect. 6, Thm. 6) states that the ballistic
annihilation dynamics in case of a unit slope potential is equivalent to
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FIGURE 2. Piece-wise linear unit slope potential: an il-
lustration. (Top): Arrows indicate alternating directions
of particle movement on an interval in R. (Middle): Po-
tential Wy(z) is a piece-wise linear unit slope function.
(Bottom): Particle velocity alternates between values +1
within consecutive intervals.

the generalized dynamical pruning of the shock wave tree with pruning
function (1) equal to the total length of 7.

The pruned tree in this construction describes the potential restricted
to the domain of particles that did not annihilate until instant ¢. To
retain information about sinks and empty intervals, we equip a tree
with massive points, placed at the tree cuts — the boundary of the
pruned tree parts (Sect. 6.4, Def. 3). A complete description of ballistic
annihilation dynamics is then given in terms of mass-equipped trees,
which involves a suitably modified definition of pruning (Sect. 6.4). In
particular, we establish a one-to-one correspondence between pruned
mass-equipped trees and time-advanced potentials 1 (z, ) with massive
sinks (Sect. 6.4, Constructions 1, 2).

Theorem 7 describes the ballistic annihilation dynamics for the ini-
tial velocity field that alternates between +1 at epochs of a stationary
Poisson point process on R. The respective potential corresponds to
the Harris path of a critical binary Galton-Watson tree with i.i.d. ex-
ponential edge lengths. This equivalence allows one to use a suit of
results available for the exponential Galton-Watson tree to study the



6 YEVGENIY KOVCHEGOV AND ILYA ZALIAPIN

ballistic annihilation; in particular, this connects the ballistic annihila-
tion dynamics with the invariance results of Thms. 2, 3. We use this
connection to derive the time-dependent mass distribution of a random
sink in an infinite potential (Sect. 6.6, Thm. g).

The rest of the paper is organized as follows. Section 2 collects nec-
essary results on level set trees. The generalized dynamical pruning is
introduced in Sect. 3. The critical binary Galton-Watson trees with
i.i.d. exponential edge lengths are introduced and examined in Sect. 4.
In particular, the invariance of such trees with respect to the general-
ized dynamical pruning is established in Sect. 4.3. A continuum 1-D
ballistic annihilation model A + A — @ is introduced in Sect. 5. The
dynamics of this model with piece-wise unit slope potential is analyzed
in Sect. 6. Sections 6.5, 6.6 examine a unit slope potential with expo-
nential segments durations (Poisson epoch velocity alterations), for a
finite and infinite domain, respectively. Section 7 discusses a real tree
representation of ballistic annihilation. Section 8 concludes.

2. TREES

This section discusses the basic tools of our analysis — level set tree
(Sect. 2.2) and Harris path (Sect. 2.3). We use the framework de-
scribed in [34] and refer to that work for further details. We start with
introducing the relevant spaces of trees.

2.1. Spaces of trees. Consider the space T of finite unlabeled rooted
reduced trees with no planar embedding. The (combinatorial) distance
between a pair of tree vertices is the number of edges in the shortest
path between them. A tree is called rooted if one of its vertices, denoted
by p, is selected as the tree root. The existence of root imposes a parent-
offspring relation between each pair of adjacent vertices: the one closest
to the root is called the parent, and the other the offspring. The space
T includes the empty tree ¢ comprised of a root vertex and no edges.
The absence of planar embedding in this context is the absence of order
among the offspring of the same parent. The tree root is the only vertex
that does not have a parent. We write #71" for the number of non-root
vertices, equal to the number of edges, in a tree 1. Hence, a finite tree
T = pU{uv;, e }1<i<pr is comprised of the root p and a collection of
non-root vertices v;, each of which is connected to its unique parent
parent(v;) by the parental edge e;, 1 < i < #T. A tree is called reduced
if it has no vertices of degree 2, with the root as the only possible
exception.
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The space of trees from 7 with positive edge lengths is denoted
by L. The trees in L, also known as weighted tree [42], can be con-
sidered metric spaces. Specifically, the trees from L are isometric to
one-dimensional connected sets comprised of a finite number of line
segments that can share end points. The distance along tree paths is
defined according to the Lebesgue measure on the edges.

We write Tplane and Lpane for the spaces of trees from 7 and £
with planar embedding, respectively. Any tree from 7 or £ can be
embedded in a plane by selecting an order for the offsprings of the
same parent. Unless indicated otherwise, the vertices of an embedded
tree are indexed in order of depth-first search, starting from the root.

Sometimes we focus on the combinatorial tree SHAPE(T"), which re-
tains the combinatorial structure of T € £ (or Lplne) while omit-
ting its edge lengths and embedding. Similarly, the combinatorial tree
P-SHAPE(T') retains the combinatorial structure of T' € Lpne and pla-
nar embedding, and omits the edge length information. Here SHAPE is
a projection from £ or Lyjane to 7, and P-SHAPE is a projection from
*Cplane to 7;)lane-

A non-empty rooted tree is called planted if its root has degree 1;
in this case the only edge connected to the root is called the stem.
Otherwise the root has degree > 2 and a tree is called stemless. We
denote by £/ and £V the subspaces of £ consisting of planted and
stemless trees, respectively. Hence £ = LI U LY. Also, we let the
empty tree ¢ to be contained in each of the spaces. Therefore, £l N
LY = {¢}. Similarly, we write £|plane and L),,. for the subspaces
of L jane consisting of planted and stemless trees, respectively. Clearly,

Lolane = [,Llaneuﬁglane and E‘planeﬂﬁglane = {¢}. Fig. 3 shows examples
of a planted and a stemless tree.

For any space S from the list {7, Tpiane, £, Lplane} We write BS for
the respective subspace of binary trees, S! for the subspace of planted
trees in S including ¢, and SY for the subspace of stemless trees in
S including ¢. We also consider subspaces BS! = S! N BS of planted

binary trees and BSY = S§Y N BS of stemless binary trees.

Let lp = (I3, ..., lyr) with [; > 0 be the vector of edge lengths of a tree
T € L (or Lpjane). The length of a tree T' is the sum of the lengths of
its edges:

#T
LENGTH(T) = > ;.
i=1

Recall that a tree T' € L can be considered as a metric space with
distance d(-, -) induced by the Lebesgue measure along the tree edges



8 YEVGENIY KOVCHEGOV AND ILYA ZALIAPIN

(a) Planted tree, TeL!

plane

(b) Stemless tree, T’ eﬁpvlanc

FIGURE 3. Examples of planted (a) and stemless (b) trees.

[34]. The height of a tree T is the maximal distance between the root
and a vertex:

HEIGHT(T) = e d(v;, p).

2.2. Level set tree. This section introduces a tree representation of
continuous functions, which we call a level set tree.

We begin by assuming a finite number of local extrema; this con-
struction is more intuitive and is sufficient for analysis of finite trees
from Ljane. Consider a closed interval I C R and function f(z) € C(1),
where C'(I) is the space of continuous functions from I to R. Suppose
that f(z) has a finite number of distinct local minima. The level set
L, (f) is defined as the pre-image of the function values equal to or
above a:

Lo=Ly(f)={zel: f(x)>a}

The level set L, for each « is a union of non-overlapping intervals; we
write |L£,| for their number. Notice that |£,| = |£g| as soon as the
interval [a, (5] does not contain a value of local extrema of f(z) and
0 < |L4| < n, where n is the total number of the local maxima of f(x)
over [.

The level set tree LEVEL(f) € Lpane is a tree that describes the
structure of the level sets £, as a function of threshold «, as illustrated
in Fig. 4. Specifically, there are bijections between

(i): the leaves of LEVEL(f) and the local maxima of f(z);

(ii): the internal (parental) vertices of LEVEL(f) and the local
minima of f(z), excluding possible local minima achieved on
the boundary OI;
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(a) Function f{x) (b) Tree LEVEL(Y)

FIGURE 4. Function f(z) (panel a) with a finite number
of local extrema and its level set tree LEVEL(f) (panel
b). In this figure, the distances on a tree (edge lengths)
are measured along the y-axis. Dashed horizontal lines
and numbers 1,...,7 illustrate correspondence between
the local extrema of f(x) and vertices of LEVEL(f).

(iii): a pair of subtrees of LEVEL( f) rooted in the parental vertex
that corresponds to a local minima f(z*) and the adjacent pos-
itive excursions (or meanders bounded by 0I) of f(z) — f(z*)
to the right and left of x*.

Furthermore, every edge in the tree is assigned a length equal the dif-
ference of the values of f(x) at the local extrema that correspond to
the vertices adjacent to this edge according to the bijections (i) and (ii)
above. The tree root corresponds to the global minimum of f(z) on
I. If the minimum is achieved at x € I \ 0I, then the level set tree is
stemless, LEVEL(f) € L)}.,,.; this case is shown in Fig. 4. Otherwise, if
the minimum is on the boundary 0I, then the level set tree is planted,

LEVEL(f) € £‘plane.

In general, for a function f(z) € C(I) on a closed interval I C R,
the level set tree is defined via the framework developed in Aldous
3, 4] and Pitman [42]. Specifically, let f[a, b] := infcfqy f(z) for any

subinterval [a,b] C I. We define a pseudo-metric on I as [4, 42]

(1) dylab) = (f@) = fla b)) + (£ = flab]), abe

We write a ~ b if ds(a,b) = 0. Here dy is a metric on the quotient
space Iy = I/ ~y. It can be shown [42] that (If,df) is a tree. This
construction is know as the tree in continuous path [42, Def. 7.6], [21,
Ex. 3.14]. In case of a finite number of local extrema, this construction
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coincides with the level-set description given above, that is (If,dy) is
isometric to LEVEL(f).

2.3. Harris path. For any embedded tree T' € Ljane With edge lengths,
the Harris path is defined as a piece-wise linear function [27, 42]

Hp(t) : [0,2-LENGTH(T)] - R

that equals the distance from the root traveled along the tree T in
the depth-first search, as illustrated in Fig. 5. For a tree T" with n
leaves, the Harris path Hrp(t) is a piece-wise linear positive excursion
that consists of 2n linear segments with alternating slopes +1.

2.4. Reciprocity of Harris path and level set tree. Consider a
function f(z) € C(I) with a finite number of distinct local minima.
By construction, the level set tree LEVEL(f) is completely determined
by the sequence of the values of local extrema of f, and is not af-
fected by timing of those extrema, as soon as their order is preserved.
This means, for instance, that if g(z) is a continuous and monotone
increasing function on I, then the trees LEVEL(f) and LEVEL(f o g)
are equivalent in Lpne. Hence, without loss of generality we can focus
on the level set trees of continuous functions with alternating slopes
+1. We write £ for the space of all positive piece-wise linear contin-
uous finite excursions with alternating slopes £1 and a finite number
of segments (i.e., a finite number of local extrema). Recall that a con-
tinuous function f(z) on a finite interval [0, a] is called an excursion if
f(0) = f(a) =0 and f(z) > 0 for any = € [0, a).

The level set tree of an excursion from £ and Harris path are re-
ciprocal to each other as described in the following statement.

Proposition 1 (Reciprocity of Harris path and level set tree).
The Harris path H : cl — & and the level set tree LEVEL :

plane
EF — £|p1ane are reciprocal to each other. This means that for any
T e E'I)lane we have LEVEL(Hr(t)) =T, and for any g(t) € £ we have

HLEVEL(g) (t) = g(t>‘
This statement is illustrated in Fig. 5.

3. GENERALIZED DYNAMICAL PRUNING

This section introduces a general way to prune (cut, erase) a tree
from leaves down to the root in an adaptive, non-anticipating way, so
that the cutting process is completely determined by the parts of the
tree that have been cut and is independent of the intact part of the
tree.
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A

(a) Tree T (b) Harris path H;

FIGURE 5. (a) Tree T and its depth-first search illus-
trated by dashed arrows. (b) Harris path Hr(t) for the
tree T of panel (a).

3.1. Definition and examples. Given a tree T' € L and a point
x €T, let A, 1 be the descendant tree of x: it is comprised of all points
of T' descendant to z, including z; see Fig. 6a. Then A, is itself a
tree in £ with root at . Let Ty = (Mj,dy) and Ty = (Ms,dy) be
two metric rooted trees, and let p; denote the root of T7. A function
[Ty — T is said to be an isometry if Image[f] C Ay, and for all
pairs x,y € T,

da(f (), f(y)) = di(,y)-

The tree isometry is illustrated in Fig. 6b. We use the isometry to
define a partial order in the space L as follows. We say that T} is
less than or equal to Ty, and write 177 < T, if there is an isometry
f Ty — T5. The relation < is a partial order as it satisfies the reflex-
ivity, antisymmetry, and transitivity conditions. Moreover, a variety of
other properties of this partial order can be observed, including order
denseness and semi-continuity.

We say that a function ¢ : £ — R is monotone nondecreasing with
respect to the partial order < if p(7T}) < (1) whenever T} = Ts.
Consider a monotone nondecreasing function ¢ : £ — R,. We define
the generalized dynamical pruning operator S;(¢,T) : L — L induced
by ¢ for any ¢ > 0 as

(2) S, T) = pU {x eT\p : p(Aur) > t},

where p denotes the root of tree T'. Informally, the operator S; cuts all
subtrees A, r for which the value of ¢ is below threshold ¢, and always
keeps the tree root. Extending the partial order to £ by assuming
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A
x,T
X
P
T T, T,
(a) Descendant tree (b) Isometry

FIGURE 6. Descendant subtree and tree isometry: an il-
lustration. (a) Subtree A, 7 (solid black lines) descendant
to a point z (gray circle) in a tree T' (union of dashed gray
and soling black lines). (b) Isometry of trees. Tree T3 (left)
is mapped to tree Ty (right). The image of T} within T5 is
shown by black lines, the rest of 15 is shown by dashed gray
lines. Here, tree T} is less than tree T, T7 < T5.

¢ =< T for all T € L, we observe for any T' € L that Sy(T) = S;(T)
whenever s > t.

The dynamical pruning operator S; encompasses and unifies a range
of problems, depending on a choice of ¢, as we illustrate in the following
examples.

Example 1 (Pruning via the tree height). Let the function (7))
equal the height of tree T

(3) o(T) = HEIGHT(T).

In this case the operator S; satisfies continuous semigroup prop-
erty:

S;08s =385 forany t,s>0.
It coincides with the continuous pruning (tree erasure) studied in Neveu
[38], who established invariance of a critical and sub-critical binary
Galton-Watson processes with i.i.d. exponential edge lengths with re-
spect to this operation.

It is readily seen that for a coalescent process [42], the dynamical
pruning S; of the corresponding coalescent tree with ¢(7") as in (3)
replicates the coalescent process. More specifically, the timing and or-
der of particle mergers is reproduced by the dynamics of the leaves
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of S;(¢,T). See Sect. 6.4, Thm. 5 for a specific version of this state-
ment for the coalescent dynamics of shocks in the continuum ballistic
annihilation model.

Example 2 (Pruning via the Horton-Strahler order). Let the
function ¢(T") + 1 equal the Horton-Strahler order k(7") of a tree 7"

(4) o(T) = k(T) — 1.

The Horton-Strahler order [34, 40, 14, 30] is defined via the operation
R of Horton pruning — cutting the leaves with consecutive series re-
duction (removing degree-2 vertices), as is illustrated in Fig. 7. The
pruning induces a contracting map on BLjane. The trajectory of each
tree 7" under R(-) is uniquely determined and finite:

(5) T=RYT) - RNT) = - = R¥T) = ¢,

with the empty tree ¢ as the (only) fixed point [33, 34]. The Horton-

Strahler order k(T") of a planted tree from BELlane is the minimal num-
ber of prunings necessary to eliminate a tree 7. The Horton-Strahler
order k(T) of a stemless tree from BL}),, is the minimal number of
prunings necessary to eliminate a tree 7" plus one.

With the choice (4) the dynamical pruning operator coincides with
the Horton pruning: S, = R, It is readily seen that S, satisfies

discrete semigroup property:
S;08s =38y forany t,s € Ny.

A recent survey of results related to invariance of a tree distribution
with respect to Horton pruning is given in [34].

Example 3 (Pruning via the tree length). Let the function (7))
equal the total lengths of T

(6) ©(T) = LENGTH(T).

The dynamical pruning by the tree length is illustrated in Fig. 8 for a
Y-shaped tree that consists of three edges.

Importantly, in this case S; does not satisfy the semigroup prop-
erty. To see this, consider an internal vertex point = € T' (see Fig. 8,
where the only internal vertex is marked by a gray ball). Then A, r
consists of point = as its root, the left subtree of length a and the
right subtree of length b. Observe that the whole left subtree is pruned
away by time a, and the whole right subtree is pruned away by time b.
However, since

©(Ap1) = LENGTH(A, 1) = a + b,
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%
%
Series reduction
Series reduction
%,

c o

T R(T) RA(T) R(T)

FIGURE 7. Horton pruning and Horton-Strahler ordering:
an example. The order of the tree is k(7') = 3, since the
tree T is eliminated in three prunings. Each pruning con-
sists of cutting leaves (top row) and consecutive series reduc-
tion (bottom row). The pruning trajectory T' — R(T) —
R%(T) — R3(T) = ¢ is shown in the bottom row of panels.

the junction point x will not be pruned until time instant a 4+ b. Thus,
x will be a leaf of S;(p, T) for all t such that

max{a,b} <t <a+b.

This situation corresponds to Stage IV in Fig. 8.

The semigroup property in this example can be introduced by con-
sidering mass-equipped trees. Informally, we replace each pruned
subtree 7 of T with a point of mass equal to the total length of 7.
The massive points contain some of the information lost during the
pruning process, which is enough to establish the semigroup property.
Specifically, by time a, the pruned away left subtree (Fig. 8, Stage I1I)
turns into a massive point of mass a attached to x on the left side.
Similarly, by time b, the pruned away right subtree (Fig. 8, Stage IV)
turns into a massive point of mass b attached to x on the right side.
For max{a,b} <t < a+ b, this construction keeps track of the quan-
tity a 4+ b — t associated with point x, and when the quantity a +b —t
decreases to 0, the two massive points coalesce into one. If at instant
t a single massive point seats at a leaf, its mass m = ¢, and the leaf’s
parental edge is being pruned. If at instant ¢ two massive points (left
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I v A\
)
T/ I/ ( c a+b+c-t
0<t<a a<t<b b<t<atb atb<t<atbtc

FIGURE 8. Pruning by tree length: an illustration. Figure
shows five generic stages in the dynamical pruning of a Y-
shaped tree T', with pruning function ¢(T') = LENGTH(T).
The pruned tree S; is shown by solid black lines; the pruned
parts of the initial tree are shown by dashed gray lines.
Stage I: Initial tree T' consists of three edges, with lengths
a, b, c indicated in the panel; without loss of generality we
assume a < b.

Stage II: For any ¢t < a the pruned tree S; has a Y-shaped
form with leaf edges truncated by t.

Stage III: For any a <t < b the pruned tree S; consists of
a single edge of length ¢+ b — ¢.

Stage IV: For any b <t < a + b the pruned tree S; consists
of a single edge of length c. Notice that during this stage the
tree S; does not change with ¢; this loss of memory causes
the process to violate the semigroup property.

Stage V: For any a + b < t < a+ b+ c the pruned tree &;
consists of a single edge of length a + b+ ¢ — t.

and right) seat at a leaf, they total mass m > ¢, and further pruning of
the leaf’s parental edge is prevented until the instant ¢t = m, when the
two massive points coalesce. Keeping track of all such quantities makes
S; to satisfy the continuous semigroup property. This construction is
formally introduced in Sect. 5, which shows that the pruning operator
S; with the pruning function (6) coincides with the potential dynamics
of continuum mechanics formulation of the 1-D ballistic annihilation
model A+ A — @.

Example 4 (Pruning via the number of leaves). Let the function
©(T) equal the number of leaves in a tree 7. This choice is closely
related to the mass-conditioned dynamics of an aggregation process.
Specifically, consider N singletons (particles with unit mass) that ap-
pear in a system at instants ¢, > 0, 1 < n < N. The existing clusters
merge into consecutively larger clusters by pair-wise mergers. The clus-
ter mass is additive: a merger of two clusters of masses i and j results
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in a cluster of mass 7« + j. We consider a time-oriented tree T' that
describes this process. The tree T" has N leaves and (N — 1) inter-
nal vertices. Each leaf corresponds to an initial particle, each internal
vertex corresponds to a merger of two clusters, and the edge lengths
represent times between the respective mergers. The action of S; on
such a tree coincides with a conditional state of the process that only
considers clusters of mass > t. A well-studied special case is a coales-
cent process with a kernel K (i, j), where all particles appear at instant
t = 0 and each pair of clusters with masses 7, 7 merges with intensity
proportional to K(7,j) = K(j,1), independently of all other pairs.

3.2. Pruning for R-trees. The generalized dynamical pruning is read-
ily applied to real trees (Sect. 7), although this is not the focus of our
work. We notice that the total tree length (Example 3) and number of
leaves (Example 4) might be undefined (infinite) for an R-tree. We in-
troduce in Sect. 7.3 a mass function that can serve as a natural general
analog of these and other functions on finite trees. We show (Sect. 6.4,
Thm. 6) that pruning by mass is equivalent to the pruning by the total
tree lengths in a particular situation of ballistic annihilation model with
piece-wise continuous potential with a finite number of segments. Ac-
cordingly, our results should be straightforwardly extended to R-trees
that appear, for instance, as a description of the continuum ballistic
annihilation dynamics for other initial potentials.

3.3. Relation to other generalizations of pruning. A pruning
operation similar in spirit to the generalized dynamical pruning was
considered in a work by Duquesne and Winkel [15] that extended a
formalism by Evans [21] and Evans et al. [22]. We notice that the two
definitions of pruning, the generalized dynamical pruning of Sect. 3 and
that in [15], are principally different, despite their similar appearance.
In essence, the work [15] assumes the Borel measurability with respect
to the Gromov-Hausdorff metric ([15], Section 2), which implies the
semigroup property of the respective pruning ([15], Lemma 3.11). On
the contrary, the generalized dynamical pruning defined here may have
the semigroup property only under very particular choices of ¢(7') as
in the examples in Sect. 1 and 2. The majority of natural choices of
©(T), including the tree length p(7") = LENGTH(T') (Example 3) or the
number of leaves in a tree (Example 4), do not satisfy the semigroup
property, and hence are not covered by the pruning of [15]. The main
results of our Sect. g refer to the pruning function ¢(7") = LENGTH(T)
that does not satisfy the semigroup property, as shown in Sect. 3.
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3.4. Invariance with respect to the generalized dynamical prun-
ing. Consider a tree T € Lyane With edge lengths given by a vector
lp = (lh,...,lgr). The vector Ip can be specified by distribution x(-)
of a point xr = (x1,...,24r) on the standard simplex

#T
A#T: $1ZIZ:1,O<‘T2§1 ,

and conditional distribution F'(-|x7) of the tree length LENGTH(T), so
that

l7 = x7 - LENGTH(T).

Accordingly, a tree T can be completely specified by its planar shape,
a vector of proportional edge lengths, and the total tree length:

T = {P-SHAPE(T), z7, LENGTH(T)} .
A measure 77 on Lyjane is a joint distribution of these three components:
(T € {r,dz,dl}) = pu(7) - X-(dz) - Frz(dl),
where the tree planar shape is specified by
p(7) = Law (P-SHAPE(T) =7), 7T € Tplanes
the relative edge lengths is specified by
X-(Z) = Law (7 = 2| P-SHAPE(T) = 7), & € A#T,
and the total tree length is specified by
F. :(¢) = Law (LENGTH(T') = ¢ | x7 = &, P-SHAPE(T) =71), (>0.

Let us fix t > 0 and a function ¢ : Lyjane — Ry that is monotone nonde-
creasing with respect to the partial order <. We denote by S; (¢, T)
the preimage of a tree T' € Lyjane under the generalized dynamical
pruning:

S, T) = {7 € Lyjane : Si(p,7) =T}
Consider the distribution of edge lengths induced by the pruning:

=.(z) = Law (azT =z| P-SHAPE(T) = 7')
and
Q. :(f) = Law (LENGTH(T) =/l|z; =12, P-SHAPE(T) = T) ;

where the notation T := S,(¢, T) is used for brevity.
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Definition 1 (Generalized prune invariance). Consider a function
© : Lolane — Ry

that is monotone nondecreasing with respect to the partial order <. A
measure 17 on Lplane 15 called invariant with respect to the generalized
dynamical pruning Si(-) = Si(p,-) (or simply prune invariant) if the
following conditions hold for allt > 0:
(i) The measure is prune-invariant in shapes. This means that for
the pushforward measure v = (S;), (1) = o S; ' we have

u(r) = v(rlr # ¢).
(ii) The measure is prune-invariant in edge lengths. This means
that for any combinatorial planar tree T € Tplane
ET(j) = Xr ("E)
and there exists a scaling exponent ¢ = ((p,t) > 0 such that for
any relative edge length vector T € A#™ we have

q)T,a_v(g) = CilFT,i <€> .
¢

This definition unifies multiple invariance properties examined in the
literature. For example, the classical work by Neveu [38] establishes
prune invariance of critical Galton-Watson trees with i.i.d. exponen-
tial edge lengths with respect to tree erasure from leaves at a unit
rate, which is equivalent to the generalized dynamical pruning with
function ¢(7') = HEIGHT(T') (see Example 1). Prune invariance with
respect to the Horton pruning (see Example 2 and Fig. 7) has been
established by Burd et al. [14] for the combinatorial binary critical
Galton-Watson trees with no edge lengths. A comprehensive treat-
ment of tree measures invariant with respect to the Horton pruning is
given in [34]. Duquesne and Winkel [15] established prune-invariance of
critical Galton-Watson trees with i.i.d. exponential edge lengths with
respect to so-called hereditary property, which includes the tree erasure
of Example 1 and Horton pruning of Example 2. Section 4.3 below es-
tablishes prune invariance of critical binary Galton-Watson trees with
i.i.d. exponential edge lengths with respect to arbitrary generalized
pruning.

4. EXPONENTIAL CRITICAL BINARY GALTON-WATSON TREE GW())

Recall that a (combinatorial) critical binary Galton-Watson tree 7' €
T describes a trajectory of the Galton-Watson branching process. The
process starts with a single progenitor (tree root) at time ¢ = 0. At
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each discrete time step every existing population member terminates
and produces, equiprobably, either no or two offspring, independently
of the other members. We denote the resulting tree distribution on 7
by gwcrit.

Definition 2 (Exponential critical binary Galton-Watson tree).

We say that a random tree T' € BL"plane is an exponential critical binary

Galton-Watson tree with parameter A > 0, and write T £ GW(N), if

(i) sHAPE(T) is a critical binary Galton-Watson tree GIW™™,

(ii) the orientation for every pair of siblings in T is random and
symmetric (e.g., in each pair of siblings, a randomly and uni-
formly selected sibling is assigned a right orientation, and the
other is assigned a left orientation),

(iii) given SHAPE(T ), the edges of T' are sampled as independent ez-
ponential random variables with parameter X, i.e., with density

(7) PA(x) = Ae M 120}
The following result is well-known.

Theorem 1. [42, Lemma 7.3],[36, 39] Consider a random excursion
X € €. The level set tree LEVEL(X) is an exponential critical binary
Galton-Watson tree GW(X) if and only if the rises and falls of Xy, ex-
cluding the last fall, are distributed as independent exponential random
variables with parameter \/2.

Consider a random walk {Xj}rez with a homogeneous transition
kernel p(x,y) = p(z — y), for any x,y € R, given by a mixture of
exponential jumps (Laplace distribution):

() pley = 2EEAED S

This process is called a symmetric exponential random walk with pa-
rameter . Each symmetric exponential random walk with parameter
A corresponds to a piece-wise linear continuous function {X;};er with
slopes +1 whose alternating rises and falls, taken from {X}};ez, have
independent exponential lengths with parameter \/2. Specifically, con-
sider a piece-wise linear function that interpolates the local extrema of
Xg; then transform the time in such a way that the slopes of the lin-
ear interpolation are 1. There is one-to-one correspondence between
the infinite sequences of the values of local extrema of {X;};cgr and
{ Xy }rez. We refer to such a function as a symmetric exponential ran-
dom walk with parameter A/2 on R.

—00 < x < 00.



20 YEVGENIY KOVCHEGOV AND ILYA ZALIAPIN

Corollary 1. The Harris path Hew(y) of an exponential critical binary
Galton-Watson tree with parameter \ is an excursion of a symmetric
exponential random walk {X;}er with parameter A/2.

The main result of this work is Thm. 2 of Sect. 4.3 that establishes
invariance of exponential critical binary Galton-Watson tree GW(\)
with respect to an arbitrary generalized dynamical pruning. We begin
by finding the distributions of the length and height of this tree; these
two distributions are used in Thm. 3 that specifies the scaling of edges
in GW(A) after selected prunings.

4.1. Length of a random tree GW()\). Recall the modified Bessel
functions of the first kind

I,(2) = i T <§)

—T(n+1+v)nl

Lemma 1. Suppose T 4 GW()) is an exponential critical binary Galton-
Watson tree with parameter \. The total length of the tree T has the
probability density function

1
((z) = —e I (Az), > 0.
(9) (1) = —e™L(Az), oz
Proof. The number of different combinatorial shapes of a planar binary
tree with n+1 leaves, and therefore 2n+1 edges, is given by the Catalan

number C,, = #1(2:) = % The total length of 2n + 1 edges is
a gamma random variable with parameters A and 2n + 1 and density
function
)\2n+1x2n67)\:1:
n =, > 0.
Nani1 () = o gy @

Hence, the total length of the tree T" has the probability density func-
tion

0o Cn )\2n+1$2n67)\x o'} )\2n+1x2n67)\x

,g = . =
(@) EO 92n+1 (2n)! 2 9ot (5 £ 1)l
\z 2n+1
[P (7) L
— ey N2)  Zooney (),
(10) v 7;::()1“(71—1—2) al ozl 1( :v)

U U
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Next, we compute the Laplace transform of ¢(x). By the summation
formula in (10),

A\2n+1 20— (A+s)x

00 4 Cn
Li(s) = / Zo 92nt1 (2n)! dx
0 "=

dx

B i N A 2n+1 70 ()\ + S>2n+1$2ne—()\+s):p
2t \ A+ (2n)!

© A 2n+1
— LR =7 .c(72
7;)22%1 <A+s> A2,

where we let Z =
numbers

ﬁ, and the characteristic function of Catalan
s)

> 2

= Cnn:—
) ,;) TV &

is well known. Therefore

(11) LUs) =7 -c(Z% =

A+ s+ /(A+5)2— A2
Note that the Laplace transform L/(s) could be derived from the
total probability formula
1 1
(12) l(x) = §¢,\($)+§¢,\*€*f($),

where ¢, (z) is the exponential p.d.f. (7). Thus, £{(s) solves
1 A 2
(13) Lo(s) = 2HS<1 + (L)) )

Corollary 2. The probability density function f(x) of the length of an
excursion in an exponential symmetric random walk with parameter A
s given by

1
(1) f@) = 5t/2).
Proof. Observe that the excursion has twice the length of a tree GW(\).
O O

4.2. Height of a random tree GW(\).

Lemma 2. Suppose T g GW(A) is an exponential critical binary
Galton-Watson tree with parameter . Then, the height HEIGHT(T)
of the tree T' has the cumulative distribution function

AL

H(z) = —— .
(15) (@)= oy w20
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Proof. The proof is based on duality between trees and positive real
excursions. Specifically, Thm. 1 establishes equivalence between the
level set tree of a positive excursion of an exponential random walk
(Def. 4) and an exponential critical binary Galton-Watson tree GW(A).

This implies, in particular, that for a tree T < GW(A) the HEIGHT(T)
has the same distribution as the height of a positive excursion of
an exponential random walk Y, with Yy = 0 and independent incre-
ments Y, — Y} distributed according to the Laplace density function
7‘”( 2)+én(=z) _ A e M7l with ¢y (z) defined in (7).

Notlce that Yk isa martmgale We condition on Y; > 0, and consider
an excursion Yy, Y7, ..., Y, with 7~ = min{k > 1 : Y} < 0} denoting
the termination step of the excursion. For x > 0, we write

ple—H(a:):P( max Y;>ux

g 0<y<r—

Y1>O)

for the probability that the height of the excursion exceeds x. The
problem of finding p, is solved using the Optional Stopping Theorem.
Let

7, =min{k >0 : Y, >z} and Ti=T, NT_.
Observe that
pe. =P(r=1,]Y1>0).
For a fixed y € (0, z), by the Optional Stopping Theorem, we have
y = E[Y;|Y1=y]

= EY;|7=7_Y1=y|P(r=7_|Y1=y)
"‘ED/T|T:T:B7Y1:y]P(T:Tz|}/1:y)

= EV. [V, <0 Yi=ylP(r=7|Vi=y)
+EY: | Y > 2V =y|P(r =7, [ Y1=1y)

1 1
= —)\P(rzT_|Y1=y)+($+)\)P(T:Tx|Y1:y)

2 1
= <x+)\>P(T:Tw\Y1:y)—)\.

Hence,
Y+
T+

>

P(r=m, | Yi=y) =

>N
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Thus,

P(T:Tw,O<Y1<x|Y1>O> = /P(T:Tz|}ﬁ:y))\e”\ydy

= /y+>‘ e Mdy

—\x
— €
)\x +2 ’

and therefore,

Dz = P( max Y>:E|Y1>O)

0<j<K

- P<T:Tx,0<Y1<:c|Y1>())+P<T=Tx,Y125€|Y1>O)

2 A 2
= —e ™ +PlY > Y, O>
Ax + 2 ‘ <1 vl > Ax+2°
Hence

AT

H =1—-p, = .

(7) p Ax + 2

O O

4.3. Prune invariance of GW()). This section establishes prune in-
variance of exponential Galton-Watson trees with respect to arbitrary
generalized pruning.

Theorem 2. Let T < GW(\), T € Bﬁplane, be an exponential criti-
cal binary Galton-Watson tree with pammeter A > 0. Then, for any
monotone nondecreasing function o : BC! — Ry and any A > 0 we

have

plane

A= {Sa(@, T)ISalp, T) # 6} £ GW(Apa(\, ),

where pa(X, @) = P(Salp,T) # ¢). That is, the pruned tree T® con-
ditioned on surviving is an exponential critical binary Galton- Watson
tree with parameter

Ea(N, ) = Apa(A, v).

Proof. Let X denote the length of the stem (edge adjacent to the root)
in T, and Y denote the length of the stem in 7. Let = be the nearest
descendent vertex (a junction or a leaf) to the root in 7. Then X,
which is an exponential random variable with parameter A, represents
the distance from the root of T to x. Let degy(x) denote the degree of
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S S S S

1 2 3 4

FIGURE 9. Sub-events used in the proof of Thm. 2. Gray
dashed line shows (a part of) initial tree T". Solid black
line shows (a part of) pruned tree T2. We denote by z;,
a point in T located at distance h from the root, if it
exists.

7 in tree T and dega (7) denote the degree of z in tree T, If TA = ¢,
then Y = 0. Let

F(h) =P(Y < h | Sale,T) # ¢).

Let z;, denote a point in T located at distance h from the root, if such
exists. If X > h, the choice of xj, is unique. The event {Y < h}
is partitioned into the following non-overlapping sub-events Sq,...,Sy
illustrated in Fig. 9:

(S1) The event S; = {degT(x) =land X < h} has probability
1
P(Sl) = 5(1 — €7>\h)
as P(degT(x) = 1) =1 and P(X <h)=1—e?
(S2) Denote pa = pa(A, ). The event
So = {X > h and all points of T" descendant to z; do not belong to TA}
has probability
P(S2) = e (1 — pa)
as P(X > h) = e and
P(all points of T descendant to x; do not belong to T4 | X > h)
= P(Salp, Agr) = 6| X > h) = P(Salp,T) = ¢) = 1 = pa.

(S3) The event S3 = {X < h and deg,(z) = 3 and either both sub-

trees of T descending from x are pruned away completely (not
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intersecting T2) or {x € T, degpa(z) = 3}} has probability

P(Ss) = 5(1— e )((1L—pa)* +14)

as P(degT(x) = 3) = %, P(X<h)=1—eM

P(both subtrees of T' descending from x are pruned away ’ deg,(z) = 3)
= (1—-pa),
and
P(both subtrees of T descending from z survive pruning ’ degy(z) = 3)
= DA
(S4) The event
Sy ={X < h,degp(x) =3}n{z € T?, degya(z) =2} N{Y < h}

has probability*

h 00
1
P(S4) = §/>\€7At'2PA(1—pA)‘F(h—t) dt IPA(l—pA)/)\e*”F(h—t) dt
0 0
as P(degT(as) = 3) =1 P(degTA(x) = 2‘degT(x) = 3) =
QPA(l _pA>7 and

h
P(X <hY <h|degp(z) =3, v € T, degya () =2) = /Ae—”F(h—t) dt.
0

Using the probabilities P(S;), P(Sa), P(S3), and P(S4) as obtained
above, we have two alternative representations for the probability P(Y <
h):

First,

P(Y <h)=(1-pa)+paF(h),

'Here, degya (7) = 2 means x is neither a junction nor a leaf in T4,
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and second,

P(Y < h) =P(S1) + P(S2) + P(S3) + P(S4)

1
25(1 — e_Ah) + e_)‘h(l —pa)

1
+5(1- e M) (1= pa)*+13)
+pa(l —pa) / e MF(h —t)dt.
0
Equating the two expressions of P(Y < h) and simplifying, we obtain
(1=pa)+paF(h) = (1—pa+pi)—e "pa+pa(l—pa) /)\G_MF(h—t) dt.
0

Differentiating the above equality we obtain the following equation for
the p.d.f. f(t) = LF(t) of Y:

f(h) =pa dx(h) + (1 —pa) ér x f(h),

where as before ¢, denotes the exponential density with parameter A as
in (7). Applying integral transformation on both sides of the equation,

we obtain the characteristic function f(s) = E[eisy} of Y,

N Apa
f(S)_)\pA—ZS

Thus, we conclude that Y is an exponential random variable with pa-
rameter A\pa.

= QAS)\PA(S)'

Next, let y be the descendent vertex (a junction or a leaf) to the root
in T2, If T® = ¢, let y denote the root. Let

g = P(degra(y) =3 | Sa(e,T) # ¢).

As T? is a subset of the metric space T, vy is also a point in 7" which
may or may not match z. Then, P(degTA(y) =3 ‘ y#x, TA # ¢) =q
as in the event conditioned upon, y is the descendent vertex to = in
T2. Also,

P(y=x | degr(x) = 3) = P(degra(v) = 3 | degr(v) = 3) = pi
and

Py | degr(z) = 3) = P(degra(v) = 2| degy(v) = 3) = 2pa(1-pa).
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Therefore, since {deg;a(y) =3} can be written as the following union
of disjoint events,

{degra(y)=3} = {degra(z) =3, y=x}U{degy(v)=3, y#z, degra(y)=3},
q-pa = P(degpa(y) = 3) =P(degy(v) = 3) |P(degya (v) = 3 | degy(z) = 3)

+ qP(degya(x) = 2 | degy(z) = 3)}

1
=3 {PQA + 2pa(l — pA)CI}

implying
1
¢ = 5pa+(1=pa)g,
which in turn yields ¢ = %

Finally, if Y > h, let xj, denote the unique point of 7" located at distance
h from the root that survived the pruning. Letting Tfh = Salp, Asy1),

we have

(T2 [y > h) = (7% Sale, T) # ¢).
Hence, conditioned on Sa(p,T) # ¢, the events {degTa(y) = 3} and
{Y > h} are independent.

We saw that conditioning on Sa(,T) # ¢, the pruned tree T has the
stem length distributed exponentially with parameter Apa. Next, inde-
pendently of the stem length Y, we have the pruned tree 72 branching
at y (the stem end point farthest from the root), with probability ¢ = %,
into two independent subtrees, each distributed® as {T® | T® # ¢}.
Thus, we recursively obtain that T2 is a critical binary Galton-Watson
tree with i.i.d. exponential edge length with parameter A\po. 0 0O

Next, we find an exact form of the survival probability pa (A, ) for
three particular choices of ¢, thus obtaining Ea (A, ¢).

Theorem 3. In the settings of Theorem 2, we have
(a): If o(T') equals the total length of T (¢ = LENGTH(T)), then

Ea(N, ) = Ae M IH(AA) + I (AA)|.
(b): If o(T') equals the height of T (p = HEIGHT(T)), then
2\

2Here, y is also a junction vertex in T of which it is only known that both of its
descendent subtrees survived pruning (were not completely erased).




28 YEVGENIY KOVCHEGOV AND ILYA ZALIAPIN

(c): If (T) + 1 equals the Horton-Strahler order of the tree T,
then

gA()\7 SO) = )‘2_LAJa

where |A| denotes the mazimal integer < A.

Proof. Part (a). Suppose T 4 GW(A), and let ¢(z) once again denote
the p.d.f. of the total length LENGTH(7'). Then, by Lemma 1,

A AA

pa =1 — /Z(m) dr=1— / ie‘””]l (:z:) dx
(16) _ b [IO(AA) + ]1()\A)},

where for the last equality we used formula 11.3.14 in [2].

Part (b). Suppose T < GW()). Let H(z) once again denote the
cumulative distribution function of the height HEIGHT(T'). Then by
Lemma 2, for any A > 0,

2
A +2°

pa=1—-H(A) =

Part (c). Follows from [33, Corollary 1]. O O

Remark 1. Let Ea(N, @) = )\§>—\0—2 as in Theorem 3(b). Here & (), ¢) =

A and Ea(A, @) is a linear-fractional transformation associated with

matrix
1 0
AA - (A 1) .
2

Since Aa form a subgroup in SLy(R), the transformations {€a}A~,
satisfy the semigroup property -

8A18A2 = 6A1+A2

for any pair Ay, As > 0.

We notice also that the operator Ea (A, ¢) in part (c) of Theorem 3
satisfies only the discrete semigroup property for nonnegative integer
times. Finally, one can check that Ea(A, ) in part (a) does not satisfy
the semigroup property.
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5. CONTINUUM 1-D BALLISTIC ANNIHILATION

As an illuminating application of the generalized dynamical pruning
(Sect. 3) and its invariance properties (Sect. 3.4), we consider the dy-
namics of particles governed by 1-D ballistic annihilation model, tradi-
tionally denoted A+ A — @ [18]. This model describes the dynamics of
particles on a real line: a particle with Lagrangian coordinate x moves
with a constant velocity v(z) until it collides with another particle,
at which moment both particles annihilate, hence the model notation.
The annihilation dynamics appears in chemical kinetics and bimolec-
ular reactions and has received attention in physics and probability
literature [18, 7, 9, 41, 17, 8, 19, 13, 35, 44]. We introduce here a con-
tinuum mechanics formulation of ballistic annihilation. The dynamics
of a ballistic annihilation model with two coalescing sinks is illustrated
in Fig. 1.

Sect. 5.1 introduces the continuum annihilation model and describes
the emergence of sinks (shocks). The model initial conditions are given
by a particle velocity distribution and particle density on R. Subse-
quently, we only consider a constant density and initial velocity distri-
bution with alternating values +1, or, equivalently, initial piece-wise
linear potential ¢ (x,0) with alternating slopes +1 (Fig. 2). Section 6
discusses a construction of the graphical embedding of the shock wave
tree into the phase space (x, 1 (x,t)) and space-time domain (z,t). The-
orems 5, 6 in Sect. 6.4 establish equivalence of the ballistic annihilation
dynamics to the generalized dynamical pruning of a (mass-equipped)
shock wave tree. Sections 6.5,6.6 illustrate how the pruning inter-
pretation of annihilation dynamics facilitates analytical treatment of
the model. Specifically, we give a complete description of the time-
advanced potential function ¢ (x,t) at any instant ¢ > 0 for the initial
potential in a form of exponential excursion (Thm. 7), and describe the
temporal dynamics of a random sink (Thms. 8,9).

5.1. Sinks, massive particles, shock waves. We consider a Lebesgue
measurable initial density g(z,0) = g(z) > 0 of particles on an interval

[a,b] C R. The initial particle velocities are given by v(x,0) = v(z).

Prior to collision and subsequent annihilation, a particle located at x

at time ¢ = 0 moves according to its initial velocity, so its coordinate

x(t) changes as

(17) x(t) = xo + tv(zo).

When the particle collides with another particle, it annihilates. Ac-
cordingly, two particles with initial coordinates and velocities (z_,v_)
and (z,,vy) collide and annihilate at time ¢ when they meet at the
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same new position,

r_+tv. =x, 4 tug,

given that neither of the particles annihilated prior to ¢. In this case,
the annihilation time is given by
Ty — T

18 t=——"-—.
( ) Vg — VU=

Let g(z,t) and v(x,t) be the Eulerian specification of the particle
density and velocity field, respectively, at coordinate x and time instant
t, with a convention that g(z,f) = 0 = v(x,t) = 0. We define the
corresponding potential function

X

P(x,t) = —/ v(y,t)dy, x € [a,b],t >0,
so that v(z,t) = —0,¢(x,t). Let ¢(x,0) = Wo(x) be the initial poten-
tial.

We call a point o(t) sink (or shock), if there exist two particles that
annihilate at coordinate o(t) at time t. Suppose v(z) € C'(R). The
equation (18) implies that appearance of a sink is associated with a
negative local minima of v'(z*); we call such points sink sources. Specif-
ically, if x* is a sink source, then a sink will appear at breaking time
t* = —1/v'(x*) at the location given by

o(t") =a" +t'v(z") = 2" —

provided there exists a punctured neighborhood
Ns(z*)={z: 0< |z —2"| <6} Ca,b]

such that none of the particles with the initial coordinates in Ns(z*) is
annihilated before time ¢*.

Sinks, which originate at sink sources, can move and coalesce (see
Fig. 1). We impose the conservation of mass condition by defining the
mass of a sink at time t to be the total mass of particles annihilated
in the sink between time zero and time t. When sinks coalesce, their
masses add up. It will be convenient to assume that sinks do not
disappear in the situations when they stop accumulating mass (i.e.,
when the initial velocity field is discontinuous, as in Sect. 6). In these
situations, we assume informally that the sinks are being pushed by
the system particles. Formally, there exists three cases depending on
the occupancy of a neighborhood of o(t). If there exists an empty
neighborhood around the sink coordinate o(t), the sink is considered
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at rest — its coordinate does not change. If only the left neighborhood
of o(t) is empty, and the right adjacent velocity is negative:

v(oy,t) = rlﬁg)v(x,t) <0,

the sink at o(t) moves with velocity v(o.,t). A similar rule is applied
to the case of right empty neighborhood. A formal description of the
sink speed is given below in Eq. (19). Accordingly, it is convenient to
think of the dynamics of massive particles, each of which corresponds
to a sink that can annihilate particles and hence accumulate mass,
or be pushed by the system particles without annihilation and mass
accumulation.

We refer to a trajectory of a massive particle as a shock wave. The
appearance, motion, and subsequent coalescence of massive particles
can be described by a time oriented shock wave forest. In particular,
the coalescence of massive particles under initial conditions with a finite
number of sink sources is described by a finite forest.

5.2. Basic constraints on ballistic annihilation dynamics. Sup-
pose x_ < z are such that v(x_) > v(xy). Assume that density g(z)
is positive, and suppose there is only one sink source z* € (z_,z,). In
order for x_ and x, to annihilate each other in the sink originated at
x* at time ¢ > t* we need the following:

(i) Collision at time t:
-+ tu(x_) =z +to(zy).

(ii) The mass between z_ and z* annihilates the mass between z*
and x,:

79(33) dr = 79(:1:) dx.

(iii) Neither z_ nor x, is annihilated before time ¢.

From conditions (i) and (ii), we obtain the velocity of the sink at time
t:

d v(z-) 14&5135(793_) + () 1+£]$(+:c)+)
(19) 2’ = o) o) '
1+tv/ (z—) + 1+t (z4)

Indeed, let z_ = x_(t) and x, = x(t) be the left and the right points
annihilating each other at the location o(t) of the sink at time ¢ > 0.
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Then, differentiating the equation in condition (i), we obtain

(20) —o(t) =2/ (t) + v(z_(t)) + ta’_(t)' (x_(1))
(21) = 2, () +v(24 (1) + taly (1) (24(1)),

while differentiating the balance of mass equation in condition (ii), we
get

(22) w’_(t)g(x,(t)) + xﬁr(t)g(;u(t» =0.
The above equations (20), (21), and (22) yield (19).

This sink dynamics description is not restricted to v(z) € C'(R), and
can be extended to the case of piecewise smooth v(x).

Example 5 (Two velocities, single sink). Suppose g(z) > 0 for all

v iz <azg*
. , where the constants v_ > v, and
vy itz >a”

r €R. Let v(z) =

*

x* are given. Naturally, z* is the only sink source and the only sink
appears at the sink source at time ¢t = 0. Moreover, analogously to
(19), one can derive the dynamics of the sink at time ¢:

d . v-glz_)+vig(zy)
(23) "= T ¥ glay)

where z_ < x* is the only root of

y+t(v——vy) z*
Gl = [ glw)de— [g()de,
x* )

and z, = x_ + t(v_ — vy ). Note that Gy(z) is continuous and strictly
increasing, and that Gy(z*) > 0 > G, (x* —t(v- — v+)).

The dynamics of ballistic annihilation, either in discrete or contin-
uum versions, can be quite intricate and is lacking a general description.
The discrete 1-D ballistic annihilation model with two possible veloc-
ities +v was considered in [18, 9, 8, 19, 13]; the three velocity case
(—1, 0, and +1) appeared in [17, 44]. The existing analyses focus on
the evolution of selected statistics under particular initial conditions.
In the following section, we give a complete description of the contin-
uum annihilation dynamics in case of two-valued initial velocity and
constant particle density.
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6. CONTINUUM 1-D BALLISTIC ANNIHILATION: PIECE-WISE LINEAR
POTENTIAL WITH UNIT SLOPES

Here we study a continuum version of the 1-D ballistic annihila-
tion with two possible initial velocities and constant initial density, i.e.
v(xz) = +v and ¢(z,0) = g(z) = go for x € [a,b]. Since we can scale
both space and time, without loss of generality we let v(x) = +1 and
g(x) = 1.

Formally, we consider the space £ of positive piece-wise linear con-
tinuous excursions with alternating slopes 4+1 and finite number of
segments. We write £%([a,b]) for the restriction of this space on the
real interval [a,b]. We consider an initial potential ¢(x,0) = Wy(z)
such that —i(z,0) € £%([a,b]); see Fig. 2. This space bears a lot of
symmetries that facilitate our analysis.

The dynamics of a system with a simple unit slope potential is illus-
trated in Fig. 10. Prior to collision, the particles move at unit speed
either to the left or to the right, so their trajectories in the (x,t) space
are given by lines with slope +1 (Fig. 10, top panel, gray lines). The
local minima of the potential Wy(z) correspond to the points whose
right neighborhood moves to the left and left neighborhood moves to
the right with unit speed, hence immediately creating a sink. Accord-
ingly, the sinks appear at t = 0 at the local minima of the potential;
and those are the only sinks of the system. The sinks move and merge
to create a shock wave tree, shown in blue in Fig. 10.

The two white (unshaded) rectangles in the top panel of Fig. 10
correspond to the regions of zero particle density. The segments of the
shock wave (blue) that bound these rectangles correspond to the sinks
that are being pushed by the system particles, with no annihilation
and mass accumulation. The parts of the shock wave that fall within
the shaded region correspond to the sinks that annihilate particles and
accumulate mass.

Observe that the domain [a,b] is partitioned into non-overlapping
subintervals with boundaries x; such that the initial particle velocity
assumes alternating values of +1 within each interval, with boundary
values v(a,0) = v(a) = 1 and v(b,0) = v(b) = —1. Because of the
choice of potential Wy(z), we have

b

/v(x) dr = Wo(b) — Wo(a) = 0,
i.e. the total length of the subintervals with the initial velocity —1
equals the total length of the subintervals with the initial velocity 1. For
a finite interval [a, b], there exists a finite time t,,x = (b—a)/2 at which
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FIGURE 10. Shock wave tree in a model with a unit
slope potential: an illustration. (Top panel): Space-
time dynamics of the system. Trajectories of particles
are illustrated by gray lines. The trajectory of massive
particles (coalescing sinks) is shown by blue line — this
is the graphical representation G@% (W) of the shock
wave tree S(¥o). Notice the appearance of empty re-
gions (zero particle density) in the space-time domain.
(Bottom panel): Initial unit slope potential Wy(z) with
three local minima (black line) and a graphical represen-
tation G(®¥) (W) of the shock wave tree (blue line) in the
phase space (z, ¢ (xz,t)).

all particles aggregate into a single sink of mass m = (b — a) = 2 tyax;
see discussion below. We assume that the density of particles vanishes
outside of [a,b] and only consider the solution on the time interval

{07 tmax] .

6.1. Shock waves. For our fixed choice of the initial particle density
g(x) = 1, the model dynamics is completely determined by the poten-
tial Wo(x). We will be particularly interested in the dynamics of shock
waves. The trajectories of massive particles can be described by a set
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(Fig. 10, top panel)
g(zvt)(\po) = {(g;,t) € R? : 3 a massive particle at (x,t)}

in the system space-time domain (z,t) : € [a,b], t € {0, (b — a)/Q}.
For any two points (z;,t;) € G@Y(Wy), i = 1,2, connected by a self-
avoiding path v within G@? (W), we define the distance between them
as

(24) A0 (w1, 1), (2, 12) = [1dt] =20 =ty ~ ta,

v
where
t* == max{t : (z,t) € v}.

Equivalently, the distance between two points within an uninterrupted
run of a massive particle (i.e., without merging with another particle) is
defined as their nonnegative time increment; this induces the distance
d@ on G@H(Wy).

Similarly, the trajectories of the massive particles can be described
by a set (Fig. 10, bottom panel)

GV (W) = {(x,w(x,t)) € R? : 3 a massive particle at (x,t)}

in the system phase space (z,v(z,t)) : = € [a,b], t € [O, (b — a)/Q}.
For any two points (z;,1;) € G@¥) (W), i = 1,2, connected by a self-
avoiding path  within G®¥) (), we define the distance between them
as

(25) A= (1, 01), (w2, 2)) = [ (1] + |z,

Y

Equivalently, one can consider the L! distance between the points along
path 7; this induces the distance d@¥%) on G=¥)(Wy).

6.2. Tree structure of shock waves. Here we show that the shock
waves G and G@®Y in our model have a finite binary tree structure.
Multiple useful symmetries of these trees are summarized in Lem. 5.
The general construction is presented in Sect. 6.2.3; it is based on a
W-shaped potential discussed in Sect. 6.2.2. To develop intuition and
cover all possible cases, we begin with a simple V-shaped potential.
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FIGURE 11. A V-shaped potential on interval [a,b].
(Bottom): The potential ¥, (black line) and the shock
wave in the phase space (z,1) (blue segment). (Top):
The space-time portrait. The system occupies a trian-
gular (shaded) region in the (x,t) space. Thin hatching
illustrates the trajectories of regular particles. Blue ver-
tical segment show the trajectory of the massive particle.
The length of this segment in both panels is v; = (b —

a)/2.

6.2.1. V-shaped potential. Let x; = ¢ = (a + b)/2 be the center of the
segment [a, b]. Consider the simplest V-shaped potential that consists
of a negative segment on [a,c] and a positive segment on [c, b]; see
Fig. 11. In this case, there exists a single massive particle that originates
at t = 0 at the point (¢, ¥o(c)). In z-space, it remains at rest and
accumulates mass at rate 2 during the time interval of duration (b —
a)/2, which reflects accumulation of regular particles that merge into
the massive particle from left and right. After this, the mass of the
particle is (b — a), which reflects complete accumulation of all regular
particles from the interval [a, b].
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In the phase space (Fig. 11, bottom panel), the trajectory of the
massive particle corresponds to a vertical segment of length v; = (b —
a)/2 between points (z1, Wo(x1)) and (21, Uo(x1) + v1). The trajectory
of each regular particle is a horizontal line from the particle’s initial
position (z,%(x,0)) to the point of merging with the massive particle
at (zq1,¢(z,0)).

In the space-time domain (Fig. 11, top panel) the trajectory of the
massive particle is a vertical segment between points (x1,0) and (x1, vy).
The trajectories of regular particles, each of which moves with its ini-
tial velocity until merging with the massive particle, are shown by thin
diagonal lines.

To summarize, in the case of a V-shaped potential, each of the shock
waves G@¥) and G@Y is a vertical interval of length v; (blue lines in
Fig. 11). The distances d®%) of (25) and d®" of (24) coincide with
the Lebesgue measure on these intervals.

6.2.2. W-shaped potential. Consider now a negative excursion on [a, b]
with exactly two local minima at x;, 3 and the only local maxima at
To, With a < 27 < 29 < x3 < b, see Fig. 12. There exist two massive
particles that originate at ¢ = 0 at points x; and x3. The massive
particle at x; remains at rest and accumulates mass at rate 2 during
time interval of duration v; = Wy(zy) — Wo(xy). At instant ¢ = vy
the right neighborhood of the massive particle at x; becomes empty,
and it starts moving at unit speed to the right. Similarly, the massive
particle at x3 remains at rest and accumulates mass at rate 2 during
time interval of duration vg = W(z9) — Wo(x3). At instant ¢ = vs the
left neighborhood of the massive particle at x3 becomes empty, and it
starts moving at unit speed to the left. The two massive particles move
toward each other until they merge to form a new massive particle of
mass 2(v; + v3). We denote by h;, i = 1,3 the durations of these
respective movements. Since both right and left neighborhoods of the
new massive particle are occupied by regular particles, the particle
remains at rest for some time.

The following lemma summarizes this discussion and describes the
shock trajectories G(*%) (W) and G (W,). This is the basic element
for constructing a general potential solution in Sect. 6.2.3.

Lemma 3 (Shock tree of a W-shaped potential). For a W-shaped
potential described above (and illustrated in Fig. 12) we have:

(a) The shock trajectory G@¥) (W) in the phase space has the bracket
tree shape that consists of two leaves and a root edge (Fig. 12,
bottom panel). Fach leaf corresponds to the dynamics of one of
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FIGURE 12. A W-shaped potential. (Bottom): The po-
tential Wy (solid black) and the shock in the phase space
(x,1) (blue). (Top): The space-time portrait. The sys-
tem occupies a shaded region in the (x,t) space, bounded
by a triangle that corresponds to the V-shaped potential
on the interval [a,b], as in Fig. 11. Notice the appear-
ance of an empty rectangular region in the space-time
portrait that corresponds to (x,t) locations with no par-
ticles. Thin hatching illustrates the trajectories of regu-
lar particles. Blue lines show the trajectories of massive
particles.

the two initial massive particles; the root edge corresponds to
the dynamics of the final massive particle. Fach leaf consists of

a vertical segment between points (x;, Vo(x;)) and (x;, Vo(x2)),
and a horizontal segment between points (z;, Vo(z2)) and (¢, Vo(xs)),
for v = 1,3. The stem consists of a vertical segment between
points (¢, ¥o(z2)) and (¢, VYo(a)). Here ¢ = (a + b)/2 is the
center of the interval [a,b].

In the space-time domain (x,t), the system occupies a cone C
that has the shape of a right triangle with the hypotenuse on the
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interval {z,t} = {[a,b],0} and the legs merging at the point
(c,c). The shock trajectory G@D(W¥y) forms an inverted Y-
shaped tree shown in Fig. 12 (top panel) that consists of two
leaves and a stem. Fach leaf corresponds to the dynamics of
one of the two initial massive particles; the stem corresponds
to the dynamics of the final massive particle. FEach leaf con-
sists of a wvertical segment between points (x;,0) and (x;,v;),
and a slanted segment between points (x;,v;) and (¢, vy + v3),
for i = 1,3. The stem consists of a vertical segment between
points (c,v1 + v3) and (c,c). There exists a rectangular empty
region (no particles) with vertices at the points (clock-wise from
the bottom point): (x2,0), (z1,v1), (¢, v1 + v3), and (x3,Vs).
The reqular particles move in the direction of their initial veloc-
ities until they merge with a massive particle. A reqular particle
x in the interval [xy — vy, 21 + Vi = x2) merges with the mas-
sive particle at point x1 at time instant t = |x1 — x|. A regular
particle x in the interval (x3 — vy = o, x3 + v3| merges with
the massive particle at point x3 at time instant t = |x3 — z|. A
reqular particle x in the intervals [a,x1 — vi) and (r3 + Vs, b]
merges with the massive particle at point (a + b)/2 at time in-
stant t = |(a + b)/2 — x|. The regular particle at x5 merges the
massive particle at x1 (v3) if the potential is left (right) contin-
uous at time instant t = x9 — x1 (t = T3 — 3).

The metric spaces (Q(x’t)(\llo), d(”)) and (g(’”“/’)(\llo), d(“ﬁ)) are

isometric binary trees.

Proof. The statements follow from model definition and elementary
geometric properties of a W-shaped potential illustrated in Fig. 12.

U U

Next, we make a symmetry observation, which helps to extend our
geometric construction of the shock tree to an arbitrary potential. We
define the basin By for the local maximum at zs as the shortest inter-
val that contains x5 and supports a non-positive excursion in Wy(z).

left ,.right

Formally, By = [z5"", 25%"], where

2y = inf{x : x>z and Vp(z) > U(1y)},

5% = sup{z : 2 < x5 and Vo(x) > U(2s)}.

The basin length is denoted by |By| = z5&™ — zkft.

Lemma 4 (Symmetry lemma). Let v;, h; for i = 1,3 be the lengths
of the vertical and horizontal segments, respectively, of the leaves of the
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shock tree for a W-shaped potential:
VZ:\I/()(ZE'Q)—\I/Q(ZEZ), hl: |(a+b)/2—xz|

Then
hy =v3, hz3=wv;

and

Vi +hi = [Ba|/2 = (b—a)/2 = (Vo(a) — Wo(z2)).

Proof. By elementary geometric properties of the shock wave tree for
a W-shaped potential illustrated in Fig. 12. O O

Lemma 4 implies that after instant ¢ = |By|/2 when the massive
particles that originate at x; and x3 merge, the process dynamics is
indistinguishable from that of the V-shaped potential on [a,b]. This
loss of memory property is used below to construct the shock tree in
a general case, using a recursive construction by the number of local
maxima of the potential.

6.2.3. General potential. This section considers a potential Uy(z) =
Uy (x) with =0y (x) € £%([a, b]) and such that ¥y(z) has distinct values
of the local maxima.

We begin by extending the basin definition of Sect. 6.2.2. Specifi-
cally, for each local extremum z; of Wy(z), we define its basin B; as the
shortest interval that contains x; and supports a non-positive excursion

of Wo(x). Formally, B; = [}, x;ight], where

2UE — nf {x c x> x; and Uo(z) > ¥(z;

J Y

)}
ac;eft = sup {x r < z; and Yo(x) > U(x; }

The basin’s length is ‘Bj‘ = 2¥ — gl Point ¢; = (25" + 2lft) /2

denotes the center of the basin B;. Additionally, we let

vj = Uo(Tparency)) = Yolr;)  and  hy = |Baing(s)| /2.

We observe that the basin B; for a local minimum x; coincides with its
coordinate: B; = {x; = ¢t = 218"}

The shock tree for the V-shaped potential was constructed in Sect. 6.2.1.
If the potential is not V-shaped, it has n > 1 local maxima. We as-
sume that the values of the local maxima are distinct. Consider the
basins that correspond to the local maxima of ¥y (z) and re-index them

according to their lengths, from shortest to longest:

|B1| < |Bs| < -+ < | Byl
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Let t; = |B;|/2. For each basin B; we define the corresponding space-
time cone C; that has the shape of a right triangle with hypotenuse
{x,t} = {B;,0} and legs merging at the point (z'*" +1,, ¢;); see Fig. 14.

It is readily seen that the shortest basin By necessarily supports a W-
shaped potential. We construct the shock tree for the regular particles
within the space interval B; during the time interval [0, ¢;], using the
W-shaped potential construction of Lemma 3. Hence, we describe the
system dynamics in the space-time cone C;.

Consider now the unfolded potential Wy(x) that coincides with Wy (x)
outside of By and has a V-shaped form on B;; Fig. 13. (This potential
is obtained by “unfolding” the inner local maximum of the W-shaped
potential within the basin By, hence its name.) By construction, and
using Lemma 3, the trees that correspond to the potentials W; and
U, coincide outside of the cone C; in the space-time domain. The
potential Wy(x) has n — 1 local maxima. Its shortest basin is By; it
necessarily corresponds to a W-shaped potential within Wy(x). We
use Wy(x) to construct the space-time tree on Cy, using the W-shaped
potential algorithm of Lemma 3. The resulting tree is only considered
within the space-time subregion Cs \ C;. The union of this tree and the
tree constructed in the initial step within C; results in the tree within
C1 UCs.

Consider now a set of unfolded potentials ¥;(x), ¢ = 3,...,n, such
that U;(x) coincides with ¥;_;(z) on [a,b] \ B; and forms a V-shaped
negative excursion on B;_1, see Fig. 13. By construction, the shortest
basin within every W;(x) is B;, and it supports a W-shaped potential.
We apply the W-shaped potential algorithm to each potential ¥, (x)
within the basin B;, hence consecutively extending the shock tree con-
struction to the space-time subsets

At instant ¢, there exists a single massive particle within a V-shaped
potential W, (z) on [a,b], which is treated according to the V-shaped
potential construction. This completes the space-time tree construc-
tion.

Figure 14 illustrates the above process for a potential with 4 local
maxima. The space-time cones C;, = = 1,...,5 are labeled in the figure.
Here, the largest cone Cs corresponds to the entire space-time system’s
domain.
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FIGURE 13. Potential unfolding: an illustration. The
potential Wy(z) is an unfolding of ¥y (x), and W3(x) is an
unfolding of Wy(z). The shock tree in the phase space is
shown (blue segments) next to the initial potential ¥y (x).
The potentials Wy 3(x) are arbitrarily shifted in vertical
direction for visual convenience.

Observe that the graphical shock trees G®¥) and G in the phase
space and in the space-time domain have the same combinatorial struc-
ture and planar embedding, coinciding with that of S(Wy) (recall that
embedding only involves ordering between the offspring of the same
parent, and is different from a particular graphical representation of a
tree). The graphical trees become metric spaces, when equipped with
the distances d®%) of (25) and d® of (24), respectively.

The following statement summarizes the correspondence between the
dynamics of the sinks and the graphical tree G@%) ().

Lemma 5 (Shock tree). Consider function Vo(x) such that —V(z) €
E and Wo(x) has distinct values of local mazima. Let G = G@¥) (W)
be the graphical shock wave of a continuum annihilation dynamics with
unit density g(x) = 1 and initial potential Vo(x). Then metric space

(g(mﬂb)(\po)’ d(m’w)> is isometric to a finite binary tree with edge lengths
from BELlane. In addition, the following statements hold:
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FIGURE 14. Iterative solution construction: an illustra-
tion for a potential Wy(x) (bottom panel) with four local
maxima. (Top): Space-time cones Cy,...,Cy that corre-
spond to the basins By, ..., B;. Blue segments show the
shock tree. The cone Cs corresponds to the V-shaped
potential on the whole space interval.

There exists a one-to-one correspondence between points z € G
and space-time locations (x,,t,) of sinks. In particular, there
exists a one-to-one correspondence between the sinks at instant
t = 0 and the leaves of G, and a one-to-one correspondence be-
tween the instants when two sink merge and the internal vertices
of G.

Fvery sink at any time can either be at rest and accumulate mass
at rate 2, or move with a unit speed with no mass accumulation.
A point on any vertical segment of G corresponds to a sink at
rest. A point on any horizontal segment of G corresponds to a
sink in motion.

Suppose a point z € G corresponds to a sink with mass m, at
location (x,,t,). Then t, equals the length d™Y) from z to any
descendant leaf within G. The mass m, < 2t, equals double
the total length of the vertical segments of the subtree A, g C G
descendant to z. Furthermore, m, = 2t, if and only if z is
located on a vertical segment of G.

The length h; of a horizontal segment equals the total length of
the vertical segments within its sibling subtree. (Here, the two
complete descendant subtrees of G rooted at the same internal
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vertez are called sibling subtrees.) In other words, the time spent
by a sink in uninterrupted motion prior to a collision with an-
other sink equals half the mass of the sink with which it collides.

Proof. Ttems (a), (b) follow from the constructions of in Sects. 6.2.1,
6.2.2, 6.2.3. Ttems(c), (d) follow from recursive application of Lem. 4
to unfolding potentials used in the construction. O 0

Example 6. As an example of Lemma 5(d), consider the model of
Fig. 15 that has two pairs of sibling trees. The first pair is formed by
the complete descendant subtrees of vertex 2. Here, h; = v3 and hs =
vi. The second pair is formed by the complete descendant subtrees of
vertex 4. Here, hy = v5 and hy = v{ + vy + v3.

Remark 1. A statement analogous to that of Lem. 5 holds for the
graphical shock wave G = G®%(¥) and the respective metric space
(Q(“”t)(\llo), d(x’t)> in the space-time domain. Specifically, item (a) holds
verbatim. In item (b) one needs to replace “horizontal segment” with
“slanted segment”. In item (c) one needs to replace d®¥) with d®?. In
item (d) one needs to replace “The length h; of a horizontal segment...”
with “The height h; of a slanted segment...”.

Lemma 6 (Shock wave tree). Suppose that —V, € £ and the local
maxima of Vo have distinct values. Then the metric spaces (g(x’t)(\llo), d(”))

and (g(x’w)(\llo),d(“p)) are finite binary trees. Furthermore, they are

isomeric to a unique binary tree from Bﬁ‘plane that we denote by S(Vy).

Proof. The statement follows from Lem. 5 and Rem 1. In particular,

the uniqueness is established by noticing that a tree from BﬁLlane is

uniquely specified by the parent-offspring relations among vertices and
the edge lengths v; + h;. ([l 0

We refer to the trees of Lem. 6 as graphical trees G (Ug) and G@¥) (Wy);
they are two alternative graphical representations of the tree S(¥) that
we refer to as the shock wave tree.

6.3. Embedding of shock wave tree in the model potential.
With our particular choice of the initial potential (a negative excursion
with unit slopes), the combinatorial structure and the planar embed-
ding of the shock wave tree coincide with that of the level set tree
T= LEVEL( — \IIO) of the initial potential, as we state in the following
theorem.
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Time, t
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Space, x

a X X X, X, X, b Space,

FIGURE 15. Shock tree for a piece-wise linear potential
with two local maxima. (Top): The shock tree in space-
time domain (blue). Hatching illustrates motion of reg-
ular particles. There exist two empty rectangular areas,
each corresponding to one of the local maxima. The
panel illustrates indexing of the tree vertices. (Bottom):
Potential Wy(x) (black) and the shock tree in the phase
space (blue). The panel illustrates the labeling of vertical
(v;) and horizontal (h;) segments of the tree.

Theorem 4 (Shock wave is a level set tree). Suppose g(x) = 1
and the initial potential Wo(x) is such that —Vy(z) € E* and Vo(z)
has distinct values of local mazxima. Then

P—SHAPE(LEVEL (—Wy) ) = P-SHAPE(S(\I’O)>.

Proof. Considering the level set tree of a negative potential reflects
the fact that the level set tree is constructed top to bottom (leaves
correspond to local maxima), and the shock wave tree is constructed
bottom to top (leave correspond to local minima).
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Observe that the statement is true for a V-shaped potential (see
Sect. 6.2.1, Fig. 11), whose level set tree is comprised by a single edge,
and a W-shaped potential (see Sect. 6.2.2, Fig. 12), whose level set
tree is a Y-shaped planted binary tree with two leaves.

The general statement follows from the recursive shock wave tree
construction presented in Sect. 6.2.3 and the definition of the level
set tree in Sect. 2.2. Specifically, we start with a Y-shaped tree that
corresponds to a W-shaped potential within the cone C; (see Sect. 6.2.3,
Fig. 14 for definition of the cone). The k-th unfolding of the initial
potential Wy(x) produces a shock wave within the cone Cp. ;. This
is a planted binary tree with k£ + 2 leaves. This tree is obtained by
replacing one of the leaves of the Y-shaped tree that corresponds to
an unfolded W-shaped potential within the cone Cj,.; with the tree
with k& + 1 leaves constructed within the cone C,. The statement of
the theorem now follows from examining the level set trees for each
W-shaped potential and combining them according to the unfolding
process of Sect. 6.2.3. 0J U

Theorem 4 implies that there is one-to-one correspondence between
internal local maxima of Wy(x) and internal non-root vertices of S(Wy).
There is also a one-to-one correspondence between local minima and
the leaves. We label the tree vertices with the indices j that correspond
to the enumeration of the local extrema x; of Uy(x); see Fig. 15. We
write parent(7) for the index of the parent vertex to vertex i; right(z) and
left(7) for the indices of the right and the left offsprings of an internal
vertex 4; and sibling(7) for the index of the unique vertex that has the
same parent as vertex 1.

We are now ready to describe the metric structure of the shock tree
S(¥y) and a constructive embedding G®%) (Wy) of the tree S(¥y) into
the system’s phase space (and hence into the potential function).

Metric tree structure. The length [; of the parental edge of a
non-root vertex j within S(W¥y) is given by I; = v; + h;.

Graphical shock tree in the phase space. The tree G@%) ()
is the union of the following vertical and horizontal segments:

(v) For every local extremum x; of Wo(z) there exists a vertical
segment from (c;, Uo(z;)) to (¢j, Yo(x;) + ;).

(h) For every local maximum x; of Wy(x) there exists a horizon-
tal segment of length hiefe(j) + hrighe(;) from (ciee(j), Yo(;)) to
(Cright(j)a Wo(z5)).

Figure 15 shows the graphical shock trees G@%) and G for an initial
potential with two local maxima and three local minima, and illustrates
the labeling of vertical (v;) and horizontal (h;) segments of the tree.
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FIGURE 16. Graphical representation G@%)(¥g) (blue)
of the shock wave tree S(¥y) for initial potential Wy(x)
with nine local minima (black). There are nine sinks that
correspond to the leaves of the tree. The trajectory of
each sink can be traced by going from the corresponding
leaf to the root of the tree.

Figure 16 shows an example of the graphical tree G®%) for an initial
potential with nine local minima (and, hence, with nine initial sinks).

Consider a tree V() € BELlane that has the same planar combina-
torial structure as S(Wy), and the length of the parental edge of vertex
J is given by [; = v;. Informally, this is a tree that consists of the ver-
tical segments of the graphical tree G%) (W) (Fig. 10, bottom). We

have the following corollary of Thm. 4.

Corollary 3. Suppose g(x) = 1 and potential Vo(x) is such that
—Uy(z) € £ and Vo(x) has distinct values of local mazima. Then

V(Vy) = LEVEL (—Vy) .

Proof. Follows from construction of the shock wave tree in Sect. 6.2.3
and construction of the level set tree in Sect. 2.2. Considering a nega-
tive potential reflects the fact that the level set tree is constructed top
to bottom (leaves correspond to local maxima), and the shock tree is
constructed bottom to top (leave correspond to local minima). O O

6.4. Ballistic annihilation as generalized pruning. This section
shows that the dynamics of continuum ballistic annihilation with con-
stant initial density and unit-slope potential is equivalent to the gen-
eralized dynamical pruning of either the shock wave tree (Thm. 5) or
the level set tree of the potential (Thm. 6).

Suppose a tree T' € BELlane has a particular graphical representation
Gr € R? implemented by a bijective isometry f : T — Gp that maps the
root of T" into the root of Gr. We extend the notion of the generalized

dynamical pruning S;(y, Gr) for the graphical tree Gr by considering
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the f-image of S;(¢,T):
Si(¢,Gr) = f(Silg,T)).

Consider a natural isometry (Lem. 6) between the shock wave tree
S(Wy) and either of the graphical shock trees, G@®%(¥;) (in the space-
time domain) or G&¥) (W) (in the phase space). The next theorem
formalizes an observation that the dynamics of sinks is described by
the continuous pruning (Sect. 1) of the shock wave tree.

Theorem 5 (Annihilation pruning I). Suppose g(x) = 1, and the
initial potential Vo(x) is such that —Vo(z) € £ and Vo(x) has distinct
values of local maxima. Then, the dynamics of sinks is described by
the generalized dynamical pruning Si(¢,G) of either the graphical tree
G = G@¥)(Wy) (in the phase space) or G = G&Y (W) (in the space-time
domain), with the pruning function (1) = HEIGHT(T). Specifically,
the locations of sinks at any instant t € [0, tmax) coincide with the
location of the leaves of the pruned tree S;(¢,G).

Proof. By definition, the trajectories of the sinks coincide with the
graphical tree G (in either phase space or space-time). Furthermore,
item (c) of Lem. 5 in Sect. 6.2.3 implies that every sink travels dis-
tance t along the tree (from a leaf toward the root, according to the
corresponding tree metric d®%) or d®?) by time ¢. This is equivalent
to the pruning statement of the current theorem. 0 0

Theorem 5 only refers to the dynamics of the sinks; it is, however, in-
tuitively clear that the entire potential ¥ (x,t) at any given ¢ > 0 can
be uniquely reconstructed from either of the pruned graphical trees,
G@N(Wg) or G@¥) (W), Because of the multiple symmetries, the graph-
ical trees possess significant redundant information.

Next, we show that the reduced tree V(V¥y) (Cor. 3) equipped with
information about the sinks provides a minimal description sufficient
for reconstructing the entire continuum annihilation dynamics.

Lemma 7. Suppose g(x) = 1, and the initial potential Wo(x) is such
that —Vo(z) € £ and Vo(x) has distinct values of local mazima.
Then,

LEVEL(¢(x,t)) = S(LENGTH, V(Vy)).
Proof. The statement is a part of Theorem 6 proved below. [ [

Lemma 7 states that the level set tree (i.e., the sequence of the local
extreme values) of ¢(x,t) is uniquely reconstructed from the pruned
tree V(Wy). This, however, is not sufficient to reconstruct the entire
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time-advanced potential, which has plateaus corresponding to the in-
tervals of zero density (recall the empty regions in the top panels of
Fig. 10). The information about such plateaus is lost in the pruned
tree. It happens that it suffices to remember “the size” of the pruned
out parts of the tree in order to completely reconstruct the annihila-
tion dynamics from V(). Specifically, we store the value (1) for
each subtree 7 that has been pruned out. These values are stored in
the cuts — the points where the pruned subtrees were attached to the
initial tree; see Fig. 17(a). The cuts is a union of the leaves of the
pruned tree and the vertices of the initial tree that became edge points
in the pruned tree. A formal definition is given below.

Definition 3 (Cuts). The set D(¢,T) of cuts in a pruned tree S;(p, T)
is defined as the boundary of the pruned part of the tree

Di(p,T)=0{z €T : o(Azr) <1}

We now define an extension S,(p,T) of the generalized dynamical

pruning that preserves the sizes of pruned subtrees. Such pruning
\

starts with a tree from BL, .

and results in a tree from the space
\

of mass-equipped trees, denoted BZplane. The pruning gt(w,T) of a

tree T € Bﬁlphme is a tree from EZLlane, whose projection to Bﬁ‘plane
coincides with Sy(p, T'). In addition, the tree is equipped with massive
points placed at the cuts. Each massive point corresponds to a pruned
out subtree 7 of T, with mass equal ¢(7). If a cut is the bound-
ary for two pruned subtrees (Fig. 17(a), cuts a,d), then it hosts two
oriented masses. Such cuts are typical in prunings that do not have
the semigroup property (see Fig. 8, Stage IV). Figure 17(b) illustrates
mass-equipped pruning S;(p, T) with pruning function ¢ = LENGTH.
Next, we describe how to construct the time-advanced potential
Yr(x) for a given t € [0, tmax) and all z € [a, ] from a pruned mass-
equipped tree T = S,(LENGTH, V(¥;)). Theorem 6 then shows that
this reconstructed potential coincides with the time-advances potential

of the annihilation dynamics.

Construction 1 (Tree — potential). Suppose T = S,(LENGTH, V(T)).
The corresponding potential Yr(x), with —r.(x) € £, is constructed
in the following steps:

(1) Construct the Harris path Hr(x) for the projection of T to

B,C'plane (i.e., disregarding masses), and consider the negative
excursion —Hrp(x).
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d d

(a) Cuts (b) Massive points

FI1GURE 17. Cuts and massive points: an illustration.
(a) Pruned tree S;(LENGTH,T) (solid black) with the
set of cuts (red circles). The pruned parts of the ini-
tial tree T" are shown in gray. Here, we prune by length;
the cuts a,d correspond to Stage IV of Fig. 8. The cuts
a and d are placed at vertices of T' that became leaves
within S;(LENGTH, T'). The cuts b and e are placed at the
leaves of the pruned tree. The cuts ¢ and f are placed
at vertices of T" that became non-vertex points within
S:(LENGTH, T'). (b) Massive points (red circles) placed
at the cuts. Each of the cuts a and d hosts two oriented
massive points. Each of the cuts b and e hosts a sin-
gle unoriented massive point. Each of the cuts ¢ and f
hosts a single oriented massive point. The circle size is
proportional to the mass.

At every local minimum of —Hy(x) that corresponds to a double

mass (my,, mg), insert a horizontal plateau of length
g = Q(mL +mpRr — t),

as illustrated in Fig. 18, Stage 3.

At every monotone point of —Hp(z) that corresponds to an in-
ternal mass m, insert a horizontal plateau of length 2m (Fig. 18,

Stage 2).

At every internal local mazima of —Hp(x), insert a horizontal

plateau of length 2t (Fig. 18, Stage 1).



DYNAMICAL PRUNING OF ROOTED TREES 51

Stage 1
3 2t W/ t /K
\ A3
3 1
V-t
1 1
t
1
tl
Stage 2
4 2V3 4
vi-f,
tZ
Stage 3
t \4 ‘ t J'
3 3
2(vtvt)
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FIGURE 18. Four generic stages in the ballistic annihilation
dynamics of a W-shaped potential (left), and respective mass-
equipped trees (right). The lengths vi and vs of the two vertical
leaf segments are assigned as illustrated in the Stage 4 (see also
Fig. 15). (Left): Potential 9 (z,t) is shown in solid black. Each
plateau (dashed gray) corresponds to an interval of zero density.
The graphical shock tree G®%) () (blue) and sinks (black circles)
are shown for visual convenience. (Right): Mass-equipped trees.
Segment lengths are marked in black, point masses are indicated
in gray. Notice progressive increase of the point masses from Stage
1 to 4. The Stages 1 to 4 refer to time instants t; < to < t3 < t4.
Here vy < vy, vy > t1, v3 < ta < vy, vy < t3, and t3 < vi+v3 < t4.
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The following theorem establishes the equivalence of the continuum an-
nihilation dynamics and mass-equipped generalized dynamical pruning
with respect to the tree length. In particular, it includes the statement
of Lem. 7.

Theorem 6 (Annihilation pruning II). Suppose g(x) =1 and the
initial potential Vo(x) is such that —Vo(x) € £ and Vo(x) has distinct
values of local maxima. Then, for any t € [0, tnax|, the time-advances
potential ¥(x,t) is uniquely reconstructed (by Construction 1) from the
pruned tree T = Svt(LENGTH,V(\DO)). That is, P(x,t) = Y for all
x € [a,b].

Proof. The validity of the statement (potential reconstruction) is veri-
fied recursively, following the unfolding process of Sect. 6.2.3. Specifi-
cally, we start with a W-shaped potential for which the statement is di-
rectly verified in each of the four generic stages shown in Fig. 18. When
a W-shaped potential is completely pruned, its domain is an empty in-
terval that corresponds to an empty tree consisting of the root with
a single mass equal to the interval length (end of Stage 4 in Fig. 18).
Hence, the mass-equipped pruning process after that time is equivalent
to that of an unfolded potential (where we replace the W-shaped po-
tential with a V-shaped potential). This leads to the statement of the
theorem. O O

Inversely, the mass-equipped tree gt(LENGTH, V(¥y)) can be uniquely
reconstructed from the evolution of the time-advanced potential 1(z, s)
during s € [0,¢]. This is done using the following construction.

Construction 2 (Potential — tree). Suppose that —(z,0) = —Wy(x)

is a positive excursion from E% with distinct values of local minima.
|

Then, for a fivzed t > 0, a mass-equipped tree Ty (t) € El/iplane for the
potential Y(x,t) is constructed as follows:
(a) The planar shape of the tree, as an element of BELlane, corre-

sponds to the level set tree of the negative potential restricted
to the positive density domain: —(x,t)|g@n>0. (This corre-
sponds, for any given t > 0, to cutting zero-density space in-
tervals and glueing the potential segments from positive-density
intervals to form a continuous positive excurison.)

(b) Ewery leaf that corresponds to a local minimum point of ¥(x,t)
is equipped with mass m =t (Fig. 18, Stages 1,2,4).
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(c) Ewvery leaf that corresponds to a local minimum plateau of length
e in Y(x,t) is equipped with a double mass (my, mg) that satis-
fies
(26) my, +mg =¢/2 +t,

where the values of (my, mg) are obtained from the evolution of
W(x,s) for s € 10,t] (Fig. 18, Stage 3).

(d) Ewery internal point that corresponds to a plateau of length e
that is not a local maximum is equipped with mass m = €/2
(Fig. 18, Stage 2). If the plateau is located within an increasing
interval of the potential p(x,t) (decreasing interval of —(x,t)),
the mass is right-oriented (as in Fig. 18, Stage 2); if the plateau
is located within a decreasing interval of the potential (x,t)
(increasing interval of —(x,t)), the mass is left-oriented.

Part (c) of this construction reflects the loss of memory property of
annihilation dynamics. Any pair of masses (my,, mg) that satisfies (26)
is consistent with the model dynamics. The unique reconstruction is
only possible if one knows the time-advanced potential for the entire
interval [0, ].

Constructions 1,2 and Thm. 6 imply that the continuum ballistic
annihilation dynamics is equivalent to the mass-equipped generalized
dynamical pruning of the level set tree of the initial potential. The
next sections illustrates how this equivalence facilitates the analytical
treatment of the model.

6.5. Ballistic annihilation of an exponential excursion. This
section examines a special case of piece-wise linear potential with unit
slopes: a negative exponential excursion. Consider potential

@/)(ZL’,O) == —HGW()\)(ZE)

that is the negative Harris path (Sect. 2.3) of an exponential critical
binary Galton-Watson tree with parameter A (Def. 2). In words, the
potential is a negative finite excursion with linear segments of alternat-
ing slopes +1, such that the lengths of all segments except the last one
are i.i.d. exponential random variables with parameter A/2. Accord-
ingly, the initial particle velocity v(z,0) alternates between the values
+1 at epochs of a stationary Poisson point process on R with rate A/2,
starting with +1 and until the respective potential crosses the zero
level.

Corollary 4 (Exponential excursion). Suppose g(z) = 1 and initial
potential Wo(x) = —Hew)(z). Then the corresponding tree V(o) €
BL! is an exponential binary critical Galton- Watson tree GW(A).

plane
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Proof. By Cor. 3, the tree V(W) is the level set tree of the negative
potential —Wy(z). The statement now follows from Thm. 1. O O

To formulate the next result, recall that if T <4 GW()) and o(T) =
LENGTH(T"), then by (16),

pi = P(p(T) > t) = e M| Io(At) + 1 (A\t)].

Also, the p.d.f. of LENGTH(T) is given by /(x) of (9).

Theorem 7 (Ballistic annihilation of exponential excursion).
Suppose

the initial particle density is constant, g(x) = 1, and the initial poten-
tial 1 (z,0) is the negative Harris path of an exponential critical binary
Galton-Watson tree with parameter A, i.e., V(¥y) 4 GW(A). Then, at
any instant t > 0 the mass-equipped shock tree V; = S;(LENGTH, V(¥y))
conditioned on surviving, Vy # ¢, is distributed according to the follow-
ing rules.

(i) The planar shape of the tree, as an element of BELlane, is dis-

tributed as an exponential binary Galton-Watson tree GW(\;)
with Ay == A\p;.

(ii) A single or double mass points are placed independently in each
leaf with the probability of a single mass being

2()
Api
(iii) Fach single mass at a leaf has mass m = t. For a double mass,
the individual masses (my, mg) have the following joint p.d.f.

_ Ha)t(d)
R0

fora,b>0,aVvVb <t <a+b.

(iv) The number of mass points placed in the interior of any edge is
distributed geometrically with the probability of placing k masses
being

p(1-p), k=012 ...

The locations of k mass points are independent uniform in the
interior of the edge. The orientation of each mass is left or
right independently with probability 1/2.
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T r X T x ®x
1 I I

v v

FIGURE 19. Subevents used in the proof of Theorem 7.
Solid line depicts (a part of) pruned tree Si(p,T).
Dashed line depicts (a part of) initial tree T

(v) The edge masses are i.i.d. random variables with the following
common p.d.f.

{(a)
1—p’
Proof. Part (i) follows directly from Thm. 3(a).

To establish the other parts, we first introduce a particular represen-
tation of the survival event S;(¢,T") # ¢, where we denote T' = V(Uy).
Let X denote the length of the edge of T" adjacent to the root and let
x be the descendent vertex (a junction or a leaf) to the root in T. If
deg,(x) = 3, let h; and hy represent the lengths of the two subtrees
descendent from z. Then the event S;(p,T) # ¢ can be written as
the union of the following five non-overlapping events, illustrated in
Fig. 19,

{St(go,T) ” ¢} —{degp(z) =3 and ¢ < Ty Ahy)

a € (0,t).

U {degy(z) =3 and h; Ahy < t < h; Vhy}

U {deg,(z) =3 and h; Vhy < t < h; + hy}

U {degy(z) =3 and h; +hy < t < X +hy +hy}
(27) U{degp(z) =1 and ¢t < X}.

The probabilities of the five events in (27) are computed below.
Case 1
1
P(deg,(z) =3 and t < hy Ahy) = EP(t < h; Ahy |degp(z) = 3)
2

P
(28) =5
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Case 11
P(degT(x) =3 and h1 A hg < t< h1 V hg)

1
= ip(hl VAN h2 < t< h1 V h2 |degT(m) = 3)
=P(h; < t < hy |degy(z) = 3)
(29) = pt(l - pt).
Case III
P(deg;(x) =3 and h; Vhy <t <hj+hy)

1
= ip(hl Vhy <t<h)+hy |degT(x) = 3)

1 1
= §P(h1 Vhy < tldegp(x) =3) — aP(t < hy + hy |deg,(z) = 3)

1 2 1
= 5(1 — pt) — iFh1+h2(t)7
where

t
Foyomy () = P(hy + hy < t|degp(z) = 3) = /e « U(y) dy.
0

t
Since p; = 1— [ {(z) dz, the Laplace transform Lp(s) of p; can
0

be expressed via the Laplace transform L0(s) of £(t) as follows:

oo t

Lp(s) = L //e’“ﬁ(x) dedt = L 1Eﬁ(s).

s ) s s
Thus, by (13),
(30) £p(s) = o= + ~L0(s) — o (££(5))
3 PR = 9s TS T o °
Hence, the Laplace transform of Fj,, 4y, () is

LRan(s) =+ [e ettt = —(£L(5))’

S S

2

o0

Therefore,
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and

1 2 1
P(deg/(z) =3 and h; Vhy < t < hy+hy) = 5(1 ~ 1) = 5P (t)

2
2
1
(31) G
Case IV
P(degT(aj) =3 and hij+hy < t< X +h;+ hg)
1
= §P<h1 +hy < t< X +hy+hs ]degT(a:) = 3)
] ¢
= 5/6_)‘“_3’)6 x 0(y) dy
0
(32) — Lokl Ul) = ~h(t) — (1)
3 BN D) ox
by (12).
Case V

(33) P(degp(z) =1 and t< X) = ;P(t < X)= ;e_kt = 21>\q5)\(t)

Observe that the probabilities in (28), (29), (31), (32), and (33) add
up to

n=P(Sie 1) #6).

Take a vertex v which is either an internal vertex or a root of T =
V(VUy), and select one of its descendent subtrees (there will be just
one in case if v is a root). Denote it by A,. Conditioning on the
event {S;(LENGTH, A,) # ¢}, Case III computes the probability that
S,(LENGTH, A,) is a leaf edge with a double mass point at the leaf
vertex, while together, Case IV and Case V compute the probability
that S,;(LENGTH, A,) is a leaf edge with a single mass point at the leaf
vertex. To prove part (ii), observe that the probabilities in (32) and
(33) add up to ;/(t), while the probabilities in (31), (32), and (33)

vt

add up to %. Thus, the fraction of leaves with single sink is $4(t) / 2.

By construction, each single mass at a leaf has mass t. For a double
mass, (31) implies the following cumulative distribution function for
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positive a and b satisfying aVb <t <a+b.

P (degy(xz) =3, hy <a, hy <b, t <hy +hy [Si(p,T) # ¢)

F(a,b) =

% -3

[P(t—y<ha<b|Si(p.T)#0 and degy(r) = 3) y)dy
- p? — 20(t)

| (pt—y —po ) Uy) dy
— 0

p7 — 2((t)

[ iy y) dy - po(1=pa)

- p7 — (1)

Differentiating, we obtain the statement of part (iii):

o ~ L(a)l(D)
f(a,b) = &LabF(a’ b) = m

For part (iv) observe that by (29),

(34)
P(deg,(x) =3 and h; Ahy < t < hy Vhy [Si(p,T) #¢) =1—ps.

Each interior point mass in the mass-equipped shock tree V; is placed
at a location of an internal vertex of T" = V(¥,), where exactly one
of the two descendant subtrees had been pruned out. Thus, each edge
in V; is partitioned into subintervals whose lengths are independent
exponential random variables with parameter \. At every point that
separates a pair of adjacent subintervals there placed a mass, which
can have either left or right orientation independently with probability
1/2. Equation (34) implies that the number of these subintervals in
an edge of V; is a geometric random variable with parameter p;. These
geometric random variables are independent from the rest of construc-
tion (i.e., exponential lengths of the subintervals, the point masses, and
the combinatorial shape of V;).
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0

2t

Potential, y

o

0 X, Space, x

FIGURE 20. Random sink M, originates at point xy —
the local minimum closest to the origin. Its dynamics
during a finite time interval [0, ] is completely specified
by a finite negative excursion B of length 2¢, similar to
the one highlighted in the figure.

Finally, for a € (0,t), equation (29) implies
P(deg,(z) =3 and h; Ahy < a< t< hyVhy [Si(p,T) # ¢)

pe(1 —pt)
_ Py < a< t< hy [ Si(p,T) # ¢ and degp(z) =3)
B pt(l —pt)

p(l=pa)  1—pg
N pe(1—py) 1 —pi
Next, we differentiate the above probability in order to obtain the p.d.f.
for the mass of an interior sink, as in part (v),
d1—p, ((a)
dal— D¢ - 1—p
O O

6.6. Random sink in an infinite exponential potential. Here
we focus on the dynamics of a random sink in the case of a negative
exponential excursion potential. To avoid subtle conditioning related
to a finite potential, we consider here an infinite exponential potential
Ui (z), x € R, constructed as follows. Let x;, i € Z be the epochs of
a Poisson point process on R with rate A/2, indexed so that xq is the
epoch closest to the origin (Fig. 20). The initial velocity v(z,0) is a
piece-wise constant continuous function that alternates between values
+1 within the intervals (z; — 1, x;] and with v(xo,0) = 1. Accordingly,
the initial potential W™ () is a piece-wise linear continuous function
with a local minimum at zy and alternating slopes +1 of independent
exponential duration. The results in this section refer to the sink M,
with initial Lagrangian coordinate xy. We refer to M as a random
sink, using translation invariance of Poisson point process.
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with no movement
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\2 hl v, hZ Time, ¢

F1GURE 21. Dynamics of a random sink: an illustration.
The trajectory of a sink is partitioned into alternating
intervals of mass accumulation of duration v; and inter-
vals of movement with no mass accumulation of duration
h;. Each v; is an exponential random variable with pa-
rameter A\. Each h; is distributed as the total length
of a critical Galton-Watson tree with exponential edge
lengths with parameter A.

Observe that for any fixed t > 0, the dynamics of M is completely
specified by a finite non-positive excursion within Wy™ (x) of length 2¢
(see Fig. 20). The respective Harris path is an exponential Galton-
Watson tree GW(A). The dynamics of M, consists of alternating in-
tervals of mass accumulation (vertical segments of G*%)) and motion
(horizontal segments of G@¥)), starting with a mass accumulation in-
terval. Label the lengths v; of the vertical segments and the lengths h;
of the horizontal segments in the order of appearance in the examined
trajectory. Corollary 4 implies that v;, h; are independent; the lengths
of v; are i.i.d. exponential random variables with parameter \; and
the lengths of h; equal the total lengths of independent Galton-Watson
trees GW (). This description, illustrated in Fig. 21, allows us to find
the mass dynamics of a random sink, which is described in the next
two theorems.

Theorem 8 (Growth probability of a random sink). The proba-
bility £(t) that a random sink My is growing at a given instant t > 0
(that is, it is at rest and accumulates mass) is given by

(35) E(t) = e Ip(\t).
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Proof. Let v;, © > 1 be independent exponential random variables
with parameter A, and h;, ¢ > 1 be the total lengths of indepen-
dent GW ()) trees. The sum vy + --- + v; has the gamma density
k() = ﬁ)\()\x)k_le_m . The probability £(t) that a random sink
is growing at a given instant ¢t > 0 is

(t) := P( a random sink is growing at instant ¢ )

00 k—1 k—1
P <Z[V1 + hz] <t < vg+ Z[VZ + hl]>
1 i=1 =1

k

o0

t
/( //\e_’\ydy) Vi1 * Up_1(z)dz
0\t

—x

I
hE

T
I

[
=

[
hE

t

1 o0
/e*A(t*x)fyk,l k Up_1(x)dr = i D x L (t),
) k=1

3
I

le(z) =Lx ... x0(x).

k times

We calculate the Laplace transform L£&(s) of the probability £(t) in
(36) as follows. We use the formula for the Laplace transform of ¢(z)
derived in (11) and (36) to obtain

1 > \ k k—1 1
LE(s) = Xk; <A+ 3> (“(5)> T At s— ALU(s)
] 1

(37) = 2 = .
Ats— )\+s+\/()\+s)2—)\2 ()\ + 8)2 — A2

Finally, we use formula 29.3.93 in [2] to invert the Laplace transform
in (37), and obtain

E(t) = e MIy(\t).
O O

Theorem g (Mass distribution of a random sink). The mass of
a random sink Mg at instant t > 0 has probability distribution

ju(da) = ;\eM [IO (Mt - a/2)) + I (At a/z))} Io(Aa/2) - Loan (a)da
(38) + e MIy(M) o (da),

where dyy denotes Dirac delta function (point mass) at 2t.
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Proof. Let m; denote the mass of a random sink at a fixed instant ¢ > 0.
When the sink is not growing, its mass m, is strictly smaller than 2t.
Then for any positive a < 2t,

k
i=1

a/2 oo
EZZ / ( [ u dy) i by (x)d,

—T

t < Zk:[vi + hz-])

i=1

1\3\9

and the corresponding density will be

dcizp( a) = ;t_a/m ((y)dy - kf:l% *L,1(a/2)
AT
- 2t_// - €(o/2)
A

= SeAt-an {JO (Mt —a/2)) + L (A - a/z))} Lo 2 (Na/2)
_ ;\e_’\t [10 (Mt =a/2)) + Li(At - a/2>)} Io(Na/2)

by (16) and (35). Thus, the distribution of the mass of a random sink
at instant ¢ is given by

d

p(da) =19 24 (a) - d—P(mt < a)da + &(t)dg(da)

A
e {fo (Mt —a/2)) + L (A - a/2))} Io(Aa/2) - Loan (a)da
+ e M Io(At) Sy (da),
where dy; denotes Dirac delta function (point mass) at 2¢. U U

Remark 2. One can notice that the continuum annihilation dynamics
of this section, with its shock waves, shock wave trees, and massive
points is reminiscent of that in the 1-D inviscid Burgers equation that
describes the evolution of the velocity field v(x,t):

(39) Ow(x,t) +v(x,t) dpv(x,t) =0, xR, teR,.

The Burgers dynamics appears in a surprising variety of problems,
ranging from cosmology to fluid dynamics and vehicle traffic models;
see [6, 24, 26| for comprehensive review. The solution of the Cauchy
problem for the Burgers equation develops singularities (shocks) that
correspond to intersection of individual particles. The shocks evolve
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via the shock waves that can be described as massive particles that
aggregate the colliding regular particles and hence accumulate the mass
of the media. The dynamics of these massive particles generates a tree
structure for their world trajectories, the shock wave tree [12, 26].

The case of smooth random initial velocity can be treated explicitly
via the Hopf-Cole solution. The case of non-smooth random initial
velocities, e.g. a white noise or a (fractional) Brownian motion, has
been extensively studied, both numerically [43] and analytically [45,
11, 12, 25]. In this case, tracing the dynamics of the massive particles
backward in time (from a point within a shock tree to the leaves)
corresponds to fragmentation of the mass and describes the genealogy
of the shocks, i.e., the sets of particles that merge with a given massive
particle [10, 25]. In particular, Bertoin [12] established that the shock
wave tree for a Brownian motion initial velocity becomes the eternal
additive coalescent after a proper time change; similar arguments apply
for the Lévy type initial velocities [37].

7. REAL TREES

Recall that a metric space (X, d) is called 0-hyperbolic, if any quadru-
plew,z,y, z € X satisfies the following four point condition [21, Lemma

3.12]:
(40)  d(w, ) +d(y, z) < max{d(w,y) +d(z, 2),d(z,y) + d(w, 2)}.

The four point condition is an algebraic description of an intuitive geo-
metric constraint on geodesic connectivity of quadruples that is shown
in Fig. 22(a). An equivalent way to define 0-hyperbolicity is the three
point condition illustrated in Fig. 22(b); it states that any triangle is
a tripod. It is readily seen that the four point condition is satisfied
by any finite tree with edge lengths (considered as a metric space with
segment lengths induced by the edge lengths). In general, a connected
and 0-hyperbolic metric space is called a real tree, or R-tree [21, Theo-
rem 3.40]. We denote a real tree by (7, d), referring to the underlying
space T and metric d, respectively. A real tree (T,d) is geodesically
linear, which means that for any two points x,y € T there exists a
unique segment (an isometry image) within 7" with endpoints {z,y}
[21, Definition 3.2]. We denote this segment by [x,y] C T. A real tree
is called rooted if one of its points, denoted here by pr, is selected as
the tree root. Similarly to the case of finite trees, we say that a point
p € T is an ancestor of point g € T if the segment with endpoints ¢
and p includes p: p € [q,p] C T. In this case, the point ¢ is called a
descendant of point p. We denote by A, r the descendant tree at point
p, that is the set of all descendants of point p € T', including p as the
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X z X

(a) Four point condition (b) Three point condition

FIGURE 22. Equivalent conditions for 0-hyperbolicity of
a metric space (X,d). (a) Four point condition: any
quadruple w,x,y,z € X is geodesically connected as
shown in the figure. This configuration is algebraically
expressed in Eq. (40). (b) Three point condition: any
triplet x,y, z € X is geodesically connected as shown in
the figure (i.e., any triangle is a tripod).

tree root. The set of all descendant leaves of point p is denoted by
A° .
p, T

7.1. Real tree description of ballistic annihilation. We construct
here (Sect. 7.1.1) an R-tree T = T(¥,) that describes the entire model
dynamics as coalescence of particles and sinks; this tree is sketched by
gray lines in the top panel of Figs. 10 and 23. Specifically, the tree
consists of points (x,t) such that there exist either a particle or a sink
with coordinate x at time £. There is one-to-one correspondence be-
tween the initial particles (z,0) and leaf vertices of T. Each leaf edge of
T corresponds (one-to-one) to the free (ballistic) run of a correspond-
ing particle before annihilating in a sink. Four of such free runs are
depicted by green arrows in Fig. 23. The shock wave tree (movement
and coalescence of sinks) corresponds to the non-leaf part of the tree
T; it is shown by blue lines in Figs. 10, 23. We adopt a convention
that the motion of a particle consists of two parts: an initial ballistic
run at unit speed, and subsequent motion within a respective sink. For
example, the within-sink motion of particles x and ' is shown by red
line in Fig. 23. This interpretation extends motion of all particles to
the same time interval [0, tyax |, With £,y being the time when the last
remaining sink accumulates the total mass on the initial interval. This
final sink serves as the tree root. Section 7.1.1 introduces a proper met-
ric on this space so that the model is represented by a time oriented



DYNAMICAL PRUNING OF ROOTED TREES 65

Time, ¢

Potential

o

v’ x’ x y Space

FIGURE 23. R-tree representation of a ballistic annihi-
lation model with a unit slope potential: an illustration.
Figure illustrates dynamics of four points, x,2’,y, and
y', marked in the horizontal space axis. The pairs of
points {z, 2’} and {y, 3’} collide and annihilate with each
other. Green arrows correspond to ballistic runs of points
z,2’',y,y’, and hence to leaves of tree T(Wy). Red line
corresponds to the trajectory of points x,z’ after their
collision, within a sink. The rest of notations are the
same as in Fig. 10.

rooted R-tree. In particular, the metric induced by this tree on the ini-
tial particles (z,0) becomes an ultrametric, with the distance between
any two particles equal to the time until their collision (as particles or
as respective sinks).

7.1.1. R-tree representation of ballistic annihilation. We construct here
a real tree representation of the continuum ballistic annihilation model
of Sect. 6. Specifically, we assume a unit particle density g(z) = 1
and initial potential —Wy(z) = —1(x,0) € £, i.e. Yp(x) is a unit
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slope negative excursion with a finite number of segments on a finite
interval [a, ] (e.g., bottom panel of Fig. 10). Recall that the interval
[a, b] completely annihilates by time t,,.x = (b—a)/2, producing a single
sink at space-time location ((b+ a)/2, tmax)-

Consider the model’s entire space-time domain T = T(V,) that con-
sists of all points of the form (x,t), € [a,b], 0 < t < tyax, such that
there exists either a particle or a sink at location x at time instant
t. The shaded (hatched) regions in the top panels of Figs. 10,15 are
examples of such sets of points. For any pair of points (z,t) and (y, s)
in T, we define their unique earliest common ancestor as a point

A’Jl‘((x>t)v (y,s)) = <Z>w) eT

such that w is the infimum over all w’ such that

32" {(z,1), (y,5)} € A w1

The length of the unique segment between the points (x,t) and (y, )
is defined as

() A1) () = 5 (w0 =0+ (=) = Sw— s~ 1),

where w is the time component of (z,w) = Ar((z, 1), (y, s)).

The tree (T, d) for a simple initial potential is illustrated in the top
panel of Fig. 10 by gray lines. The tree has a relatively simple struc-
ture. There is a one-to-one correspondence between the initial particles
(x,0), x € [a,b], and the leaf vertices of T. There is a one-to-one corre-
spondence between the ballistic runs of the initial particles (runs before
collision and annihilation) and the leaf edges of T. Four of such runs are
shown by green arrows in Fig. 23. There is one-to-one correspondence
between the sink points (o(t), t) and the non-leaf part of T. In particu-
lar, the tree root corresponds to the final sink ((a+b)/2, tnax). The sink
points are shown by blue line in Figs. 10,15. It is now straightforward
to check that the tree (T, d) satisfies the four point condition.

Consider again the sink subspace of T, which consists of the points
{o(t),t)} such that there exists a sink at location o(t) at time instant
t, equipped with the distance (41). This metric subspace is also a tree,
as a connected subspace of an R-tree [21]. This tree is isometric to the
shock wave tree S(W¥y) and hence to either of its graphical represen-
tations G (W) or G@¥) (W) that are illustrated in Figs. 10,15 (top
and bottom panels, respectively).

From the above construction, it follows that all leaves (z,0) are lo-
cated at the same depth (distance from the root) tp.x. To see this,
consider the segment that connect a leaf and the root and apply (41).
Moreover, each time section at a fixed instant to, sec(T, o) = {(z, o) €
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T}, is located at the same depth ty,ax —to. This implies, in particu-
lar, that for any fixed ¢y > 0, the metric induced by T on sec(T, )
is an wltrametric, which means that d;(p,q) < di(p,r) V di(r,q) for
any triplet of points p,q,r € sec(T,tp). Accordingly, each triangle
p,q,r € sec(T, ) is an isosceles, meaning that at least two of the three
pairwise distances between p,q and r are equal and not greater than
the third [21, Def. 3.31]. The length definition (41) implies that the
distance between any pair of points from any fixed section sec(T, )
equals the time until the two points (each of which can be either a
particle or a sink) collide.

We notice that the collection of leaf vertices A descendant to a
point p € T can be either a single point (x,,0), if p is within a leaf edge
and represents the ballistic run of a particle, or an interval {(z,0) :
Tiett (p) < & < Zyigne(p) }, if p is a non-leaf point that represents a sink.
We define the mass m(p) of a point p € T as

mp)= [ 9(2)dz = @i (p) — 0 p),
z:(z,0)€AD ¢

where the last equality reflects the assumption g(z) = 1. The mass
m(p) generalizes the quantity “number of descendant leaves” (Sect. 4)
to the R-tree situation with an uncountable set of leaves. We observe
that (i) a point p € T represents a ballistic run if and only if m(p) = 0;
(ii) a point p € T represents a sink if and only if m(p) > 0. This means
that the shock wave tree, which is isometric to the sink part of the tree
(T, d), can be extracted from (T, d) by the condition {p : m(p) > 0}.

7.2. Metric spaces on the set of initial particles. In this section
we discuss two metrics on the system’s domain [a, b], which is isometric
to the set {(z,0) : € [a,b]} of initial particles. These metrics con-
tain the key information about the system dynamics and, unlike the
complete tree (T, d) of Sect. 7.1.1, can be readily constructed from the
potential Wy(z). One of these descriptions is an R-tree and the other
is not.

Metric hq(x,y) reproduces the ultrametric induced by (T, d) on [a, b].
Below we explicitly connect this metric to Wo(x). For any pair of points
x,y € [a,b] we define a basin By,(z,y) as the interval that supports
the minimal negative excursion within Wy(z) that contains the points
x,y. Formally, assuming without loss of generality that = < y we find
the maximum of ¥, on [z, yl:

My, (2, y) = sup Wo(z)
z€fay]



68 YEVGENIY KOVCHEGOV AND ILYA ZALIAPIN

and use it to define the basin By, (z,y) = [l, r]|, where
[ = Sup{z rz <, \IIO(Z) > m‘l’o(xvy)}a
r= inf{z tz 2 Y, \IJO(Z) = m\l/()(l’,y)}.

The metric is now defined as

1
hl (ZE, y) = §|B\Po(z,y)|‘
It is straightforward to check that
hi(z,y) = the time until collision of the particles (z,0) and (y, 0),

where the collision is understood as either collision of particles, collision
of sinks that annihilated the particles, or collision between a sink that
annihilated one of the particles and the other particle. For instance,
the claim is readily verified, by examining the bottom panel of Fig. 23,
for any pair of points from the set {x,z,y,y'}. The metric space
([a,b], 1) is not a tree. Moreover, this space is totally disconnected,
since there only exists a finite number of points (local minima of ¥y(z))
that have a neighborhood of arbitrarily small size. Any other point at
the Euclidean distance € from the nearest local minimum is separated
from other points by at least /2.

Metric ho(z,y) describes the mass accumulation by sinks during the
annihilation process. Specifically, we introduce an equivalence relation
among the annihilating particles, by writing x ~y, y if the particles
with initial coordinates x and y collide and annihilate with each other.
For example, in Fig. 23 we have x ~y, 2’ and y ~y, ¥'. The following

metric is now defined on the quotient space [a, b]|.,, :

ha(2,y) = 2 sup. [Wo(2)] — Wo(x) — Wo(y).
z€[x,y

In words, the distance hs(z,y) between particles  and y equals the to-
tal mass accumulated by the sinks to which the particles belong during
the time intervals between the instants when the particles joined the
respective sinks and the instant of particle (or respective sink) collision.
Another interpretation is that hy(z, y) equals to the minimal Euclidean
distance between points z,y € [a, b, in the quotient space; one can
travel in this quotient space as along a regular real interval, with a
possibility to jump (with no distance accumulation) between equiva-
lent points.

We observe that metric hy(x, y) coincides with that of Eq. (1). Hence,
the metric space ([a, b]|~,, ,h2) is a tree that is isometric to the level set
tree of the potential Wy(x) on [a, b] and hence to the (finite) shock wave
tree V(Wy) (by Cor. 3), with the convention that the root is placed in
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a ~y, b. This means, in particular, that prunings of these two trees,
with the same pruning function and pruning time, coincide.

7.3. Other prunings on T. One can introduce a large class of prun-
ings on an R-tree (T,d) following the approach used above to define
the point mass m(p). Specifically, consider a measure 7(-) on [a, b] and
define m,(p) = n(A;1). The function m,(p) is nondecreasing along
each segment that connect a leaf and the root pr of T. Hence, one can
define a pruning with respect to m, on T by cutting all points p with
my(p) <t for a given ¢ > 0. It is readily seen that the function m,,(p)
typically has discontinuities along a path between a leaf and the root
of T. This means that pruning with respect to m, typically does not
have the semigroup property.

8. DISCUSSION

This paper introduces a generalized dynamical pruning of rooted
trees (Sect. 3) that encompasses several pruning operations discussed
in the probability literature, notably including the tree erasure from
leaves at a constant rate of Example 1 [38, 21, 15] and Horton pruning
of Example 2 [40, 14, 33, 34]. Curiously, these two examples seem to be
the only cases when the pruning satisfies the semigroup property (either
in discrete or continuous time). The other natural pruning operations,
like pruning by the total tree length (Example 3) or by the number of
leaves (Example 4), do not have the semigroup property. The absence
of semigroup property is related to the existence of discontinuities of a
respective pruning function ¢(7') along a tree T' € Lyjane. 1t would be
interesting to find the necessary and sufficient conditions on ¢(7") for
the existence or absence of the semigroup property.

The presented results naturally complement an existing modeling
framework for finite binary self similar trees [31, 32, 33], and are tai-
lored for a particular application — continuum ballistic annihilation
model — considered in this work (Sect. 5,6). However, the generalized
dynamical pruning is readily applicable to more general R-trees as dis-
cussed in Sect. 7. For instance, continuum ballistic annihilation with a
general continuous potential is a natural object to be studies in a real
tree framework.

Pruning might play a role in the analysis of dynamical systems, in-
cluding the problem of finding self-similar or time-invariant solutions.
We show here (Sect. 6) that the dynamics of a ballistic annihilation
model A+ A — &, well known in the physics literature, is equivalent
to the generalized dynamical pruning of a level set tree representation
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of the model potential (Sect. 6.4, Thm. 6). This tree-based represen-
tation of the model dynamics opens a way to a complete probabilistic
description of model solutions (Sect. 6.5, Thm. 7), and finding the time
evolution of selected statistics (Sect. 6.6, Thms. 8,9). It seems promis-
ing to expand the proposed analysis to other initial potentials, as well
as to other particle systems known to be critically dependent on the
shock dynamics.

Tree measures invariant with respect to the generalized pruning (Sect. 3.4,
Def. 1) are abundant in BLjane. A natural example is the critical bi-
nary Galton-Watson tree GW(\) with i.i.d. exponential edge lengths,
which is a traditional subject of invariance studies [34]. This tree is
shown here to be prune invariant under arbitrary choice of the pruning
function (Sect. 4.3, Thm. 2). The work [33] introduces a Hierarchical
Branching Process (HBP) that induces a variety of measures invariant
with respect to the Horton pruning. It is very likely that the approach
used to construct the HBP can be used to construct measures invariant
with respect to other versions of the generalized dynamical pruning. An
interesting problem is finding measures invariant with respect to multi-
ple versions of pruning. At the moment the only known solution is the
exponential critical binary Galton-Watson tree GW(A), invariant with
respect to all admissible prunings. It seems that a family of critical
Tokunaga trees, which is a one-parametric subclass of the HBP [33], is
a promising candidate to be invariant with respect to other prunings.
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