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Abstract. This work concerns resonant scattering by a perfectly conducting slab with period-
ically arranged subwavelength slits, with two slits per period. There are two classes of resonances,
corresponding to poles of a scattering problem. A sequence of resonances has an imaginary part
that is nonzero and on the order of the width ε of the slits; these are associated with Fabry-Perot
resonance, with field enhancement of order 1/ε in the slits. The focus of this study is another class
of resonances which become real valued at normal incidence, when the Bloch wavenumber κ is zero.
These are embedded eigenvalues of the scattering operator restricted to a period cell, and the as-
sociated eigenfunctions extend to surface waves of the slab that lie within the radiation continuum.
When 0 < |κ| � 1, the real embedded eigenvalues will be perturbed as complex-valued resonances,
which induce the Fano resonance phenomenon. We derive the asymptotic expansions of embedded
eigenvalues and their perturbations as resonances when the Bloch wavenumber becomes nonzero.
Based on the quantitative analysis of the diffracted field, we prove that the Fano-type anomalies
occurs for the transmission of energy through the slab, and show that the field enhancement is of
order 1/(κε), which is stronger than Fabry-Perot resonance.
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1. Introduction. Fano resonance, which was initially recognized in the study
of the autoionizing states of atoms in quantum mechanics [13], is a type of resonant
scattering that gives rise to asymmetric spectral line shapes. Fano resonance has been
extensively explored more recently in photonics due to its unique resonant feature of
a sharp transition from peak to dip in the transmission signal, which leads to the
design of efficient optical switching devices and photonic devices with high quality
factors. We refer the readers to [16, 25, 27] and the references therein for detailed
discussions. Mathematically, Fano resonance can be attributed to the perturbation
of certain eigenvalues embedded in the continuous (radiation) spectrum of the un-
derlying differential operators and the corresponding bound states in the continuum
(sometimes called BIC) [17, 18, 29, 34]. The existence of embedded eigenvalues in pho-
tonic slab structures using symmetry is rigorously established in [3]. It is known that
under smaller perturbation which destroys the symmetry, the embedded eigenmode
disappears as its frequency becomes a complex resonance pole, and the transmission
coefficient across the slab exhibits a sharp asymmetric shape [29, 31]. Guided-mode
theory [14], analytic perturbation theory [29, 32], and an augmented scattering matrix
method [9] have been used to study the Fano resonant transmission for several con-
figurations when the Bloch wave vector is perturbed and the bound states associated
with the embedded eigenvalues become quasi-modes.

For photonic structures, the quantitative studies of embedded eigenvalues and
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resonance, the amplification is on the order inversely proportional to the width ε of
the slits, uniformly in κ, whereas for the perturbed eigenvalues, the resonance is on
the order of 1/(κε).

To be more specific, we investigate scattering by a metallic grating structure as
shown in Figure 1.1, where each period consists of two identical narrow slits. The
symmetry effects a decoupling of even and odd modes about the centerline between
the two slits when κ=0. An odd surface mode of the grating can exist at a frequency
within the even continuum, and the frequency of this mode is the embedded eigenvalue
[3, 30, 31]. It is not possible when there is only one slit per period because the slit
can not support odd modes when it is too narrow. If κ is perturbed away from zero,
the transmission coefficient across the slab exhibits an asymmetric shape as shown in
Figure 1.2, with peak and dip at very close frequencies.

The perfectly conducting metallic slab occupies the domain {x = (x1, x2); 0 <
x2 < 1} in the x1x2 plane. The domain above and below the metallic slab are denoted
by Ω1 and Ω2 respectively. The slits, which are perforated in the metallic slab and

invariant along the x3 direction, occupy the region Sε =

∞
⋃

n=0

(S(0)
ε + nd), where d is

the size of the period and S
(0)
ε consists of two subwavelength slits S0,−

ε and S0,+
ε . The

slits S0,±
ε are given by

S0,±
ε :=

{

(x1, x2) | ± d0

2 − ε
2 < x1 < ±d0

2 + ε
2 , 0 < x2 < 1

}

,

where d0 = O(d). Denote the upper and lower apertures of the slit S0,±
ε by Γ±

1,ε and

Γ±
2,ε and exterior domain of the metallic structure by Ωε.

We study the time-harmonic transverse magnetic situation, where the magnetic
field is perpendicular to the x1x2 plane. The x3 component of the incident field is

(1.1) uinc(x) = eik(x1 sin θ− (x2−1) cos θ) = eiζ0eiκx1−iζ0x2 ,

in which k is the free-space wavenumber, θ ∈ (−π/2, π/2) is the angle of incidence,
κ = k sin θ is the Bloch wavenumber, and ζ0 =

√
k2 − κ2 > 0. The total field uε(x)

satisfies the following scattering problem:

∆uε + k2uε = 0 in Ωε,(1.2)

∂uε
∂ν

= 0 on ∂Ωε,(1.3)

uε(x1 + d, x2) = eiκduε(x1, x2),(1.4)

uε(x1, x2) = uinc(x1, x2) +

∞
∑

n=−∞

usn,1e
iκnx1+iζnx2 in Ω1,(1.5)

uε(x1, x2) =

∞
∑

n=−∞

usn,2e
iκnx1−iζnx2 in Ω2.(1.6)

Equation (1.2) is the Helmholtz partial differential equation, with ∆ = ∂2/∂x21 +
∂2/∂x22. Equation (1.3) is the Neumann boundary condition, with ν the unit normal
vector pointing to Ωε. Equation (1.4) expresses the quasi-periodic property, which is
consistent with the incident field. The series in (1.5) and (1.6) are the Rayleigh-Bloch
(Fourier) expansions for outgoing, or radiating, fields (cf. [2, 3, 31]), in which the
coefficients usn,i are complex amplitudes. The constants κn and ζn are defined by

(1.7) κn = κ+ 2πn
d and ζn = ζn(k, κ) =

√

k2 − κ2n ,
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where the domain of the analytic square root function is taken to be C\{−it : t ≥ 0},
with

√
1 = 1. With this choice of square root,

(1.8) ζn(k, κ) =

{√

k2 − κ2n , if |κn| ≤ k,

i
√

κ2n − k2 , if |κn| ≥ k.

The Rayleigh modes with |κn| < k are propagating, and the modes with |κn| > k are
evanescent. The case of ζn = 0 is delicate, but we won’t be concerned with it since
we are interested in the regime in which ζn is real for n = 0 and nonzero imaginary
for n 6= 0 (cf. (3.1)).

By applying layer potential techniques and asymptotic analysis, we aim to
(i) provide quantitative analysis of the embedded eigenvalues for the homoge-

neous scattering problem (1.2)–(1.6) when κ = 0, and their perturbations as
resonances when κ 6= 0 (Theorems 4.5 and 4.9);

(ii) give a rigorous proof of Fano resonant transmission anomalies as shown in
Figure 1.2 for the periodic structure (Theorem 5.6).

(iii) characterize the field amplification at Fano resonance (Theorem 5.8).
The paper is organized as follows. We present an integral equation formulation for
the scattering problem (1.2)–(1.6) in Section 2. In Section 3, we derive the asymp-
totic expansions of the integral operators. The asymptotic analysis of the embedded
eigenvalues when κ = 0 and their perturbations when κ 6= 0 is given Section 4. The
Fano resonance and the corresponding field enhancement is analyzed in Section 5.

2. Boundary-integral formulation. The scattering problem (1.2)–(1.6) can
be formulated equivalently as a system of boundary-integral equations. The develop-
ment in this section is standard.

Due to the quasi-periodicity of the solution, one can restrict the Bloch wave
number κ to the first Brillouin zone κ ∈ (−π/d, π/d]. Note that our incident field is
the propagating harmonic for n = 0. For each fixed κ ∈ (−π/d, π/d], let g(x, y) =
g(k, κ;x, y) be the quasi-periodic Green function, which satisfies the equation

∆g(x, y) + k2g(x, y) = eiκ(x1−y1)
∞
∑

n=−∞

δ(x1 − y1 − nd)δ(x2 − y2),

with x = (x1, x2) and y = (y1, y2) in R2. Its Rayleigh-Bloch expansion (cf. [26]) is

(2.1) g(k, κ;x, y) = − i

2d

∞
∑

n=−∞

1

ζn(k, κ)
eiκn(x1−y1)+iζn|x2−y2|.

The exterior Green functions for the domains Ω1 and Ω2 above and below the slab with
the Neumann boundary condition ∂ge(κ;x, y)/∂νy = 0 along the boundaries {y2 = 1}
and {y2 = 0} are equal to ge(x, y) = ge(k, κ;x, y) = g(k, κ;x, y) + g(k, κ;x′, y), where

x′ =

{

(x1, 2− x2) if x, y ∈ Ω1,
(x1,−x2) if x, y ∈ Ω2.

The interior Green functions gi,±ε (x, y) in the slits S0,±
ε with the Neumann bound-

ary condition are

gi,±ε (k;x, y) := gi,0ε (k;x1 ∓ d0

2 , x2; y1 ∓
d0

2 , y2),
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in which gi,0ε (k;x, y) satisfies

∆gi,0ε (k;x, y) + k2gi,0ε (k;x, y) = δ(x− y), x, y ∈ (− ε
2 ,

ε
2 )× (0, 1),

and it can be expressed explicitly as

gi,0ε (k;x, y) =

∞
∑

m,n=0

cmnφmn(x)φmn(y),

with cmn=[k2−(mπ/ε)2−(nπ)2]−1, φmn(x)=
√

amn

ε cos
(

mπ
ε

(

x1 +
ε
2

))

cos(nπx2), and

amn =







1 m = n = 0,
2 m = 0, n ≥ 1 or n = 0,m ≥ 1,
4 m ≥ 1, n ≥ 1.

Applying Green’s theorem in the reference period Ω(0) := {x ∈ Ωε | − d
2 < x1 <

d
2} yields the following lemma for the total field uε.

Lemma 2.1. Let uε(x) be the solution of the scattering problem (1.2)–(1.6), then

uε(x) =

∫

Γ+
1,ε∪Γ−

1,ε

ge(x, y)
∂uε(y)

∂y2
dsy + uinc(x) + urefl(x) for x ∈ Ω(0) ∩ Ω1,

uε(x) = −
∫

Γ+
2,ε∪Γ−

2,ε

ge(x, y)
∂uε(y)

∂y2
dsy for x ∈ Ω(0) ∩ Ω2,

uε(x) = −
∫

Γ−
1,ε

gi,−ε (x, y)
∂uε(y)

∂y2
dsy +

∫

Γ−
2,ε

gi,−ε (x, y)
∂uε(y)

∂y2
dsy for x ∈ S0,−

ε ,

uε(x) = −
∫

Γ+
1,ε

gi,+ε (x, y)
∂uε(y)

∂y2
dsy +

∫

Γ+
2,ε

gi,+ε (x, y)
∂uε(y)

∂y2
dsy for x ∈ S0,+

ε .

Here, urefl(x) = ei(κx1+ζ0(x2−1)) is the reflected field of the ground plane {x2 = 1}
without the slits.

Taking the limit of layer potentials in this lemma to the slit apertures and impos-
ing the continuity condition leads to the following system of four integral equations:
(2.2)


























































∫

Γ+
1,ε∪Γ−

1,ε

ge(x, y)
∂uε(y)

∂y2
dsy +

∫

Γ∓
1,ε

gi,∓ε (x, y)
∂uε(y)

∂y2
dsy −

∫

Γ∓
2,ε

gi,∓ε (x, y)
∂uε(y)

∂y2
dsy +

+ uinc(x) + urefl(x) = 0, for x ∈ Γ∓
1,ε,

∫

Γ+
2,ε∪Γ−

2,ε

ge(x, y)
∂uε(y)

∂y2
dsy −

∫

Γ∓
1,ε

gi,∓ε (x, y)
∂uε(y)

∂y2
dsy +

∫

Γ∓
2,ε

gi,∓ε (x, y)
∂uε(y)

∂y2
dsy = 0,

for x ∈ Γ∓
2,ε.

The slit apertures are rescaled to the ε-independent variable X ∈ I := (− 1
2 ,

1
2 ) by

x1 = εX ± d0
2

for (x1, 1) ∈ Γ±
1,ε and (x1, 0) ∈ Γ±

2,ε.
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The following quantities will be used in the boundary-integral formulation of the
scattering problem,

ϕ±
1 (X) :=

∂uε
∂y2

(εX ± d0

2 , 1), ϕ±
2 (X) := −∂uε

∂y2
(εX ± d0

2 , 0),

f±(X) := −1

2
(uinc + urefl)(εX ± d0

2 , 1) = −eiκ(εX±
d0
2 ).

The Green functions are also rescaled:

Ge
ε(X,Y ) := ge(εX ± d0

2 , 1; εY ± d0

2 , 1) = ge(εX ± d0

2 , 0; εY ± d0

2 , 0)

= − i

d

∞
∑

n=−∞

1

ζn(k, κ)
eiκnε(X−Y );

Ge,±
ε (X,Y ) := ge(εX ± d0

2 , 1; εY ∓ d0

2 , 1) = ge(εX ± d0

2 , 0; εY ∓ d0

2 , 0)

= − i

d

∞
∑

n=−∞

1

ζn(k, κ)
eiκn(ε(X−Y )±d0);

Gi
ε(X,Y ) := gi,±ε (εX ± d0

2 , 1; εY ± d0

2 , 1) = gi,±ε (εX ± d0

2 , 0; εY ± d0

2 , 0)

= ε−1
∞
∑

m,n=0

cmnamn cos
(

mπ(X + 1
2 )
)

cos
(

mπ(Y + 1
2 )
)

;

G̃i
ε(X,Y ) := gi,±ε (εX ± d0

2 , 1; εY ± d0

2 , 0) = gi,0ε (εX, 1; εY, 0)

= ε−1
∞
∑

m,n=0

(−1)ncmnamn cos
(

mπ(X + 1
2 )
)

cos
(

mπ(Y + 1
2 )
)

.

Define the following rescaled boundary-integral operators for X ∈ I:

[T eϕ](X) =

∫

I

Ge
ε(X,Y )ϕ(Y )dY, [T e,±ϕ](X) =

∫

I

Ge,±
ε (X,Y )ϕ(Y )dY ;

[T iϕ](X) =

∫

I

Gi
ε(X,Y )ϕ(Y )dY, [T̃ iϕ](X) =

∫

I

G̃i
ε(X,Y )ϕ(Y )dY.

Then T e and T i are bounded operators from H−1/2(I) to H1/2(I), and T e,± and T̃ i

are smooth operators due to the smoothness of the kernels.
Proposition 2.2. The system (2.2) is equivalent to the system Tϕ = ε−1f , with

(2.3) T =









T e + T i T e,− T̃ i 0

T e,+ T e + T i 0 T̃ i

T̃ i 0 T e + T i T e,−

0 T̃ i T e,+ T e + T i









, ϕ =









ϕ−
1

ϕ+
1

ϕ−
2

ϕ+
2









, f =









2f−

2f+

0
0









and f±(X) = −eiκ(εX± d0/2).

3. Asymptotic expansion of the integral operators. The rest of this paper
will concern parameters k and κ such that |κ| < π/d and (κ + 2nπ/d)2 > k2 for all
integers n 6= 0. In particular, 0 < k < 2π/d. This is the parameter regime in which
ζ0 is real and ζn is imaginary for n 6= 0, that is, there is exactly one propagating
Rayleigh mode. In the κ-k plane, it is a diamond-shaped region D1,

(3.1) D1 = {(κ, k) : |κ| < π/d, 0 < k < |κ+ 2nπ/d| ∀n 6= 0} .
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The behavior of the rescaled Green functions to leading order in ε and |κ| is
independent of (X,Y ). This will reduce the leading asymptotics of (2.3) to a four-
dimensional system involving the average field values on the ends of the slits Γ±

i,ε. The
following quantities, which depend on k, κ, and ε, describe this behavior.

βe(k, κ, ε) =
1

π
ln

2π ε

d
+
∑

n 6=0

(

1

2π

1

|n| −
i

d

1

ζn(k, κ)

)

− i

d

1

ζ0(k, κ)
,(3.2)

β±(k, κ) = − i

d

∞
∑

n=−∞

1

ζn(k, κ)
e±iκnd0 ,(3.3)

βi(k, ε) =
1

ε k tan k
+

2 ln 2

π
, β̃(k, ε) =

1

ε k sin k
,(3.4)

β(k, κ, ε) = βe(k, κ, ε) + βi(k, ε), γ(k, κ) = β(k, κ, ε)− 1

ε k tan k
− 1

π
ln ε.(3.5)

The asymptotic expansions for the kernels Ge
ε, G

e,±
ε , Gi and G̃i are given in the

following two lemmas.
Lemma 3.1. For |κ| � 1 and ε� 1, if k ∈ (0, 2π/d), then

Ge
ε(X,Y ) = βe(k, κ, ε) +

1

π
ln |X − Y |+ re(κ, ε;X,Y ),(3.6)

Ge,±
ε (X,Y ) = β±(k, κ) + ρ±(κ, ε;X,Y ).(3.7)

Here re, ρ
± are bounded functions with re ∼ O(ε2| ln ε|+ |κ|ε) and ρ± ∼ O(ε) for all

X,Y ∈ I. In addition, the following holds:
(i) For κ = 0, there holds

β±
e (k, 0) = β̂e(k) := − i

d
· 1

ζ0(k)
−

∞
∑

n=1

2
√

(2πn)2 − (kd)2
cos(κnd0),(3.8)

re(0, ε;X,Y ) = r̂e(|X − Y |), ρ±(0, ε;X,Y ) = ρ̂(| ± d0 + ε(X − Y )|)(3.9)

for some real-valued functions r̂e and ρ̂, where r̂e ∼ O(ε2| ln ε|) and ρ̂ ∼ O(ε).
(ii) If |κ| � 1, then

re(κ, ε;X,Y ) = re(0, ε;X,Y )+O(κε), ρ±(κ, ε;X,Y ) = ρ±(0, ε;X,Y )+O(κε).

Proof. We first derive the asymptotic expansion of Ge
ε(X,Y ). From the definition

of the Green’s function, we see that

(3.10) Ge
ε(X,Y ) =

1

d

∑

n∈Z

1

iζn(k, κ)
eiκnε(X−Y ).

Set a = 2π/d, and Z = X − Y . For n 6= 0, from the definition of ζn, one can write
iζn = −

√

(κ+ an)2 − k2 and it follows that

(3.11)
1

iζn(k, κ)
= − 1

a|n|

(
√

1 +
2κ

an
+
κ2 − k2

(an)2

)−1

.

For (κ, k) ∈ D1, we have
∣

∣

∣

2κ
an + κ2−k2

(an)2

∣

∣

∣ < 1 for n 6= 0. Applying the Taylor

expansion and splitting (iζn)
−1 into its even and odd parts with respect to the variable
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n yields 1
iζn(k,κ)

= hen(k, κ) + hon(k, κ), and consequently,

(3.12)
∑

n∈Z

eiκnεZ

iζn(k, κ)
= eiκεZ

(

1

iζ0
+ 2

∞
∑

n=1

hen(k, κ) cos(naεZ) + 2i

∞
∑

n=1

hon(k, κ) sin(naεZ)

)

.

If κ = 0, it can be calculated that

hen(k, 0) = −
∞
∑

n=1

1

an

(

1 +

∞
∑

m=1

cm
n2m

)

, where cm =
1 · 3 · · · (2m− 1)

2mm!

(

k

a

)2m

,

and hon(k, 0) = 0, thus

2
∞
∑

n=1

hen(k, 0) cos(naεZ) = −
∞
∑

n=1

2

an
cos(naεZ)− 1

a

∞
∑

m=1

cm

∞
∑

n=1

1

n2m+1
cos(naεZ).

Using the relations (cf. [10, 19])

−
∞
∑

n=1

2

n
cos
(

naεZ
)

= ln

(

4 sin2
aεZ

2

)

,

∞
∑

n=1

1

n2m+1
cos (naεZ) =

∞
∑

n=1

1

n2m+1
+O(ε2mZ2m) · | ln(ε|Z|)| (m ≥ 1),

in which the big-O remainder is uniform over m, we obtain

2

∞
∑

n=1

hen(k, κ) cos(anεZ) =
1

a
ln

(

4 sin2
aεZ

2

)

+ 2

∞
∑

n=1

(

hen(k, 0) +
1

an

)

+O(ε2| ln ε|)

=
2

a
ln(aε|Z|) + 2

∞
∑

n=1

(

1

iζn(k, 0)
+

1

an

)

+O(ε2| ln ε|).(3.13)

The desired asymptotic expansion for Ge
ε(X,Y ) follows by combining (3.10), (3.12)

and (3.13). In addition, the above expansion shows that re(0, ε;X,Y ) is a function of
|Z| := |X − Y | and is real when κ = 0.

If |κ| � 1, the even part can be written as hen(k, κ) = − 1

a|n| +
1

|an|3
∞
∑

m=0

cm(k, κ)

(an)2m
.

Similar calculations yield

(3.14) 2
∞
∑

n=1

hen(k, κ) cos(naεZ) =
2

a
ln(aε|Z|)+2

∞
∑

n=1

(

hen(k, κ) +
1

an

)

+O(ε2| ln ε|).

The odd term hon(k, κ) has the form hon(k, κ) = κ sgn(n)

∞
∑

m=1

bm(k, κ)

(an)2m
, and thus

∞
∑

n=1

hon(k, κ) sin(naεZ) = κ

∞
∑

m=1

bm(k, κ)

∞
∑

n=1

1

(an)2m
sin(naεZ) =: κ

∞
∑

m=1

bm(k, κ)Am(z).

By noting that b1 = 1, we obtain (cf. [10])

A1(z) =
∞
∑

n=1

1

(na)2
sin(naεZ) = −1

a
εZ ln(aε|Z|) +O(ε).

8



On other hand, for m > 1, Am = O(ε). Hence,

(3.15) 2

∞
∑

n=1

hon(k, κ) sin(anεZ) = −2

a
κεZ ln(aε|Z|) +O(κε).

Substituting the sums (3.14) and (3.15) into (3.12) and using the expansion
eiκεZ = 1 + iκεZ +O((κε)2), we obtain

∑

n∈Z

eiκnεZ

iζn(k, κ)
=

eiκεZ

iζ0(k, κ)
+

2

a
ln(aε|Z|) + 2

∞
∑

n=1

(

hen(k, κ) +
1

an

)

+O(ε2| ln ε|) +O(κε)

=
2

a
ln(aε|Z|) +

∑

n 6=0

(

1

iζn(k, κ)
+

1

a|n|

)

+
1

iζ0(k, κ)
+O(ε2| ln ε|) +O(κε).

Therefore, the desired expansion Ge
ε(X,Y ) = βe(k, κ, ε)+

1
π ln |X−Y |+ re(κ, ε;X,Y )

follows, where βe is defined in (3.2) and re = O(ε). In addition, from the above
calculations, it is clear that re(κ, ε;X,Y ) = re(0, ε;X,Y ) +O(κε).

Now for Ge,±
ε (X,Y ) = − i

d

∞
∑

n=−∞

1

ζn(k, κ)
eiκn(ε(X−Y )±d0), an analogous expan-

sion as Ge
ε(X,Y ) leads to Ge,±

ε (X,Y ) = β±(k, κ)+ρ±(κ, ε;X,Y ), where β± is defined
in (3.3) and ρ± = O(ε). In particular, when κ = 0, it follows that

β±(k, 0) = β̂(k) := − i

d
· 1

ζ0(k)
−

∞
∑

n=1

2
√

(2πn)2 − (kd)2
cos(κnd0),

and the high-order terms take the form of

ρ±(0, ε;X,Y ) =

∞
∑

n=1

2
√

(2πn)2 − (kd)2

(

cos(κnd0)− cos(κn(±d0 + ε(X − Y ))
)

.

From the above expressions, it is seen that ρ±(0, ε;X,Y ) = ρ̂(| ± d0 + ε(X − Y )|) for
some real-valued function ρ̂.

Remark 1. Asymptotic expansions can be obtained for (κ, k) 6∈ D1 [23]. In this
case, r̂e and ρ̂ in (3.8) are no longer real valued.

Lemma 3.2. If kε� 1, then

Gi
ε(X,Y ) = βi(k, ε) +

1

π

[

ln

∣

∣

∣

∣

sin

(

π(X − Y )

2

)∣

∣

∣

∣

+ ln

∣

∣

∣

∣

sin

(

π(X + Y + 1)

2

)∣

∣

∣

∣

]

+ ri,1(ε; |X − Y |) + ri,2(ε; |X + Y + 1|).(3.16)

G̃i
ε(X,Y ) = β̃(k, ε) + r̃i,1(ε; |X − Y |) + r̃i,2(ε; |X + Y + 1|).(3.17)

Here ri,1, ri,2, r̃i,1, and r̃i,2 are bounded and real functions with ri,1 ∼ O(ε2), ri,2 ∼
O(ε2), r̃i,1 ∼ O(e−1/ε), and r̃i,2 ∼ O(e−1/ε) for all X,Y ∈ I. In addition, there holds

(3.18) ri,1(ε; t+ 2) = ri,1(ε; t), r̃i,2(ε; t+ 2) = r̃i,2(ε; t) for 0 ≤ t < 2.

The proof follows the same lines as Lemma 3.1 of [22], and we omit it.
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Define the kernels

ρ(X,Y ) =
1

π

[

ln |X − Y |+ ln

∣

∣

∣

∣

sin

(

π(X − Y )

2

)∣

∣

∣

∣

+ ln

∣

∣

∣

∣

sin

(

π(X + Y + 1)

2

)∣

∣

∣

∣

]

,(3.19)

ρ∞(κ;X,Y ) = re(κ, ε;X,Y ) + ri,1(ε; |X − Y |) + ri,2(ε; |X + Y + 1|),(3.20)

ρ̃∞(X,Y ) = r̃i,1(ε; |X − Y |) + r̃i,2(ε; |X + Y + 1|),(3.21)

where re, ri,1, ri,2, r̃i,1, and r̃i,2 are given in (3.6), (3.16)–(3.17) respectively. Let S,

S∞
κ , S∞,±

κ and S̃∞ be the integral operators defined over the interval I and with the
kernels ρ(X,Y ), ρ∞(X,Y ), ρ±(X,Y ), and ρ̃∞(X,Y ):

[Sϕ](X) =

∫

I

ρ(X,Y )ϕ(Y ) dY, [S∞
κ ϕ](X) =

∫

I

ρ∞(κ;X,Y )ϕ(Y ) dY ;

[S∞,±
κ ϕ](X) =

∫

I

ρ±(X,Y )ϕ(Y ) dY, [S̃∞ϕ](X) =

∫

I

ρ̃∞(X,Y )ϕ(Y ) dY.

Define the functions spaces

V1 = H̃− 1
2 (I) := {u = U |I

∣

∣ U ∈ H−1/2(R) and suppU ⊂ Ī} and V2 = H
1
2 (I).

The following two lemmas hold for the operators defined above. The proof is provided
in the appendix.

Lemma 3.3. If ϕ̃(X) = ϕ(−X), then

[Sϕ̃](X) = [Sϕ](−X), [S∞
0 ϕ̃](X) = [S∞

0 ϕ](−X),

[S̃∞ϕ̃](X) = [S̃∞ϕ](−X), [S∞,+
0 ϕ̃](X) = [S∞,−

0 ϕ](−X).

Lemma 3.4. The following holds for the operators S, S∞
κ , and S̃∞:

(1) The operator S is bounded from V1 to V2 with a bounded inverse. Moreover,

(3.22) α := 〈S−11, 1〉L2(I) 6= 0.

(2) The operator S + S∞
κ + S̃∞ is invertible for small ε. Let ϕ and ϕ̃ be the

solution of

(S + S∞
0 + S̃∞)ϕ = g and (S + S∞

0 + S̃∞)ϕ̃ = g̃

respectively, where g̃(X) = g(−X), then it holds that ϕ̃(X) = ϕ(−X). The
same holds for the operator S + S∞

κ − S̃∞.

We define the projection operator P : V1 → V2 by

Pϕ(X) = 〈ϕ, 1〉1,
where 1 is a function defined on the interval I and is equal to one therein. We are
ready to present the decomposition of the integral operators T e + T i, T e,±, and T̃ i

using the asymptotic expansion of the Green functions in Lemmas 3.1 and 3.2.
Proposition 3.5. Let k ∈ (0, 2π/d). The operators T e+T i, T e,±, and T̃ i admit

the decompositions

T e + T i = βP + S + S∞
κ , T e,± = β±P + S∞,±

κ , T̃ i = β̃P + S̃∞,

where S∞
κ , S∞,±

κ and S̃∞ are bounded from V1 to V2 with the operator norm

‖S∞
κ ‖ . ε, ‖S∞,±

κ ‖ . ε, and ‖S̃∞‖ . e−1/ε

uniformly in κ.
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4. Embedded eigenvalues and resonances. Define the singular frequencies
of the scattering problem as the eigenvalues and resonances for the homogeneous
problem. Precisely, these are the k-values of pairs (κ, k) for which the system (1.2–1.6)
with the incident field uinc removed has a nonzero solution, or, equivalently, pairs for
which the system (2.3) has a nonzero solution with f = 0. Eigenvalues are real values of
k, whereas resonances are complex values of k. The field (eigenmode) corresponding to
an eigenvalue decays exponentially above the grating, whereas the field (quasi-mode)
corresponding to a resonance grows exponentially above the grating.

4.1. The conditions for eigenvalues and resonances. In this section, we
establish the condition for the singular frequencies. From the previous discussions,
we have seen that they are equal to the characteristic values k of the system of integral
operators (2.2). When reduced to functions on the scaled interval I, this amounts to
finding those frequencies k such that Tϕ = 0 admits a nonzero solution in (V1)

4.
Recall that

T =

[

T̂ T̃

T̃ T̂

]

, where T̂ =

[

T e + T i T e,−

T e,+ T e + T i

]

and T̃ =

[

T̃ i 0

0 T̃ i

]

.

We may decompose the set of its characteristic values as follows.

Lemma 4.1. Let T+ = T̂+ T̃ and T− = T̂− T̃. Then

σ(T) = σ
(

T+

)

∪ σ
(

T−

)

,

where σ(T), σ(T+) and σ(T−) denote the sets of characteristic frequencies k of T, T+

and T−, respectively.

Remark 2. Such a decomposition of the spectrum follows from the symmetry of
the grating geometry. In fact, it can be shown that σ

(

T+

)

(and σ
(

T−

)

respectively)
corresponds to the resonances of the scattering problem where the lower half of the
structure is replaced by a perfect conductor and the Neumann (Dirichlet) boundary
condition is imposed over the lower slit aperture.

Proof. The function space (V1)
4 can be decomposed as (V1)

4 = Veven⊕Vodd, where
Veven = { [ϕ−, ϕ+, ϕ−, ϕ+]

T ; ϕ± ∈ V1} and Vodd = { [ϕ−, ϕ+,−ϕ−,−ϕ+]
T ; ϕ± ∈

V1} are invariant spaces for T. Thus σ(T) = σ(T|Veven
) ∪ σ(T|Vodd

). Then observe
that T[ϕ−, ϕ+, ϕ−, ϕ+]

T = [ψ−, ψ+, ψ−, ψ+]
T , with T+[ϕ−, ϕ+]

T = [ψ−, ψ+]
T so that

σ(T|Veven) = σ
(

T+

)

, and similarly σ(T|Vodd
) = σ

(

T−

)

.

We now investigate the characteristic values of the operators T+ and T−. They
can be reduced to the roots of certain nonlinear functions. We present the derivations
for T+, and the derivations for T− are parallel.

By defining the operators

Pκ =

[

(β + β̃)P β−P

β+P (β + β̃)P

]

, S
∞
κ =

[

S∞
κ + S̃∞ S∞,−

κ

S∞,+
κ S∞

κ + S̃∞

]

, and Lκ = SI+S
∞
κ ,

and using the decomposition of the operators in Proposition 3.5, we obtain T+ =
Pκ + Lκ, and thus T+ ϕ = 0 becomes

(4.1) (Pκ + Lκ)ϕ = 0,

where ϕ = [ϕ−, ϕ+ ]T . Let {ej}2j=1 ∈ V1×V1 be given by e1 = [1, 0]T and e2 = [0, 1]T .

11



Lemma 4.2. Lκ is invertible for sufficiently small ε, and there holds

L
−1
κ e1 = (S−11) · e1 +O(ε), L

−1
κ e2 = (S−11) · e2 +O(ε);

〈L−1
κ e1, e1〉 = α+O(ε), 〈L−1

κ e1, e2〉 = O(ε)

uniformly in κ, where α is defined in (3.22).
Proof. By Lemma 3.4, Lκ is invertible for small enough ε via the Neumann series,

L
−1
κ = (SI+ S

∞
κ )

−1
=





∞
∑

j=0

(−1)j
(

S−1
S
∞
κ

)j



S−1 = S−1
I+O(ε).

The assertion holds from the definition (3.22) of the constant α.

Applying L
−1
κ on both sides of (4.1) yields

(4.2) L
−1
κ Pκ ϕ+ϕ = 0,

which, using the equation

Pκ ϕ = (β + β̃)〈ϕ, e1〉e1 + β−〈ϕ, e2〉e1 + β+〈ϕ, e1〉e2 + (β + β̃)〈ϕ, e2〉e2,

can be expanded into

(β+β̃)〈ϕ, e1〉L−1
κ e1+β

−〈ϕ, e2〉L−1
κ e1+β

+〈ϕ, e1〉L−1
κ e2+(β+β̃)〈ϕ, e2〉L−1

κ e2+ϕ = 0.

Taking the L2-inner product of the above equation with e1 and e2 yields

M̃κ,+

[

〈ϕ, e1〉
〈ϕ, e2〉

]

=

[

0
0

]

,

where the matrix M̃κ,+ is defined by

(4.3) M̃κ,+ :=

[

〈L−1
κ e1, e1〉 〈L−1

κ e2, e1〉
〈L−1

κ e1, e2〉 〈L−1
κ e2, e2〉

] [

β + β̃ β−

β+ β + β̃

]

+

[

1 0
0 1

]

.

Let λ̃1,+(k;κ, ε) and λ̃2,+(k;κ, ε) be the eigenvalues of M̃κ,+. From the above
discussions, it is seen that the characteristic values of the operator-valued function
T+(k;κ, ε) are the roots of λ̃1,+(k) and λ̃2,+(k). Following a similar decomposition
for T−, then the characteristic values of the operator-valued function T− are the roots
of λ̃1,−(k) and λ̃2,−(k), which are eigenvalues of the matrix

(4.4) M̃κ,− :=

[

〈L−1
κ e1, e1〉 〈L−1

κ e2, e1〉
〈L−1

κ e1, e2〉 〈L−1
κ e2, e2〉

] [

β − β̃ β−

β+ β − β̃

]

+

[

1 0
0 1

]

.

Remark 3. The operator Pκ and Lκ take different forms in the decomposition
of T+ and T−. For T−, all quantities with a tilde in the definitions of Pκ and S

∞
κ

should be multiplied by −1. We suppress this dependence here and henceforth, as it
is clear in context. The dependence on κ is retained because the study of embedded
eigenvalues and associated resonance is an analysis of the behavior of the scattering
problem for κ at and near 0.
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Since the leading-order of β in ε is O(1/ε), we scale the matrix M̃κ,± by letting

(4.5) Mκ,± := ε M̃κ,±,

and the eigenvalues of Mκ,± are

(4.6) λj,±(k;κ, ε) := ε λ̃j,±(k;κ, ε), j = 1, 2.

The following proposition summarizes the resonance condition.
Proposition 4.3. The singular frequencies of the scattering problem (1.2)–(1.6)

are the roots of the functions λj,±(k;κ, ε), (j = 1, 2), where λ1,± and λ2,± are eigen-
values of the matrix Mκ,±.

4.2. Embedded eigenvalues and resonances for κ = 0. We investigate the
roots of the functions λj,±(k;κ, ε) (j = 1, 2) when κ = 0. It is shown that real-
valued roots and complex-valued roots with negative imaginary part coexist. They
correspond respectively to eigenvalues and resonances of the scattering problem at
normal incidence. We prove their existence and derive their asymptotic expansions.

Lemma 4.4. The following statements for κ = 0 hold.
(i) If k is real, then L

−1
0 ϕ is real for any real-valued function ϕ.

(ii) 〈L−1
0 e1, e1〉 = 〈L−1

0 e2, e2〉 and 〈L−1
0 e1, e2〉 = 〈L−1

0 e2, e1〉.
Proof. First, in view of Lemmas 3.1 and 3.2, L−1

0 ϕ is real-valued since the kernels
of operators S, S∞

0 , S̃∞ S∞,−
0 , and S∞,+

0 are all real, and assertion (i) follows.
To show (ii), let ϕ = (ϕ1, ϕ2)

T and ϕ̃ = (ϕ̃1, ϕ̃2)
T satisfy L0ϕ = e1 and L0ϕ̃ = e2.

By a direct calculation, it is seen that

(Ŝ − S∞,−
0 Ŝ−1S∞,+

0 )ϕ1 = 1, (Ŝ − S∞,+
0 Ŝ−1S∞,−

0 )ϕ̃2 = 1,

where Ŝ := S + S∞
0 + S̃∞. By virtue of Lemmas 3.3 and 3.4, there holds ϕ̃2(X) =

ϕ1(−X), and it follows that 〈L−1
0 e1, e1〉 = 〈L−1

0 e2, e2〉. Similarly, it can be shown
that ϕ̃1(X) = ϕ2(−X), so the second identity also holds.

When κ = 0, by noting that β±
e (k, 0) = β̂(k) (see (3.8)) and using the equalities

in Lemma 4.4, the matrix M̃0,± can be expressed as

(4.7) M̃0,± :=

[

〈L−1
0 e1, e1〉 〈L−1

0 e1, e2〉
〈L−1

0 e1, e2〉 〈L−1
0 e2, e2〉

] [

β ± β̃ β̂

β̂ β ± β̃

]

+

[

1 0
0 1

]

.

It can be calculated that the eigenvalues of M̃0,± are

λ̃1,±(k; 0, ε) = 1 + (β ± β̃ + β̂)
(

〈L−1
0 e1, e1〉+ 〈L−1

0 e1, e2〉
)

,(4.8)

λ̃2,±(k; 0, ε) = 1 + (β ± β̃ − β̂)
(

〈L−1
0 e1, e1〉 − 〈L−1

0 e1, e2〉
)

,(4.9)

and the associated eigenvectors are [1 1]T and [1 − 1]T . Therefore, in view of
Lemma 4.2 and formulas (3.2)–(3.5) for β and β̃, the eigenvalues ofM0,± are expressed
explicitly as

λ1,±(k; 0, ε) = ε+

[

1

k tan k
± 1

k sin k
+

1

π
ε ln ε+ εγ(k, 0) + εβ̂(k)

]

(α+O(ε)) ,(4.10)

λ2,±(k; 0, ε) = ε+

[

1

k tan k
± 1

k sin k
+

1

π
ε ln ε+ εγ(k, 0)− εβ̂(k)

]

(α+O(ε)) .(4.11)
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Remark 4. If (0, k) ∈ D1 (see (3.1)), that is 0 < k < 2π/d, then from the
explicit expressions (3.5) and (3.8), we see that

Im
(

γ(k, 0) + β̂(k)
)

= −2

d

1

ζ0(k)
and Im

(

γ(k, 0)− β̂(k)
)

= 0.

The O(ε) terms in (4.10) and (4.11) are real-valued by Lemma 4.4, and hence λ1,+(k; 0, ε)
and λ1,−(k; 0, ε) are complex-valued functions, while λ2,+(k; 0, ε) and λ2,−(k; 0, ε) are
real-valued functions.

Theorem 4.5. If κ = 0, the singular frequencies of the scattering problem (1.2)–
(1.6) admit the following asymptotic expressions in ε:

k(1)m = mπ + 2mπ

[

1

π
ε ln ε+

(

1

α
+ γ(mπ, 0) + β̂(mπ)

)

ε

]

+O(ε2 ln2 ε);

k(2)m = mπ + 2mπ

[

1

π
ε ln ε+

(

1

α
+ γ(mπ, 0)− β̂(mπ)

)

ε

]

+O(ε2 ln2 ε)

for positive integers m < 2/d. In the above, Im k
(1)
m = O(ε) and Im k

(2)
m = 0.

Remark 5. The frequencies k
(1)
m for m < 2/d are resonances in the lower half

of the complex plane, which are also called Fabry-Perot resonances [15, 22, 23]. The

frequencies k
(2)
m are real-valued eigenvalues embedded in the continuous spectrum, since

the continuous spectrum of the quasi-periodic scattering operator is [0,∞) when κ = 0
[3, 31].

Remark 6. The asymptotic expansions of k
(1)
m and k

(2)
m in Theorem 4.5 still hold

for m > 2/d. However, when m > 2/d, one has Re k
(2)
m ≥ 2π/d so that (0,Re k

(2)
m ) 6∈

D1. That is, this wavenumber-frequency pair lies above the diamond region in which
exactly one of the Rayleigh modes is propagating and embedded eigenvalues are not

expected. Indeed, for such singular frequencies, there holds Im
(

γ(mπ, 0)−β̂(mπ)
)

6= 0

and the O(ε2 ln2 ε)-term is also complex, and the frequencies k
(2)
m become complex-

valued resonances with Im k
(2)
m = O(ε). Here we restrict our attention to m < 2/d

since we are concerned with embedded eigenvalues in this paper.

Proof. The leading-order term 1
k tan k + 1

k sin k of λ1,+(k) attains a simple root
km,0 = mπ for odd integers m. Let us choose the disc Bδ(km,0) with radius δ centered
at km,0 in the complex k-plane, with δ = O(1) as ε → 0. We analytically extend the

functions βe(k), βi(k), β̃ and β̂(k) to Bδ(km,0). One can show that the asymptotic

expansions in ε for the kernels Ge
ε, G

e,±
ε , Gi

ε and G̃i
ε given in Lemmas 3.1 and 3.2

hold in Bδ0(km,0). From Rouche’s theorem, we deduce that there is a simple root of

λ1,+(k; 0, ε), denoted as k
(1)
m , close to km,0 if ε is sufficiently small.

To obtain the leading-order asymptotic terms of k
(1)
m , let us consider the root of

λ̂1,+(k; ε) = ε+

[

1

k tan k
+

1

k sin k
+

1

π
ε ln ε+ εγ(k, 0) + εβ̂(k)

]

α.

Let δk = k − km,0, then the Taylor expansion for λ̂1,+(k, ε) at k = km,0 yields

λ̂1,+(k; ε) = ε+

[ (

1

k tan k
+

1

k sin k

)′
∣

∣

∣

∣

∣

k=km,0

· δk +O(δk2) +
1

π
ε ln ε

+ε(γ(km,0, 0) + β̂(km,0)) + ε ·O(δk)

]

· α ,

14



and the root of λ̂1,+ is given by

k̂(1)m = km,0 + 2mπ

[

1

π
ε ln ε+

(

1

α
+ γ(km,0, 0) + β̂(km,0)

)

ε

]

+O(ε2 ln2 ε).

The high-order term of the roots for λ1,+(k) can be obtained by the Rouche’s

theorem. Note that λ1,+(k)− λ̂1,+(k) = (λ̂1,+(k)− ε) ·O(ε), one can find a constant

C > 0 such that |λ1,+(k)−λ̂1,+(k)| < |λ̂1,+(k)| for all k satisfying |k−k̂(1)m | = Cε2 ln2 ε.
The assertion holds by Rouche’s theorem.

The roots of λ1,−(k; 0, ε) and λ2,±(k; 0, ε) can also be obtained by perturbation
arguments. In particular, λ2,+(k) attains roots close to mπ with odd integers m,
while λ1,−(k) and λ2,−(k) attain roots close to mπ with even integers m. Finally,

k
(2)
m are seen to be real by noting that the functions λ2,+(k; 0, ε) and λ2,−(k; 0, ε) are

real-valued for k ∈ (0, 2π/d).

4.3. Perturbation of embedded eigenvalues and resonances. If κ 6= 0,
both the eigenvalues and resonances at κ = 0 will be perturbed on the complex k-
plane. The resonances will stay in the lower half plane. On the other hand, the real
eigenvalues will emerge as a second group of complex-valued resonances that enter
the lower half plane. We aim to obtain the asymptotic expansion of these two groups
of resonances. In particular, we would like to characterize the order of the imaginary
parts for the resonances that originate from the perturbation of embedded eigenvalues.

Remark 7. We shall assume that κ = O(ερ) in this section, where 0 < ρ < 1
2 .

This is not an essential assumption for the expansion of resonances discussed in what
follows. However, one would need to investigate higher-order terms more thoroughly
in the asymptotic expansion if ρ ≥ 1

2 .

A brute-force perturbation argument leads to an order of O(κε) for the imaginary
parts of resonances that emanate from the eigenvalues as κ is perturbed from 0. To
obtain a better expansion, as given in Theorem 4.9 below, we need to exploit the
symmetry of the matrices Mκ,±. To this end, we define matrices M̂κ,+ and M̂κ,− by

(4.12)
1

ε
M̂κ,± = α

[

β ± β̃ β−

β+ β ± β̃

]

+

[

1 0
0 1

]

,

where α := 〈S−11, 1〉. The eigenvalues of the matrix M̂κ,± are

λ̂1,±(k;κ, ε) = ε+ εα(β ± β̃ +
√

β− · β+),(4.13)

λ̂2,±(k;κ, ε) = ε+ εα(β ± β̃ −
√

β− · β+).(4.14)

The corresponding (right) eigenvectors of M̂κ,± are

(4.15) v̂1,± = [ 1,
√

β− · β+/β− ]T , v̂2,± = [ 1, −
√

β− · β+/β− ]T ,

and the left eigenvectors are

(4.16) ŵ1,± = [ 1/2, β−/2(
√

β− · β+) ], ŵ2,± = [ 1/2, −β−/(2
√

β− · β+) ].

Lemma 4.6. The eigenvalues and eigenvectors of M̂κ,± attain the following
asymptotic expansions as κ→ 0.

λ̂j,±(k;κ, ε) = ε+ εα
[

β ± β̃ + 1
2 (−1)j+1(β+ + β−)

]

+O(κ2ε), j = 1, 2;(4.17)

v̂j,± = [ 1, (−1)j+1(1 + η) ]T +O(κ2), j = 1, 2;(4.18)

ŵj,+ = [ 1/2, (−1)j+1/(2(1 + η)) ] +O(κ2), j = 1, 2,(4.19)
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where η = O(κ).
Proof. Note that

β− · β+ = 1
4

[

(β+ + β−)2 − (β+ − β−)2
]

.

Since β+(k, 0) = β−(k, 0) = β̂, we have (β+ − β−)2 = O(κ2) as κ→ 0. Hence

√

β− · β+ = 1
2 (β

+ + β−) +O(κ2),

and the expansions of the eigenvalues and eigenvectors follow.
If (κ, k) ∈ D1, it follows from the explicit expressions (3.2)–(3.5) that

Imβ(k, κ) +
1

2
(Imβ+(k, κ) + Imβ−(k, κ)) = O(1),(4.20)

Imβ(k, κ)− 1

2
(Imβ+(k, κ) + Imβ−(k, κ)) =

cos(κd0 − 1)

ζ0(k) · d
= O(κ2).(4.21)

Consequently, we have the following proposition deduced from the previous lemma.
Proposition 4.7. If (κ, k) ∈ D1, then Im λ̂1,±(k) = O(ε) and Im λ̂2,±(k) =

O(κ2ε).

Next, we prove the key lemma for the sensitivity of eigenvalues of the matrix
Mκ,± with respect to the perturbation δM± := Mκ,± − M̂κ,± .

Lemma 4.8. Let {λj,±}2j=1 and {λ̂j,±}2j=1 be the eigenvalues of Mκ,± and M̂κ,±

respectively, then

(4.22) λj,±(k;κ, ε) = (1 + rj(k;κ, ε)) · λ̂j,±(k;κ, ε) + rj,h(k;κ, ε), j = 1, 2,

where rj = O(ε) and rj,h = O(ε2).
Proof. A direct comparison of (4.5) and (4.12) gives

(4.23) δM+ = ε

[

〈L−1
κ e1, e1〉 − α 〈L−1

κ e2, e1〉
〈L−1

κ e1, e2〉 〈L−1
κ e2, e2〉 − α

] [

β + β̃ β−

β+ β + β̃

]

.

Let δλj,+ = λj,+(k;κ, ε)− λ̂j,+(k;κ, ε) and δvj,+ = vj,+ − v̂j,+ be the perturbation of
the eigenvalues and eigenvectors. It follows from Lemma 4.2 that

(4.24) 〈L−1
κ e`, ej〉 − α δ`j = O(ε),

where δ`j is Kronecker delta, and consequently, ‖δM+‖ = O(ε). An application of the
Bauer-Fike theorem for the perturbation of eigenvalues (cf. [12]) yields

|δλj,+| = O(ε), and ‖δvj,+‖ = O(ε).

Now from the relation Mκ,+vj,+ = λj,+vj,+, we obtain

λ̂j,+ · δvj,+ + δλj,+ · v̂j,+ = M̂κ,+ δvj,+ + δM+ v̂j,+ +O(ε2).

Multiplying by the left-eigenvector ŵj,+ leads to

(4.25) δλj,+ · (ŵj,+vj,+) = ŵj,+ δMκ v̂j,+ +O(ε2).
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Since λ̂j,+ is an eigenvalue of M̂κ,+, in light of (4.23), we see that

(4.26) δM+ v̂j,+ =
1

α
(λ̂j,+ − ε)

[

〈L−1
κ e1, e1〉 − α 〈L−1

κ e2, e1〉
〈L−1

κ e1, e2〉 〈L−1
κ e2, e2〉 − α

]

v̂j,+.

The assertion follows from (4.24)–(4.26) and the expansion for the eigenvectors in
Lemma 4.6. The sensitivity of the eigenvalues for λj,− is analyzed parallelly.

Remark 8. If k is real and 0 < k < 2π/d, then in the above lemma, r2 =
O(ε) + i O(κε) and r2,h = O(ε2) + i O(κε2), where the O(·) terms are real. This can
be shown by observing that 〈L−1

κ e`, ej〉 − αδ`j = O(ε) + i O(κε) when j = 2.

Now with the explict expressions for the eigenvalues of M̂κ,± in Lemma 4.6 and
the sensitivity of eigenvalues for Mκ,± in Lemma 4.8, we are ready to present the
perturbation of embedded eigenvalues and resonances when κ becomes nonzero. This
is given in the following theorem.

Theorem 4.9. If κ = O(ερ) with 0 < ρ < 1
2 , then the scattering problem (1.2)–

(1.6) admits two groups of complex-valued resonances given by

k(1)m = mπ + 2mπ

[

1

π
ε ln ε+

(

1

α
+ γ(mπ, κ) +

1

2
(β+(mπ, κ)) + β−(mπ, κ)

)

ε

]

+O(ε2 ln2 ε),

k(2)m = mπ + 2mπ

[

1

π
ε ln ε+

(

1

α
+ γ(mπ, κ)− 1

2
(β+(mπ, κ) + β−(mπ, κ))

)

ε

]

+O(ε2 ln2 ε)

for m < 2/d. Furthermore, there holds

Im k(1)m = O(ε) and Im k(2)m = O(κ2ε).

Proof. With Lemmas 4.6 and 4.8, the proof is analogous to that of Theorem 4.5.

First, from Rouche’s theorem, there exists a simple root k
(j)
m of λj,+(k;κ, ε) for odd

integer m close to km,0 := mπ, the root of the leading-order term 1
k tan k + 1

k sin k .

To obtain the asymptotics of k
(j)
m , we first consider a root of λ̂j,+(k;κ, ε), which

is an eigenvalue of M̂κ,+. Note that λ̂j,+(k;κ, ε) attains the expansion (4.17). An

application of the Taylor expansion for λ̂j,+(k, ε) at k = km,0 yields

λ̂j,+(k; ε) = ε+

[

− 1/(2km,0) · δk +O(δk2) +
1

π
ε ln ε+ εγ(km,0, κ)

+ε · (−1)j+1 · 1
2

(

β+(km,0, κ) + β−(km,0, κ)
)

+ ε ·O(δk)

]

· α+O(κ2ε),

where δk := k − km,0. In the above, it follows from (4.20) and (4.21) that

Im γ(km,0, κ) +
1

2

(

Imβ+(km,0, κ) + Imβ−(km,0, κ)
)

= O(1),(4.27)

Im γ(km,0, κ)−
1

2

(

Imβ+(km,0, κ) + Imβ−(km,0, κ)
)

= O(κ2).(4.28)

Hence the root of λ̂j,+ can be expanded as

k̂(j)m = km,0 + 2km,0

[

1

π
ε ln ε+

(

1

α
+ γ(km,0, κ) + (−1)j+1 · 1

2

(

β+(km,0, κ) + β−(km,0, κ)
)

)

ε

]

+ k
(j)
m,h,

17



in which

Re k
(1)
m,h = O(ε2 ln2 ε), Im k

(1)
m,h = O(ε2| ln ε|),

Re k
(2)
m,h = O(ε2 ln2 ε), Im k

(2)
m,h = O(κ2ε).

To obtain the high-order term of the roots, from Lemma 4.8 we have

λj,+(k)− λ̂j,+(k) = O(ε) · λ̂j,+(k) +O(ε2).

Therefore, for a certain constant C, |λ(k)− λ̂j,+(k)| < |λ̂j,+(k)| holds for all k satisfy-

ing |k− k̂
(j)
m | = Cε2 ln2 ε, and the asymptotic expansion of k

(j)
m follows from Rouche’s

theorem. Since κ = O(ερ) with 0 < ρ < 1
2 , in view of (4.27) and (4.28), it follows that

Im k
(1)
m = O(ε) and Im k

(2)
m = O(κ2ε). Finally, investigating the roots of λj,−(k;κ, ε)

yields resonances close to mπ with even integers m.

5. Fano resonance and field enhancement. We present quantitative analysis
for the solution to the scattering problem (1.2) - (1.6) and transmission anomaly

through the slab near κ = 0 and k = Re k
(2)
m . In particular, the expressions of

reflected and transmitted field are obtained in Section 5.2, which allow for a rigorous

proof of the presence of Fano resonance near the frequency k = Re k
(2)
m . Additionally,

we analyze quantitatively the field amplification at Fano resonance in Section 5.3.

5.1. Asymptotics of the solution to scattering problem. Decompose the
system Tϕ = ε−1f into its even and odd subsystems

Tϕeven = ε−1feven, Tϕodd = ε−1fodd,

in which ϕ = ϕeven +ϕodd and f = feven + fodd, and

feven = [f−, f+, f−, f+]T , fodd = [f−, f+, −f−, −f+]T ,
ϕeven = [ϕ+,ϕ+]

T , ϕodd = [ϕ−,−ϕ−]
T .

These two subsystems are equivalent to the two smaller systems

T+ϕ+ = ε−1f̃ and T−ϕ− = ε−1f̃ ,

where T+ = T̂+ T̃ and T− = T̂− T̃, and f̃ = [f−, f+]T . Define

(5.1) µ+(κ) = eiκd0/2 + (1 + η)e−iκd0/2, µ−(κ) = eiκd0/2 − (1 + η)e−iκd0/2,

where η = O(κ) is defined in Lemma 4.6.
Lemma 5.1. The following asymptotic expansion holds for the solutions ϕ+ and

ϕ− in V1 × V1:

[

〈ϕ±, e1〉
〈ϕ±, e2〉

]

= − (α+O(ε))
µ+

2λ1,±

([ 1
1+η

1

]

+O(ε+ κ2)

)

+(α+O(ε))
µ−

2λ2,±

([ 1
1+η

−1

]

+O(ε+ κ2)

)

, (|κ|, ε→ 0)(5.2)

in which α := 〈S−11, 1〉. In addition,

(5.3) ϕ± = ε−1
L
−1
κ f̃ −

[

L
−1
κ e1 L

−1
κ e2

] [

β + β̃ β−

β+ β + β̃

] [

〈ϕ±, e1〉
〈ϕ±, e2〉

]

.
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Proof. We consider T+ϕ+ = ε−1f̃ , and the proof for T−ϕ− = ε−1f̃ is parallel.

Using the decomposition T+ = Pκ + Lκ, the equation reads (Pκ + Lκ)ϕ+ = ε−1f̃ ,
which can be expressed as

(5.4) L
−1
κ Pκ ϕ+ +ϕ+ = ε−1

L
−1
κ f̃ .

Evaluating Pκ ϕ+ explicitly yields (5.3). By a calculation similar to that in Sec-
tion 4.1, we obtain

(5.5) Mκ,+

[

〈ϕ+, e1〉
〈ϕ+, e2〉

]

=

[

〈L−1
κ f̃ , e1〉

〈L−1
κ f̃ , e2〉

]

.

Recall that the matrix Mκ,+ has eigenvalues λ1,+(k, ε) and λ2,+(k, ε), which are as-
sociated with the eigenvectors v1,+ and v2,+. By virtue of Lemmas 4.6 and 4.8,
(5.6)

M
−1
κ,+ =

1

2λ1,+

([

1 1
1+η

1 + η 1

]

+O(ε+ κ2)

)

+
1

2λ2,+

([

1 − 1
1+η

−(1 + η) 1

]

+O(ε+ κ2)

)

.

On the other hand, note that

f̃ = [−e−iκd0/2, −eiκd0/2]T +O(κε).

Thus it follows from Lemma 4.2 that

(5.7)

[

〈L−1
κ f̃ , e1〉

〈L−1
κ f̃ , e2〉

]

=

(

−
[

e−iκd0/2

eiκd0/2

]

+O(κε)

)

(α+O(ε)),

The proof is completed by substituting (5.6) and (5.7) into (5.5).
Proposition 5.2. Let ϕ = [ϕ−

1 , ϕ
+
1 , ϕ

−
2 , ϕ

+
2 ]

T be the solution of the system
Tϕ = ε−1f . If 0 < |κ| � 1, then ϕ = [ϕ+ +ϕ−, ϕ+ −ϕ−]

T , where ϕ± are given in
(5.3). The following asymptotic expansion holds:









〈ϕ−
1 , 1〉

〈ϕ+
1 , 1〉

〈ϕ−
2 , 1〉

〈ϕ+
2 , 1〉









= −µ+(κ)
(

α+O(ε+ κ2)
)









1

2λ1,+









1
1+η

1
1

1+η

1









+
1

2λ1,−









1
1+η

1
− 1

1+η

−1

















+ µ−(κ)
(

α+O(ε+ κ2)
)









1

2λ2,+









1
1+η

−1
1

1+η

−1









+
1

2λ2,−









1
1+η

−1
− 1

1+η

1

















(|κ|, ε→ 0), where α := 〈S−11, 1〉 and µ±(κ) are defined in (5.1).

5.2. Fano-type transmission anomalies. Let us consider the field above and
below the metallic grating. Define reflection and transmission coefficients r± and t±:

r− = − µ+

2(1 + η)
Λ1,+ +

µ−

2(1 + η)
Λ2,+, r+ = −µ+

2
Λ1,+ − µ−

2
Λ2,+,(5.8)

t− = − µ+

2(1 + η)
Λ1,− +

µ−

2(1 + η)
Λ2,−, t+ = −µ+

2
Λ1,− − µ−

2
Λ2,−,(5.9)
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where

(5.10) Λ1,± :=
1

λ1,+
± 1

λ1,−
, Λ2,± :=

1

λ2,+
± 1

λ2,−
.

Lemma 5.3. If 0 < |κ| � 1, the solution to the scattering problem (1.2–1.6)
admits the forms

uε(x) = uinc + urefl + ε
(

α+O(ε+ κ2)
)

{

r−
[

ge
(

x, y−1
)

+O(ε)
]

+ r+
[

ge
(

x, y+1
)

+O(ε)
]}

uε(x) = ε
(

α+O(ε+ κ2)
)

{

t−
[

ge
(

x, y−2
)

+O(ε)
]

+ t+
[

ge
(

x, y+2 )
)

+O(ε)
]}

in Ω1 and Ω2 respectively for x far away from the grating, where y±1 = (±d0/2, 1) and
y±2 = (±d0/2, 0) are the centers of the slit apertures Γ±

1,ε and Γ±
2,ε respectively.

Proof. From Lemma 2.1, the diffracted field udε(x) := uε(x)− (uinc + urefl) above
the grating is

udε(x) =

∫

Γ+
1,ε∪Γ−

1,ε

ge(x, y)
∂uε(y)

∂y2
dsy in Ω1.

Thus for x far away from the grating, in the scaled interval I,

udε(x) = ε

∫ 1/2

−1/2

ge
(

x, (−d0/2 + εY, 1)
)

ϕ−
1 (Y ) dY + ε

∫ 1/2

−1/2

ge
(

x, (d0/2 + εY, 1)
)

ϕ+
1 (Y ) dY

= ε
(

ge
(

x, y−1
)

+O(ε)
)

· 〈ϕ−
1 , 1〉+ ε

(

ge
(

x, y+1
)

+O(ε)
)

· 〈ϕ+
1 , 1〉.

By the asymptotic expansion in Proposition 5.2, we obtain the desired expansion for
uε(x). The wave field for x ∈ Ω2 can be obtained similarly.

Now we consider the reflected and transmitted wave above and below the grat-
ing. Decompose the Green function ge(x, y) into the propagating and exponentially
decaying parts ge(x, y) = gprop(x, y) + gexp(x, y). Note that for (κ, k) ∈ D1, only one
propagating Fourier mode (n = 0) appears in the Green function. By substituting
the propagating parts of the Green function into the above lemma, we obtain the
expansion of the reflected and transmitted fields as follows.

Proposition 5.4. If 0 < |κ| � 1 and (κ, k) ∈ D1, the reflected and transmitted
fields admit the forms

urε(x) = R(k, κ, ε)eiκx1+iζ0(x2−1) and utε(x) = T (k, κ, ε)eiκx1−iζ0x2 ,

where the reflection and transmission coefficients are

R(k, κ, ε) = 1 + ε τ
(

α+O(ε+ κ2)
)

·
(

−µ2
+ Λ1,+ + µ2

− Λ2,+

)

,

T (k, κ, ε) = ε τ
(

α+O(ε+ κ2)
)

·
(

−µ2
+ Λ1,− + µ2

− Λ2,−

)

,

τ(k, κ) = − i
2d ζ0 (1+η) , and Λ1,± and Λ2,± are defined in (5.10).

Lemma 5.5. For r > 0 and a horizontal line γ := {t+ ir ; t ∈ R} in the complex
plane, the set {1/z ; z ∈ γ} = D\{0}, where D =

{

z ; |z + i
2r | = 1

2r

}

is a disk.

We are ready to prove the Fano resonance that occurs in the vicinity of the real

resonance frequency k∗ := Re k
(2)
m as shown in the transmission graph in Figure 1.2.
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Fig. 5.1. Left: The curve γ̃0 lies on the circle
{

z ; |z+ i
2
| = 1

2

}

. Right: The curves γ0, γ̃0 and

eiθ0 γ̃0. γ0 lies on the circle
{

z ; |z + 1
2
| = 1

2

}

.

Theorem 5.6. For all c > 0, define the real interval Ic := [k∗ − cκ2ε, k∗ + cκ2ε]

containing the real resonance frequency k∗ := Re k
(2)
m . There exist a positive number c

and frequencies k1, k2 ∈ Ic such that |T (k1)| . ε and |T (k2)| & 1−ε for 0 < |κ| � 1.

Remark 9. We point out that almost total transmission occurs both near the
Fano resonance and near the Fabry-Perot resonance. In this work, we do not address
whether the transmission and reflection are in fact total. Note that total transmission
and/or reflection can be induced by symmetries in certain configurations [4, 5, 6, 28].

Proof. We give the proof when m is odd, and the argument is analogous if m is
even. In view of the asymptotic expansions in Theorem 4.9 and the explicit expression

of µ± in (5.1), we see that in the O(κ2ε) neighborhood of k∗ := Re k
(2)
m ,

εµ2
+

λ1,+
= O(1),

εµ2
−

λ2,+
= O(1),

εµ2
+

λ1,−
= O(ε),

εµ2
−

λ2,−
= O(κ2ε).

Therefore

R(k) = 1+ ε ατ ·
(

− µ2
+

λ1,+
+

µ2
−

λ2,+

)

+O(ε), T (k) = ε ατ ·
(

− µ2
+

λ1,+
+

µ2
−

λ2,+

)

+O(ε),

and it follows that R = 1 + T + O(ε). By substituting into the equation for the
conservation of energy |R|2 + |T |2 = 1, we obtain |T (k) + 1|2 + |T (k)|2 = 1 + O(ε).
This shows that, for fixed ε, the trajectory γε of the transmission coefficient T (k)
(k ∈ Ic) on the complex plane lies close to the fixed circular trajectory γ0 with radius
1
2 centered at (− 1

2 , 0) (cf. Figure 5.1, right). Namely,

(5.11) γε = γ0 +O(ε), with γ0 ⊂
{

z ; |z + 1
2 | = 1

2

}

.

In fact, the assertion of the theorem holds as long as

(5.12) [0, π] or [π, 2π] ⊂
{

arg

(

z +
1

2

)

; z ∈ γ0

}

.

To show this, write T (k) = t1(k) + t2(k) +O(ε), where

(5.13) t1(k) = −ατ(k) εµ
2
+(k)

λ1,+(k)
, t2(k) = ατ(k)

εµ2
−(k)

λ2,+(k)
.
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From a perturbation argument parallel to the proof of Theorem 4.9, it is known that
Reλ2,+(k) attains a root k̃∗ in the vicinity of k∗. Since λ2,+(k∗) = O(κ2ε), we deduce

that |k̃∗ − k∗| = O(κ2ε) and Imλ2,+(k̃∗) = O(κ2ε). Now expand all the terms of

(5.13) in the O(κ2ε) neighborhood of k̃∗:

τ(k) = τ(k̃∗) +O(κ2ε), µ±(k) = µ±(k̃∗) +O(κ2ε),

λ1,+(k) = λ1,+(k̃∗) +O(κ2ε), λ2,+(k) = c1(k − k̃∗) + i c2κ
2ε+O(κ2ε2),

where c1 and c2 are real-valued constants and c2 > 0. By setting k − k̃∗ = s · κ2ε, it
follows that

T (k) = t1(k̃∗) + ατ(k̃∗)
εµ2

−(k̃∗)

c1(k − k̃∗) + i c2κ2ε
+O(ε) = t1(k̃∗) +

eiθ0

ĉ1s+ i ĉ2
+O(ε),

in which

c0 := ατ(k̃∗)
µ2
−(k̃∗)

κ2
= O(1), ĉ1 =

c1
|c0|

, ĉ2 =
c2
|c0|

, θ0 = arg c0.

From Lemma 5.5, we deduce that the trajectory of T (k) for k ∈ Ic is given by

(5.14) γε = t1(k̃∗) + eiθ0 γ̃0 +O(ε), where γ̃0 ⊂
{

z ; |z + i
2ĉ2

| = 1
2ĉ2

}

.

In addition,
[

π + θc, 2π − θc
]

⊂
{

arg z; z ∈ γ̃0
}

for certain θc ∈ (0, π/2) depending
on the constant c (see Figure 5.1, left).

A combination of (5.11) and (5.14) leads to the relation γ0 = t1(k̃∗)+ e
iθ0 γ̃0. Ge-

ometrically, γ0 is obtained from a rotation and translation of the curve γ̃0 as shown
in Figure 5.1 (right), and it follows that ĉ2 = 1. A direct calculation shows that
|Im t1(k̃∗)|/|Re t1(k̃∗)| = O(1) and is nonzero. By letting θ1 := tan−1(|Im t1(k̃∗)|/|Re t1(k̃∗)|)
and choosing sufficiently large c such that θc < θ1 and θc <

π
2 − θ1, the claim (5.12)

holds and the proof is complete.
Remark 10. From the proof, γ0 is the trajectory for the leading-order term

of the transmission coefficient on the complex plane, and using (5.12), the graph
{|z|; z ∈ γ0} demonstrates an asymmetric line shape with respect to the frequency for
k ∈ Ic.

5.3. Field enhancement. Fano resonance is usually associated with field ampli-
fication around the resonance frequencies [1, 14, 32]. This also applies to the periodic
structure considered here. See Figure 5.2 for a plot of the field inside the slits at Fano
resonance frequencies.

We investigate the field enhancement at frequencies around the real part Re k
(2)
m

of a complex resonance that is the perturbation of a real eigenvalue. It is known

that the field amplification at Fabry-Perot resonance frequencies Re k
(1)
m is of order

O(1/ε) [23]. As shown below, field amplification with an order of O(1/(κε)) occurs at

the Fano resonance frequencies Re k
(2)
m , which is much stronger than that of Fabry-

Perot resonance. This results in more complicated scattering behavior, as the field
enhancement depends on both small ε and κ.

In what follows, for clarity we focus on the field amplification inside the slit only.
The same amplification order can be obtained near the slit aperturs and in the far-
field following the method in [23], here we skip the calculations for brevity. Since uε
is quasi-periodic, we analyze the field in the reference slit S

(0)
ε .
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Fig. 5.2. The wave field inside the slits S0,±
ε at the first two Fano resonance frequencies Re k

(2)
1

and Re k
(2)
2 . d = 1, d0 = 0.4, ε = 0.05, κ = 0.1.

Lemma 5.7. In the slit region S̃0,±
ε := {x ∈ S0,±

ε ; x2 � ε, 1 − x2 � ε}, the
solution uε(x) of the scattering problem (1.2–1.6) admits the following expansion

uε(x) = −α+O(ε+ κ2)

k sin k

(

r± cos kx2 + t± cos k(1− x2)
)

+O
(

e−1/ε
)

,

where the coefficients r± and t± are given in (5.8) and (5.9).
Proof. The field uε satisfies the Helmholtz equation in S0,±

ε with homogeneous
Neumann boundary conditions on the slit walls, and thus it admits the expansion

uε(x) = a±0 cos kx2+b
±
0 cos k(1−x2)+

∑

m≥1

(

a±me
−k

(m)
2,ε x2 + b±me

−k
(m)
2,ε (1−x2)

)

cos
mπx̃±1,ε

ε
,

where x̃±1,ε = x1 ∓ d0/2 + ε/2 and k
(m)
2,ε =

√

(mπ/ε)2 − k2. Taking the derivative of
the above expansion with respect to x2 and integrating over the slit apertures yields

−a±0 k sin k =
1

ε

∫

Γ±
1,ε

∂uε
∂x2

ds = 〈ϕ±
1 , 1〉, b±0 k sin k =

1

ε

∫

Γ±
2,ε

∂uε
∂x2

ds = −〈ϕ±
2 , 1〉.

Applying Proposition 5.2, we obtain the expansion coefficients a±0 and b±0 as follows:

(5.15) a±0 = −r
±(α+O(ε+ κ2))

k sin k
, b±0 = − t

±(α+O(ε+ κ2))

k sin k
.

For m ≥ 1, the coefficients am and bm can be obtained similarly by taking the inner

product of ∂x2
u with cos

mπx̃±
1

ε over the slit apertures. In view of Propsosition 5.2, a
direct estimate leads to

(5.16) |am| ≤ O(1/
√
m), |bm| ≤ O(1/

√
m), for m ≥ 1.

The proof is complete.
Now the shape of resonant wave modes in the slits and their enhancement orders at

the Fano resonance frequency k = Re k
(2)
m are characterized in the following theorem.

Theorem 5.8. In the slit region S̃0,±
ε := {x ∈ S0,±

ε ; x2 � ε, 1 − x2 � ε},
the solution uε(x) of the scattering problem (1.2–1.6) admits the following asymptotic

form at the resonant frequencies k = Re k
(2)
m .

uε(x) =

[

±codd
κε

+O

(

1

ε

)]

cos(k(x2 − 1/2)) +O(1), (k = Re k(2)m , m even)

uε(x) =

[

±ceven
κε

+O

(

1

ε

)]

sin(k(x2 − 1/2)) +O(1), (k = Re k(2)m , m odd)
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(|κ|, ε→ 0), in which codd and ceven are certain constants independent of ε and κ.
Proof. We only perform the calculations when m is odd, and the calculations for

even m are similar. From Lemma 5.7 and the explicit expressions (5.8–5.9) for the
coefficients r± and t±, we obtain that in the regions S0,−

ε and S0,+
ε ,

uε(x) = −α+O(ε+ κ2)

k sin k

(

r− cos kx2 + t− cos k(1− x2)
)

+O
(

e−1/ε
)

,

=
(

α+O(ε+ κ2)
)

(

µ+

λ1,+
− µ−

λ2,+

)

cos kx2 + cos k(1− x2)

2(1 + η)k sin k
(5.17)

+
(

α+O(ε+ κ2)
)

(

µ+

λ1,−
− µ−

λ2,−

)

cos kx2 − cos k(1− x2)

2(1 + η)k sin k
+O

(

e−1/ε
)

,

uε(x) = −α+O(ε+ κ2)

k sin k

(

r+ cos kx2 + t+ cos k(1− x2)
)

+O
(

e−1/ε
)

,

=
(

α+O(ε+ κ2)
)

(

µ+

λ1,+
+

µ−

λ2,+

)

cos kx2 + cos k(1− x2)

2k sin k
(5.18)

+
(

α+O(ε+ κ2)
)

(

µ+

λ1,−
+

µ−

λ2,−

)

cos kx2 − cos k(1− x2)

2k sin k
+O

(

e−1/ε
)

respectively. From the asymptotic expansions in Theorem 4.9 and the defintion of µ±

in (5.1), we see that at resonant frequencies k = Re k
(2)
m ,

(5.19)
1

λ1,+
= O

(

1

ε

)

,
1

λ2,+
= O

(

1

κ2ε

)

and µ+ = 1 +O(κ), µ− = O(κ).

On the other hand, in view of Lemmas 4.6 and 4.8,

(5.20) λ1,− =
(cos k − 1)α

k sin k
+O(ε) and λ2,− =

(cos k − 1)α

k sin k
+O(ε).

We obtain the desired expansions by substituting (5.19)–(5.20) into (5.17)–(5.18).

Appendix A. Proof of Lemmas 3.3 and 3.4.

Proof of Lemmas 3.3 Recall that the kernel of S is given by (3.19). Note that
ln
∣

∣sin
(

πt
2

)∣

∣ is a periodic function with period 2. Setting X̃ = −X and Ỹ = −Y , it

follows that ρ(X,Y ) = ρ(X̃, Ỹ ). If ϕ̃(X) = ϕ(−X), then

(A.1) [Sϕ̃](X) =

∫ 1
2

− 1
2

ρ(X,Y )ϕ(−Y ) dY =

∫ 1
2

− 1
2

ρ(X̃, Ỹ )ϕ(Ỹ ) dỸ = [Sϕ](X̃).

The kernels of S∞
0 and S̃∞ are given by (cf. (3.20)–(3.21) and (3.9))

ρ∞(0;X,Y ) = r̂e(|X − Y |) + ri,1(ε; |X − Y |) + ri,2(ε; |X + Y + 1|),
ρ̃∞(X,Y ) = r̃i,1(ε; |X − Y |) + r̃i,2(ε; |X + Y + 1|).

If ϕ̃(X) = ϕ(−X), in view of the periodicity of the functions ri,2(t) and r̃i,2(t)
(cf. (3.18)), a parallel derivation as in (A.1) yields

(A.2) [S∞
0 ϕ̃](X) = [S∞

0 ϕ](X̃) and [S̃∞ϕ̃](X) = [S̃∞ϕ](X̃).
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Finally, to show [S∞,+
0 ϕ̃](X) = [S∞,−

0 ϕ](−X), by (3.9) the kernel of S∞,±
0 is given

by ρ̂(| ± d0 + ε(X − Y )|) for the real-valued function ρ̂. Hence,

[S∞,+
0 ϕ̃](X) =

∫ 1
2

− 1
2

ρ̂(|d0 + ε(X − Y )|)ϕ(−Y ) dY

=

∫ 1
2

− 1
2

ρ̂(| − d0 + ε(X̃ − Ỹ )|)ϕ(Ỹ ) dỸ = [S∞,−
0 ϕ](X̃).

Proof of Lemmas 3.4 The proof of (1) can be found in [8]. The invertibility
of the operator S + S∞

κ + S̃∞ is evident from (1) and the fact that ‖S∞
κ ‖ . ε and

‖S̃∞‖ . e−1/ε. Let ϕ and ϕ̂ satisfy (S + S∞
0 + S̃∞)ϕ = g and (S + S∞

0 + S̃∞)ϕ̂ = g̃,
in which g̃(X) = g(−X). A combination of (A.1) and (A.2) leads to

[(S + S∞
0 + S̃∞)ϕ̃](X) = [(S + S∞

0 + S̃∞)ϕ](X̃) = g(−X).

The assertion (3) holds by the uniqueness of the solution to the integral equation.
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