A MATHEMATICAL THEORY FOR FANO RESONANCE IN A
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Abstract. This work concerns resonant scattering by a perfectly conducting slab with period-
ically arranged subwavelength slits, with two slits per period. There are two classes of resonances,
corresponding to poles of a scattering problem. A sequence of resonances has an imaginary part
that is nonzero and on the order of the width & of the slits; these are associated with Fabry-Perot
resonance, with field enhancement of order 1/¢ in the slits. The focus of this study is another class
of resonances which become real valued at normal incidence, when the Bloch wavenumber & is zero.
These are embedded eigenvalues of the scattering operator restricted to a period cell, and the as-
sociated eigenfunctions extend to surface waves of the slab that lie within the radiation continuum.
When 0 < || < 1, the real embedded eigenvalues will be perturbed as complex-valued resonances,
which induce the Fano resonance phenomenon. We derive the asymptotic expansions of embedded
eigenvalues and their perturbations as resonances when the Bloch wavenumber becomes nonzero.
Based on the quantitative analysis of the diffracted field, we prove that the Fano-type anomalies
occurs for the transmission of energy through the slab, and show that the field enhancement is of
order 1/(ke), which is stronger than Fabry-Perot resonance.
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1. Introduction. Fano resonance, which was initially recognized in the study
of the autoionizing states of atoms in quantum mechanics [13], is a type of resonant
scattering that gives rise to asymmetric spectral line shapes. Fano resonance has been
extensively explored more recently in photonics due to its unique resonant feature of
a sharp transition from peak to dip in the transmission signal, which leads to the
design of efficient optical switching devices and photonic devices with high quality
factors. We refer the readers to [16, 25, 27] and the references therein for detailed
discussions. Mathematically, Fano resonance can be attributed to the perturbation
of certain eigenvalues embedded in the continuous (radiation) spectrum of the un-
derlying differential operators and the corresponding bound states in the continuum
(sometimes called BIC) [17, 18, 29, 34]. The existence of embedded eigenvalues in pho-
tonic slab structures using symmetry is rigorously established in [3]. It is known that
under smaller perturbation which destroys the symmetry, the embedded eigenmode
disappears as its frequency becomes a complex resonance pole, and the transmission
coefficient across the slab exhibits a sharp asymmetric shape [29, 31]. Guided-mode
theory [14], analytic perturbation theory [29, 32], and an augmented scattering matrix
method [9] have been used to study the Fano resonant transmission for several con-
figurations when the Bloch wave vector is perturbed and the bound states associated
with the embedded eigenvalues become quasi-modes.

For photonic structures, the quantitative studies of embedded eigenvalues and
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Fic. 1.1. Geometry of the periodic slit scattering problem on the xix2 plane. Each period
consists of two subwavelength slits SS’_ and Sg’+, which have a rectangular shape of length 1 and
width €. The upper and lower aperture of the slit Sg’i is denoted as Ffs and I'y _, respectively.
The domain exterior to the perfect conductor is denoted as Qc, which consists of the slit region Se,
the domains above the slab 1, and the domain below the slab Q.

Fano resonance mostly rely on numerical approaches. In this paper, we derive explic-
itly the embedded eigenvalues and provide quantitative analysis of their perturbations
as resonances in the context of periodic metallic structures with small holes. Based
on these explicit expressions, we are able to obtain the transmission and reflection
for the scattering of the metallic structure, which allow us to prove the appearance
of Fano-type resonance phenomenon rigorously. The study in this paper is also in
line with our recent attempt to understand the so-called extraordinary optical trans-
mission (EOT) in subwavelength hole structures [11, 15]. We also refer to [7, 8] for
resonant scattering by closely related cavity structures in perfect conductors.
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Fic. 1.2. Left: Transmission |T| when d =1, dgp = 0.4, € = 0.05, k = 0.1. An asymmetric line
shape occurs near k = 2.83. Right: Zoomed view of Fano resonance.

In a series of studies [21]-[24], we have established rigorous mathematical theories
for the EOT and field enhancement in narrow slit structures perforated in a perfectly
conducting metallic slab. Both a single slit structure and a periodic array of slit
structures in various scaling regimes were considered. The structures in the present
work exhibit an infinite set of resonances similar to those, in which the imaginary part
of the complex frequency is nonzero, resulting in Fabry-Perot type resonance. But
they also exhibit a finite set of real resonances, which are the eigenvalues mentioned
above. They occur when the Bloch wavenumber « is zero, and they move away from
the real axis when x becomes nonzero. We show that the field enhancement associated
with these resonances is stronger than for the resonant frequencies that remain non-
real. This resonance is known as Fano resonance, and it is associated with sharp
anomalies in the transmission of energy across the slab. For the purely Fabry-Perot
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resonance, the amplification is on the order inversely proportional to the width e of
the slits, uniformly in k, whereas for the perturbed eigenvalues, the resonance is on
the order of 1/(ke).

To be more specific, we investigate scattering by a metallic grating structure as
shown in Figure 1.1, where each period consists of two identical narrow slits. The
symmetry effects a decoupling of even and odd modes about the centerline between
the two slits when £k =0. An odd surface mode of the grating can exist at a frequency
within the even continuum, and the frequency of this mode is the embedded eigenvalue
[3, 30, 31]. Tt is not possible when there is only one slit per period because the slit
can not support odd modes when it is too narrow. If k is perturbed away from zero,
the transmission coefficient across the slab exhibits an asymmetric shape as shown in
Figure 1.2, with peak and dip at very close frequencies.

The perfectly conducting metallic slab occupies the domain {z = (z1,z2); 0 <
29 < 1} in the z1 x4 plane. The domain above and below the metallic slab are denoted
by €7 and Qs respectively. The slits, which are perforated in the metallic slab and

(oo}

invariant along the z3 direction, occupy the region S, = U (SE(O) + nd), where d is
n=0

the size of the period and S5 consists of two subwavelength slits S~ and S%*. The

slits SO* are given by

Sg’i::{(xl,xgﬂ i%—%<ycl<i%—|—%,O<:132<1}7

where dy = O(d). Denote the upper and lower apertures of the slit S%* by Ffe and
FQi’E and exterior domain of the metallic structure by €2..

We study the time-harmonic transverse magnetic situation, where the magnetic
field is perpendicular to the x125 plane. The x3 component of the incident field is

(11) uinc(x) _ eik(xl sin@ — (z2—1) cos 0) _ ei(geimwl—icowz’
in which k is the free-space wavenumber, 6§ € (—x/2,7/2) is the angle of incidence,

k = ksin@ is the Bloch wavenumber, and (y = vk — k2 > 0. The total field u.(z)
satisfies the following scattering problem:

(1.2) Au. + k*u. = 0 in Q.
Que
(1.3) 811‘/ =0 on o,
(1.4) ue (21 +d, ©3) = e (1, z9),
(15) ue(xth) _ uiHC(x17x2)+ Z uz’lei&nw1+i(n9§2 in Q,
n=—o00
e . .
(16) ue(;r,th) = Z uigeznnmlflgnxQ in Q.

Equation (1.2) is the Helmholtz partial differential equation, with A = 9%/92% +
0?/0x%. Equation (1.3) is the Neumann boundary condition, with v the unit normal
vector pointing to Q.. Equation (1.4) expresses the quasi-periodic property, which is
consistent with the incident field. The series in (1.5) and (1.6) are the Rayleigh-Bloch
(Fourier) expansions for outgoing, or radiating, fields (cf. [2, 3, 31]), in which the
coefficients u? . are complex amplitudes. The constants k,, and (,, are defined by

n,s

(1.7) kn =K+ 22 and ¢, = (u(k, k) = VK2 — K2,
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where the domain of the analytic square root function is taken to be C\{—it : ¢ > 0},
with v/1 = 1. With this choice of square root,

VK2 — k2, if k| <K,
i/Kk2 — k2, if |k,| > k.

The Rayleigh modes with |k, | < k are propagating, and the modes with |k, | > k are
evanescent. The case of (,, = 0 is delicate, but we won’t be concerned with it since
we are interested in the regime in which (, is real for n = 0 and nonzero imaginary
for n # 0 (cf. (3.1)).
By applying layer potential techniques and asymptotic analysis, we aim to
(i) provide quantitative analysis of the embedded eigenvalues for the homoge-
neous scattering problem (1.2)—(1.6) when x = 0, and their perturbations as
resonances when x # 0 (Theorems 4.5 and 4.9);
(ii) give a rigorous proof of Fano resonant transmission anomalies as shown in
Figure 1.2 for the periodic structure (Theorem 5.6).
(iii) characterize the field amplification at Fano resonance (Theorem 5.8).
The paper is organized as follows. We present an integral equation formulation for
the scattering problem (1.2)—(1.6) in Section 2. In Section 3, we derive the asymp-
totic expansions of the integral operators. The asymptotic analysis of the embedded
eigenvalues when x = 0 and their perturbations when s # 0 is given Section 4. The
Fano resonance and the corresponding field enhancement is analyzed in Section 5.

(1.8) Cn(k, k) = {

2. Boundary-integral formulation. The scattering problem (1.2)—(1.6) can
be formulated equivalently as a system of boundary-integral equations. The develop-
ment in this section is standard.

Due to the quasi-periodicity of the solution, one can restrict the Bloch wave
number £ to the first Brillouin zone k € (—m/d, n/d]. Note that our incident field is
the propagating harmonic for n =0. For each fixed k € (—n/d,n/d], let g(x,y) =
g(k, k;x,y) be the quasi-periodic Green function, which satisfies the equation

Aglw,y) + K g(w,y) = ") N7 6(a1 — i —nd)d(ws — y2),

with x = (21, 22) and y = (y1,y2) in R?. Its Rayleigh-Bloch expansion (cf. [26]) is

i~ 1 . .
21 k. ke _ in (21 —y1)+iCn 22 —Yy2|
21 o) = =53 2. Tl

The exterior Green functions for the domains €7 and €5 above and below the slab with
the Neumann boundary condition d¢°(k; x,y)/0v, = 0 along the boundaries {y, = 1}
and {y» = 0} are equal to ¢°(z,y) = g°(k, k; 2, y) = g(k, s 2,y) + g(k, K; 2', y), Where

o (21,2 — x9) ifz,y € O,
T\ (w1, —x2)  ifxmy € Q.

The interior Green functions gb* (, y) in the slits S%'* with the Neumann bound-
ary condition are

giE (ks z,y) = g0k a1 F L, m0501 F L, yo),
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in which gi0(k; x,y) satisfies
AgtO(k;m,y) + K2g20 (ks z,y) = 6(x —y), z,y € (=5,5) x(0,1),

and it can be expressed explicitly as

oo

gé’o(k;l’,y) = Z Cmnqsmn(l‘)d)mn(y)v

m,n=0

with ¢ppn = [k2—(mm/e)?=(nm)?] 71, G (2) = /222 cos (X (21 + §)) cos(nmas), and

1 m=n=0,
Amn =% 2 m=0n>1 or n=0,m>1,
4 m>1n2>1.

Applying Green’s theorem in the reference period Q© := {z € Q. | — g <y <
%} yields the following lemma for the total field w..
LEMMA 2.1. Let uc.(x) be the solution of the scattering problem (1.2)—(1.6), then

du. .
%@ﬁzﬂ; st@w)g£»“y+w“@%HﬁWm for x € Q0N Qy,
IEU 1,e

0
ue(z) = _/1“ . ge(x,y)?;;zy)dsy for € QO NQy,
2,6l ¢

L Ou, . Ou, _
ue(z) = —/F 9 (z,y) ayiy)dsy—k/ 9 (z,y) 8y(2y)dsy for x € 8%,

1,e 2,e

- Aue(y) / i Due(y)
= — il =22 d A =2 € ST,
ue () /F+ 9" (z,y) gy v T - g¢" (@, y) gy for x €S
Here, u™fl(z) = eme1tCo(z2-10) s the reflected field of the ground plane {xy = 1}
without the slits.
Taking the limit of layer potentials in this lemma to the slit apertures and impos-

ing the continuity condition leads to the following system of four integral equations:
(2.2)

Juc(y) / ; Ouc(y) / ; Ouc(y)
¢(z, ds, + LF(x, ds, — LT (x, ds, +
/Fhurlgg( Y) gy Fieg (z,y) gy F;Eg (z,y) Dy

+u"e(z) +urel(z) =0, forxeTlT

l,e»

due(y) / ; duc(y) / ; duc(y)
g¢(z,y ds, — aF(z,y ds, + aF(x,y ds, =0,
/ o S@n T Bl = [ @ By [ g )

1,

forxel“;e.

The slit apertures are rescaled to the e-independent variable X € I := (—%, %) by

d
1 =eX =+ 30 for (z1,1) € I‘fe and (z1,0) € I‘ie.
5



The following quantities will be used in the boundary-integral formulation of the
scattering problem,

ou u
o (X) = 3y; X+, 1), ¢5(X)i=-3=(cX+%,0),
1 . .
fi(X) — _7(umc _’_ureﬂ)(sX + d70’ 1) _ _em(sX:thO).

2

The Green functions are also rescaled:

GUX)Y)i=g%(eX £ % LY £ % 1) = g°(eX £ %, 0;eY £ ©,0)

_ _1 i 1 einns(XfY),
d 2= Co(k,r) ’

GoE(X,Y)=g(eX £ L, 1;eY FL,1) = g°(eX £ L, 0;eY F %, 0)

29

R L ik (e(X—Y)+do).
R IRACT ’

GLX,Y) =gtF(eX £ % 1;eYV £ % 1) = gbF (X £ @ 0;eY £ L 0)

— Z Crmn@mn cos (mm(X + 1)) cos (mm(Y + 1)) ;

m,n=0

GLX,Y) = gbF(eX £ % 1,V £ % 0) = ¢10(c X, 1;€Y,0)

PR

=" ) (=1)"Cmnmn cos (mm(X + 3)) cos (mm(Y + 1)) .

m,n=0

Define the following rescaled boundary-integral operators for X € I:
[T°e)(X) :/IGE(X,Y)SO(Y)dY, [T ¢)(X) :/IG?i(X,Y)s&(Y)dY;
1) = [ XYY, [Felx) = [ ELxy)eway.

Then T° and T" are bounded operators from H~/2(I) to H'/?(I), and T>* and T"
are smooth operators due to the smoothness of the kernels.
PROPOSITION 2.2. The system (2.2) is equivalent to the system Ty = e~ 1f, with

Te +TF T~ T 0 o7 2f~

I A A A T et | 2ft
(2.3) T= Ti 0 Te+T T |0 PT oy |’ f= 0
0 T Te+  Te 4+ Ti >3 0

and f:t(X) —_ _eim(sX:I:do/2).

3. Asymptotic expansion of the integral operators. The rest of this paper
will concern parameters k and k such that |k| < 7/d and (k + 2n7/d)? > k? for all
integers n # 0. In particular, 0 < k < 27/d. This is the parameter regime in which
(o is real and (, is imaginary for n # 0, that is, there is exactly one propagating
Rayleigh mode. In the x-k plane, it is a diamond-shaped region Dy,

(3.1) Dy ={(k,k) : |k| <7/d, 0 < k < |k +2nm/d| ¥n #0}.
6



The behavior of the rescaled Green functions to leading order in £ and |s| is
independent of (X,Y’). This will reduce the leading asymptotics of (2.3) to a four-
dimensional system involving the average field values on the ends of the slits Ffs. The
following quantities, which depend on k, x, and €, describe this behavior.

(3.2) Bo(k, k€)= 127;5+Z<11i 1 )z 1
n70

21 |n|  dn(k, k) d ok, k)’
+ j:zmndo
(3:3) B (k, k) = dZ_Cn,m) :
1 21n2 ~ 1
(34) ﬁi(k“C:) = €ktank p ) 5(k,5) = mu
(3.5) Bk, k,e) = Bo(k, Kk, ) + Bi(k,e), ~(k,k)=pB(k, k&) — 1 Ine.

cktank w

The asymptotic expansions for the kernels G¢, GS*, G and G' are given in the
following two lemmas.

LEMMA 3.1. For |k| <1 and e < 1, if k € (0,27/d), then

1
(3.6) GLUX,Y) = Be(k,k,€) + - In|X -Y|+res, e X,Y),
(3.7) GEE(X,Y) = B*(k, k) + p* (k& X, Y).
Here 1o, p* are bounded functions with o ~ O(e?|Ine| + |k|e) and p* ~ O(e) for all

X, Y € I. In addition, the following holds:
(i) For k =0, there holds

+ =B : 3 COS(K
(38) Bc (k,O) - 6C(k) = d CO — \/27m—(kd)2 ( ndO)v
(3.9) re(0,6: X, Y) = 7| X = Y1), p(0,65X,Y) = j(| £ do + (X ~Y)])

for some real-valued functions 7o and p, where fo ~ O(?|Ine|) and p ~ O(e).
(i) If |k| < 1, then

re(k,6; X, Y) =10(0,6; X,Y)+0(ke), p*(k,e:X,Y) = p*(0,6; X,Y)+0(re).

Proof. We first derive the asymptotic expansion of GS(X,Y). From the definition
of the Green’s function, we see that

1 1 ;
1 °XYV) = = z/{na(XfY)'
(310 GV = 3 Gwm

Set a = 2w /d, and Z = X — Y. For n # 0, from the definition of (,,, one can write

i¢, = —v/(k + an)? — k2 and it follows that

1 1 % K2k
A1 - = - 142y
(3.11) iCn(k, k) aln| (\/ + an + (an)? )
For (k,k) € Dy, we have [2£ + % < 1 for n # 0. Applying the Taylor

expansion and splitting (i¢,) ! into its even and odd parts with respect to the variable
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n yields m = he(k,k) + h2(k, r), and consequently,
(3.12)

ikn€Z

e ikeZ 1 e

—— = + 2 hy (k, k) cos(naeZ) + 2i hy (k, k) sin(nacZ
> ( o3 ) o S 8 k. s >>

n=1 n=1

If kK = 0, it can be calculated that
. =1 >\ Cm 1-3---(2m—1) (k"
hn(kao) == % (1 + Z 1’L2m> ) where Cm = W <a> s
and hS (k,0) = 0, thus

2 Z he (k,0) cos(nacZ) Z = cos(naeZ) - mZ::l Cm 7; n2m+1 cos(naeZ).

n=1 n=1

Using the relations (cf. [10, 19])

- Z = cos (nacZ) = In (4311[12 as) ,
-t 2
N 1 - 1 2m r72m
> 0 (naeZ) = 37— + O Z2™) - | I(e| 2] (m = 1),
n=1 n=1

in which the big-O remainder is uniform over m, we obtain

— . ‘ 1 g aeZ SN 1 >
22 hy (k, k) cos(aneZ) = Eln (45111 2) + 22 (hn(k:,O) + an) + O(e*| Ingl)

n=1
1
(3.13) = ln (ae|Z)) +2Z < 0 0) + ) + O(e2| lngl).

The desired asymptotic expansion for G¢(X,Y") follows by combining (3.10), (3.12)
and (3.13). In addition, the above expansion shows that 7.(0,¢; X,Y) is a function of
|Z] .= |X — Y| and is real when x = 0.

Cm k H

If |k| < 1, the even part can be written as h;, (k, k) = aw |an|3 Z ()

Similar calculations yield

1
(3.14) QZhe (k, k) cos(nacZ) = ln (aglZ)) JrQZ <he (k,k +)+O(52|ln5|).

— b (k
The odd term h2(k, ) has the form h{ (k, k) = ksgn(n) Z (k, ) and thus
m=1

oo

Z (k,k)sin(naeZ) = K i b (K, k) i —sin(nacZ) =: k i b (K, &) A (2).

n=1 m=1 n:l m=1

By noting that b = 1, we obtain (cf. [10])

=3 o

n:l

1
5 sin(nasZ) = —gsZ In(ac|Z|) + O(e).
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On other hand, for m > 1, A,, = O(¢). Hence,

(3.15) 2 i B (k, 1) sin(ane Z) — —%meZln(a5|Z|) + O(ke).

n=1

Substituting the sums (3.14) and (3.15) into (3.12) and using the expansion
e¢? =1 +ikeZ + O((ke)?), we obtain

einnaZ einaZ e

> i) = e a2 2 <h3(’“ ")+ 1n) O nel) + O(ke)
nez nA™ )

n=1

2 1 1 1
= gln(a5|Z\) + nz#:o (ch(k’,fi) + ) + m + O(€2| ln€|) + O(FCE).

aln|

Therefore, the desired expansion GS(X,Y) = Be(k, k,) + 2 In|X — Y| +re(k, & X,Y)
follows, where (. is defined in (3.2) and 7. = O(e). In addition, from the above
calculations, it is clear that re( € X,Y) =r.(0,; X,Y) 4+ O(re).

1
Now for G?i(X,Y) d Z C ) ein(e(X=Y)Edo) g analogous expan-

sion as G¢(X,Y) leads to G& i(X, Y) = BF(k,k)+p*(k,e; X,Y), where 3T is defined
in (3.3) and p* = O(¢). In particular, when x = 0, it follows that

BE(k,0) = (k) == —

cos(kndp),

d Co z:: V(2mn)2 — (kd)?

and the high-order terms take the form of

(cos(nndo) — cos(kn(xdo +e(X — Y)))

0,6, X,Y) = S 2
pr(0.&X.Y) ;«/(an)Z—(kd)Q

From the above expressions, it is seen that p*(0,¢; X,Y) = p(| £ do + (X —Y)]) for
some real-valued function p. O

REMARK 1. Asymptotic expansions can be obtained for (k,k) & Dy [23]. In this
case, o and p in (3.8) are no longer real valued.

LEmMMA 3.2. If ke < 1, then

GL(X,Y) = Bi(k,e) + % [m

(M0 Ly

: (W(X+Y+1)>H
sm\ ——
2
(3.16) +ria(g | X =Y]) + (e | X +Y +1)).
(317) GL(X,Y) = B(k,e) + 7ia(e; | X = Y|) + Fia(e; | X + Y +1)).

Here i1, 12, Ti,1, and Ti2 are bounded and real functions with ri; ~ 0(52), Ti2 ~

O(e?), 7.1 ~ O(e™V%), and 719 ~ O(e™V/¢) for all X,Y € I. In addition, there holds
(3.18) rir(est+2) =riaet), Tia(et+2) =rfiale;t) for0<t<2.

The proof follows the same lines as Lemma 3.1 of [22], and we omit it.



Define the kernels

1
(3.19) p(X,Y) = — {ln X —Y|+In
T

sin (7T(X2— Y)) ’ I |sin (W(X +2Y—|— 1)) H ,

(8.20) poo (K X, V) = 1o, X, Y) 4 i1 (651X = Y1) + 1i2(e5| X + Y + 1)),
(3.21) oo (X, V) = 71 (e |X — Y|) + (s | X + Y + 1)),

where 7., i1, Ti2, i1, and 72 are given in (3.6), (3.16)—(3.17) respectively. Let S,
8§20, §%% and S* be the integral operators defined over the interval I and with the
kernels p(X,Y), poe (X, V), p=(X,Y), and juc(X,Y):

[Sepl(X) = /Ip(XvY)w(Y) dy, (Sl (X) =/Ipoo(H;X7Y)<P(Y) ay’;

[S:o,:tw](X):/pi(X7Y)(p(Y) dy, [SOOQO](X):/ﬁoo(XaY)@(Y) dy.
I I

Define the functions spaces
Wi = fI*%(I) ={u=U|;|Ue€ H™'Y2(R) and suppU c I} and V= H%(I).

The following two lemmas hold for the operators defined above. The proof is provided
in the appendix.
LEMMA 3.3. If p(X) = ¢(—X), then

SEX) = [Sel(-X),  [SF6I(X) =[Sl (- X),
561X = [320l(=X), 1S5 @l(X) =[5 el(~ ).

LEMMA 3.4. The following holds for the operators S, S°, and S
(1) The operator S is bounded from V; to Vo with a bounded inverse. Moreover,

(3.22) o= (ST, 1) 2 #0.

(2) The operator S + S + S is invertible for small €. Let ¢ and ¢ be the
solution of

(S+SFC+S®)p=g and (S+SF+S%)p=3g
respectively, where §(X) = g(—X), then it holds that ¢(X) = p(=X). The
same holds for the operator S + S° — 5.

We define the projection operator P : Vi — V5 by

Po(X) = (¢, 1)1,

where 1 is a function defined on the interval I and is equal to one therein. We are
ready to present the decomposition of the integral operators T¢ 4+ T%, T®% and T"
using the asymptotic expansion of the Green functions in Lemmas 3.1 and 3.2.

PROPOSITION 3.5. Let k € (0,27/d). The operators T°+T', T>*, and T' admit
the decompositions

T +T ' =BP+8S+8°, Tt=pFP485°% Ti=pP+ 85>,

where S, S% and S are bounded from Vi to Vay with the operator norm

IS Se ST Se, and ||S®) eV

uniformly in k.
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4. Embedded eigenvalues and resonances. Define the singular frequencies
of the scattering problem as the eigenvalues and resonances for the homogeneous
problem. Precisely, these are the k-values of pairs (k, k) for which the system (1.2-1.6)
with the incident field 4" removed has a nonzero solution, or, equivalently, pairs for
which the system (2.3) has a nonzero solution with f = 0. Eigenvalues are real values of
k, whereas resonances are complex values of k. The field (eigenmode) corresponding to
an eigenvalue decays exponentially above the grating, whereas the field (quasi-mode)
corresponding to a resonance grows exponentially above the grating.

4.1. The conditions for eigenvalues and resonances. In this section, we
establish the condition for the singular frequencies. From the previous discussions,
we have seen that they are equal to the characteristic values k of the system of integral
operators (2.2). When reduced to functions on the scaled interval I, this amounts to
finding those frequencies k such that T¢ = 0 admits a nonzero solution in (V).
Recall that

[rT ~ [Te+T T~ - [T' 0
T_[TT}’ Where'ﬂ‘—{ Tet T6+Ti] andT—{O Tl]

We may decompose the set of its characteristic values as follows.
LEMMA 4.1. Let Ty =T+ T and T- =T —T. Then

o(T) =0 (T4) U o(T-),

where o(T), 0(T4) and o(T_) denote the sets of characteristic frequencies k of T, T4
and T_, respectively.

REMARK 2. Such a decomposition of the spectrum follows from the symmetry of
the grating geometry. In fact, it can be shown that O’(T+) (and U(T,) respectively)
corresponds to the resonances of the scattering problem where the lower half of the
structure is replaced by a perfect conductor and the Neumann (Dirichlet) boundary
condition is imposed over the lower slit aperture.

Proof. The function space (V3)* can be decomposed as (V1)* = Viven ® Voaa, where
Veven = {[p—, 04,0, 04175 px € Vi} and Voaa = {[o—, ¢4, —p—, =475 px €
Vi} are invariant spaces for T. Thus o(T) = o(T|v,,.,) U o(T|v,,,). Then observe

even

that T[Qp*v P+yrP—> SD+]T = [/(b*? era Zfbv ¢+]T7 with T+ [4)0*7 @+]T = [w*a ¢+]T so that
o(Tlv,,..) = U(T+)7 and similarly o(T|y,,,) = U(T,). 0

We now investigate the characteristic values of the operators T, and T_. They
can be reduced to the roots of certain nonlinear functions. We present the derivations
for T, and the derivations for T_ are parallel.

By defining the operators

(B+ B)P B8~ P oo G0 4 Goo g0 o
IP) ~ S — K K ][]:] H — H S
" BTP (B+pB)P ’ r Sgo’+ S 4 5 @ =9 K

and using the decomposition of the operators in Proposition 3.5, we obtain Ty =
P, + L., and thus T4 ¢ = 0 becomes

(41) (Pn + LN)SO =0,

where ¢ = [¢™, 0|, Let {e;}5_, € V1 x V] be given by e; = [1,0]” and e, = [0,1]".
11



LEMMA 4.2. L, is invertible for sufficiently small €, and there holds
L t'e; =(S"')-e; +0(c), L 'ex=(S"'1)-es+O(c);
(L e1,e1) = a+O(e), (L. 'e1,e2) = O(e)

uniformly in k, where « is defined in (3.22).
Proof. By Lemma 3.4, L,; is invertible for small enough ¢ via the Neumann series,

Lt = (ST+82) " = | SO (-1)7 (571s%) | 71 = 571+ O(e).
j=0

The assertion holds from the definition (3.22) of the constant «. O
Applying .-t on both sides of (4.1) yields

(4.2) L' Pe o+ =0,

which, using the equation

P, = (B+B)(p,er)er + B (p,ex)er + BT {(p,ei)es + (B + B)(p. e2)es,

can be expanded into

(B+B)(p,e1)L; te1+8 (p,ex)L ter+BT (p, e1)L, tea+(5+P8)(p, e2)L;, est+¢p = 0.

Taking the L2-inner product of the above equation with e; and e, yields

ESHEH]

where the matrix Mn,+ is defined by

o [(Literen) (Liteg,e) ] [B+5 8- 10
(43) Mf@,-‘r = |:<L;1e1’e;> (L;le;e;} |: 6+ 6+B:| + |:0 1:| .

Let Ay (k;k,e) and Ag i (k;k,€) be the eigenvalues of M, . From the above
discussions, it is seen that the characteristic values of the operator-valued function
Ty (k;k,€) are the roots of A +(k) and g 4 (k). Following a similar decomposition
for T_, then the characteristic values of the operator-valued function T_ are the roots
of A1, (k) and Ay, (k), which are eigenvalues of the matrix

1 [tene) (Lesen ] [5-5 67 ], [10
an =) e e | | Ll o)

REMARK 3. The operator P, and L, take different forms in the decomposition
of T4 and T_. For T_, all quantities with a tilde in the definitions of P, and S°
should be multiplied by —1. We suppress this dependence here and henceforth, as it
is clear in context. The dependence on k is retained because the study of embedded
eigenvalues and associated resonance is an analysis of the behavior of the scattering
problem for k at and near 0.

12



Since the leading-order of 3 in ¢ is O(1/¢), we scale the matrix M, + by letting
(4.5) M, + = eM, 1,
and the eigenvalues of M, 1 are
(4.6) Nt (ks r,e) = eNjs(k;k,e), j=1,2.

The following proposition summarizes the resonance condition.

PROPOSITION 4.3. The singular frequencies of the scattering problem (1.2)—(1.6)
are the roots of the functions A\ +(k;k,€), (j =1,2), where A1 + and A2 1+ are eigen-
values of the matriz M, +.

4.2. Embedded eigenvalues and resonances for x = 0. We investigate the
roots of the functions A\; +(k;k,¢) (j = 1,2) when « = 0. It is shown that real-
valued roots and complex-valued roots with negative imaginary part coexist. They
correspond respectively to eigenvalues and resonances of the scattering problem at
normal incidence. We prove their existence and derive their asymptotic expansions.

LEMMA 4.4. The following statements for k = 0 hold.

(i) If k is real, then Lalgo is real for any real-valued function .

(ii) (Lyter,er) = (Ly'es, ex) and (Ly'er, ex) = (Ly ' ey, e1).

Proof. First, in view of Lemmas 3.1 and 3.2, Ly 1 is real-valued since the kernels
of operators S, S§°, §° S5>, and S5 are all real, and assertion (i) follows.

To show (ii), let ¢ = (¢1,02)T and @ = (@1, Po)7 satisfy Lo = e; and Lo = es.
By a direct calculation, it is seen that

(S —8378718 M)y =1, (8 —8FS57185 gy =1,

where § := S + 55° + §°°. By virtue of Lemmas 3.3 and 3.4, there holds $y(X) =
©1(—X), and it follows that (L;'e;,e;) = (Lg'es, ep). Similarly, it can be shown
that ¢1(X) = p2(—X), so the second identity also holds. O

When r = 0, by noting that 8 (k,0) = B(k) (see (3.8)) and using the equalities
in Lemma 4.4, the matrix My 4+ can be expressed as

o [(Lgleren) (Lgle,e) | [B+8 B 10
(47) MO,:I: = <Lg_1€1792> <L%1e2,e2>} |: B Bi@] + |:0 1:| .

It can be calculated that the eigenvalues of Mo,i are

(4.8) At(k;0,6) =1+ (B B+ B) ((Lg 'er.er) + (Lg e, e2))
(4.9) Ao (k0,6) = 1+ (B+8 - B) ((Lg"er, er) — (Lg e, e2)),
and the associated eigenvectors are [I 1]7 and [I — 1]7. Therefore, in view of

Lemma 4.2 and formulas (3.2)(3.5) for 4 and 3, the eigenvalues of M . are expressed
explicitly as

(4.10) A1, (k;0,e) =+ [ ! ! lslne +ey(k,0) + EB(k)] (a4 O(g)),

Ftank © kenk | x
1 1
ktank = ksink

13
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REMARK 4. If (0,k) € Dy (see (3.1)), that is 0 < k < 2w /d, then from the
explicit expressions (3.5) and (3.8), we see that

~ 2 1 ~

I k,0 k))=—= d I k,0) — B(k)) =0.

m (10,0 + () =~ = and I (3(k,0) — (k)

The O(e) terms in (4.10) and (4.11) are real-valued by Lemmoa 4.4, and hence Ay 4+ (k;0,¢)
and A1, —(k;0,¢) are complex-valued functions, while Mg 4 (k;0,¢) and A2 _(k;0,¢) are
real-valued functions.

THEOREM 4.5. If k = 0, the singular frequencies of the scattering problem (1.2)—
(1.6) admit the following asymptotic expressions in €:

1 1 .
kD = mr 4 2ma Lrelne + <a + y(mm,0) + B(mw)) s] +0(%In’¢);

k2 = mr 4 2mn Llrelna + (; + y(mm,0) — B(mw)) 6] +0(e2In?e)
for positive integers m < 2/d. In the above, ImkY = O(e) and Imk? = 0.

REMARK 5. The frequencies kg) for m < 2/d are resonances in the lower half
of the complex plane, which are also called Fabry-Perot resonances [15, 22, 23]. The
frequencies kfﬁ) are real-valued eigenvalues embedded in the continuous spectrum, since
the continuous spectrum of the quasi-periodic scattering operator is [0,00) when k =0
[3, 31].

REMARK 6. The asymptotic expansions of kﬁ,{) and k‘g) in Theorem 4.5 still hold

for m > 2/d. However, when m > 2/d, one has Rek(Y > 27/d so that (O,Rekg)) ¢
Dy. That is, this wavenumber-frequency pair lies above the diamond region in which
exactly one of the Rayleigh modes is propagating and embedded eigenvalues are not

expected. Indeed, for such singular frequencies, there holds Im (*y(mw, 0)—B(m7r)) #0

and the O(g? In® g)-term is also complex, and the frequencies kr(,%) become complex-

valued resonances with Imkl) = O(g). Here we restrict our attention to m < 2/d
since we are concerned with embedded eigenvalues in this paper.

Proof. The leading-order term Wlnk + m of A\ (k) attains a simple root

km, 0 = mm for odd integers m. Let us choose the disc Bs(ky, ¢) with radius 0 centered
at km,o in the complex k-plane, with § = O(1) as ¢ — 0. We analytically extend the
functions B.(k), 5i(k), B and B(k) to Bs(km,0). One can show that the asymptotic
expansions in ¢ for the kernels G¢, GS*, G and G! given in Lemmas 3.1 and 3.2
hold in Bjs, (Kkm,0). From Rouche’s theorem, we deduce that there is a simple root of

A1+ (k;0,¢€), denoted as ky(,%), close to ko if € is sufficiently small.
To obtain the leading-order asymptotic terms of kg), let us consider the root of

1 1

1 A
Ttk T reme T e me ek 0)+ 6B(k)] o

5\1’+(k;€) =+ |:

Let 6k = k — k0, then the Taylor expansion for 5\17+(k, €) at k = ko yields
Sralhie) = e+ | o+ —— / 5k + O(6k?) + Leln

L+ E) =& ktank ksink - a

—Rm,0

+e(y(km.0,0) + B(kmo)) +e- O(5k)} “a,
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and the root of ;\17+ is given by

1 1
k) = ko + 2mm [alns—i— (a +(km,0,0) + B(km )) 5} +0(? In’e).
s

The high-order term of the roots for A (k) can be obtained by the Rouche’s
theorem. Note that A (k) — A1 (k) = (A1,+(k) —¢€) - O(e), one can find a constant

C > Osuch that |y ¢ (k)= A1 ¢ (k)] < | A1 o (k)| for all k satisfying |k—E 1)| Ce?ln’e.
The assertion holds by Rouche’s theorem.

The roots of A\, _(k;0,¢) and A2 +(k;0,¢) can also be obtained by perturbation
arguments. In particular, Ag 1 (k) attains roots close to mm with odd integers m,
while A1, _(k) and A2 _(k) attain roots close to mm with even integers m. Finally,

k2 are seen to be real by noting that the functions Ay 4 (k;0,¢) and Ay _(k;0,¢) are
real-valued for k € (0,27/d). O

4.3. Perturbation of embedded eigenvalues and resonances. If k # 0,
both the eigenvalues and resonances at k = 0 will be perturbed on the complex k-
plane. The resonances will stay in the lower half plane. On the other hand, the real
eigenvalues will emerge as a second group of complex-valued resonances that enter
the lower half plane. We aim to obtain the asymptotic expansion of these two groups
of resonances. In particular, we would like to characterize the order of the imaginary
parts for the resonances that originate from the perturbation of embedded eigenvalues.

REMARK 7. We shall assume that k = O(e”) in this section, where 0 < p < 3.
This is not an essential assumption for the expansion of resonances discussed in what
follows. However, one would need to investigate higher-order terms more thoroughly
in the asymptotic expansion if p > %

A brute-force perturbation argument leads to an order of O(ke) for the imaginary
parts of resonances that emanate from the eigenvalues as k is perturbed from 0. To
obtain a better expansion, as given in Theorem 4.9 below, we need to exploit the
symmetry of the matrices M, +. To this end, we define matrices MR# and MH,_ by

1 - B+pB B 10
4.12 -M =
(1.12) s = a| 257 P[0 1]
where o := (S7'1,1). The eigenvalues of the matrix M, . are
(4.13) Mos(k;ike)=e+ea(B£B+ B -B7),

(4.14) Xos(k;ke) =e+ea(B+B— /B -BH).

The corresponding (right) eigenvectors of M, 1. are

(4.15) e =[1 VB BB, tax=[1, /B BT/5"

and the left eigenvectors are

(416) e =[1/2, B7/2(VB-BF)], oz =[1/2, B7/(2VB-BY)].

LEMMA 4.6. The eigenvalues and eigenvectors of Mﬁ,i attain the following
asymptotic expansions as k — 0.

(4.17) Aj+(k; ky€) = € + ea [5 £ 4+ L(-1)iH (Bt + ﬁ*)} +0(s%), j=1,2
(4.18) 0j+ = [1, (=)' 1+ " +0(+*), j=1,2

(4.19) w4 = [1/2, (=1)71/201 +n)) ]+ O0(+*), j=1,2,
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where n = O(k).
Proof. Note that

BB =[BT +87) =BT -57)%.
Since 81 (k,0) = 8 (k,0) = 3, we have (8t — 87)2 = O(xk?) as k — 0. Hence

VBBt =58 +87) + O(s),

and the expansions of the eigenvalues and eigenvectors follow. O
If (k, k) € Dy, it follows from the explicit expressions (3.2)—(3.5) that

1
(4.20)  ImB(k, k) + 5(Im BT (k, k) +Im B~ (k, k) = O(1),
cos(kdg — 1)
Co(k) - d
Consequently, we have the following proposition deduced from the previous lemma.

PROPOSITION 4.7. If (k,k) € Dy, then ImM +(k) = O(e) and Imhg+(k) =
O(k%).

(4.21) Imp(k,k) (Im BT (k, k) + Im B~ (k,K)) = = O(x?).

1
2

Next, we prove the key lemma for the sensitivity of eigenvalues of the matrix
M, 4+ with respect to the perturbation dMy = M, + — I\A/Jlmi .

LEMMA 4.8. Let {\;+}5_, and {S\jﬁi}le be the eigenvalues of M, + and M, +
respectively, then

(4.22) Nox(kik,e) =141k k,e)) - Njx(ksr,e) +rin(k; k), =12,
where r; = O(g) and rj, = O(g?).

Proof. A direct comparison of (4.5) and (4.12) gives

(4.23) M, =¢ <L;191,el> -« <]L;162,e1> } {54—5 /8_~] -

(L'er,er) (L. 'ez,ez) —a gt B+p

Let 0Xj 4 = X +(k;k,e) — Aj 4+ (k; K, €) and dvj 4 = vj 4 — D, 4 be the perturbation of
the eigenvalues and eigenvectors. It follows from Lemma 4.2 that

(4.24) (L. 'es,e5) —adyy = O(e),

where d,; is Kronecker delta, and consequently, ||[0M | = O(e). An application of the
Bauer-Fike theorem for the perturbation of eigenvalues (cf. [12]) yields

04| = Oe), and v 1 || = O(e).
Now from the relation M, yv; + = A;j +v; 4, we obtain
Njt - 00j 4+ 0jg - 0jp = My 6vj4 + OMLy 854 + O(€%).
Multiplying by the left-eigenvector w; 4 leads to

(4.25) ONjt - (Wj1vj,4) = Wit M 054 + O(?).
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Since /A\j7+ is an eigenvalue of M, y, in light of (4.23), we sce that

1 (Llej,e1) —a  (L;'es,e;)
(4.26) My b4 = SNt =) | T T -1g ey)  (Liles,en) —a

/l/)j7+.
The assertion follows from (4.24)—(4.26) and the expansion for the eigenvectors in
Lemma 4.6. The sensitivity of the eigenvalues for \; _ is analyzed parallelly. O

REMARK 8. If k is real and 0 < k < 2mw/d, then in the above lemma, 19 =
O(e) +iO0(ke) and rop, = O(e%) + i O(ke?), where the O(-) terms are real. This can
be shown by observing that (L e, e;) — ade; = O(g) + i O(ke) when j = 2.

Now with the explict expressions for the eigenvalues of Mnyi in Lemma 4.6 and
the sensitivity of eigenvalues for M, + in Lemma 4.8, we are ready to present the
perturbation of embedded eigenvalues and resonances when x becomes nonzero. This
is given in the following theorem.

THEOREM 4.9. If k = O(e”) with 0 < p < 3, then the scattering problem (1.2)-
(1.6) admits two groups of complex-valued resonances given by

1 1
kD = mr + 2mn {Elne + ( + y(mm, k) +
7r a

\)—l [\DM—‘

1 1
k2 = mn + 2mn {slns + ( +y(mm, k) —
m «

form < 2/d. Furthermore, there holds

ImkY =0(e) and Imk® = O(x%).

Proof. With Lemmas 4.6 and 4.8, the proof is analogous to that of Theorem 4.5.
First, from Rouche’s theorem, there exists a simple root k%) of A\j 4 (k;k,€) for odd
integer m close to kp, o := mm, the root of the leading-order term m + ﬁlnk

To obtain the asymptotics of k%), we first consider a root of /A\j7+(k; K,€), which
is an eigenvalue of M, ;. Note that 5\j,+(k;n, €) attains the expansion (4.17). An

application of the Taylor expansion for 5\j#(k, €) at k = kp,o yields
Q 1

Nji(kse) =e+ | —1/(2km0) - 6k + O(6k*) + —elne + ey(kpmo, k)
T

te- (=17 = (BT (kmo, 5) + B (km,o, K)) + € - O(6k) | - o+ O(k%e),

w\»—*

where 0k := k — k0. In the above, it follows from (4.20) and (4.21) that

(4.27) Im~(km,0, k) + (Imﬁ (Km0, ) +Imﬁ_(km’0,/i)) =0(1),

(4.28) Im y(km,0, £) — = (Im BT (K0, &) + Im B~ (km.o, k) = O(K?).

N | >—l[\;>\)—l

Hence the root of 5\j7+ can be expanded as

o 1 1
k%) = km,O + 2km,0 |:7T6 Ine + <a + ’)’(km,Oa ”) + ( )J+1 (6+( m,05 H) + ﬂi(km,Oa ﬁ))) 8] +k

17

(6% (mm, &) + B~ (mi, m) g] +O(2me),

(5+(m7r K)+ B~ (mw,ﬁ))) g] + 0(e2In?¢)

(€]

m,h’



in which
Re kg)h =0(e?In*e), Im kfi)h = O(£*|Inel),
Re ki?h =0(e?In*e), Im kg)h = O(K%¢).

To obtain the high-order term of the roots, from Lemma 4.8 we have
N (k) = Mg (k) = O(e) - X4 (k) + O(%).

Therefore, for a certain constant C, [A(k) — 5\]+(k)| < |5\j,+ (k)| holds for all k satisty-

ing |k — 12:,(,{)\ = Ce?In?¢, and the asymptotic expansion of kS follows from Rouche’s
theorem. Since k = O(e”) with 0 < p < 1, in view of (4.27) and (4.28), it follows that

Im ky(é) = O(e) and Im ky(,f) = O(k%¢). Finally, investigating the roots of \; _(k;k,¢)
yields resonances close to mm with even integers m. O

5. Fano resonance and field enhancement. We present quantitative analysis
for the solution to the scattering problem (1.2) - (1.6) and transmission anomaly

through the slab near kK = 0 and £k = Re kﬁg). In particular, the expressions of
reflected and transmitted field are obtained in Section 5.2, which allow for a rigorous

proof of the presence of Fano resonance near the frequency k = Re kT(,QL) Additionally,
we analyze quantitatively the field amplification at Fano resonance in Section 5.3.

5.1. Asymptotics of the solution to scattering problem. Decompose the
system T = ¢~ f into its even and odd subsystems

Teven = € fevens  TPoaa = & fodd,
in which ¢ = Yyen + Podq a0d f = feyen + foaa, and
foven = [f 7[5 7 1, foaa=[f7, f4, =17, =117,
Peven =[P4, Poda = lp_, —p_1".
These two subsystems are equivalent to the two smaller systems
Tip, = e 'f and T_p_ = e,
where T, =T+ T and T_ =T —T, and f = [f~, f1]7. Define
(1) () = @02 (1) W02 () = /2 (1 g )i/,

where n = O(k) is defined in Lemma 4.6.
LEMMA 5.1. The following asymptotic ezpansion holds for the solutions ¢, and
WY_ m ‘/1 X V1 N

o] = —aroen o ([ 7] + ot +m0)

<‘p:t762> 2/\1,:|:
(5.2) + (a4 O(e)) 2§\L2_i ({1_"’17] +O(€+n2)) . (|l&|,e = 0)

in which o := (S711,1). In addition,

_ -1y —1F |7 -1 -1 B+p 57~ (py.e1)
R |
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Proof. We consider Ty, = £~!f, and the proof for T_p_ = e If is parallel.
Using the decomposition T, = P, + L, the equation reads (P, + L)@, = e~ If,
which can be expressed as

(5.4) L' P, +p,. = e 'L

K

Evaluating P, ¢, explicitly yields (5.3). By a calculation similar to that in Sec-
tion 4.1, we obtain

e (539) - [82533).

Recall that the matrix M, y has eigenvalues A1 +(k,¢) and Ag 4 (k,¢), which are as-
sociated with the eigenvectors v;  and vy . By virtue of Lemmas 4.6 and 4.8,
(5.6)

1 1 ﬁ 9 1 1 —ﬁ )
M”’+_2/\1,+ 1+n 1 +O(€+’€)+2/\2,+ —(1+n) 1 +Ol+r) ).

On the other hand, note that

L

— [_e—indo/Q’ _eindo/Z]T+O(K€).

Thus it follows from Lemma 4.2 that
]L—lf', e e—irzdo/2
5.7 Er e = (-] G | +000)) @+ 00D

The proof is completed by substituting (5.6) and (5.7) into (5.5). O

PROPOSITION 5.2. Let ¢ = [p1,07,05,¢5]% be the solution of the system
Te=c"'f. If 0 < |k| < 1, then o = [p, +@_, ¢, —p_]T, where ¢, are given in
(5.3). The following asymptotic expansion holds:

1 1

Ewi,li : jE , T4y
1,1 2 1 1
. = — k) (a+0(e+k +
<%02 9 1> HJ+( ) ( ( )) 2)\1>+ ﬁ 2/\1)_ _ﬁ
(p3,1) 1 ~1
1 1
o '
+ u_ (k) (a4 O(e + K> =1
H ( )( ( )) 2o ﬁ 2N, fﬁ
-1 1

(|&|,e — 0), where o := (S71,1) and p4 (k) are defined in (5.1).

5.2. Fano-type transmission anomalies. Let us consider the field above and
below the metallic grating. Define reflection and transmission coefficients 7+ and t*:

- g H— + 4 H—
5.8 =— A A =——A —A
(58) r s+ttt T 5 Ar+ — 5 A2,
- M4 H— + 4 H—
5.9 tmT = A+ —— A, T = A — — Ay _
(59) I R (T R R R
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where

1 1 1 1
5.10 Ay = — + Agp oy i= —— + .
(5.10) D VIR VL D VN VO

LEMMA 5.3. If0 < |k| < 1, the solution to the scattering problem (1.2-1.6)
admits the forms

ue(z) = u™® + urefl 4 ¢ (a+ O(e + K?)) {r* [ge (z,y7) + 0(6)] +rt {ge (z,y1) + O(s)} }

ue(@) = ¢ (a+Ofe + 1) {7 [g°(,07) + 0] +t+[¢*(2.4) + 0| }

in Q1 and Qy respectively for x far away from the grating, where yi¥ = (+do/2,1) and
Yy = (£do/2,0) are the centers of the slit apertures Ffs and F;s respectively.

Proof. From Lemma 2.1, the diffracted field u(z) := u.(x) — (ui"® 4 u™f) above
the grating is

duc(y) .

d e €

ug () = T,y)———=ds, in Q.
c(z) /Figurl,ag( Y) gy 0% 1

Thus for z far away from the grating, in the scaled interval I,

1/2 1/2
w(z) = / L (o252, D)o (V)Y e / o2 Y )t () Y
—1/2 —1/2

=e(¢9°(z,u1) +0(e) - (o1, 1) +e (9°(z,57) + O(e)) - (7, 1).

By the asymptotic expansion in Proposition 5.2, we obtain the desired expansion for
ue(x). The wave field for z € Qs can be obtained similarly. O

Now we consider the reflected and transmitted wave above and below the grat-
ing. Decompose the Green function g®(z,y) into the propagating and exponentially
decaying parts ¢°(2,y) = gprop(Z,Y) + gexp(x, y). Note that for (k, k) € D1, only one
propagating Fourier mode (n = 0) appears in the Green function. By substituting
the propagating parts of the Green function into the above lemma, we obtain the
expansion of the reflected and transmitted fields as follows.

PROPOSITION 5.4. If 0 < |k| < 1 and (k, k) € D1, the reflected and transmitted
fields admit the forms
ul (x) = R(k, k,e)et @1 Fio@2=0) gnd ol (z) = T(k, K, e)etnm1 02

g g

where the reflection and transmission coefficients are

R(k,k,e) =1+et(a+0(+r%) (—pf A g +p2 Aoy),
T(k,k,e) =eT(a+O0(+k?)) (—pd A - +p% Ay ),
7(k, k) = —m, and Ay + and Ao 1 are defined in (5.10).
LEMMA 5.5. Forr >0 and a horizontal line v := {t +ir; t € R} in the complex
plane, the set {1/z; z € v} = D\{0}, where D = {z; |z + 5| = 5=} is a disk.

We are ready to prove the Fano resonance that occurs in the vicinity of the real

(2)

resonance frequency k, := Rek;,’ as shown in the transmission graph in Figure 1.2.
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F1G. 5.1. Left: The curve g lies on the circle {z; |z + %| = %} Right: The curves v, 70 and
€905y, g lies on the circle {z; |z + %| = %}

THEOREM 5.6. For all ¢ > 0, define the real interval I. := [k. — ck’e, k. + cr2e]

containing the real resonance frequency k. := Re k,g,f). There exist a positive number c

and frequencies ki, ko € I. such that |T(k1)| S e and |T(k2)| 2 1—¢ for 0 < |r| < 1.

REMARK 9. We point out that almost total transmission occurs both near the
Fano resonance and near the Fabry-Perot resonance. In this work, we do not address
whether the transmission and reflection are in fact total. Note that total transmission
and/or reflection can be induced by symmetries in certain configurations [4, 5, 6, 28].

Proof. We give the proof when m is odd, and the argument is analogous if m is
even. In view of the asymptotic expansions in Theorem 4.9 and the explicit expression

of pu+ in (5.1), we see that in the O(x2¢) neighborhood of k, := Re ED,

2 2 2 2
Epy EpZ Ep EHZ 2
=0(1), — =0(1), =0(e), — = O(r“e).
=00, = =00), % =0, $= = o)
Therefore
2 2 2 2
R(k) =1+ car- <_ Ly f;}) L O0(e), T(k)=car- (_A"li + ;;1) +0),

and it follows that R = 1 + T + O(e). By substituting into the equation for the
conservation of energy |R|? + |T|? = 1, we obtain |T(k) + 112 + |T'(k)|> = 1+ O(e).
This shows that, for fixed e, the trajectory ~. of the transmission coefficient T'(k)
(k € I.) on the complex plane lies close to the fixed circular trajectory 7o with radius

1 centered at (—1,0) (cf. Figure 5.1, right). Namely,
(5.11) Ye =Y + O(e), With'yoc{z; |z+%‘:%}

In fact, the assertion of the theorem holds as long as
1
(5.12) [0, 7] or [m, 27| C {arg (z + 2) ;2 € 'yo} .

To show this, write T'(k) = t1(k) + t2(k) + O(e), where

ey (k) NG ()
Aoy R =R Gy
21

(5.13) t(k) = —ar(k)




From a perturbation argument parallel to the proof of Theorem 4.9, it is known that
Re A2 4 (k) attains a root k, in the vicinity of k.. Since Mgy (ki) = O(r2%e), we deduce
that |k, — k.| = O(k%¢) and Im \g 4 (ki) = O(k%¢). Now expand all the terms of

(5.13) in the O(k2¢) neighborhood of ki:

(k) = (k) + O(%),  pe(k) = pa (ki) + O(r%),
Mo (k) = Mo (k) + O(K%), Aoy (k) = ci(k — ko) + i car’e + O(k%e?),

where ¢; and ¢y are real-valued constants and ¢y > 0. By setting k — ky=s- K2e, it
follows that

T(k) = t1(ky) + ar(k,) eu () +0(e) = t1(ky) + e +0(e)
- * QT Rx = g) = * ~ . .~ g),
! c1(k — ky) +icar?e ! 18+ 1o
in which
5
= 12 (k) s C
= ar(k, —0(1), &=L sH=2 g = .
co = at(ky) 2 1), & ol Co ol b = arg cg

From Lemma 5.5, we deduce that the trajectory of T'(k) for k € I, is given by

(5.14) Ye = t1(ky) + €3 4+ O(e), where 7y C {z; |2+ ﬁ\ = i .
In addition, [7r +0.,2m — 96] C {arg z; 2z € %} for certain 6, € (0,7/2) depending
on the constant ¢ (see Figure 5.1, left).

A combination of (5.11) and (5.14) leads to the relation 4o = t1 (k) + €/%5y. Ge-
ometrically, 7o is obtained from a rotation and translation of the curve 7y as shown
in Figure 5.1 (right), and it follows that ¢; = 1. A direct calculation shows that
[Tm t; (k.)|/|Ret1(k.)| = O(1) and is nonzero. By letting 6, := tan=1(|Imt; (k.)|/|Ret1(k.)|)
and choosing sufficiently large ¢ such that 6. < 6; and 6. < § — 61, the claim (5.12)
holds and the proof is complete. O

REMARK 10. From the proof, vo is the trajectory for the leading-order term
of the transmission coefficient on the complex plane, and using (5.12), the graph
{|z]; z € v0} demonstrates an asymmetric line shape with respect to the frequency for
kel.

5.3. Field enhancement. Fano resonance is usually associated with field ampli-
fication around the resonance frequencies [1, 14, 32]. This also applies to the periodic
structure considered here. See Figure 5.2 for a plot of the field inside the slits at Fano
resonance frequencies.

We investigate the field enhancement at frequencies around the real part Re kffb)
of a complex resonance that is the perturbation of a real eigenvalue. It is known
that the field amplification at Fabry-Perot resonance frequencies Re kfﬁ) is of order
O(1/¢) [23]. As shown below, field amplification with an order of O(1/(ke)) occurs at
the Fano resonance frequencies Re kg,%% which is much stronger than that of Fabry-
Perot resonance. This results in more complicated scattering behavior, as the field
enhancement depends on both small ¢ and k.

In what follows, for clarity we focus on the field amplification inside the slit only.
The same amplification order can be obtained near the slit aperturs and in the far-
field following the method in [23], here we skip the calculations for brevity. Since u.

is quasi-periodic, we analyze the field in the reference slit Séo).
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F1G. 5.2. The wave field inside the slits Sg’i at the first two Fano resonance frequencies Re k§2)
and Rek$?. d=1, dg =04, e = 0.05, k = 0.1.

LEMMA 5.7. In the slit region SOF := {x € SOF ; 2y > £,1 — 29 > ¢}, the
solution uc(x) of the scattering problem (1.2-1.6) admits the following expansion

__at+0(E+rY

us () = sk <ri cos kxy + tF cos k(1 — l‘z)) +0 (6—1/6) ’

where the coefficients v+ and t* are given in (5.8) and (5.9).
Proof. The field u. satisfies the Helmholtz equation in S%* with homogeneous
Neumann boundary conditions on the slit walls, and thus it admits the expansion

(m) (m) mriy

_glm k™ (- 1

uc(z) = aF coskrot+bE cosk(l—azg)—i—g (arine kaowe | pteha (1 “)) cos T’E,
m>1

where ifa =x1 Fdo/2 +¢/2 and kén;) = /(mm/e)? — k2. Taking the derivative of
the above expansion with respect to xo and integrating over the slit apertures yields
1 ou.

—aFksink = -
€ Jrx 6(1}2
1,e

1
dS:<Qpit’1>, b(jfksink:_ auE

ds = —(pF,1).
e Fg:ye axz S <802 >

Applying Proposition 5.2, we obtain the expansion coefficients aOi and b(j)[ as follows:

r¥(a+ O(e + k?))

_tF(a+O0(e + %)
ksink ’ '

(5.15) ag - ksink

by =

For m > 1, the coeflicients a,, and b,, can be obtained similarly by taking the inner

Jd
product of 0,,u with cos m—ﬂfl— over the slit apertures. In view of Propsosition 5.2, a
direct estimate leads to

(5.16) lam| < O(1/v/m), |bm| <O(1/v/m), for m > 1.

The proof is complete. O
Now the shape of resonant wave modes in the slits and their enhancement orders at
the Fano resonance frequency k& = Re kﬁi) are characterized in the following theorem.
THEOREM 5.8. In the slit region SO = {x € SOF : 25 > £,1 — xy > ¢},
the solution u.(x) of the scattering problem (1.2-1.6) admits the following asymptotic
form at the resonant frequencies k = Re kS

ue() = [icz‘;d +0 GH cos(k(zs — 1/2)) + O(1), (k= Rek®, m even)

e (z) = [iCTE +0 (%)} sin(k(zs — 1/2)) + 0(1), (k= Rek®, m odd)
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(Ik],€ = 0), in which cogqa and Ceven are certain constants independent of € and k.

Proof. We only perform the calculations when m is odd, and the calculations for
even m are similar. From Lemma 5.7 and the explicit expressions (5.8-5.9) for the
coefficients 7* and t*, we obtain that in the regions S%~ and S%%,

_ a+O0(e+k?)
ue(®) = = ksink

_ kxo + cos k(1 — xz9)
1 _ 2 By B COS KT
(5.17) (a +Oe+n )> <)\1’+ Aot 2(1 + n)ksink

+(a+0(5+52)> ( 7 L ) cos kxy — cos k(1 — o) Lo (6_1/6) ,

(r* coskry +1t~ cosk(l — xg)) +0 (671/6) ,

M Ao 2(1 + n)ksin k
_ a+O0(+r?) n ~1/e
ue(z) = —W(T coskxg +t7 cosk(l — mg)) +0 (e ) ,
B 5 7 p— \ coskxy + cosk(l — xza)
(5.18) = (a +0(e+k )) <)\1,+ + )\2#) T sin ke
9 7 p— \ coskxg —cosk(l —xz2) _1/e
+a+0(+n) (AL_JFAQ,_) Sk sin k +0(e7)

respectively. From the asymptotic expansions in Theorem 4.9 and the defintion of 4
in (5.1), we see that at resonant frequencies k = Re kD),

1 1 1 1
(519) E =0 (€> s E =0 (f§j25‘> and My = 1+ O(:‘i), n— = O(Ii)

)

On the other hand, in view of Lemmas 4.6 and 4.8,

(cosk — Do
ksink

(cosk — Do

(5.20) AL- = ksink

+0(e) and Ag_ = + O(e).

We obtain the desired expansions by substituting (5.19)—(5.20) into (5.17)—(5.18). O

Appendix A. Proof of Lemmas 3.3 and 3.4.
Proof of Lemmas 3.3 Recall that the kernel of S is given by (3.19). Note that
In ‘sin (%t)‘ is a periodic function with period 2. Setting X = —X and Y = -V, it
follows that p(X,Y) = p(X,Y). If 3(X) = ¢(—X), then
: ;
(A1) 18800 = [ pY)e(Y)ay = [ p(ET)p(F) T = [SeI(R).

1 1
2 2

The kernels of S5° and S are given by (cf. (3.20)-(3.21) and (3.9))

Poo(0; X, Y) = Fe(|X = Y|) +ria(e; | X = Y[) +ri2(s [X +Y +1)),
Poo(X,Y) =7ia(g; | X = Y) + Fio(e; [ X +Y +1).

If (X) = ¢(—X), in view of the periodicity of the functions r;2(t) and 7 o(t)
(cf. (3.18)), a parallel derivation as in (A.1) yields

(A.2) [S6°1(X) = [S5°¢)(X) and  [S%¢](X) = [S™¢](X).
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Finally, to show [S¥T@](X) = [S5° " ¢](—=X), by (3.9) the kernel of S5 is given
by p(| £do +e(X —Y)|) for the real-valued function p. Hence,

S5 E)(X) = / " oo + (X — Y))p(~Y)dY

— [ 1= da-+ (X = D)el¥) a¥ = (5574,

Proof of Lemmas 3.4 The proof of (1) can be found in [8]. The invertibility
of the operator S + S + 5§ is evident from (1) and the fact that |[S®|| < e and
S]] < e /e, Let ¢ and ¢ satisfy (S + Sg° + S®)p = g and (S + S§° + S®)¢ = g,
in which g(X) = g(—X). A combination of (A.1) and (A.2) leads to

[(5 + 55° + 5%)@)(X) = [(S +55° + 5%)¢](X) = g(~X).

The assertion (3) holds by the uniqueness of the solution to the integral equation.
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