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Collective vibrations of confined levitating droplets
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We report the results of our investigation of a fluid-based driven-dissipative oscillator
system consisting of a lattice of millimetric fluid droplets bouncing on a vertically vibrating
liquid bath and bound within an annular ring. We characterize the system behavior as it is
energized through a progressive increase in the bath’s vibrational acceleration. Depending
on the number of drops, the onset of motion of the lattice may take the form of either
out-of-phase oscillations or a striking solitary wavelike instability. Theoretical modeling
demonstrates that these behaviors may be attributed to different bifurcations at the onset of
instability. The results presented here demonstrate the potential and utility of the walking
droplet system as a platform for investigating wave-mediated, inertial, nonequilibrium
particle dynamics at the macroscale.
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I. INTRODUCTION

Emergent wave propagation in fluid-based, many-body systems, both passive and active, is an
area of burgeoning interest, having been observed in a wide range of settings including bacterial
suspensions [ 1—4]; colloidal fluids composed of synthetic microrollers and spinners [5—-7]; and crys-
tals of driven microfluidic water droplets [8—11]. Elsewhere, theoretical models of one-dimensional
driven-dissipative lattices exhibit instabilities in the form of solitary waves, as well as unidirectional
motion and out-of-phase (optical) oscillations [12—18], prompting experimental realizations in the
form of active electronic circuits [19-23]. We here introduce a robust, mechanical analog of an
active nonlinear lattice, comprised of quasi-one-dimensional assemblies of self-propelled fluid
droplets.

When introduced onto the surface of a vibrating liquid bath, millimetric droplets have been shown
to bounce or “walk” across the interface by means of self-propulsion through a resonant interaction
with their own wave field [24-28]. In the bouncing state, the net wave force exerted on the drop by
the bath supports its weight, enabling it to levitate above the bath surface, precluding coalescence.
Above a critical vibrational acceleration, the droplet becomes unstable to small lateral perturbations.
When the resulting propulsive wave force overcomes the stabilizing effects of dissipation, the drop
begins to walk [29]. Droplets brought into close proximity interact and may become coupled
through their common wave field, a phenomenon which has prompted several investigations
into the dynamics and stability of droplet pairs [30-36] and two-dimensional lattices [37-39].
We here consider the collective dynamics of a quasi-one-dimensional lattice of coupled droplets
[Fig. 1(a)], systematically characterizing the behavior of the system as the vibrational acceleration
of the bath is increased progressively. We demonstrate that this driven-dissipative oscillator
exhibits two distinctive emergent features, specifically out-of-phase oscillations and solitary wave
propagation. Using the theoretical model and stability analysis presented in [40], we rationalize
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FIG. 1. (a) Oblique perspective of a lattice of 40 equispaced droplets of silicone oil confined to an annular
channel. (b) Schematic of the channel geometry with inner radius R; = 24 mm and outer radius R, = 31 mm.
A shallow layer of depth 4 = 0.56 mm acts as a damper so that wave motion is largely confined to the channel
where the fluid depth H = 5.12 mm. The entire assembly is vibrated vertically with maximum acceleration y
and frequency f.

the bifurcations responsible for the transition to these distinct dynamical states responsible for
these distinct dynamical states. The results presented here demonstrate the potential and utility of
the walking droplet system as a platform for investigating wave-mediated, inertial, nonequilibrium
particle dynamics at the macroscale [41,42].

II. EXPERIMENTS

Our experimental setup is based on that described in [43]. An annulus of inner radius R; =
24 mm and outer radius R, = 31 mm was placed in a stainless steel bath and mounted on an
electromagnetic shaker. The dimensions of the annulus were tuned to accommodate 40 droplets.
When arranged into a quasi-one-dimensional lattice of sychronized bouncers, these 40 drops
occupy their preferred interdroplet spacing § ~ 4.32 mm, as is dictated by the superposition
of wave fields generated by the individual droplets. The bath was filled with silicone oil of
density p = 950 kgm ™, viscosity v = 20 cSt, and surface tension o = 20.6 mNm~', to a depth
H = 5.12 mm inside the annulus and # = 0.56 mm outside. The shallow region acts as a wave
damper, ensuring that all droplet motion is confined to the channel, a technique employed elsewhere
[44,45]. A schematic of our experiment is shown in Fig. 1(b). The setup was vibrated vertically with
acceleration a(t) = y cos(2m ft), where f and y denote the frequency and maximum acceleration,
respectively. The vibration of the bath was monitored using two accelerometers and a closed-loop
feedback ensured that y was kept constant to within +0.002g. The frequency f was fixed at 80 Hz.
We note that a change in f can dramatically alter the system properties, influencing not only
the wavelength of Faraday waves excited on the bath surface, and so the preferred interdroplet
spacing, but the stability characteristics of the droplet lattice. For the chosen control parameters and
geometry, the Faraday threshold [27] in the channel was found to be yr = 4.72 4+ 0.05g. Over time,
yr may slowly decrease due to the liquid temperature increasing and the concomitant decrease in
viscosity [46]. To minimize this effect, the bath was vibrated for 1 h at y > yr before the start of
the experiment and yr was measured both before and after the experiment, its drift monitored. To
eliminate the influence of air currents, the bath was surrounded by a transparent acrylic box [47].

Droplets of diameter D = 0.72 £ 0.01 mm were generated using a piezoelectric drop generator
and placed into the channel with the aid of a prewetted slide [48]. The presence of the channel
and surrounding shallow layer largely restricts the droplet motion along the azimuthal direction 6,
however, the droplets are free to move slightly in the radial direction r. The droplets were arranged
into an equispaced lattice at y = yp = 4g, bouncing in period synchrony with period T = 2/f
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FIG. 2. N =20 droplets. (a) Evolution of the polar angle 6 of six adjacent droplets undergoing out-of-
phase oscillations with frequency F' = 2 Hz at vibrational acceleration 7 = 0.962. The trajectories are colored
according to the droplets’ instantaneous angular velocity 6. Note that neighboring droplets have equal and
opposite & for all time . (b) A snapshot of the polar positions of each droplet in the lattice at a time when each
droplet attains its maximum angular speed of |6] = 0.16 rad s~'. The value of 7 is the same as in (a). The solid
lines emphasize the net out-of-phase oscillation of two decahedral sublattices and the dashed lines delineate
the channel geometry. (c) Plot of the mean oscillation amplitude (A) as a function of $ shows a monotonic
increase of (A) beyond a critical value of 7, = 0.956. The error bars represent the standard deviation of the
mean. The red curve is a square-root fit of the data. Inset: a schematic of the reversible supercritical bifurcation
path underpinning the observed instability. The solid red line indicates the stable branch consisting of static
then oscillating droplets; the dashed red line is unstable.

[49] resonating with their subcritical Faraday waves [27,29]. At equilibrium, the droplets sit at a
radius of R,, = 27.5 mm and are separated by an angle A¢ = 2z /N. In what follows, we describe
the outcomes of two sets of experiments: one involving a lattice of N = 20 droplets and the other
N = 40 droplets, with interdroplet spacings of approximately 2§ and §, respectively. We note that
the interdroplet spacing cannot be varied continuously; rather, it is selected by the subthreshold
Faraday waves produced by the droplets. With our fixed annular geometry, we are thus unable to
study the dynamics of arbitrary N-droplet lattices. We further note that removal of a droplet from
both the N = 20 and 40 configurations resulted in a lattice vacancy, rather than an increase in the
interdroplet spacing. The addition of a droplet caused the lattice to buckle in the radial direction
r, destroying its quasi-one-dimensional structure. The spatiotemporal coupling of the droplets is
mediated by the wave field. However, we note that, in our system, this effective potential is not
fixed in space with respect to the droplet; rather, it is dynamically generated by, and continuously
evolves with, the droplet motion.

The acceleration of the bath was incremented in steps of 0.01g from yp until the stationary
bouncing state destabilized. Thereafter, y was varied in steps of Ay = 0.005g to increase the
resolution of our data. Droplet positions were tracked using a CCD camera mounted directly above
the bath, recording at 20 frames per second, and then processed using an in-house droplet-tracking
algorithm in MATLAB. Henceforth, we characterize the proximity to the Faraday threshold in terms
of the dimensionless vibrational acceleration y = y /yr. For reference, 5 = 0.847 and the walking
instability threshold of a single droplet 7 = 0.873 & 0.02.

With N = 20 droplets, the onset of instability was manifest as small azimuthal oscillations of the
droplets about their equilibrium position. Eventually, synchrony between the droplets emerged in
the form of out-of-phase oscillations (see [49] for an accompanying video). The motion of a subset
of six droplet trajectories is plotted in Fig. 2(a) for = 0.962. Each droplet oscillates half a period
out-of-phase with its neighbor with frequency F = 2 Hz. The net result of the instability is the
out-of-phase oscillation of two decahedral sublattices [see Fig. 2(b)]. We determine the amplitude
of oscillation as a function of 7 by taking the mean oscillation amplitude (A) of all droplets in the
lattice. As shown in Fig. 2(c), (A) increases monotonically from zero at ., = 0.956 & 0.02 to its
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FIG. 3. N = 40 droplets. (a) Evolution of the angular position 6 of individual droplets in the lattice in
the solitary-wave regime at vibrational acceleration = 0.890. The trajectories are colored according to the
droplets’ instantaneous angular velocity 6. Prior to the arrival of the wave at event A, a droplet is stationary at
6_ ~ 0.08 rad. In the interval AB, it is pulled in the direction of decreasing 6 over a time of order 0.5 s, reaching
a maximum angular speed of |#| ~ 0.38 rad s™!. At event B, its angular speed returns to zero and thereafter
the droplet settles down to 6, = 0 rad via underdamped oscillations. (b) Polar positions of the droplets in the
lattice at + = 1.0 and 35.0 s. Each droplet is colored according to its instantaneous angular velocity. The value
of # is the same as that in (a). The black marker highlights the overall clockwise rotation of the lattice and
black arrows show the direction of wave propagation. See [47] for a color-coded animation of the polar droplet
positions. (c) Droplet instantaneous angular velocity 8 as a function of droplet position at# = 1 s. We fit a cubic
spline interpolant through the maximum of each spike, revealing a well-defined wave packet propagating in an
anticlockwise direction through the lattice. (d) Plot of w(j) (black dots). We find w varies monotonically with
7 but drops to zero at ., = 0.839. The best fit red curve emphasizes the nonlinearity of w(y). The maximum
error in @ was found to be £0.01 rad s~'. Inset: a schematic sketch of the subcritical bifurcation diagram
underpinning the solitary wave instability. The upper solid red line (symbolic of the best fit line in the main
plot) denotes the stable solitary wave branch, the dashed black curve a hypothetical unstable branch.

maximum at y = 0.9642, where relatively large droplet oscillations cause the periodic oscillatory
state to destabilize, leading to an effective melting of the lattice. We note that the error in 7, is
due to a small hysteresis that arises when the instability threshold is approached from below or
above [29,50]. The foregoing observations point to a reversible supercritical bifurcation [see inset of
Fig. 2(c)] underpinning the observed instability.

With a lattice of N = 40 droplets, multiple realizations of the same experiment revealed that
the stable, out-of-phase oscillations apparent for N = 20 are never observed; instead, the lattice
initially destabilizes to irregular azimuthal oscillations. After a short transient, one droplet in the
lattice eventually receives a large amplitude kick in the 6 direction, prompting a markedly different
dynamics, namely, the spontaneous excitation of a solitary wave that propagates around the ring
indefinitely (see [49] for an accompanying video of this transition). The direction of propagation
was either clockwise or counterclockwise with equal probability. The dramatic transition to the
solitary-wave regime occurred at ., = 0.932 &+ 0.02 and was observed in some instances to trigger
a second wave following in the wake of the first. However, it was found that this second wave
could be suppressed by slightly reducing the acceleration. The experiments and accompanying data
described here are for y € (0.839, 0.932), in which range a single solitary wave propagates around
the lattice.

The wave progresses around the ring as each droplet successively undergoes the motion shown in
Fig. 3(a). Prior to the arrival of the wave an individual droplet is essentially stationary before being
pulled sharply in the direction of decreasing 6. It then receives a restoring force in the opposite
direction before settling down to a new static equilibrium position via underdamped oscillations. We
note that neighboring droplets do not enter into out-of-phase oscillations following the passage of
the solitary wave. The initial jump in the droplet position gives rise to the curious feature that, while
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there is evidently a disturbance propagating in a counterclockwise direction, the net displacement of
the entire droplet lattice is clockwise. The wave field generated by each droplet has a spatial extent
exceeding the equilibrium droplet spacing; hence, each droplet can influence more than its nearest
neighbor. As shown in Figs. 3(b) and 3(c), the current position of the wave is spread over a core
of approximately seven droplets undergoing different stages of the motion described in Fig. 3(a).
Following the passage of the wave, the droplets oscillate back and forth and eventually recover their
uniform initial spacing.

After increasing the acceleration so as to excite a solitary wave, we computed w, the angular
frequency of the wave, as a function of { in the interval § € (0.839, 0.932), which revealed a
monotonic relationship between the two [see Fig. 3(d)]. We note that, in contrast to the N = 20
case, this interval contains the walking threshold of a single droplet y = 0.873. Determining w(})
revealed two further differences with the case of N = 20 droplets. First, we find that the solitary
wave can propagate without decay far below the initial instability threshold of the stationary lattice
Ve,» specifically for < Pw. Second, we find that there is a critical value ., = 0.839 at which w
jumps discontinuously to zero from a finite value (for a video of this transition, see [49]). In the
parlance of dynamical systems, the point J., is reminiscent of a saddle node or blue-sky bifurcation
[51]. We thus deduce the coexistence of two qualitatively different stable states of the system for
7 € (0.839, 0.932): the static equilibrium configuration of the bouncing droplets and a periodic state
consisting of the solitary wave. The foregoing observations suggest that the system has undergone a
subcritical bifurcation. A sketch of the associated hysteresis path is plotted in the inset of Fig. 3(d)
and is to be contrasted with that of Fig. 2(c).

III. THEORETICAL MODELING

We now summarize a mathematical model and accompanying stability analysis, presented in
[40], aimed at rationalizing qualitatively the different bifurcations that can arise as the number of
droplets N varies. The model presented in [40] considers N equispaced droplets of equal mass which
bounce in periodic synchrony, confined to a circle of constant radius R. The arc-length position
of each drop x, evolves according to the stroboscopic model derived by Oza et al. [52], which
describes the time-averaged motion of the droplet in terms of a balance between inertia, drag, and
the propulsive wave force enacted on each droplet as it lands on the sloping crest of its local wave
field. As shown in [40], the radially symmetric, N-droplet analog of the stroboscopic model, valid
below and near to the point of instability, in dimensionless form reads as

jén +xn = _Hx(xn’t)’ (la)
where the wave field
N t
H = Z / Klx — xu(s)]e” M gs. (1b)
m=1"Y >

The sum over N in Eq. (1b) represents the superposition of the wave fields generated by each
droplet in the lattice, while the integral represents the physical fact that the trajectory of each droplet
depends on its entire history prior to the current time 7, endowing the system with memory [53,54].

The model is closed by selecting a particular form for the stroboscopic wave-field kernel K.
Owing to the geometry of the experimental system and the presence of submerged topography,
there is some uncertainty as to the precise form of the droplet wave field as compared to free space.
The situation is complicated yet further by variations in the droplets’ vertical bouncing phase and
memory-dependent changes to the decay length of the emitted Faraday waves [36,55]. Following
[40], we thus consider the generic pilot-wave model K(x) = f(2R sin(x/2R)), which is derived by
taking a circular cut of radius R of the axisymmetric wave field f(r) = AJy(27r)sech(r/l), centered
a distance R from the origin (further details are provided in the Supplemental Material [49]). The
parameter [ is the dimensionless decay length of the waves relative to the Faraday wavelength and
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A is the dimensionless wave amplitude. Unless otherwise stated, we take [ = 1.6, 4 = 0.1, and
R = 5.4, based on typical experimental values [29,53]. The remaining parameter M = p(1 — )~
is the memory parameter which encodes the exponential decay time of the waves, where the
constant u = T;D/m = 0.14 is composed of the temporal decay time of Faraday waves Ty, the
drag coefficient D, and the droplet mass m [29,52,53]. Thus, M — oo as y — yF and larger M
corresponds to past dynamics playing a more prominent role.

Before we proceed, a few comments are in order. First, the chosen form of the wave-field kernel
IC will inevitably preclude a quantitative match between theoretical and experimental predictions
of the instability thresholds. Further, the wave amplitude A depends in reality on the vertical
bouncing phase of the droplets [36], and thus is another source of discrepancy between theoretical
and experimental predictions of the instability thresholds. However, it was found that varying A
acted only to shift the numerical value of the predicted instability threshold, with the bifurcation
structure remaining virtually unchanged. This suggests that the stability of the lattice has more to
do with the geometry of the system and the resulting global wave field H, and less on the details
of the specific parameters used. Finally, the model (1) prohibits radial motion of the droplets, and
thus we do not capture buckling of the lattice, nor the fully nonlinear dynamics of the solitary wave,
where radial motion of the droplets can be significant. A detailed study of the specific fluid system
explored experimentally is subject to future work.

The stability characteristics of the lattice may be rationalized qualitatively by a weakly nonlinear
analysis of the system (1) in the vicinity of the bifurcation point M = M, (that is, M — M. = &2,
where ¢ < 1), corresponding to a particular value of . The analysis presented in [40] demonstrates
that the complex amplitude A of the perturbation to the nth droplet position, X, = A(T') expli(k.no +
w.t)] + c.c., may be described by a Stuart-Landau equation of the form

dA ,
ar Bi(N)A — B2(N)IA[A, 2

where the droplet separation o = 277 /N and A is a function of the slow timescale 7 = &’t. The
critical wave number k. and angular frequency w, are determined from the linear stability of (1).
The crucial component of (2) is the sign of Re(8,), defined in terms of the system parameters. For
Re(B,) > 0 the cubic nonlinearity stabilizes linear growth, leading to a supercritical bifurcation,
while Re(,) < 0 heralds a subcritical bifurcation.

In Fig. 4 we plot the critical value of M = M, at which each lattice configuration destabilizes
given N, as deduced from the computations in [40]. Droplet configurations contained within green
zones of Fig. 4 are stable up to a finite value of M and subsequently destabilize via a Hopf
bifurcation. Red zones contain configurations in this one-dimensional setting where the wave field
h acts to destabilize the droplets for all M, as can occur if a droplet sits on a peak of the lattice wave
field [36], and are thus prohibited from forming. We note that Fig. 4 only documents configurations
which are potentially experimentally accessible, disallowing for radial motion of the droplets. We
anticipate some configurations of larger droplet density may be susceptible to radial buckling in
practice, as can occur with the addition of a droplet to an otherwise stable lattice. Nevertheless,
we see that the critical features of our experimental observations are captured in Fig. 4. When
N = 20, there is a supercritical bifurcation at M, = 0.676 (7 = 0.793), wherein linear theory
predicts k. = N/2. Hence, we find that %, o< (—1)" cos(2¢), corresponding to small-amplitude,
stable, out-of-phase oscillations arising beyond the instability threshold (recall Fig. 2), the angular
frequency €2 being determined as part of the weakly nonlinear analysis. A configuration of N = 40
droplets destabilizes to a subcritical Hopf bifurcation at M, = 0.636 (y = 0.780), wherein the
system approaches a distant attractor, manifest in experiments as a solitary wave [Fig. 3(d)]. There
is a notable prevalence of subcritical bifurcations for N > 40 and tightly packed droplets, while
supercritical bifurcations appear more frequently for lower droplet densities.
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FIG. 4. Stability threshold M, versus droplet number N predicted by the model (1), disallowing for radial
motion. Triangles mark supercritical bifurcations [Re(8;) > 0] and squares mark subcritical bifurcations
[Re(B;) < 0] as predicted by Eq. (2). Red zones and circles denote droplet configurations predicted to be
unstable for all M, and so inaccessible in the laboratory. Green zones denote configurations predicted to
be stable up to a critical value of M, and thus potentially accessible in the laboratory. Figure adapted, with
permission, from [40].

IV. DISCUSSION

We have considered the collective vibrations of a fluid-based driven-dissipative oscillator, which
exhibits out-of-phase oscillations and solitary waves. The former is characterized by the onset of
a reversible supercritical bifurcation where the amplitude of the oscillations increases with the
driving acceleration. The latter subcritical bifurcation displays the coexistence of two distinct stable
states, one static, the other characterized by a solitary wave whose angular frequency @ has a
nonlinear dependence on 7. The transition between these two regimes has been rationalized through
a systematic stability analysis in the vicinity of the bifurcation point [40]. A detailed description
of the fully nonlinear dynamics of the system, including modeling of the fluid [56], is subject to
future work. There is growing interest in the walking droplet system as a platform for studying
active nonequilibrium particle dynamics at the macroscale. For example, recent experiments show
that collective magnetic order may arise in wave-mediated, hydrodynamic spin lattices of walking
droplets [57,58]. Additionally, the results presented here have prompted investigation into the wider
class of instabilities available to free rings of droplets unconfined by bottom topography [59].
In a broader context, the role of inertia differentiates the walking droplet system from prevailing
active matter systems (for example, bacterial and colloidal suspensions) wherein the dynamics are
typically overdamped. Indeed, that solitarylike waves are supported by the system presented here
points to the existence of a wider class of self-sustaining nonlinear waves in inertial, underdamped
active systems [41,42,60,61]. Several interesting questions also arise regarding the emergence and
control of solitary waves in mechanical media [62—-64], as well as prompting future investigations
into connections with extant physical systems, such as zigzag transitions in low-dimensional trapped
ionic crystals [65—67] and emergent chimera states in oscillators subject to nonlocal spatiotemporal
coupling [68-70].

The data sets used in this study are available from the corresponding author upon reasonable
request.
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