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Abstract. We develop a mathematical theory for the excitation of surface plasmon resonance
on an infinitely thick metallic slab with a nano-gap defect. Using layer potential techniques, we
establish the well-posedness of the underlying scattering problem. We further obtain the asymptotic
expansion of the scattering solution in order to characterize the leading-order term of the surface
plasmonic waves, and derive sharp estimates for both the plasmonic and nonplasmonic parts of the
solution. The explicit dependence of the surface plasmon resonance on the size of the nano-gap, and
the real and imaginary parts of the metal dielectric constant, are given.
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1. Introduction. Surface plasmonics is an emerging field in photonics which
studies the coupling of optical light with collective oscillations of free electron density
on a metal-dielectric interface or localized metallic nano-structures. The resonant
coupling induces the so-called surface plasmon resonance, which enables localization
of electromagnetic field at the subwavelength scale as well as enhancement of optical
scattering and absorption. Many important applications in bio-sensing and design of
novel optical devices have been proposed based on these remarkable optical properties
[15, 19, 20, 24]. There are two types of surface plasmon resonance: (i) localized res-
onance which occurs on metal nano-structures with finite size such as nano-particles;
(ii) surface plasmon polariton which occurs on an infinite metal-dielectric interface
with surface waves propagating along the surface. The mathematical theory for
the first type of plasmon resonance relies on the analysis of the spectrum for the
Neumann–Poincaré operators. This has been investigated extensively recently (see
[2, 6, 8, 10, 11, 16, 17, 18] and the references therein). We also refer the reader to
[4, 5, 7] for the applications of localized surface plasmon in meta-surface and bio-
sensing. Regarding to the second type of plasmon resonance, it is well known that
certain defects or corrugations have to be created along the metal-dielectric interface
in order to excite surface plasmon with an incident plane wave [24, 26]. However, no
rigorous mathematical theory has yet been developed for the corresponding plasmon
resonance.

In this paper, we investigate a setup where the defect along the metal-dielectric
interface is formed by a nano-slit filled with perfect conducting materials, and we
present rigorous mathematical analysis for the surface plasmon resonance induced
by the small defect. The study is motivated by recent attempts to understand light
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interactions with subwavelength hole structures and the so-called extraordinary op-
tical transmission (EOT) [15, 28]. This topic has drawn increasing interest in optics
research since the report [14] by Ebbesen et al. Various resonance mechanisms can
lead to the EOT phenomenon. In a series of studies [20, 21, 22, 23], we have estab-
lished rigorous mathematical theories for EOT in nano-slit structures perforated in a
perfectly conducting metallic slab. We also refer to [9, 12, 29, 30] for resonant scat-
tering in several other perfect conducting or dielectric slab structures. However, as
of today, a rigorous mathematical theory for resonances through plasmonic metallic
nano-holes remains open. In such a scenario, both the surface plasmon mode sup-
ported along the metal-dielectric interface and the cavity resonant modes supported
in the hole structure can play a role in EOT through the nano-holes. This paper is
the first step toward a complete understanding of resonances for such a problem. The
conceptually simplified model proposed in this paper excludes the complications in-
duced by the interaction between the surface plasmon modes and the cavity resonant
modes and hence allows us to focus on the former only. By capturing the essence of
physics, the mathematical analysis provides insight into the underlying mechanism
of the surface plasmon resonance. In addition, we expect that the mathematical ap-
proach developed here can be generalized to the study of surface plasmon resonance
with other types of defects.

To be more specific, we consider the two-dimensional model where the medium
consists of two layers that are separated by the interface Γ = {(x1, x2) | x2 = 0}. The
top layer is a vacuum that occupies the upper half plane Ω1 := {(x1, x2) | x2 > 0}, and
the bottom layer is a metal that occupies the lower half plane Ω2 := {(x1, x2) | x2 < 0}.
The relative permittivity ε on the x1x2 plane is given by

ε(x) =





1, x ∈ Ω1,

εm, x ∈ Ω2,

where εm = ε′m + i ε′′m is the relative permittivity for the metal. Note that εm is a
complex number depending on the frequency through the following Drude’s model [27]:

εm(ω) = 1−
ω2
p

ω(ω + iγ)
,

where ωp is the plasmon frequency of the metal and γ is the damping coefficient.
Here we are interested in the frequency range where the real part ε′m is negative and
it holds that |ε′m| � 1 and |ε′m| � |ε′′m|. This is true for noble plasmonic metals such
as gold and silver in the optical frequency regime. More precisely, throughout the
paper, we assume the following holds.

Assumption 1. ε′m < 0, ε′′m > 0, |ε′m| � 1, and |ε′m| � |ε′′m|.
The lower half plane is perturbed by an infinitely long and perfectly conducting

nano-slit S∞
δ := {(x1, x2) | − δ < x1 < δ,−∞ < x2 < 0}, whose boundary consists of

three segments Γ0
δ , Γ

−
v , and Γ+

v , respectively as shown in Figure 1. Then the remaining
parts of Ω2 consist of two disjoint semi-infinite domains Ω−

2 and Ω+
2 . We denote the

left and right segments of the metal-vacuum interface by Γ−
δ and Γ+

δ , respectively,
with the presence of the slit.

Throughout the paper, it is assumed that the slit width is much smaller than
the incident wavelength such that δ � λ. For convenience of asymptotic analysis, we
write

ε′m = −δα, ε′′m = δβ ,
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well-posedness for (1.1) with a positive ε′m is well-known, while the case with ε′m < 0
has not been studied before. Second, we aim to obtain the asymptotic expansion of the
solution to the integral equation and the scattering solution in order to characterize
the leading-order term of the surface plasmonic waves.

The main challenge for the investigation of the scattering problem (1.1) lies in
the infinite length of the slab and the opposite permittivity values for the two me-
dia. These lead to a Fourier integral operator, whose inverse attains complex-valued
poles ξ± = ±k

√
εm/(εm + 1) in the Fourier domain (see section 3.2 for detailed dis-

cussions). These poles are extremely close to the real axis, and they are associated
with the surface plasmon polariton along the metal-vacuum interface [24]. Therefore,
when solving the scattering problem, the spectral component of the current source is
significantly amplified in the neighborhood the plasmonic frequency Re ξ±. This is
the so-called surface plasmon resonance.

In order to address the above difficulties, we decompose the underlying integral
operator into two frequency bands ∆ := {ξ | |ξ| ≤ 2k} and R\∆ in the Fourier do-
main. The former contains the plasmonic poles while the latter doesn’t. This allows
for analysis of the solution amplification due to the surface plasmon. Accordingly, the
scattering solution is decomposed into the plasmonic and nonplasmoinc parts. In the
Fourier domain, they correspond to the spectral components of the solution in the fre-
quency band ∆ and R\∆, respectively. In this paper, we shall derive sharp estimates
for the plasmonic and nonplasmonic parts of the solution. Their explicit dependence
on the gap size δ and the permittivity value εm will be given in Corollaries 4.15
and 5.8.

The rest of the paper is organized as follows. The integral equation formulation
for the scattering problem (1.1) is derived in section 2. In section 3, we investigate
the integral operators thoroughly and present relevant estimates. The solution of the
integral equation is then studied in sections 4 and 5 when the incident wave is even
and odd with respect to the x1 variable.

2. Integral equation formulation. Let G1(x, y) be the Green’s function in
the upper layer that satisfies





∆G1(x, y) + k2G1(x, y) = δ̃(x− y), x, y ∈ Ω1,

∂G1(x, y)

∂νy
= 0 on ∂Ω1.

Then

G1(x, y) = − i

4

(
H

(1)
0 (k|x− y|) +H

(1)
0 (k|x′ − y|)

)
,

where H
(1)
0 is the first kind Hankel function of order 0, and x′ = (x1,−x2). Let

∂us

∂ν (y1, 0±) denote the limit of the function from above and below the interface,
respectively. From the Green’s second identity, one obtains an integral equation for
the scattered field us:

us(x) =

∫

Γ

G1(x, y)
∂us

∂ν
(y1, 0+)dsy, x ∈ Ω1.
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From the continuity of the single-layer potential and the fact that ∂u
∂ν = 0 on Γ0

δ , it
follows that the total field satisfies

u(x) =

∫

Γ−

δ ∪Γ+

δ

G1(x, y)
∂u

∂ν
(y1, 0+) dsy + 2ui(y), x ∈ Γ−

δ ∪ Γ+
δ .(2.1)

Let G2,±(x, y) be the Green’s function in the domain Ω±
2 that satisfies





∆G2,±(x, y) + k2εmG2,±(x, y) = εmδ̃(x− y), x, y ∈ Ω±
2 ,

∂G2,±(x, y)

∂νy
= 0 on Γ±

v ∪ Γ±
δ .

It is easy to check that

G2,±(x, y) = G
(0)
2 (x1, x2, y1, y2) +G

(0)
2 (x1,−x2, y1, y2)

+G
(0)
2 (±2δ − x1, x2, y1, y2) +G

(0)
2 (±2δ − x1,−x2, y1, y2),

where G
(0)
2 (x1, x2, y1, y2) := εmH

(1)
0 (km|x − y|) is the Green’s function in the homo-

geneous medium of metal. By the Green’s second identity, we obtain

u(x) = −
∫

Γ±

δ

G2,±(x, y)
1

εm

∂u

∂ν
(y1, 0−) dsy, x ∈ Ω±

2 .

Taking the limit leads to

u(x) = −
∫

Γ±

δ

G2,±(x, y)
1

εm

∂u(y)

∂ν
(y1, 0−) dsy, x ∈ Γ±

δ .(2.2)

Let us define a function ϕ ∈ H−1/2(R) by letting

ϕ(x1) =





∂νu(x1, 0), x1 ∈ (−∞,−δ) ∪ (δ,∞),

0, x1 ∈ (−δ, δ).

From the continuity conditions ∂νu(x1, 0+) = 1
εm
∂νu(x1, 0−) along the interfaces Γ±

δ ,
a combination of (2.1) and (2.2) leads to the system of integral equations





∫ −δ

−∞

[
G1(x1, 0; y1, 0) +G2,−(x1, 0; y1, 0)

]
ϕ(y1) dy1

+

∫ ∞

δ

G1(x1, 0; y1, 0)ϕ(y1) dy1 + 2ui = 0,

∫ −δ

−∞
G1(x1, 0; y1, 0)ϕ(y1) dy1

+

∫ ∞

δ

[
G1(x1, 0; y1, 0) +G2,+(x1, 0; y1, 0)

]
ϕ(y1) dy1 + 2ui = 0,

(2.3)

where the first equation holds for x1 < −δ and the second holds for x1 > δ.
Due to the symmetry of the geometry for the scattering problem, one can decom-

pose the incident wave as a superposition of an even and an odd part and solve (2.3)
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for each part. Thus in what follows, we consider two cases when the incident wave ui

is even and odd respectively with respect to x1. To this end, let us define

uie =
1

2
(ei(k1x1+k2x2) + ei(−k1x1+k2x2)) = cos(k1x1) · eik2x2

and

uio =
1

2i
(ei(k1x1+k2x2) − ei(−k1x1+k2x2)) = sin(k1x1) · eik2x2 .

(i) ui = uie such that ϕ(x1) = ϕ(−x1). The system (2.3) reduces to the following
integral equation on Γ+

δ :

∫ ∞

δ

[
G1(x1, 0; y1, 0)+G1(x1, 0;−y1, 0)+G2,+(x1, 0; y1, 0)

]
ϕ(y1) dy1+2ui = 0 x1 > δ.

(2.4)

(ii) ui = uio such that ϕ(x1) = −ϕ(−x1). The system reduces to

∫ ∞

δ

[
G1(x1, 0; y1, 0)−G1(x1, 0;−y1, 0)+G2,+(x1, 0; y1, 0)

]
ϕ(y1) dy1+2ui = 0 x1 > δ.

(2.5)

Define the integral operators

Ke
1ϕ(x1) =

∫ ∞

δ

[
G1(x1, 0; y1, 0) +G1(x1, 0;−y1, 0)

]
ϕ(y1) dy1, x1 > δ,(2.6)

Ko
1ϕ(x1) =

∫ ∞

δ

[
G1(x1, 0; y1, 0)−G1(x1, 0;−y1, 0)

]
ϕ(y1) dy1, x1 > δ,(2.7)

K2ϕ(x1) =

∫ ∞

δ

G2,+(x1, 0; y1, 0)ϕ(y1) dy1, x1 > δ.(2.8)

We express the integral equations (2.4) and (2.5) as

(Ke
1 +K2)ϕ = −2uie and (Ko

1 +K2)ϕ = −2uio,(2.9)

respectively.

3. Analysis of the integral operators. In this section, we analyze the integral
operators Ke

1 , K
o
1 , and K2 via the spectral decomposition. This leads to the definition

of plasmonic poles and the decomposition of the integral operator into two parts, which
allows for the analysis of the operator in the frequency band with and without the
poles separately.

3.1. Preliminaries. Letting s ∈ R, we denote by Hs(R) the standard fractional
Sobolev space with the norm

‖u‖2Hs(R) =

∫

R

(1 + |ξ|2)s|û(ξ)|2dξ,

where û is the Fourier transform of u defined by

û(ξ) :=

∫ ∞

−∞
u(x1)e

−iξx1 dx1.

Let I be an interval in R and define

Hs(I) := {u = U |I
∣∣ U ∈ Hs(R)}.
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Then Hs(I) is a Hilbert space with the norm

‖u‖Hs(I) = inf{‖U‖Hs(R)

∣∣ U ∈ Hs(R) and U |I = u}.

We also define

H̃s(I) := {u = U |I
∣∣ U ∈ Hs(R) and supp U ⊂ Ī}.

One can show that (see [1]) the space H̃s(I) is the dual of H−s(I) and the norm for
H̃s(I) can be defined via the duality. As such H̃s(I) is also a Hilbert space. We refer
to [1] for more details about the fractional Sobolev spaces. In what follows, we are
mostly concerned with the case when s = ± 1

2 and I = (δ,∞) for some δ ≥ 0. We
denote

H̃− 1
2 (δ,∞) = H̃− 1

2 (Γ+
δ ), H

1
2 (δ,∞) = H

1
2 (Γ+

δ ).

Remark 1. For a given function ϕ ∈ H̃− 1
2 (Γ+

δ ), we may associate it with a func-
tion defined over the whole real line that vanishes on R\Γ+

δ . Without stating this
explicitly and with the abuse of notation, we denote the new function as ϕ here and
in several places throughout the paper, and it is obvious that ϕ ∈ H− 1

2 (R).

We now define the even and odd extension operators (H̃− 1
2 (Γ+

δ ) → H−1/2(R)) by
letting

Eϕ(x1) = ϕ(x1) + ϕ(−x1), Oϕ(x1) = ϕ(x1)− ϕ(−x1).

It is clear that Eϕ and Oϕ are an even and an odd function, respectively.

Lemma 3.1. Let ϕ ∈ H̃− 1
2 (Γ+

δ ) where δ > 0. Then Eϕ and Oϕ are an even and

an odd function, respectively, and it holds that

Êϕ(ξ) = ϕ̂(ξ) + ϕ̂(−ξ), Ôϕ(ξ) = ϕ̂(ξ)− ϕ̂(−ξ).

Furthermore,

||ϕ||
H̃− 1

2 (Γ+

δ )
. ||Eϕ||H−1/2(R) . ||ϕ||

H̃− 1
2 (Γ+

δ )
,

||ϕ||
H̃− 1

2 (Γ+

δ )
. ||Oϕ||H−1/2(R) . ||ϕ||

H̃− 1
2 (Γ+

δ )
.

We postpone the proof of the lemma to the appendix.

3.2. Spectral representation of the integral operators and surface plas-
monic polaritons. It is known that the Hankel functions admit the spectral decom-
position (cf. [13]):

− i

4
H

(1)
0 (k|x− y|) = − 1

2π

∫ ∞

−∞

1

2ρ0(ξ)
e−ρ0(ξ)(x2−y2)eiξ(x1−y1)dξ,

− i

4
H

(1)
0 (km|x− y|) = − 1

2π

∫ ∞

−∞

1

2ρm(ξ)
e−ρm(ξ)(x2−y2)eiξ(x1−y1)dξ,

where
ρ0(ξ) =

√
ξ2 − k2, ρm(ξ) =

√
ξ2 − k2εm.

With the above spectral decompositions, we may rewrite the operators Ke
1 , K

o
1 , and

K2 as follows:
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Ke
1ϕ(x1) = − 1

2π

∫ ∞

−∞

eiξx1 + e−iξx1

ρ0(ξ)

∫ ∞

δ

ϕ(y1)e
−iξy1 dy1dξ(3.1)

= − 1

2π

∫ ∞

−∞

1

ρ0(ξ)
(ϕ̂(ξ) + ϕ̂(−ξ)) eiξx1 dξ

= − 1

2π

∫ ∞

−∞

1

ρ0(ξ)
Êϕ(ξ)eiξx1 dξ;

Ko
1ϕ(x1) = − 1

2π

∫ ∞

−∞

eiξx1 − e−iξx1

ρ0(ξ)

∫ ∞

δ

ϕ(y1)e
−iξy1 dy1dξ(3.2)

= − 1

2π

∫ ∞

−∞

1

ρ0(ξ)
(ϕ̂(ξ)− ϕ̂(−ξ)) eiξx1 dξ

= − 1

2π

∫ ∞

−∞

1

ρ0(ξ)
Ôϕ(ξ)eiξx1 dξ;

K2ϕ(x1) = − 1

2π

∫ ∞

−∞

εm(eiξx1 + eiξ(2δ−x1))

ρm(ξ)

∫ ∞

δ

ϕ(y1)e
−iξy1 dy1dξ(3.3)

= − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

(
ϕ̂(ξ) + e−i2δξϕ̂(−ξ)

)
eiξx1 dξ

= − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

e−iδξ Êϕδ(ξ) e
iξx1 dξ.

where ϕδ is defined by

ϕδ(x1) = ϕ(x1 + δ).

If δ = 0, the symbol (multiplier) associated with the operator Ke
1 +K2 is given by

ρ0(ξ)εm+ρm(ξ)
ρ0(ξ)ρm(ξ) , which attains zeros at ξ±(k) = ±k

√
εm/(εm + 1). This implies that

when inverting the operator Ke
1 + K2, the corresponding symbol will attain poles

at ξ = ξ±(k). The poles are associated with the surface plasmon polariton, which
gives rise to eigenmodes that are localized along the metal-vacuum interface [24].
Correspondingly, the spectral component of the current source function is amplified
in the neighborhood of the plasmonic frequency ξ′± when inverting the operator, and
the surface plasmon is excited. It can be calculated that

ξ± = ξ′± + iξ′′±,(3.4)

where ξ′± = k(1+O(1/|ε′m|)) and ξ′± = O(kε′′m/|ε′m|2). Namely, ξ± lies in the vicinity
of ±k.

To address the difficulties induced by the surface plasmonic poles for solving the
integral equation, we decompose the operator Ke

1 by treating the spectral components
with and without the poles separately. To this end, let ∆ := {ξ | |ξ| ≤ 2k} and χ be
the corresponding characteristic function. We decompose the operator Ke

1 as

Ke
1 = Ke

1,0 +Ke
1,1,

where

Ke
1,0ϕ(x1) = − 1

2π

∫ ∞

−∞

1− χ∆(ξ)

ρ0(ξ)
Êϕ(ξ) eiξx1 dξ,(3.5)

Ke
1,1ϕ(x1) = − 1

2π

∫ ∞

−∞

χ∆(ξ)

ρ0(ξ)
Êϕ(ξ) eiξx1 dξ.(3.6)
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Similarly, the operator Ko
1 is decomposed as

Ko
1 = Ko

1,0 +Ko
1,1,

where

Ko
1,0ϕ(x1) = − 1

2π

∫ ∞

−∞

1− χ∆(ξ)

ρ0(ξ)
Ôϕ(ξ) eiξx1 dξ,(3.7)

Ko
1,1ϕ(x1) = − 1

2π

∫ ∞

−∞

χ∆(ξ)

ρ0(ξ)
Ôϕ(ξ) eiξx1 dξ.(3.8)

It is straightforward that the operators Ke
1,0 and Ko

1,0 can be extended to bounded

operators from H̃−1/2(Γ+
δ ) to H1/2(R) and hence are bounded from H̃−1/2(Γ+

δ ) to
H1/2(Γ+

δ ).
We also decompose the operator K2 as

K2 = K2,0 +K2,1,

where K2,0 is the corresponding integral operator when δ = 0. Namely,

K2,0ϕ(x1) = − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

Êϕ(ξ)eiξx1 dξ,(3.9)

K2,1ϕ(x1) = − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

(e−i2δξ − 1) ϕ̂(−ξ) eiξx1 dξ.(3.10)

Equivalently, this gives

K2,0ϕ(x1) = 2

∫ ∞

δ

(
G

(0)
2 (x1, 0; y1, 0) +G

(0)
2 (−x1, 0; y1, 0)

)
ϕ(y1) dy1,(3.11)

K2,1ϕ(x1) =

∫ ∞

δ

(
G2,+(x1, 0; y1, 0)− 2G

(0)
2 (x1, 0; y1, 0)(3.12)

− 2G
(0)
2 (−x1, 0; y1, 0)

)
ϕ(y1) dy1,

where G
(0)
2 (x1, x2, y1, y2) = εmH

(1)
0 (km|x− y|).

Lemma 3.2. The operator K2 is bounded from H̃−1/2(Γ+
δ ) to H

1/2(Γ+
δ ). Further-

more, the inverse K−1
2 exists and there holds

||K−1
2 || . 1√

|ε′m|
.

Proof. For ϕ ∈ H̃−1/2(Γ+
δ ), it is clear that K2ϕ can be extended naturally to

H1/2(R). With abuse of notation, we also denote the extension as K2ϕ. It is straight-
forward to check that K2 bounded from H̃−1/2(Γ+

δ ) to H
1/2(Γ+

δ ). We next show that
K2 is invertible. Indeed,

〈K2ϕ,ϕ〉L2(Γ+

δ ) = 〈K̂2ϕ, ϕ̂〉L2(R)

= − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

e−iδξ Êϕδ(ξ) ϕ̂(ξ) dξ

= − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

Êϕδ(ξ) ϕ̂δ(ξ) dξ.

D
o

w
n
lo

ad
ed

 1
1
/1

3
/1

9
 t

o
 1

3
1
.2

0
4
.2

1
4
.1

5
3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SURFACE PLASMON RESONANCE BY A NANO-GAP 4457

Noting that Êϕδ is an even function and ϕ̂δ − Êϕδ is an odd function, we have
∫ ∞

−∞

1

ρm(ξ)
Êϕδ(ξ)

(
ϕ̂δ(ξ)− Êϕδ(ξ)

)
dξ = 0.

Consequently,

〈K2ϕ,ϕ〉 = − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

∣∣∣Êϕδ(ξ)
∣∣∣
2

dξ.

Therefore,

|〈K2ϕ,ϕ〉| ≥ Re

{
− 1

2π

∫ ∞

−∞

εm
ρm(ξ)

∣∣∣Êϕδ(ξ)
∣∣∣
2

dξ

}

≥ C

∫ ∞

−∞

|ε′m|√
ξ2 − k2ε′m

∣∣∣Êϕδ(ξ)
∣∣∣
2

dξ(3.13)

for some universal constant C. Here we have used the fact that |ε′m| � |ε′′m| in the
last inequality. Note that ε′m < 0, hence
∫

{|ξ|2>k2|ε′m|}

|ε′m|√
ξ2 − k2ε′m

∣∣∣Êϕδ(ξ)
∣∣∣
2

dξ ≥ |ε′m|√
2

∫

{|ξ|2>k2|ε′m|}

1√
ξ2 + 1

∣∣∣Êϕδ(ξ)
∣∣∣
2

dξ,

∫

{|ξ|2<k2|ε′m|}

|ε′m|√
ξ2 − k2ε′m

∣∣∣Êϕδ(ξ)
∣∣∣
2

dξ ≥
√

|ε′m|√
2k

∫

{|ξ|2<k2|ε′m|}

1√
ξ2 + 1

∣∣∣Êϕδ(ξ)
∣∣∣
2

dξ.

Substituting into (3.13) yields

|〈K2ϕ,ϕ〉| ≥ C
√
|ε′m| · ‖Eϕδ‖2H−1/2(R) ≥ C

√
|ε′m| · ||ϕδ||2H−1/2(R+)

= C
√
|ε′m| · ||ϕ||2

H−1/2(Γ+

δ ).

Therefore, we obtain

||K2ϕ||H1/2(Γ+

δ ) ≥ C
√
|ε′m| · ||ϕ||H̃−1/2(Γ+

δ ).(3.14)

It follows that K2 is injective and the range Ran(K2) is closed.
A parallel calculation as above shows that the adjoint operator K2ϕ

∗ has a similar
property. Especially, K2ϕ

∗ is injective. Thus we have

Ran(K2) = (Ker((K2)
∗)⊥ = {0}⊥ = H1/2(Γ+

δ ).(3.15)

From (3.14) and (3.15), we conclude that K2 is invertible and

||K−1
2 || ≤ C√

|ε′m|
.

4. Solution of the integral equation for the even case. In this section,
we develop a mathematical framework for solving the integral equation (2.9) of the
even case and obtain the asymptotic expansion of the solution. In particular, we
characterize the energy of the surface plasmon wave in terms of the gap size δ and
the permittivity values εm. The study for the odd case is presented in section 5.

4.1. An overview of the methodology. Let us introduce the integral operator

D := Ke
1 +K2,
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4458 JUNSHAN LIN AND HAI ZHANG

and the integral equation (2.9) reads

Dϕ = −2uie.(4.1)

Let D̃ : H−1/2(R+) → H1/2(R+) be the sum of Ke
1 and K2 when the slit width

δ = 0. Its spectral representation is given by

D̃ϕ = − 1

2π

∫ ∞

−∞

(
1

ρ0(ξ)
+

εm
ρm(ξ)

)
Êϕ(ξ)eiξx1 dξ, x1 > 0.

It follows by a direct calculation that the solution of the integral equation D̃ϕ00 =
−2uie is given by

ϕ00 = R · cos(k1x1) · χ(0,+∞),(4.2)

where the coefficient

R = − 2ρ0(k1)ρm(k1)

ρm(k1) + εmρ0(k1)
.

We view the operator D at the presence of a slit as a perturbation of D̃. As such
let us decompose the solution of (2.9) as ϕ = ϕ0 + ϕ1, where

ϕ0 = ϕ00 · χ[δ,∞),

and ϕ1 satisfies

Dϕ1 = D̃ϕ00 −Dϕ0,(4.3)

Therefore, with a suitable decomposition of D̃ϕ00 − Dϕ0 to be accomplished in
section 4.4, we will need to investigate the solution of the following integral equation
in order to obtain ϕ1:

Dϕ = f,(4.4)

where f lies in some finite energy space to be specified in section 4.3. From the spectral
representation of integral operators in section 3.2, the symbol of the operator D
contains plasmonic poles in the frequency band ∆ = {ξ | |ξ| ≤ 2k}. Consequently, the
spectral component of the source function f would be amplified in the neighborhood
of the plasmonic frequency ξ′± when inverting the operatorD, and the surface plasmon
resonance occurs.

Following the decomposition of the integral operators (3.7)–(3.9), we decompose
the operator D as D = D0 +Ke

1,1, where the operator D0 : H̃−1/2(Γ+
δ ) → H1/2(Γ+

δ )
is given by

D0 := Ke
1,0 +K2.(4.5)

We can view D0 as a preconditioner for the operator D. It is clear that the symbol
of the operator D0 does not contain plasmonic poles. In fact, it can be shown that
D0 is invertible.

Proposition 4.1. The operator D0 : H̃−1/2(Γ+
δ ) → H1/2(Γ+

δ ) is invertible and

there holds

||D−1
0 || . 1√

|ε′m|
.
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Proof. From Lemma 3.2, K−1
2 is invertible and we may rewrite D0 as

D0 = K2 ·
[
I + (K2)

−1Ke
1,0

]
.

Since ||Ke
1,0|| . 1 and ||K−1

2 || . 1√
|ε′m|

, it follows that I + K−1
2 Ke

1,0 is invertible.

Therefore,

||D−1
0 || ≤

∥∥∥
[
I +K−1

2 Ke
1,0

]−1
∥∥∥ ·
∥∥K−1

2

∥∥ .
1√
|ε′m|

.

To analyze the operator D, we need to introduce two function spaces:

V1 =

{
ϕ ∈ H̃−1/2(Γ+

δ ) :

∫
1

|ρ0(ξ)|
|Êϕ(ξ)|2 dξ <∞

}
,

V2 =

{
ϕ = U |Γ+

δ
:

∫
|ρ0(ξ)| |Û(ξ)|2 dξ <∞

}
.

One can show that V1 is a Hilbert space with the norm

‖ϕ‖2V1
=

∫
1

|ρ0(ξ)|
|Êϕ(ξ)|2 dξ.

Moreover, one can show that V2 is the dual space of V1.

Theorem 4.2. The operator D : V1 → V2 is bounded and is invertible. Moreover,

||D−1|| . |ε′m|
ε′′m

.

Proof. First, it is straightforward that D is bounded. We need only to show that
D is invertible and the inverse is also bounded. Let ϕ be a solution to Dϕ = f , we
first show that

‖ϕ‖V1
.

|ε′m|
ε′′m

‖f‖V2
.

Indeed,

〈Dϕ,ϕ〉 = 〈Ke
1ϕ,ϕ〉+ 〈K2ϕ,ϕ〉

= − 1

2π

∫ ∞

−∞

1

ρ0(ξ)
Êϕ(ξ) ϕ̂(ξ) dξ − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

Êϕδ(ξ) ϕ̂δ(ξ) dξ

= − 1

2π

∫ ∞

−∞

1

ρ0(ξ)
|Êϕ(ξ)|2 dξ − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

|Êϕδ(ξ)|2 dξ.

Using |ε′′m| � ε′m, one can show that

Im
εm

ρm(ξ)
≥ 1

3

ε′′m
|ρm(ξ)| , Re

εm
ρm(ξ)

≤ 2
|ε′m|

|ρm(ξ)| .

As a result,

|Im 〈Dϕ,ϕ〉| ≥
∫ k

−k

1

2π|ρ0(ξ)|
|Êϕ(ξ)|2 dξ + 1

6π

∫ ∞

−∞

ε′′m
ρm(ξ)

|Êϕδ(ξ)|2 dξ.

On the other hand,

|〈Dϕ,ϕ〉| ≤ |〈f, ϕ〉| ≤ ‖f‖V2
· ‖ϕ‖V1

.
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We obtain
∫ ∞

−∞

ε′′m
ρm(ξ)

|Êϕδ(ξ)|2 dξ . ‖f‖V2
· ‖ϕ‖V1

.

Therefore,

∫

|ξ|≥k

1

|ρ0(ξ)|
|Êϕ(ξ)|2 dξ ≤ |Re 〈Dϕ,ϕ〉|+

∣∣∣∣Re
∫ ∞

−∞

εm
ρm(ξ)

|Êϕδ(ξ)|2 dξ
∣∣∣∣

. ‖f‖V2
· ‖ϕ‖V1

+
|ε′m|
ε′′m

|Im
∫ ∞

−∞

ε′′m
ρm(ξ)

|Êϕδ(ξ)|2 dξ|

. ‖f‖V2
· ‖ϕ‖V1

+
|ε′m|
ε′′m

‖f‖V2
· ‖ϕ‖V1

.
|ε′m|
ε′′m

‖f‖V2
· ‖ϕ‖V1

.

It follows that

‖ϕ‖2V1
=

∫
1

|ρ0(ξ)|
|Êϕ(ξ)|2 dξ . |ε′m|

ε′′m
‖f‖V2

· ‖ϕ‖V1
,

whence

‖ϕ‖V1
.

|ε′m|
ε′′m

‖f‖V2
.

We conclude that the D is injective; moreover, the range of D is closed in V2. We
next show that the range of D is dense in V2. For this, we consider the adjoint of D,
denoted by D∗, which is defined by the following identity:

〈Dϕ,ψ〉 = 〈ϕ,D∗ψ〉

where ψ ∈ V1. A direct computation shows that

D∗ψ(x1) = − 1

2π

∫ ∞

−∞

1

ρ0(ξ)
Êψ(ξ)eiξx1 dξ − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

eiδξ Êψ(ξ) eiξx1 dξ, x1 > δ.

Therefore, a similar argument as for the operator D shows that D∗ is injective. Con-
sequently, the range of D is dense in V2. This combines with the fact that the range
of D is also closed in V2 yields that D is onto the space V2. Recall that D is also
injective. The open mapping theorem gives that D is invertible and the inverse is also
bounded. Moreover, the inverse satisfies that desired estimate.

Remark 2. The above theorem establishes the existence and uniqueness of the
solution to the integral equation (4.1) when the source term is in the space V2. It
also provides an energy estimate for the solution. We would like to point out that
such estimation is not sharp. In what follows, we shall derive a sharp estimate for
the solution by treating the plasmonic part and the nonplasmonic part separately.
Moreover, we shall characterize the magnitude of the wave field induced by surface
plasmonic resonance.

Observe that the operator equation (4.4) can be rewritten as

ϕ+D−1
0 Ke

1,1ϕ = D−1
0 f.(4.6)
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We first aim to express the term D−1
0 Ke

1,1ϕ in the above equation in terms of ϕ
by solving the equation D0φ = Ke

1,1ϕ, which excludes plasmoinc resonances. Then
we study the enhancement effect induced from the surface plasmoinc resonances by
solving the whole equation (4.6). These two steps are addressed in sections 4.2 and
4.3, respectively. Finally, we summarize the solution of (4.1) in section 4.4.

4.2. Solution of D0φ = Ke
1,1ψ. In this section, we solve the equation

D0φ = Ke
1,1ψ,(4.7)

where it holds that ‖ Êψ√
|ρ0|

‖L2(∆) <∞. It is clear that Ke
1,1ψ ∈ V2.

Using the spectral decomposition of the operators (3.1) and (3.3), let us decom-
pose the operator D0 as D0 = D0,0 +D0,1, where

D0,0 := (Ke
1,0 +K2,0) and D0,1 := K2,1.(4.8)

We also introduce the operator D̃0,0 : H−1/2(R+) → H1/2(R+) as follows:

D̃0,0ϕ(x1) = − 1

2π

∫ ∞

−∞

(
εm

ρm(ξ)
+

1− χ∆

ρ0(ξ)

)
Êϕ(ξ) eiξx1 dξ, x1 > 0.(4.9)

Define the function φ00,ψ(x1) over the whole real line such that its Fourier trans-
form is given by

φ̂00,ψ(ξ) =
χ∆ · ψ̂(ξ)

ρ0(ξ)

(
εm

ρm(ξ)
+

1− χ∆

ρ0(ξ)

) =
ρm(ξ)

ρ0(ξ)εm
· Êψ(ξ) · χ∆.(4.10)

Lemma 4.3. The following estimate holds for φ00,ψ:

‖φ̂00,ψ‖L1(∆) .
1√
|ε′m|

‖ Êψ√
|ρ0|

‖L2(∆).

Moreover, φ00,ψ is a smooth and even function with

‖φ00,ψ‖C3(R) .
1√
|ε′m|

‖ Êψ√
|ρ0|

‖L2(∆).

Proof. From (4.10) we see that

|φ̂00,ψ(ξ)| .
1√
|ε′m|

1

|ρ0(ξ)|
· Êψ(ξ).

Therefore,

‖φ̂00,ψ‖L1(∆) .
1√
|ε′m|

∥∥∥∥∥
ψ̂ · χ∆√

|ρ0|

∥∥∥∥∥
L2(∆)

·
∥∥∥∥∥
χ∆√
|ρ0|

∥∥∥∥∥
L2(∆)

.
1√
|ε′m|

·
∥∥∥∥∥
Êψ√
|ρ0|

∥∥∥∥∥
L2(∆)

.

The second estimate follows immediately.

Let φ00,+ = φ00,ψ · χ(0,∞). By observing that

φ00,ψ(x1) = φ00,+(x1) + φ00,+(−x1) = Eφ00,+(x1) and φ̂00,ψ(ξ) = Êφ00,+(ξ),

we have (
εm

ρm(ξ)
+

1− χ∆

ρ0(ξ)

)
Êφ00,+(ξ) =

χ∆

ρ0(ξ)
Êψ(ξ).
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Consequently, it holds that

D̃0,0 φ00,+ = Ke
1,1ψ,(4.11)

where we have extended Ke
1,1ψ naturally to R+.

We decompose the solution φ of the operator equation (4.7) as φ0 + φ1, where

φ0 = φ00,ψ · χ[δ,∞).

Using (4.11), it is seen that φ1 satisfies

D0φ1 = q,(4.12)

where

q(x1) := D̃0,0 φ00,+(x1)− [D0,0φ0(x1) +D0,1φ0(x1)] for x1 > δ.(4.13)

For brevity of notation, here and henceforth, we let

g(x1 − y1) := G
(0)
2 (x1, 0; y1, 0) = εmH

(1)
0 (km|x1 − y1|).(4.14)

Lemma 4.4. Let q be defined in (4.13); then q(x1) = q1(x1) + q2(x1), where

(4.15)

q1(x1) = −2

∫ ∞

0

g(x1 + y1 − δ) (φ00,ψ(y1 + δ)− φ00,ψ(y1 − δ)) dy1, x1 > δ,

q2(x1) = − 1

2π

∫ ∞

−∞

1− χ∆

ρ0(ξ)
(φ00,ψ · χ(−δ,δ))

∧(ξ) eiξx1 dξ, x1 > δ.(4.16)

Moreover, the following asymptotic expansions hold for x1 > δ:

q1(x1) = φ′′00,ψ(0) · q1,0(x1) · εmδ3 +O(εmδ
4) · ‖φ00,ψ‖C3(R),(4.17)

q2(x1) = φ00,ψ(0) · q2,0(x1) +O
(
δ3
√
| ln δ|) · ‖φ00,ψ‖C3(R)

)
,(4.18)

where

‖q1,0‖H1/2(Γ+

δ ) . 1 and ‖q2,0‖H1/2(Γ+

δ ) . δ
√

| ln δ|.

Proof. From the definition (3.12),

D0,1φ0(x1) =

∫ ∞

δ

(
G2,+(x1, 0; y1, 0)− 2G

(0)
2 (x1, 0; y1, 0)

− 2G
(0)
2 (−x1, 0; y1, 0)

)
φ0(y1) dy1.
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Therefore,

D0,1φ0(x1) = 2

∫ ∞

δ

(g(x1 + y1 − 2δ)− g(x1 + y1)) φ0(y1) dy1(4.19)

= 2

∫ ∞

−δ
g(x1 + y1)φ0(y1 + 2δ) dy1 − 2

∫ ∞

δ

g(x1 + y1)φ0(y1) dy1

= 2

∫ ∞

−δ
g(x1 + y1) (φ00,ψ(y1 + 2δ)− φ00,ψ(y1)) dy1

+2

∫ δ

−δ
g(x1 + y1)φ00,ψ(y1) dy1

= 2

∫ ∞

0

g(x1 + y1 − δ) (φ00,ψ(y1 + δ)− φ00,ψ(y1 − δ)) dy1

+2

∫ δ

−δ
g(x1 + y1)φ00,ψ(y1) dy1.

On the other hand, from (4.8) and (4.9), it follows that for x1 > δ,

D̃0,0 φ00,+(x1)−D0,0φ0(x1)(4.20)

= − 1

2π

∫ ∞

−∞

(
εm

ρm(ξ)
+

1− χ∆(ξ)

ρ0(ξ)

)
(φ00,ψ · χ(−δ,δ))

∧(ξ) eiξx1 dξ.

Note that

− 1

2π

∫ ∞

−∞

εm
ρm(ξ)

(φ00,ψ · χ(−δ,δ))
∧(ξ) eiξx1 dξ = 2

∫ δ

−δ
g(x1 + y1)φ00,ψ(y1) dy1,

(4.21)

then (4.15) and (4.16) follows by combining (4.19)–(4.21).
We now derive the asymptotics for q1 and q2. Note that

φ00,ψ(y1 + δ)− φ00,ψ(y1 − δ) = 2δ φ′′00,ψ(0)y1 +R1(y1)y
3
1 +R2(y1)y

2
1δ +R3(y1)y1δ

2,

where R1, R2, R3 are smooth functions such that

‖Rj‖C1(R) . ‖φ00,ψ‖C3(R), j = 1, 2, 3.

Correspondingly, we decompose q1 as

q1 =: q1,0 + q1,1 + q1,2 + q1,3,

where q1,j is the integral of the above density.
Setting x′1 = (x − δ)/δ, y′1 = y1/δ, and k

′ = kmδ, then it follows that k′ = O(1)
and

q̃1,0(x
′
1) : = q1,0(δx

′
1 + δ) = 2δ3 φ′′00,ψ(0) · εm ·

∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|) y′1 dy′1,

q̃1,1(x
′
1) : = q1,1(δx

′
1 + δ) = δ4 · εm ·

∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|)R1(δy

′
1) (y

′
1)

3 dy′1,

q̃1,2(x
′
1) : = q1,2(δx

′
1 + δ) = δ4 · εm ·

∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|)R2(δy

′
1) (y

′
1)

2 dy′1,

q̃1,3(x
′
1) : = q1,3(δx

′
1 + δ) = δ4 · εm ·

∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|)R3(δy

′
1) y

′
1 dy

′
1.
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Since H
(1)
0 (ik′|y′1|) decays exponentially, we can show that

∥∥∥∥
∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|) y′1 dy′1

∥∥∥∥
H1/2(0,∞)

= O(1),

∥∥∥∥
∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|)R1(δy

′
1) (y

′
1)

3 dy′1

∥∥∥∥
H1/2(0,∞)

. ‖R1‖C1(R),

∥∥∥∥
∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|)R2(δy

′
1) (y

′
1)

2 dy′1

∥∥∥∥
H1/2(0,∞)

. ‖R2‖C1(R),

∥∥∥∥
∫ ∞

0

H
(1)
0 (ik′|x′1 + y′1|)R2(δy

′
1) (y

′
1)

2 dy′1

∥∥∥∥
H1/2(0,∞)

. ‖R3‖C1(R).

By the translation and scaling invariance of || · ||H1/2 norm, we deduce that the
integral q1 ∈ H1/2(Γ+

δ ). Furthermore,

q1(x1) = φ′′00,ψ(0) εmδ
3 · q1,0(x1) +O(εmδ

4) · ‖φ00,ψ‖C3(R) in H1/2(Γ+
δ ),(4.22)

where ‖q1,0‖H1/2(Γ+

δ ) = O(1).

We extend q2 naturally to the whole real line and still denote it as q2. Applying
the Taylor expansion, we see that

q2(x1) = φ00,ψ(0) · (1 +O(δ2)) · q2,0(x1),(4.23)

where

q2,0 :=
1

2π

∫ ∞

−∞

1− χ∆(ξ)

ρ0(ξ)
χ̂(−δ,δ)(ξ) e

iξx1 dξ.

It follows that

||q2,0||2H1/2(R) .

∫ ∞

−∞

1√
1 + |ξ|

sin2(δξ)

ξ2
dξ

= δ2 ·
∫ ∞

−∞

1√
δ2 + ξ2

sin2 ξ

ξ2
dξ

≤ Cδ2| ln δ|.(4.24)

The proof is complete by combining (4.23) and (4.24).

From the above discussions, we can obtain the expansion of the solution for the
operator equation (4.7). In particular, by virtue of (4.12), Proposition 4.1, and Lemma
4.3–4.4, we arrive at the following conclusion.

Theorem 4.5. Let φ be the solution of the equation D0φ = Ke
1,1ψ. Let φ00,ψ be

defined by

φ̂00,ψ(ξ) =
ρm(ξ)

ρ0(ξ)εm
· Êψ(ξ) · χ∆(ξ).

Then φ = φ0 + φ1, where

φ0 = φ00,ψ · χ(δ,∞),

φ1 = δ3+α · φ′′00,ψ(0) ·D−1
0 q1,0 + φ00,ψ(0) ·D−1

0 q2,0 +D−1
0 qh.
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In addition,

‖φ00,ψ‖C3(R) . δ−
α
2 ·
∥∥∥∥∥
Êψ√
|ρ0|

∥∥∥∥∥
L2(∆)

,

‖q1,0‖H1/2(Γ+

δ ) . 1, ‖q2,0‖H1/2(Γ+

δ ) . δ
√
| ln δ|,

‖qh‖H1/2(Γ+

δ ) .
(
δ4+α + δ3

√
| ln δ|

)
‖φ00,ψ‖C3(R)

.
(
δ4+

α
2 + δ3−α/2

√
| ln δ|

)∥∥∥∥∥
Êψ√
|ρ0|

∥∥∥∥∥
L2(∆)

,

‖φ1‖H1/2(Γ+

δ ) .
(
δ3 + δ1−α

√
| ln δ|

)∥∥∥∥∥
Êψ√
|ρ0|

∥∥∥∥∥
L2(∆)

.

4.3. Solution of Dϕ = f and excitation of surface plasmon. Following
(4.6), we rewrite the operator equation Dϕ = f as

ϕ+D−1
0 Ke

1,1ϕ = D−1
0 f.(4.25)

By Theorem 4.2, we see that the solution ϕ ∈ V1 and it holds that
∥∥∥∥
Êϕ√
|ρ0|

∥∥∥∥
L2(∆)

. ‖ϕ‖V1
.

|ε′m|
ε′′m

‖f‖V2
= O(δα−β)‖f‖V2

.(4.26)

From Theorem 4.5, it follows that D−1
0 Ke

1,1ϕ = φ00χ(δ,∞) + φ1, where φ00 is defined
by

φ̂00(ξ) =
ρm(ξ)

ρ0(ξ)εm
· Êϕ(ξ) · χ∆(ξ)

and
φ1 = δ3+α · φ′′00(0) ·D−1

0 q1,0 + φ00(0) ·D−1
0 q2,0 +D−1

0 qh.

By virtue of Lemma 4.3 and (4.26), we have the following estimate.

Lemma 4.6. The following estimate holds for φ00:

‖φ̂00‖L1(R) .
|ε′m| 12
ε′′m

‖f‖V2
.

Moreover, φ00 is a smooth and even function with

‖φ00‖C3(R) .
|ε′m| 12
ε′′m

‖f‖V2
.

Substituting the expansion for D−1
0 Ke

1,1ϕ into (4.25), we obtain

ϕ+ φ0 + δ3+α · φ′′00(0) ·D−1
0 q1,0 + φ00(0) ·D−1

0 q2,0 +D−1
0 qh = D−1

0 f.(4.27)

Extending evenly over the whole real line yields

Eϕ+ φ00(1− χ(−δ,δ)) + δ3+α · φ′′00(0) · ED−1
0 q1,0

+ φ00(0) · ED−1
0 q2,0 + ED−1

0 qh = E(D−1
0 f).

This leads to the following equation in the Fourier domain:

Êϕ(ξ) + φ̂00(ξ) + Q̂(ξ) = (ED−1
0 f)∧(ξ),(4.28)
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where

Q̂(ξ) := − (φ00χ(−δ,δ))
∧(ξ) + δ3+α · φ′′00(0) · (ED−1

0 q1,0)
∧(ξ)

+φ00(0) · (ED−1
0 q2,0)

∧(ξ) + (ED−1
0 qh)

∧(ξ).

From the Taylor expansion,

(φ00χ(−δ,δ))
∧(ξ) = (φ00(0) +O(δ2)) · χ̂(−δ,δ)(ξ) = φ00(0) · q̂2,1(ξ) + q̂2,2(ξ),

where q̂2,1(ξ) =
sin δξ
ξ and q2,2 satisfy the estimate

‖q̂2,1(ξ)‖L2(∆) . δ,

∥∥∥∥∥
1√

1 + |ξ|
q̂2,1(ξ)

∥∥∥∥∥
L2(R)

. δ
√
| ln δ|,

‖q̂2,2‖L2(∆) . ‖φ00‖C3(R) · δ3,
∥∥∥∥∥

1√
1 + |ξ|

q̂2,2

∥∥∥∥∥
L2(R)

. ‖φ00‖C3(R) · δ3
√
| ln δ|.

Correspondingly, we express Q̂(ξ) as

Q̂(ξ) = δ3+α · φ′′00(0) · (ED−1
0 q1,0)

∧(ξ) + φ00(0) ·
[
(ED−1

0 q2,0)
∧(ξ) + q̂2,1(ξ)

]

+(ED−1
0 qh + q2,2)

∧(ξ).

Lemma 4.7. The following estimate holds for Q̂:

∥∥∥Q̂
∥∥∥
L2(∆)

. (|φ00(0)|+ |φ′′00(0)|) ·
(
δ3+α/2 + δ

)
+
(
δ4+α/2 + δ3

)
· ‖φ00‖C3(R),

∥∥∥∥∥
Q̂√
1 + |ξ|

∥∥∥∥∥
L2(R)

. (|φ00(0)|+ |φ′′00(0)|) ·
(
δ3+α/2 + δ

√
| ln δ|

)

+
(
δ4+

α
2 + δ3

√
| ln δ|

)
· ‖φ00‖C3(R).

In light of the formulas (4.10) and (4.28), the following equation holds for ξ ∈ ∆:

φ̂00(ξ)

(
ρ0εm
ρm

+ 1

)
+ Q̂(ξ) = (ED−1

0 f)∧(ξ).

Hence we can express the Fourier transform of φ̃0 as

φ̂00(ξ) =
ρm(ξ)

ρ0(ξ)εm + ρm(ξ)
·
[
(ED−1

0 f)∧(ξ)− Q̂(ξ)
]
, ξ ∈ ∆.(4.29)

On other hand, note that

φ00(0) =

∫

∆

φ̂00(ξ)dξ, φ′′00(0) = −
∫

∆

ξ2φ̂00(ξ)dξ.

Substituting (4.29) into the above two formulas yields a linear system for φ00(0) and
φ′′00(0):

Π

[
φ00(0)

φ′′00(0)

]
= b,(4.30)
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where

Π =




1 +A1(ED
−1
0 q2,0) +A1(q2,1) δ3+αA1(ED

−1
0 q1,0)

−A2(ED
−1
0 q2,0)−A2(q2,1) 1− δ3+αA2(ED

−1
0 q1,0)


 ,

b =

[
A1(ED

−1
0 f)−A1(ED

−1
0 qh)−A1(q2,2)

−A2(ED
−1
0 f) +A2(ED

−1
0 qh) +A2(q2,2))

]
.

In addition, the functionals A1 and A2 are defined as

A1(ϕ) :=

∫

∆

ρm(ξ)

ρ0(ξ)εm + ρm(ξ)
ϕ̂(ξ) dξ,

A2(ϕ) :=

∫

∆

ξ2 · ρm(ξ)

ρ0(ξ)εm + ρm(ξ)
ϕ̂(ξ) dξ.

We first solve the above linear system to obtain φ00(0) and φ
′′
00(0), which will lead to

the estimation for Q̂(ξ) in (4.29). To this end, we study the entries in the matrix Π
and the vector b. This is given in what follows.

Lemma 4.8. The following inequalities hold:

∥∥∥∥
ρm

ρ0εm + ρm

∥∥∥∥
L2(∆)

.

(
1√
|ε′m|

ln |ε′m|+ 1√
|ε′′m|

)
,(4.31)

∥∥∥∥∥
ρm√

|ρ0| (ρ0εm + ρm)

∥∥∥∥∥
L2(∆)

. |ε′m| 14
(

1√
|ε′m|

+
1√
ε′′m

)
,(4.32)

∥∥∥∥
ρ0ρm

(ρ0εm + ρm)

∥∥∥∥
L2(∆)

.
1√
|ε′m|

(
1 +

1√
ε′′m

)
.(4.33)

In addition, if ϕ̂ ∈ L2(∆), then

|Aj(ϕ)| .
(

1√
|ε′m|

ln |ε′m|+ 1√
|ε′′m|

)
‖ϕ̂‖L2(∆) , j = 1, 2.

Proof. See Appendix B.

Lemma 4.9. The following expansions hold for Π and b:

Π =

[
1 0

0 1

]
+
(
δ−α/2| ln δ|+ δ−β/2

)[ O(δ) O
(
δ3+α/2

)

O(δ) O
(
δ3+α/2

)
]
,

b =

[
A1(ED

−1
0 f)

−A2(ED
−1
0 f)

]
+O

(
δ−α/2| ln δ|+ δ−β/2

)(
δ4+α/2 + δ3

√
| ln δ|

)
‖φ̂00‖L1(R).

Moreover, assume that −6 < α − β < 0; then φ00(0) and φ′′00(0) admit the following

estimate:

φ00(0) = A1(ED
−1
0 f) · (1 + o(1)) +O

(
δ−α/2| ln δ|+ δ−β/2

)
δ3
√
| ln δ|‖φ̂00‖L1(R),

φ′′00(0) = A2(ED
−1
0 f) · (1 + o(1)) +O

(
δ−α/2| ln δ|+ δ−β/2

)
δ3
√

| ln δ|‖φ̂00‖L1(R).
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Proof. From the estimation in Theorem 4.5 and Lemma 4.8, we have

|A1(ED
−1
0 )qh| ≤

∥∥∥∥
ρm(ξ)

ρ0(ξ)εm + ρm(ξ)

∥∥∥∥
L2(∆)

· ‖(D−1
0 qh)

∧(ξ)‖L2(∆)

.
(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2‖qh‖H1/2(Γ+

δ )

.
(
δ−α/2| ln δ|+ δ−β/2

)(
δ4+α + δ3

√
| ln δ|

)
‖φ00‖C3(R),

|A1(q2,2)| ≤
∥∥∥∥

ρm(ξ)

ρ0(ξ)εm + ρm(ξ)

∥∥∥∥
L2(∆)

· ‖q̂2,2‖L2(∆)

.
(
δ−α/2| ln δ|+ δ−β/2

)
δ3
√
| ln δ|‖φ00‖C3(R).

Similarly,

|A2(ED
−1
0 )qh| .

(
δ−α/2| ln δ|+ δ−β/2

)(
δ4+

1
2
α + δ3

√
| ln δ|

)
‖φ00‖C3(R),

|A1(ED
−1
0 q1,0)| .

(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2,

|A2(ED
−1
0 q1,0)| .

(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2,

|A1(ED
−1
0 q2,0)| .

(
δ−α/2| ln δ|+ δ−β/2

)
δ1−α/2

√
| ln δ|,

|A2(ED
−1
0 q2,0)| .

(
δ−α/2| ln δ|+ δ−β/2

)
δ1−α/2

√
| ln δ|,

|A1(q2,1)| .
(
δ−α/2| ln δ|+ δ−β/2

)
δ,

|A2(q2,1)| .
(
δ−α/2| ln δ|+ δ−β/2

)
δ,

|A1(q2,2)| .
(
δ−α/2| ln δ|+ δ−β/2

)
δ3
√

| ln δ|‖φ00‖C3(R),

|A2(q2,2)| .
(
δ−α/2| ln δ|+ δ−β/2

)
δ3
√

| ln δ|‖φ00‖C3(R).

Finally, using the estimate

‖φ00‖C3(R) . ‖φ̂00‖L1(R)

we obtain the desired estimate for φ00(0) and φ
′′
00(0).

Now, we are ready to discuss the solution of the operator equation Dϕ = f . We
distinguish two types of source function f :

(i) f ∈ H1/2(Γ+
δ ).

(ii) f = − 1
2π

∫∞
−∞

χ∆(ξ)
ρ0(ξ)

ψ̂(ξ) eiξx1 dξ, where ψ̂(ξ) is even and it holds that

‖ ψ̂√
|ρ0|

‖L2(∆) <∞.

The main results are given in Theorems 4.10 and 4.12, respectively, for the above
two cases. For each case, we shall establish the estimation for the energy of the solu-
tion in the frequency bands ∆ and R\∆, respectively. Note that the surface plasmonic
pole lies in ∆, hence the energy in this frequency band corresponds to excitation of
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surface plasmon given the source f , while the energy in the frequency band R\∆ corre-
sponds to the nonplasmonic part of the solution. More precisely, the former is given in
(4.34)–(4.35) and the latter is given in (4.36), case (i) ((4.37)–(4.38) and (4.39), re-
sectively for case (ii)).

Remark 3. In the following theorems, the estimation of the excited surface plas-
mon wave is established in terms of the L1-norm in the Fourier space. Such an
estimation leads to the L∞-norm of the excited surface plasmon wave, which shall be
used in our subsequent studies of the interaction between surface plasmon resonance
and Fabry–Perot resonance. We point out that the standard L2-norm estimate or
energy estimate for the excited surface plasmon can also be derived from our analysis.
However, such a bound is significantly larger than that of the L1-norm.

Theorem 4.10. Under Assumption 1, further assume that α−β > −6 and β < 2.
If f ∈ H1/2(Γ+

δ ), the following holds for the solution of Dϕ = f :

∥∥∥∥∥
Êϕ

ρ0

∥∥∥∥∥
L1(∆)

.
(
δ−α/2| ln δ|+ δ−β/2

)
‖f‖H1/2(Γ+

δ ) ,(4.34)

∥∥∥Êϕ
∥∥∥
L1(∆)

.
(
δ−α/2 + δ−(α+β)/2

)
‖f‖H1/2(Γ+

δ ) ,(4.35)

∥∥∥∥∥
Êϕ√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

. δ−α/2 ‖f‖H1/2(Γ+

δ ) .(4.36)

Proof. First, using Lemma 4.8 and Proposition 4.1, we obtain

|A1(ED
−1
0 f)| . δ−α/2

(
δ−α/2| ln δ|+ δ−β/2

)
‖f‖H1/2(Γ+

δ ) ,

|A2(ED
−1
0 f)| . δ−α/2

(
δ−α/2| ln δ|+ δ−β/2

)
‖f‖H1/2(Γ+

δ ) .

On the other hand, from Lemma 4.6, we have ‖φ̂00‖L1(R) . δα/2−β‖f‖V2

. δα/2−β ‖f‖H1/2(Γ+

δ ). Therefore, using Lemma 4.9, it follows that

|φ00(0)| .
(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2

(
1 + δ3+α−β

√
| ln δ|

)
‖f‖H1/2(Γ+

δ )

.
(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2 ‖f‖H1/2(Γ+

δ ) ,

|φ′′00(0)| .
(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2 ‖f‖H1/2(Γ+

δ ) .

By Lemma 4.7, we have

∥∥∥Q̂
∥∥∥
L2(∆)

.
(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2

(
δ3+α/2 + δ

)
‖f‖H1/2(Γ+

δ )

+
(
δ4+

α
2 + δ3

) ∥∥∥φ̂00
∥∥∥
L1(R)

.

From the formula (4.29), the Cauchy–Schwarz inequality leads to an updated
estimate for φ00:
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∥∥∥φ̂00
∥∥∥
L1(R)

.

∥∥∥∥
ρm

ρ0εm + ρm

∥∥∥∥
L2(∆)

·
∥∥∥ÊD−1

0 f + Q̂
∥∥∥
L2(∆)

≤
(
δ−α/2| ln δ|+ δ−β/2

)
·
(∥∥∥ÊD−1

0 f
∥∥∥
L2(∆)

+
∥∥∥Q̂
∥∥∥
L2(∆)

)

.
(
δ−α/2| ln δ|+ δ−β/2

) [
δ−α/2 +

(
δ−α/2| ln δ|+ δ−β/2

)
δ−α/2

(
δ3+α/2 + δ

)]
‖f‖H1/2(Γ+

δ )

+
(
δ−α/2| ln δ|+ δ−β/2

)(
δ4+α/2 + δ3

)∥∥∥φ̂00
∥∥∥
L1(R)

.

Since α−β > −6, the φ̂00 term on the right-hand side can be absorbed by the left-hand
side; with the additional condition β < 2, one can further derive that

∥∥∥φ̂00
∥∥∥
L1(R)

. δ−α/2
(
δ−α/2| ln δ|+ δ−β/2

)
‖f‖H1/2(Γ+

δ ) .

This also implies the improved estimates for φ00 and Q:

‖φ00‖C3(R) . δ−α/2
(
δ−α/2| ln δ|+ δ−β/2

)
‖f‖H1/2(Γ+

δ )

and
∥∥∥∥∥

Q̂(ξ)√
1 + |ξ|

∥∥∥∥∥
L2(R)

. δ−α/2
(
δ−α/2| ln δ|+ δ−β/2

)(
δ3+α/2 + δ1−α/2

√
| ln δ|

)
‖f‖H1/2(Γ+

δ ).

Now, it follows (4.10) from that

Êϕ(ξ) =
ρ0(ξ)εm
ρm(ξ)

· φ̂00(ξ) for ξ ∈ ∆.

Using the estimate for φ̂00(ξ) above, we obtain

∥∥∥∥∥
Êϕ

ρ0

∥∥∥∥∥
L1(∆)

.
√

|ε′m|
∥∥∥φ̂00

∥∥∥
L1(R)

.
(
δ−α/2| ln δ|+ δ−β/2

)
‖f‖H1/2(Γ+

δ ) .

On the other hand, in view of (4.29) and Lemma 4.8, we also have

∥∥∥ρ0φ̂00
∥∥∥
L1(R)

.

∥∥∥∥
ρ0ρm

ρ0εm + ρm

∥∥∥∥
L2(∆)

·
∥∥∥ÊD−1

0 f + Q̂
∥∥∥
L2(∆)

≤
(
δ−α/2 + δ−(α+β)/2

)
·
(∥∥∥ÊD−1

0 f
∥∥∥
L2(∆)

+
∥∥∥Q̂
∥∥∥
L2(∆)

)

. δ−α/2
(
δ−α/2 + δ−(α+β)/2

)
‖f‖H1/2(Γ+

δ ) .

Therefore,

∥∥∥Êϕ
∥∥∥
L1(∆)

.
√

|ε′m|
∥∥∥ρ0(ξ)φ̂00(ξ)

∥∥∥
L1(R)

.
(
δ−α/2 + δ−(α+β)/2

)
‖f‖H1/2(Γ+

δ ) .
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Finally, note that the support of φ̂00(ξ) belongs to ∆, and the formula (4.28)
leads to

Êϕ(ξ) = (ED−1
0 f)∧(ξ)− Q̂(ξ) for ξ /∈ ∆.

We obtain
∥∥∥∥∥

Êϕ√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

. ||D−1
0 || ‖f‖H1/2(Γ+

δ ) +

∥∥∥∥∥
1√

1 + |ξ|
Q̂(ξ)

∥∥∥∥∥
L2(R)

. δ−α/2 ‖f‖H1/2(Γ+

δ ) .

For a source function f that takes the form in (ii), the solution of D0φ = f can
be expressed in the following lemma.

Lemma 4.11. Let f ∈ V2 be in the form of (ii); then D−1
0 f has the expansion

ÊD−1
0 f(ξ) =

ρm(ξ)

εm
·

ˆψ(ξ)

ρ0
· χ∆(ξ) + R̂(ξ),

where the low-order term R satisfies the estimate
∥∥∥∥∥

R̂(ξ)√
1 + |ξ|

∥∥∥∥∥
L2(R)

.
(
δ3 + δ1−α/2

√
| ln δ|

)
·
∥∥∥∥∥

ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

Moreover,

∥∥∥ÊD−1
0 f ·

√
|ρ0|
∥∥∥
L2(∆)

. δ−α/2

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,

∥∥∥∥∥∥
ÊD−1

0 f√
1 + |ξ|

∥∥∥∥∥∥
L2(R\∆)

.
(
δ3 + δ1−α/2

√
| ln δ|

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,

|Aj(ED−1
0 f)| .

(
δ−α/2 + δ−β/2

)
· δ−α/4 ·

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

, j = 1, 2.

Proof. From a parallel argument as in Theorem 4.5, we obtain

D−1
0 f = φ00,ψ · χ(δ,∞) + φ1,f .

Using the Fourier transform of φ00,ψ, it follows that

ÊD−1
0 f(ξ) = φ̂00,ψ + (φ00,ψχ(−δ,δ))

∧(ξ) + Êφ1,f

=
ρm(ξ)

εm
· ψ̂
ρ0

· χ∆(ξ) + (φ00,ψ(0) +O(δ2)) · χ̂(−δ,δ)(ξ) + Êφ1,f (ξ)

= :
ρm(ξ)

εm
· ψ̂
ρ0

· χ∆(ξ) + R̂(ξ).

By Lemma 4.3 and Theorem 4.5, we have
∥∥∥∥∥

R̂(ξ)√
1 + |ξ|

∥∥∥∥∥
L2(R)

.
(
δ3 + δ1−α/2

√
| ln δ|

)
·
∥∥∥∥∥

ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)
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Therefore,

∥∥∥ÊD−1
0 f ·

√
|ρ0|
∥∥∥
L2(∆)

. δ−α/2

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,

∥∥∥∥∥∥
ÊD−1

0 f√
1 + |ξ|

∥∥∥∥∥∥
L2(R\∆)

.
(
δ3 + δ1−α/2

√
| ln δ|

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

Hence the estimate for ED−1
0 f holds. Finally, using the estimate (4.32) in Lemma

4.8, and applying the Cauchy–Schwarz inequality, we arrive at

|A1(ED
−1
0 f)| .

(
δ−α/2 + δ−β/2

)
· δ−α/4 ·

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

Theorem 4.12. Under Assumption 1, further assume that α−β > −6 and β < 2.
If f is given as in (ii), the following holds for the solution of Dϕ = f :

Êϕ(ξ)χ∆(ξ) =
ρm(ξ)ψ̂

ρ0(ξ)εm + ρm(ξ)
+

ρ0(ξ)εm
ρ0(ξ)εm + ρm(ξ)

·
[
R̂(ξ)− Q̂(ξ)

]
,

where the low-order terms R and Q have the estimate

‖R̂(ξ)‖L2(∆) + ‖Q̂(ξ)‖L2(∆) .
(
δ3+

1
4
α + δ1−3α/4

√
| ln δ|

)
·
∥∥∥∥∥

ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

Moreover,
∥∥∥∥∥
Êϕ

ρ0

∥∥∥∥∥
L1(∆)

.
(
δ−α/2 + δ−β/2

)
δα/4

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,(4.37)

∥∥∥Êϕ(ξ)
∥∥∥
L1(∆)

.
(
δ−α/2 + δ−β/2

)
δ−α/4

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,(4.38)

∥∥∥∥∥
Êϕ√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

(4.39)

.
(
δ3 + δ3+

α
4
− β

2 + δ1−
α
4
− β

2

√
| ln δ|+ δ1−α/2

√
| ln δ|

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

Proof. The proof is similar to that of Theorem 4.10. First, by Lemmas 4.9 and
4.11, we can show that

|φ00(0)| .
(
δ−α/2 + δ−β/2

)
· δ−α/4 ·

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

, |φ′′00(0)|,

.
(
δ−α/2 + δ−β/2

)
· δ−α/4 ·

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

On the other hand, recall from (4.29) that

φ̂00(ξ) =
ρm(ξ)

ρ0(ξ)εm + ρm(ξ)
·
[
(ED−1

0 f)∧(ξ)−Q(ξ)
]

for ξ ∈ ∆.(4.40)
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Applying Lemmas 4.7 and 4.11 yields

∥∥∥φ̂00
∥∥∥
L1(R)

.
(
δ−α/2 + δ−β/2

)
δα/4 ·

∥∥∥ÊD−1
0 f ·

√
|ρ0|
∥∥∥
L2(∆)

+
(
δ−α/2| ln δ|+ δ−β/2

)∥∥∥Q̂
∥∥∥
L2(∆)

.
(
δ−α/2 + δ−β/2

)
δ−α/4

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

+
(
δ−α/2| ln δ|+δ−β/2

)(
δ−α/2+δ−β/2

)
δ−α/4

(
δ3+α/2+δ

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

+
(
δ−α/2| ln δ|+ δ−β/2

)(
δ4+α/2 + δ3

)∥∥∥φ̂00(ξ)
∥∥∥
L1(R)

.

Under the assumption α− β > −6, the φ̂00(ξ) term on the right-hand side above can
be absorbed by the left-hand side; with the help of the additional assumption β < 2,
one can derive the estimate

∥∥∥φ̂00
∥∥∥
L1(R)

.
(
δ−α/2 + δ−β/2

)
· δ−α/4 ·

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,

which further implies the improved estimate for Q (using Lemmas 4.7):

∥∥∥Q̂
∥∥∥
L2(∆)

.
(
δ−α/2 + δ−β/2

)
·
(
δ3+α/4 + δ1−α/4

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,(4.41)

∥∥∥∥∥
Q̂(ξ)√
1 + |ξ|

∥∥∥∥∥
L2(R)

(4.42)

.
(
δ−α/2 + δ−β/2

)
·
(
δ3+α/4 + δ1−α/4

√
| ln δ|

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

Next, recall that

Êϕ(ξ)χ∆ =
ρ0(ξ)εm
ρm(ξ)

· φ̂00(ξ).

By (4.40) and Lemma 4.11, we have for ξ ∈ ∆,

Êϕ(ξ) =
ρ0(ξ)εm

ρ0(ξ)εm + ρm(ξ)
·
[
(ED−1

0 f)∧(ξ)− Q̂(ξ)
]

=
ρm(ξ)ψ̂

ρ0(ξ)εm + ρm(ξ)
+

ρ0(ξ)εm
ρ0(ξ)εm + ρm(ξ)

·
[
R̂(ξ)− Q̂(ξ)

]

with R,Q satisfying the desired estimate. This also implies that
∥∥∥∥∥
Êϕ

ρ0

∥∥∥∥∥
L1(∆)

.
√
|εm|‖φ̂00‖L1(∆) .

(
δ−α/2 + δ−β/2

)
· δα/4 ·

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)
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and

∥∥∥Êϕ
∥∥∥
L1(∆)

.
(
δ−α/2 + δ−β/2

)
· δ−α/4 ·

∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

,

Finally, from (4.28) we see that

(1− χ∆)Êϕ(ξ) = (ED−1
0 f)∧(ξ)− Q̂(ξ).

Applying Lemma 4.11 and the estimation (4.42), we obtain
∥∥∥∥∥

Êϕ√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

.
(
δ3 + δ1−α/2

√
| ln δ|

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

+
(
δ−α/2 + δ−β/2

)(
δ3+α/4 + δ1−α/4

√
| ln δ|

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.
(
δ3 + δ3+α/4−β/2

+ δ1−α/4−β/2
√

| ln δ|+ δ1−α/2
√
| ln δ|

)∥∥∥∥∥
ψ̂√
|ρ0|

∥∥∥∥∥
L2(∆)

.

Remark 4. From Theorems 4.10 and 4.12, we see that the amplitude of the excited
surface plasmon in the frequency band ∆ depends mainly on α and β, or the real part
ε′m and imaginary part ε′′m of the metal relative permittivity. To have strong surface
plasmon excitation, one needs to have small ε′′m and |ε′m|.

Remark 5. The approach in this paper relies on the assumption that |ε′m| � 1,
for which the skin depth of the metal is much smaller than the wavelength. It does not
apply to the case when |ε′m| = O(1). We expect some other interesting phenomenon
to occur in such scenario. We leave it as an open problem for future investigation.

4.4. Solution of the operator equation (4.1). Now we apply the mathemat-
ical framework developed in the previous section to study the solution of the operator
equation (4.1). From the discussions in section 4.1, the solution of the operator equa-
tion (4.1) can be decomposed as ϕ = ϕ0 + ϕ1, where ϕ0 = ϕ00 · χ(δ,∞) and ϕ00 is
given by (4.2). In addition, ϕ1 satisfies the operator equation

Dϕ1 = p, where p := D̃ϕ00 −Dϕ0.(4.43)

Lemma 4.13. Let p be defined in (4.43); then p = p1 + p2 + p3, and the following

asymptotic expansions hold for x1 > δ:

p1(x1) = ϕ′′
00(0) · p1,0(x1) · εmδ3 +O(δ4+α/2) in H1/2(Γ+

δ ),

p2(x1) = ϕ00(0) · p2,0(x1) +O
(
δ3−α/2

√
| ln δ|)

)
in H1/2(Γ+

δ ),

p3(x1) = − 1

2π

∫ ∞

−∞

χ∆(ξ)

ρ0(ξ)
(ϕ00 · χ(−δ,δ))

∧(ξ) eiξx1 dξ,

where

‖p1,0‖H1/2(Γ+

δ ) . 1 and ‖p2,0‖H1/2(Γ+

δ ) . δ
√
| ln δ|.

Moreover,

‖p1‖H1/2(Γ+

δ ) . δ3+α/2, ‖p2‖H1/2(Γ+

δ ) . δ1−α/2
√
| ln δ|.
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Proof. We first note from the explicit expression of ϕ00 that

‖ϕ00‖C3(R) .
1√
|ε′m|

= δ−α/2.

Recall that D = Ke
1 +K2 = Ke

1 +K2,0 +K2,1, and thus

p = D̃ϕ00 −Dϕ0 =
[
D̃ϕ00 − (Ke

1 +K2,0)ϕ0

]
−K2,1ϕ0.

More explicitly,

K2,1ϕ0 =

∫ ∞

δ

(
G2,+(x1, 0; y1, 0)−G

(0)
2 (x1, 0; y1, 0)−G

(0)
2 (−x1, 0; y1, 0)

)
ϕ0(y1) dy1,

D̃ϕ00 − (Ke
1 +K2,0)ϕ0 = − 1

2π

∫ ∞

−∞

(
εm

ρm(ξ)
+

1

ρ0(ξ)

)
· (ϕ00 · χ(−δ,δ))

∧(ξ) eiξx1 dξ.

By a parallel calculation in Lemma 4.4, we can decompose p as p = p1 + p2 + p3,
where

p1(x1) = −2

∫ ∞

0

g(x1 + y1 − δ) (ϕ00(y1 + δ)− ϕ00(y1 − δ)) dy1, x1 > δ,

p2(x1) = − 1

2π

∫ ∞

−∞

1− χ∆(ξ)

ρ0(ξ)
(ϕ00 · χ(−δ,δ))

∧(ξ) eiξx1 dξ, x1 > δ,

p3(x1) = − 1

2π

∫ ∞

−∞

χ∆(ξ)

ρ0(ξ)
(ϕ00 · χ(−δ,δ))

∧(ξ) eiξx1 dξ x1 > δ.

The same argument as in Lemma 4.4 leads to the assertion.

Theorem 4.14. Under Assumption 1, further assume that α−β > −6 and β < 2.
Let ϕ00 be defined in (4.2). Then the solution of (4.1) admits the decomposition

ϕ = ϕ0 + ϕ1, where

ϕ0 = ϕ00 · χ(δ,∞) and ϕ1 = D−1p1 +D−1p2 +D−1p3.

In addition,

∥∥∥∥∥
Êϕ1

ρ0

∥∥∥∥∥
L1(∆)

. δ3+
α−β

2 + δ3| ln δ|+ δ1−
3
4
α + δ1−

α
4
− β

2(4.44)

and

∥∥∥∥∥
Êϕ1√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

. δ3 + δ4−
α
4
− β

2 + δ1−α
√
| ln δ|+ δ2−

3α
4
− β

2

√
| ln δ|.(4.45)

Proof. Based on the decomposition of the source function p in Lemma 4.13, we

write the solution of (4.43) as ϕ1 = ϕ
(1)
1 + ϕ

(2)
1 , where

Dϕ
(1)
1 = p1 + p2 and Dϕ

(2)
1 = p3.D
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We apply Theorem 4.10 and Lemma 4.13 for the equation Dϕ
(1)
1 = p1 + p2 to obtain

the following estimates:

∥∥∥∥∥∥

̂
Eϕ

(1)
1

ρ0

∥∥∥∥∥∥
L1(∆)

.
(
δ−α/2| ln δ|+ δ−β/2

)(
δ3+α/2 + δ1−α/2

√
| ln δ|

)
,

∥∥∥∥∥∥

̂
Eϕ

(1)
1√

1 + |ξ|

∥∥∥∥∥∥
L2(R\∆)

. δ−α/2
(
δ3+α/2 + δ1−α/2

√
| ln δ|

)
= δ3 + δ1−α

√
| ln δ|.

On the other hand, applying Theorem 4.12 to the equation Dϕ
(2)
1 = p3 together with

the estimate

∥∥∥∥∥
̂ϕ00 · χ(−δ,δ))√
|ρ0|

∥∥∥∥∥
L2(∆)

. δ1−α/2

leads to

∥∥∥∥∥∥

̂
Eϕ

(2)
1

ρ0(ξ)

∥∥∥∥∥∥
L1(∆)

.
(
δ−α/2 + δ−β/2

)
δα/4 · δ1−α/2 = δ1−

3
4
α + δ1−

α
4
− β

2 ,

∥∥∥∥∥∥

̂
Eϕ

(2)
1√

1 + |ξ|

∥∥∥∥∥∥
L2(R\∆)

.
(
δ3+

α
2 + δ3+

α
4
− β

2 + δ1−
α
4
− β

2

√
| ln δ|+ δ1−

α
2

√
| ln δ|

)
δ1−α/2

= δ4 + δ4−
α
4
− β

2 + δ2−
3α
4
− β

2

√
| ln δ|+ δ2−α

√
| ln δ|.

The proof is complete by combining the above estimates.

The formulas (4.44) and (4.45) in the above theorem refer to the energy estimate
for the solution of the operator equation (4.1) in the frequency band ∆ and R\∆, re-
spectively. The former corresponds to the energy of the excited surface plasmon wave,
and the latter corresponds to the energy of the nonplasmoinc wave. It is observed
that the surface plasmon resonance is not strong unless α is small and β is positive,
which corresponds to small negative ε′m and extremely small ε′′m.

Finally, as a consequence of the above result, we obtain the following decomposi-
tion for the wave field of the scattering problem (1.1).

Corollary 4.15. Under Assumption 1, further assume that α − β > −6 and

β < 2. Then the solution u to the scattering problem (1.1) admits the decomposition

u = u0 +u1 +u2 for the even incident wave, where u0 is the wave field in the absence

of nano-gap, u1 and u2 correspond the plasmonic and the nonplasmonic part of the

wave field, with the Fourier component localized in the frequency band ∆ and R\∆,

respectively. Moreover, there holds

‖u1(·, 0+)‖L∞(Γ) . δ3+
α−β

2 + δ3| ln δ|+ δ1−
3
4
α + δ1−

α
4
− β

2 ,

‖u2(·, 0+)‖H1/2(Γ) . δ3 + δ4−
α
4
− β

2 + δ1−α
√
| ln δ|+ δ2−

3α
4
− β

2

√
| ln δ|.D
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5. Solution of the integral equation for the odd case. Let us define D :=
Ko

1 +K2 and write the integral equation for the odd case as

Dϕ = −2uio.(5.1)

We would like to apply an analogous perturbation argument as in section 4 to obtain
the solution ϕ. To this end, let D̃ : H−1/2(R+) → H1/2(R+) be given by

D̃ϕ := − 1

2π

∫ ∞

−∞

(
1

ρ0(ξ)
+

εm
ρm(ξ)

)
Ôϕ(ξ)eiξx1 dξ, x1 > 0.

It can be calculated that the solution of D̃ϕ̃0 = −2uio takes the form of

ϕ00 = R · sin(k1x1) · χ(0,∞),(5.2)

where the coefficient R = − 2ρ0(k1)ρm(k1)
ρm(k1)+εmρ0(k1)

. Now if one decomposes the solution of

(5.1) as ϕ = ϕ0 + ϕ1, where ϕ0 = ϕ00 · χ(δ,∞), then it is clear that ϕ1 satisfies the
equation

Dϕ1 = D̃ϕ00 −Dϕ0.(5.3)

In order to distinguish the frequency component near and away from the surface
plasmon frequency when solving the operator equation (5.3), we introduce the oper-
ator D0 : H̃−1/2(Γ+

δ ) → H1/2(Γ+
δ ) that excludes the surface plasmonic resonances by

letting

D0ϕ := (Ko
1,0 +K2)ϕ = − 1

2π

∫ ∞

−∞

(
1− χ∆(ξ)

ρ0(ξ)
Ôϕ(ξ) +

εm
ρm(ξ)

e−iδξÊϕ(ξ)

)
eiξx1 dξ.

Following the argument in Proposition 4.1, it holds that D0 is invertible. As such
(5.3) can be rewritten as

ϕ1 +D−1
0 Ko

1,1ϕ1 = D−1
0 f, where f = D̃ϕ00 −Dϕ0.(5.4)

We discuss the solution of the above operator equation in the rest of this section.
The derivation shares similarities with the one for the even case, and we skip some of
technical calculations for conciseness.

5.1. Solution of D0φ=K
o

1,1
ψ. For a function ψ that satisfies ‖ Ôψ√

|ρ0|
‖L2(∆)

<∞, consider solving the operator equation

D0φ = Ko
1,1ψ.(5.5)

We decompose the operator D0 as D0 = D0,0 +D0,1, where

D0,0 := (Ko
1,0 +K2,0) and D0,1 := K2,1.(5.6)

Define the operator D̃0,0 : H−1/2(R+) → H1/2(R+) as

D̃0,0ψ(x1) = − 1

2π

∫ ∞

−∞

(
1− χ∆(ξ)

ρ0(ξ)
+

εm
ρm(ξ)

)
Ôψ(ξ) eiξx1 dξ, x1 > 0.(5.7)
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Let φ00,ψ(x1) be a function over the whole real line such that its Fourier transform is
given by

φ̂00,ψ(ξ) =
χ∆(ξ) · Ôψ(ξ)

ρ0(ξ)

(
εm

ρm(ξ)
+

1− χ∆(ξ)

ρ0(ξ)

) =
ρm(ξ)

ρ0(ξ)εm
· Ôψ(ξ) · χ∆(ξ).(5.8)

Then φ00,ψ is a smooth and odd function, and it holds that

‖φ̂00,ψ‖L1(∆) .
1√
|ε′m|

∥∥∥∥∥
Ôψ√
|ρ0|

∥∥∥∥∥
L2(∆)

and ‖φ00,ψ‖C2(R) .
1√
|ε′m|

∥∥∥∥∥
Ôψ√
|ρ0|

∥∥∥∥∥
L2(∆)

.

(5.9)

Let φ00,+ = φ00,ψ|(0,∞); then it follows that

D̃0,0 φ00,+ = Ko
1,1ψ,(5.10)

where we have extended Ko
1,1 naturally to R+. If one decomposes the solution φ of

the operator equation (5.5) as φ0+φ1, where φ0 = φ00,ψ ·χ(δ,∞), then φ1 satisfies the
equation

D0φ1 = q, where q := D̃0,0 φ00,+ −D0φ0.(5.11)

Lemma 5.1. Let q be defined in (5.11); then q(x1) = q1(x1) + q2(x1), where

q1(x1) = −2

∫ ∞

0

g(x1 + y1 − δ) (φ00,ψ(y1 + δ)− φ00,ψ(y1 − δ)) dy1(5.12)

− 4

∫ ∞

0

g(x1 + y1)φ00,ψ(y1) dy1

+4

∫ δ

0

g(x1 − y1)φ00,ψ(y1) dy1, x1 > δ,

q2(x1) = − 1

2π

∫ ∞

−∞

1− χ∆(ξ)

ρ0(ξ)
(φ00,ψ · χ(−δ,δ))

∧(ξ) eiξx1 dξ, x1 > δ.(5.13)

In addition, the following asymptotic expansions hold for x1 > δ:

q1(x1) = φ′00,ψ(0) · q1,0(x1) · εmδ2 +O(εmδ
3) · ‖φ00,ψ‖C2(R),(5.14)

q2(x1) = φ′00,ψ(0) · q2,0(x1) +O
(
δ3
√

ln(1/δ)
)
· ‖φ00,ψ‖C2(R),(5.15)

where

‖q1,0‖H1/2(Γ+

δ ) . 1 and ‖q2,0‖H1/2(Γ+

δ ) . δ2
√
| ln δ|.

Proof. Define the operator D̄0,0 : H−1/2(R+) → H1/2(R+) as

D̄0,0ψ(x1) = − 1

2π

∫ ∞

−∞

(
1− χ∆(ξ)

ρ0(ξ)
Ôψ(ξ) +

εm
ρm(ξ)

Êψ(ξ)

)
eiξx1 dξ, x1 > 0.

(5.16)

We write q as

q =
(
D̃0,0 φ00,+ − D̄0,0 φ00,+

)
+
(
D̄0,0 φ00,+ −D0φ0

)
=: J1 + J2.
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For x1 > δ,

J1(x1) = D̃0,0 φ00,+ − D̄0,0 φ00,+

= − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

(
Ôφ00,+(ξ)− Êφ00,+(ξ)

)
eiξx1 dξ

= − 1

π

∫ ∞

−∞

εm
ρm(ξ)

(φ00,ψ · χ(−∞,0))
∧(ξ) eiξx1 dξ

= 4

∫ 0

−∞
g(x1 − y1)φ00,ψ(y1) dy1

= −4

∫ ∞

0

g(x1 + y1)φ00,ψ(y1) dy1.(5.17)

Note that D0 = D0,0 +D0,1, and we have

J2 = D̄0,0 φ00,+ −D0,0φ0 −D0,1φ0.(5.18)

For x1 > δ,

D̄0,0 φ00,+ −D0,0φ0

= − 1

2π

∫ ∞

−∞

[
1− χ∆(ξ)

ρ0(ξ)

(
O(φ00,ψχ(0,δ))

)∧
(ξ)+

εm
ρm(ξ)

(
E(φ00,ψχ(0,δ))

)∧
(ξ)

]
eiξx1 dξ

= − 1

2π

∫ ∞

−∞

1− χ∆(ξ)

ρ0(ξ)
(φ00,ψ · χ(−δ,δ))

∧(ξ) eiξx1 dξ

− 1

2π

∫ ∞

−∞

εm
ρm(ξ)

(
E(φ00,ψχ(0,δ))

)∧
(ξ)eiξx1 dξ.

Further calculation yields

− 1

2π

∫ ∞

−∞

εm
ρm(ξ)

(
E(φ00,ψχ(0,δ))

)∧
(ξ) eiξx1 dξ

= − 1

2π

∫ ∞

−∞

εm
ρm(ξ)

(φ00,ψ · χ(−δ,δ))
∧(ξ) eiξx1 dξ

+
1

π

∫ ∞

−∞

εm
ρm(ξ)

(φ00,ψ · χ(−δ,0))
∧(ξ) eiξx1 dξ

= 2

∫ δ

−δ
g(x1 − y1)φ00,ψ(y1) dy1 − 4

∫ 0

−δ
g(x1 − y1)φ00,ψ(y1) dy1.

Thus

D̄0,0 φ00,+ −D0,0φ0 = − 1

2π

∫ ∞

−∞

1− χ∆(ξ)

ρ0(ξ)
(φ00,ψ · χ(−δ,δ))

∧(ξ) eiξx1 dξ(5.19)

+ 2

∫ δ

−δ
g(x1 − y1)φ00,ψ(y1) dy1

− 4

∫ 0

−δ
g(x1 − y1)φ00,ψ(y1) dy1.
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On the other hand, from Lemma 4.4, it is known that

D0,1φ0 = 2

∫ ∞

0

g(x1 + y1 − δ) (φ00,ψ(y1 + δ)− φ00,ψ(y1 − δ)) dy1(5.20)

+ 2

∫ δ

−δ
g(x1 + y1)φ00,ψ(y1) dy1

= 2

∫ ∞

0

g(x1 + y1 − δ) (φ00,ψ(y1 + δ)− φ00,ψ(y1 − δ)) dy1

− 2

∫ δ

−δ
g(x1 − y1)φ00,ψ(y1) dy1.

Then (5.12) and (5.13) follow by combining (5.17)–(5.20). The asymptotics of q1 and
q2 can be obtained in an analogous way as in Lemma 4.4, by noting that φ00,ψ is now
an odd function.

Theorem 5.2. Let φ be the solution of the equation D0φ = Ko
1,1ψ. Let φ00,ψ be

defined by

φ̂00,ψ(ξ) =
ρm(ξ)

ρ0(ξ)εm
· Ôψ(ξ) · χ∆(ξ).

Then φ = φ0 + φ1, where

φ0 = φ00,ψ · χ(δ,∞),

φ1 = φ′00,ψ(0) ·
(
δ2+α ·D−1

0 q1,0 + δ2
√
| ln δ| ·D−1

0 q2,0

)
+D−1

0 qh

=: φ′00,ψ(0) · δ2+α ·D−1
0 q0 +D−1

0 qh.

In addition,

‖φ00,ψ‖C2(R) . δ−
α
2 ·
∥∥∥∥∥
Ôψ√
|ρ0|

∥∥∥∥∥
L2(∆)

,

‖q1,0‖H1/2(Γ+

δ ) . 1, ‖q2,0‖H1/2(Γ+

δ ) . 1, ‖q0‖H1/2(Γ+

δ ) . 1,

‖qh‖H1/2(Γ+

δ ) . δ3+α‖φ00,ψ‖C2(R) . δ3+
α
2

∥∥∥∥∥
Ôψ√
|ρ0|

∥∥∥∥∥
L2(∆)

,

‖φ1‖H1/2(Γ+

δ ) . δ2

∥∥∥∥∥
Ôψ√
|ρ0|

∥∥∥∥∥
L2(∆)

.

5.2. Solution of Dϕ = f and excitation of surface plasmon. Let us in-
troduce the function space

V1 =

{
ϕ ∈ H̃−1/2(Γ+

δ ) :

∫
1

|ρ0(ξ)|
|Ôϕ(ξ)|2 dξ <∞

}
.

First, by a parallel proof as in Theorem 4.2, it can be shown that D is invertible, and
the following holds for the solution of the operator equation Dϕ = f :

∥∥∥∥∥
Ôϕ√
|ρ0|

∥∥∥∥∥
L2(∆)

. ‖ϕ‖V1
.

|ε′m|
ε′′m

‖f‖V2
= O(δα−β)‖f‖V2

.(5.21)

Following (5.4), the operator equation Dϕ = f is recast as

ϕ+D−1
0 Ko

1,1ϕ = D−1
0 f.(5.22)
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Using Theorem 5.2, it follows that D−1
0 Ko

1,1ϕ = φ00χ(δ,∞) + φ1, where φ00 is defined
by

φ̂00(ξ) =
ρm(ξ)

ρ0(ξ)εm
· Ôϕ(ξ) · χ∆(ξ),

and
φ1 = δ2+α · φ′00(0) ·D−1

0 q0 +D−1
0 qh.

Moreover, in light of the estimates (5.9) and (5.21), we have

‖φ̂00‖L1(∆) .
|ε′m| 12
ε′′m

‖f‖V2
, ‖φ00‖C2(R) .

|ε′m| 12
ε′′m

‖f‖V2
.(5.23)

Substituting into (5.22) and extending both sides of the above equation as odd
functions over the whole real line, we obtain

Oϕ+ φ00(1− χ(−δ,δ)) + δ2+α · φ′00(0) ·OD−1
0 q0 +OD−1

0 qh = O(D−1
0 f).

This is equivalent to the following equation in the Fourier domain:

Ôϕ(ξ) + φ̂00(ξ) + Q̂(ξ) = (OD−1
0 f)∧(ξ),(5.24)

where

Q̂(ξ) := −(φ00χ(−δ,δ))
∧(ξ) + δ2+α · φ′00(0) · (OD−1

0 q0)
∧(ξ) + (OD−1

0 qh)
∧(ξ).

Note that the Taylor expansion gives

(φ00χ(−δ,δ))
∧(ξ) = φ′00(0) · q̂1(ξ) + q̂2(ξ),

where q̂1(ξ) = δ sin(δξ)/ξ, and it holds that

‖q̂1(ξ)‖L2(∆) . δ2,

∥∥∥∥∥
1√

1 + |ξ|
q̂1(ξ)

∥∥∥∥∥
L2(R)

. δ2
√

| ln δ|,

‖q̂2‖L2(∆) . ‖φ00‖C2(R) · δ3,
∥∥∥∥∥

1√
1 + |ξ|

q̂2

∥∥∥∥∥
L2(R)

. ‖φ00‖C2(R) · δ3
√

| ln δ|.

Hence Q̂(ξ) may be expressed as

Q̂(ξ) = φ′00(0) ·
[
δ2+α(OD−1

0 q0)
∧(ξ) + q̂1(ξ)

]
+ (OD−1

0 qh + q2)
∧(ξ).(5.25)

Using the formula (5.8), we obtain the Fourier transform of φ̃0 as follows:

φ̂00(ξ) =
ρm(ξ)

ρ0(ξ)εm + ρm(ξ)
·
[
(OD−1

0 f)∧(ξ)− Q̂(ξ)
]
, ξ ∈ ∆.(5.26)

This leads to the following equation for φ′00(0):

Π · φ′00(0) = b,

where

Π =
[
1 + δ2+αA(OD−1

0 q0)) +A(q1)
]
,

b = A(OD−1
0 f)−A(OD−1

0 qh)−A(q2),
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and the functional A is defined by

A(ϕ) :=

∫

∆

iξ · ρm(ξ)

ρ0(ξ)εm + ρm(ξ)
ϕ̂(ξ) dξ.

Now a parallel proof of Lemma 4.9 gives the expansion of φ′00(0) in the following
lemma.

Lemma 5.3. Assume that α− β > −4; then Π and b admit the expansions

Π = 1 +
(
δ−α/2| ln δ|+ δ−β/2

)
·O
(
δ2+α/2

)
,

b = A(OD−1
0 f) +

(
δ−α/2| ln δ|+ δ−β/2

)
·O
(
δ3+α/2

)
‖φ̂00‖L1(∆).

Moreover, the following holds for φ′00(0):

φ′00(0) = A(OD−1
0 f) · (1 + o(1)) +

(
1 + δ−β/2

)
·O
(
δ3+α/2

)
‖φ̂00‖L1(∆).

Remark 6. The assumption that α − β > −4 is used throughout the subsequent
analysis. This assumption is stricter than the one for the even case.

With the above preparation, we are ready to present the solution of the operator
equation Dϕ = f . Again we distinguish two types of source function f when f ∈
H1/2(Γ+

δ ) and

f = − 1

2π

∫ ∞

−∞

χ∆(ξ)

ρ0(ξ)
ψ̂(ξ) eiξx1 dξ.

The estimates for the energy of the solution in the frequency band ∆ and R\∆ are
given in Theorems 5.4 and 5.5, respectively. This can be established by estimating
Q(ξ) using the formula (5.25) and Lemma 5.3, which then leads to the estimation for

φ̂00 and the solution ϕ. The proof is parallel to Theorems 4.10 and 4.12 and we omit
it here for conciseness.

Theorem 5.4. Under Assumption 1, further assume that α − β > −4. If f ∈
H1/2(Γ+

δ ), the following holds for the solution of Dϕ = f :
∥∥∥∥∥
Ôϕ

ρ0

∥∥∥∥∥
L1(∆)

.
(
δ−α/2| ln δ|+ δ−β/2

)
‖f‖H1/2(Γ+

δ ) ,

∥∥∥∥∥
Ôϕ√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

. δ−α/2 ‖f‖H1/2(Γ+

δ ) .

Theorem 5.5. Under Assumption 1, further assume that α− β > −4. If

f =− 1

2π

∫ ∞

−∞

χ∆(ξ)

ρ0(ξ)
ψ̂(ξ) eiξx1 dξ,

where ψ̂(ξ) is odd and ‖ ψ̂√
ρ0
‖
L2(∆)

< ∞, then the following holds for the solution of

Dϕ = f :
∥∥∥∥∥
Ôϕ

ρ0

∥∥∥∥∥
L1(∆)

.
(
δ−α/2 + δ−β/2

)
δα/4

∥∥∥∥∥
ψ̂√
ρ0

∥∥∥∥∥
L2(∆)

,

∥∥∥∥∥
Ôϕ√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

.
(
δ2 + δ2+

α
4
− β

2

)∥∥∥∥∥
ψ̂√
ρ0

∥∥∥∥∥
L2(∆)

.
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5.3. Solution of the operator equation (5.1). We decompose the solution
of the operator equation (5.1) as ϕ = ϕ0 + ϕ1, where ϕ0 = ϕ00 · χ(δ,∞) and ϕ00 is
given by (5.2). In addition, ϕ1 satisfies the operator equation

Dϕ1 = p, where p := D̃ϕ0 −Dϕ0.(5.27)

From a parallel calcuation as in Lemma 5.1, we obtain the following lemma.

Lemma 5.6. Let p be defined in (5.27); then p = p1 + p2 + p3, and the following

asymptotic expansions hold for x1 > δ:

p1(x1) = ϕ′
00(0) · p1,0(x1) · εmδ2 +O(δ3+α/2) in H1/2(Γ+

δ ),

p2(x1) = ϕ′
00(0) · p2,0(x1) +O

(
δ3−α/2

√
| ln δ|)

)
in H1/2(Γ+

δ ),

p3(x1) = − 1

2π

∫ ∞

−∞

χ∆(ξ)

ρ0(ξ)
(ϕ00 · χ(−δ,δ))

∧(ξ) eiξx1 dξ,

where

‖p1,0‖H1/2(Γ+

δ ) . 1 and ‖p2,0‖H1/2(Γ+

δ ) . δ2
√
| ln δ|.

Moreover,

‖p1‖H1/2(Γ+

δ ) . δ2+α/2 and ‖p2‖H1/2(Γ+

δ ) . δ2−α/2
√
| ln δ|.

Theorem 5.7. Under Assumption 1, further assume that α − β > −4. Let ϕ00

be defined in (5.2). Then the solution of (5.1) admits the decomposition ϕ = ϕ0+ϕ1,

where

ϕ0 = ϕ00 · χ(δ,∞) and ϕ1 = D−1p1 +D−1p2 +D−1p3.

In addition,

∥∥∥∥∥
Êϕ1

ρ0

∥∥∥∥∥
L1(∆)

. δ2+
α−β

2 + δ1−
α
4
− β

2 and

∥∥∥∥∥
Êϕ1√
1 + |ξ|

∥∥∥∥∥
L2(R\∆)

. δ2 + δ3−
α
4
− β

2 .

Proof. Based on the decomposition of the source function p in the above lemma,

we decompose the solution of (5.27) as ϕ1 = ϕ
(1)
1 + ϕ

(2)
1 , where

Dϕ
(1)
1 = p1 + p2 and Dϕ

(2)
1 = p3.

Now if one applies Theorem 5.4 for the equation Dϕ
(1)
1 = p1+p2, it follows that from

the estimate in Lemma 5.6 that

∥∥∥∥∥∥

̂
Oϕ

(1)
1

ρ0(ξ)

∥∥∥∥∥∥
L1(∆)

.
(
δ−α/2| ln δ|+ δ−β/2

)
‖p1 + p2‖H1/2(Γ+

δ )

.
(
δ−α/2| ln δ|+ δ−β/2

)
δ2+α/2,

∥∥∥∥∥∥

̂
Oϕ

(1)
1√

1 + |ξ|

∥∥∥∥∥∥
L2(R\∆)

. δ−α/2 ‖p1 + p2‖H1/2(Γ+

δ ) . δ2.
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On the other hand, applying Theorem 5.5 to the equation Dϕ
(2)
1 = p3, we obtain

∥∥∥∥∥∥

̂
Oϕ

(2)
1

ρ0(ξ)

∥∥∥∥∥∥
L1(∆))

.
(
δ−α/2 + δ−β/2

)
δα/4

∥∥∥∥∥
̂ϕ00 · χ(−δ,δ))

ρ0

∥∥∥∥∥
L2(∆)

.
(
δ−α/2 + δ−β/2

)
δ1−α/4,

∥∥∥∥∥∥

̂
Oϕ

(2)
1√

1 + |ξ|

∥∥∥∥∥∥
L2(R\∆)

.
(
δ2+δ2+

α
4
− β

2

)∥∥∥∥∥
̂ϕ00 · χ(−δ,δ))

ρ0

∥∥∥∥∥
L2(∆)

.
(
δ2+δ2+

α
4
− β

2

)
δ1−α/2.

The proof is complete by combining the above estimation.

Corollary 5.8. Under Assumption 1, further assume that α − β > −4. Then

the solution u to the scattering problem (1.1) admits the decomposition u = u0+u1+u2
for the odd incident wave, where u0 is the wave field in the absence of nano-gap, and

u1 and u2 correspond the plasmonic and the nonplasmonic part of the wave field, with

the Fourier component localized in the frequency band ∆ and R\∆, respectively. In

addition, there holds

‖u1(·, 0+)‖L∞(Γ) . δ2+
α−β

2 + δ1−
α
4
− β

2 , ‖u2(·, 0+)‖H1/2(Γ) . δ2 + δ3−
α
4
− β

2 .

Appendix A. Proof of Lemma 3.1. We first prove some auxiliary results.

Lemma A.1. For any L2 even function f : R → R, we have

‖〈x〉− 1
2H(〈y〉 1

2 f)‖2 . ‖f‖2,

where H is the usual Hilbert transform on R and 〈x〉 = (1 + x2)
1
2 .

Proof. First observe that the regime |y| . 1 is easily handled. Therefore we may
assume that f is supported in |y| & 1. It then suffices for us to prove the inequality
(for f even and supported in |y| & 1):

‖|x|− 1
2H(|y| 12 f)‖2 . ‖f‖2.

By using parity, this is equivalent to showing
∥∥∥∥∥x

− 1
2PV

∫

y∈(0,∞)

x

x2 − y2
y

1
2 f(y)dy

∥∥∥∥∥
L2(0,∞)

. ‖f‖L2(0,∞).

Now introduce change of variable x = et, y = es, y
1
2 f(y) = f̃(s), x

1
2 f(x) = f̃(t). Note

that s, t ∈ R. Then we just need to show
∥∥∥∥PV

∫
K(t− s)f̃(s)ds

∥∥∥∥
L2(R)

. ‖f̃‖2,

where the kernel K is given by

K(z) =
1

ez − e−z
.

It is easy to check that K is a standard Calderon–Zygmund operator (in particular K
is an odd function and the Hörmander gradient condition |K ′(z)| . |z|−2 on R \ {0}
is obviously true). The desired result then easily follows.
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Lemma A.2. Suppose f ∈ H− 1
2 (R) and f is supported on (0,∞). Then

‖f‖
H− 1

2 (R)
. ‖Ef‖

H− 1
2 (R)

.

Proof. Denote g = Ef ; then obviously f = g · χ(0,∞), i.e., f is simply the restric-

tion of g to the half line. Denote g = 〈∇〉 1
2h with h ∈ L2; then the desired inequality

is equivalent to

‖〈∇〉− 1
2χ(0,∞)〈∇〉 1

2h‖2 . ‖h‖2.

Observe that the Fourier transform of χ(0,∞) is simply the sum of a delta distribution
and the Hilbert transform. The contribution of the delta part is harmless. Now denote
F = ĥ. Then we only need to show for even function F : R → R

‖〈x〉− 1
2H(〈y〉 1

2F )‖2 . ‖F‖2.

The result then follows from Lemma A.1.

Proof of Lemma 3.1. It is straightforward to check that

Êϕ(ξ) = ϕ̂(ξ) + ϕ̂(−ξ), Ôϕ(ξ) = ϕ̂(ξ)− ϕ̂(−ξ)

and

||Eϕ||H−1/2(R) . ||ϕ||
H̃− 1

2 (Γ+

δ )
, ||Oϕ||H−1/2(R) . ||ϕ||

H̃− 1
2 (Γ+

δ )
.

On the other hand, Lemma A.2 implies that

||ϕ||
H̃− 1

2 (Γ+

δ )
. ||Eϕ||H−1/2(R).

A similar argument as in Lemmas A.1 and A.2 yields that

||ϕ||
H̃− 1

2 (Γ+

δ )
. ||Oϕ||H−1/2(R).

This completes the proof of Lemma 3.1.

Appendix B. Proof of Lemma 4.8.

Proof. We first prove (4.31). Let

r(ξ) :=
ρ0(ξ)εm
ρm(ξ)

and w(ξ) :=
ρ0(ξ)εm + ρm(ξ)

ρm(ξ)
= 1 + r(ξ).

Without loss of generality, we assume that k = 1 and write εm = −a + bi, where
a, b > 0 and a� 1, b > 0, and a� b.

For ξ ∈ (0, 1), note that ρ0 = i
√
1− ξ2 and it can be shown that |Re r| ∼ O(b/a).

Thus

|w| = |1 + r| ≥ 1−O(b/a) > 1/2.

On the other hand,

Im r(ξ) ≥
√
1− ξ2 · a

2
√
1 + a

.

We obtain
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∫ 1

0

1

|w(ξ)|2
dξ ≤

∫ 1−1/a

0

1

|Im r(ξ)|2 dξ +
∫ 1

1−1/a

1

|w(ξ)|2 dξ .
1

a
ln a.(B.1)

Next, we aim to show

∫ 2

1

1

|w(ξ)|2
dξ .

1

|b| .(B.2)

To this end, note that

1

ρm
=

1√
ξ2 + a− bi

=
1√
ξ2 + a

(
1 +

b

2(ξ2 + a)
i+

3b2

4a2
+O

(
b3

a3

))
.

Let t = t(ξ) =

√
ξ2−1√
ξ2+a

. Then 1 ≤ ξ ≤ 2 is equivalent to 0 ≤ t ≤
√

3
a+4 . Moreover, we

have

Re r(ξ) = t

(
−a− b2

2(ξ2 + a)
+O

(
b2

a2

))
= −t

(
a+O

(
b2

a

))
,

Im r(ξ) = t

(
b− ab

2(ξ2 + a)
+O

(
b3

a2

))
.

Therefore, |Im r(ξ)| ≥ 2tb
3 . It follows that

|1 + r(ξ)|2 ≥ |1 + Re r(ξ)|2 + |Im r(ξ)|2 ≥ (1− ta)2 +
1

4
t2b2.

On the other hand, since t = t(ξ) =
√

ξ2−1
ξ2+a , we have

ξ =

√
at2 + 1

1− t2
.

A direct calculation shows that |ξ′(t)| . at. Therefore

∫ 2

1

1

|w(ξ)|2
dξ =

∫ 2

1

1

(1 + |r(ξ)|)2 dξ ≤
∫ √

3
a+4

0

at d t

(1− at)2 + 1
4 t

2b2
.

We now consider three regions: I1 = {0 ≤ t ≤ 1
a+ b

2

}, where |1 − ta| ≥ tb
2 ;

I2 = { 1
a+ b

2

≤ t ≤ 1
a− b

2

}, where |1 − ta| ≤ tb
2 ; and I3 = { 1

a− b
2

≤ t ≤
√

3
a+4}, where

|1− ta| ≥ tb
2 . We have

∫

I1

at d t

(1− at)2 + 1
4 t

2b2
≤
∫

I1

at d t

(1− at)2
=

1

a

∫ a
a+b/2

0

t d t

(1− t)2
.

1

b
,

∫

I2

at d t

(1− at)2 + 1
4 t

2b2
≤
∫

I2

at d t

t2b2
=

∫

I2

a d t

tb2
.

1

b
,

∫

I3

at d t

(1− at)2 + 1
4 t

2b2
≤
∫

I3

at d t

(1− at)2
=

1

a

∫ √
3

a+4

a
a−b/2

t d t

(1− t)2
.

1

b
.

It follows that
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∫ 2

0

1

|w(ξ)|2
dξ =

∫ 1

0

1

|w(ξ)|2
dξ +

∫ 2

1

1

|w(ξ)|2
dξ .

1

a
ln a+

1

b
,

which proves the desired estimate (4.31).
We now prove (4.32). First,

∫ 1

0

1

|w(ξ)|2
√
1− ξ2

dξ ≤
∫ 1−1/a

0

1

|Imw(ξ)|2
√
1− ξ2

dξ +

∫ 1

1−1/a

1

|w(ξ)|2
√
1− ξ2

dξ

.

∫ 1−1/a

0

1

a(1− ξ2)3/2
dξ +

∫ 1

1−1/a

1√
1− ξ2

dξ

.
1√
a
.

On the other hand, note that for 1 ≤ ξ ≤ 2,

√
ξ2 − 1 = t

√
ξ2 + a ≤ t

√
4 + a . 2t

√
a.

Therefore,

∫ 2

1

1

|w(ξ)|2
√
ξ2 − 1

dξ ≤
∫ √

3
a+4

0

at d t[
(1− at)2 + 1

4 t
2b2
]
· 2t√a

=

∫ √
3

a+4

0

√
a d t

(1− at)2 + 1
4 t

2b2
.

It is straightforward to show that

∫

I1

√
ad t

(1− at)2 + 1
4 t

2b2
≤
∫

I1

√
ad t

(1− at)2
.

√
a

b
,

∫

I2

√
ad t

(1− at)2 + 1
4 t

2b2
≤
∫

I2

√
ad t

t2b2
=

∫

I2

a d t

tb2
.

√
a

b
,

∫

I3

√
ad t

(1− at)2 + 1
4 t

2b2
≤
∫

I3

√
ad t

(1− at)2
.

√
a

b
.

Hence we have ∫ 2

0

1

|w(ξ)|2 |
√
1− ξ2|

dξ .
1√
a
+

√
a

b
,

which proves (4.32). Finally, the proof of (4.33) is similar.
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