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Abstract. We develop a mathematical theory for the excitation of surface plasmon resonance
on an infinitely thick metallic slab with a nano-gap defect. Using layer potential techniques, we
establish the well-posedness of the underlying scattering problem. We further obtain the asymptotic
expansion of the scattering solution in order to characterize the leading-order term of the surface
plasmonic waves, and derive sharp estimates for both the plasmonic and nonplasmonic parts of the
solution. The explicit dependence of the surface plasmon resonance on the size of the nano-gap, and
the real and imaginary parts of the metal dielectric constant, are given.
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1. Introduction. Surface plasmonics is an emerging field in photonics which
studies the coupling of optical light with collective oscillations of free electron density
on a metal-dielectric interface or localized metallic nano-structures. The resonant
coupling induces the so-called surface plasmon resonance, which enables localization
of electromagnetic field at the subwavelength scale as well as enhancement of optical
scattering and absorption. Many important applications in bio-sensing and design of
novel optical devices have been proposed based on these remarkable optical properties
[15, 19, 20, 24]. There are two types of surface plasmon resonance: (i) localized res-
onance which occurs on metal nano-structures with finite size such as nano-particles;
(ii) surface plasmon polariton which occurs on an infinite metal-dielectric interface
with surface waves propagating along the surface. The mathematical theory for
the first type of plasmon resonance relies on the analysis of the spectrum for the
Neumann—Poincaré operators. This has been investigated extensively recently (see
[2, 6, 8, 10, 11, 16, 17, 18] and the references therein). We also refer the reader to
[4, 5, 7] for the applications of localized surface plasmon in meta-surface and bio-
sensing. Regarding to the second type of plasmon resonance, it is well known that
certain defects or corrugations have to be created along the metal-dielectric interface
in order to excite surface plasmon with an incident plane wave [24, 26]. However, no
rigorous mathematical theory has yet been developed for the corresponding plasmon
resonance.

In this paper, we investigate a setup where the defect along the metal-dielectric
interface is formed by a nano-slit filled with perfect conducting materials, and we
present rigorous mathematical analysis for the surface plasmon resonance induced
by the small defect. The study is motivated by recent attempts to understand light
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interactions with subwavelength hole structures and the so-called extraordinary op-
tical transmission (EOT) [15, 28]. This topic has drawn increasing interest in optics
research since the report [14] by Ebbesen et al. Various resonance mechanisms can
lead to the EOT phenomenon. In a series of studies [20, 21, 22, 23], we have estab-
lished rigorous mathematical theories for EOT in nano-slit structures perforated in a
perfectly conducting metallic slab. We also refer to [9, 12, 29, 30] for resonant scat-
tering in several other perfect conducting or dielectric slab structures. However, as
of today, a rigorous mathematical theory for resonances through plasmonic metallic
nano-holes remains open. In such a scenario, both the surface plasmon mode sup-
ported along the metal-dielectric interface and the cavity resonant modes supported
in the hole structure can play a role in EOT through the nano-holes. This paper is
the first step toward a complete understanding of resonances for such a problem. The
conceptually simplified model proposed in this paper excludes the complications in-
duced by the interaction between the surface plasmon modes and the cavity resonant
modes and hence allows us to focus on the former only. By capturing the essence of
physics, the mathematical analysis provides insight into the underlying mechanism
of the surface plasmon resonance. In addition, we expect that the mathematical ap-
proach developed here can be generalized to the study of surface plasmon resonance
with other types of defects.

To be more specific, we consider the two-dimensional model where the medium
consists of two layers that are separated by the interface I' = {(x1, z2) | z2 = 0}. The
top layer is a vacuum that occupies the upper half plane € := {(z1,22) | 2 > 0}, and
the bottom layer is a metal that occupies the lower half plane Q5 := {(z1,x2) | z2 < 0}.
The relative permittivity € on the xy25 plane is given by

1, x €0,

e(x) =
(z) Em, T E o,

where €, = €, + i¢e!), is the relative permittivity for the metal. Note that ¢, is a
complex number depending on the frequency through the following Drude’s model [27]:

2
Wy

emW)=1— ——2
) w(w + iv)

where w), is the plasmon frequency of the metal and v is the damping coefficient.
Here we are interested in the frequency range where the real part €/, is negative and
it holds that |e/,| > 1 and |e},,| > |e/7 |. This is true for noble plasmonic metals such
as gold and silver in the optical frequency regime. More precisely, throughout the

paper, we assume the following holds.
Assumption 1. €, <0, el >0, |el | > 1, and |e],| > |el].

The lower half plane is perturbed by an infinitely long and perfectly conducting
nano-slit S§° := {(z1,22) | —d < 21 < J,—00 < x3 < 0}, whose boundary consists of
three segments I'}, I';, and I';", respectively as shown in Figure 1. Then the remaining
parts of Qy consist of two disjoint semi-infinite domains 2, and Q3. We denote the
left and right segments of the metal-vacuum interface by I'y and Fj{, respectively,
with the presence of the slit.

Throughout the paper, it is assumed that the slit width is much smaller than
the incident wavelength such that § << A. For convenience of asymptotic analysis, we
write

gl =%, &l =4,

m m
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Fic. 1. Geometry of the model. The domain of vacuum and metal is denoted by Q1 and Qa,
respectively. The infinitely long and perfectly conducting slit Ss perforated in the slab Q2 has a width
of 20. The remaining part of the metal consists of two disjoint semi-infinite domains Q5 and Q;‘
The scaling of the geometry is given by § < .

where the §-dependent variables «, 8 are defined by

"
_Infe _Inel,

_ ml
@) ==Tipe 0 PO = Ty

In the main results, we further impose the condition that « — 8 > —6 and 8 < 2 for
the even case and that a — 8 > —4 for the odd case. Note that for a fixed &, or
frequency, in the asymptotic limit § — 0, both « and § tend to 0. These additional
conditions are satisfied automatically. Therefore, we expect that our results hold for
a large frequency range that are of interest.

We consider the transverse magnetic polarization when the magnetic field is point-
ing along the invariant z3 direction such that H = (0,0,u). Let u’ be a plane wave
incident from the above and u* := u—u’ be the scattered field. The total field u after
the scattering consist of u* and u® in Q; and u® only in QQi It satisfies the following
equations:

1
V- <—Vu> FRu=0 inQuUQUQ;,
e(w)

(1.1) [u] =0, [l@} =0 onT; UTY,

5:0 onTQUT, UT,
where [] denotes the jump of the quantity when the limit is taken along the positive
and negative unit normal direction v, respectively. Since the metallic structure is
infinite in size, the usual Sommefield radiation condition does not hold for the scat-
tered field. We will enforce the radiation condition given naturally by the associated
Green’s functions.

In this paper, we first formulate the boundary integral equation for the above
scattering problem and establish the existence and uniqueness of the solution. The
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well-posedness for (1.1) with a positive €/, is well-known, while the case with &/, < 0
has not been studied before. Second, we aim to obtain the asymptotic expansion of the
solution to the integral equation and the scattering solution in order to characterize
the leading-order term of the surface plasmonic waves.

The main challenge for the investigation of the scattering problem (1.1) lies in
the infinite length of the slab and the opposite permittivity values for the two me-
dia. These lead to a Fourier integral operator, whose inverse attains complex-valued
poles {4 = +ky/em/(em + 1) in the Fourier domain (see section 3.2 for detailed dis-
cussions). These poles are extremely close to the real axis, and they are associated
with the surface plasmon polariton along the metal-vacuum interface [24]. Therefore,
when solving the scattering problem, the spectral component of the current source is
significantly amplified in the neighborhood the plasmonic frequency Rey. This is
the so-called surface plasmon resonance.

In order to address the above difficulties, we decompose the underlying integral
operator into two frequency bands A := {{|[¢| < 2k} and R\A in the Fourier do-
main. The former contains the plasmonic poles while the latter doesn’t. This allows
for analysis of the solution amplification due to the surface plasmon. Accordingly, the
scattering solution is decomposed into the plasmonic and nonplasmoinc parts. In the
Fourier domain, they correspond to the spectral components of the solution in the fre-
quency band A and R\ A, respectively. In this paper, we shall derive sharp estimates
for the plasmonic and nonplasmonic parts of the solution. Their explicit dependence
on the gap size § and the permittivity value &, will be given in Corollaries 4.15
and 5.8.

The rest of the paper is organized as follows. The integral equation formulation
for the scattering problem (1.1) is derived in section 2. In section 3, we investigate
the integral operators thoroughly and present relevant estimates. The solution of the
integral equation is then studied in sections 4 and 5 when the incident wave is even
and odd with respect to the 1 variable.

2. Integral equation formulation. Let Gi(z,y) be the Green’s function in
the upper layer that satisfies

AG:(z,y) + kG (2,y) zg(x—y), x,y € Q,

78611(3;,3/) =0 on o
vy -

Then

)
Gulw,y) = =7 (HE (ko — y)) + HEY (k12" =)

where H(()l) is the first kind Hankel function of order 0, and 2’ = (x1,—x2). Let
%%(yl,O:t) denote the limit of the function from above and below the interface,
respectively. From the Green’s second identity, one obtains an integral equation for
the scattered field u®:

aus
E(yl,ﬂ—&—)dsy, T e N.

Us(m)Z/FGl(%ZU)
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From the continuity of the single-layer potential and the fact that % =0 on I'Y, it
follows that the total field satisfies

@

(2.1) u(x) = / G1(z,y) = (y1,04) dsy + 2u'(y), = €Ty UTS.
ryurf v

Let G 4 (z,y) be the Green’s function in the domain QF that satisfies

AGZi(xay) + k2€mG2,i(m7y) = Emg(l' - y)7 x,y € QQia

aGZ:ﬁ:(xa y)

=0 r£uri.
Ovy on g

It is easy to check that

Gz (2,y) = G (w1, 22, y1,92) + GY (21, — 2,51, 1)
+ GO (20 — w1, @2, y1,y2) + G (£20 — 21, 2, Y1, Y2),

where Géo)(xl,xg,yl, Y2) 1= emH(gl)(km|m —y|) is the Green’s function in the homo-
geneous medium of metal. By the Green’s second identity, we obtain

1 Ou 4
uw) == [ Goslon) = Ghn0-)ds,. w0,

s

Taking the limit leads to

_ 1 Ju(y) +
(2.2) u(x) = — /Féi Gg,i(x,y)a W(yl,()—) ds,, z€ljy.

Let us define a function p € H~/2(R) by letting

auu(zla 0)7 T1 € (_007 _5) U (57 00)7

p(a1) =
0, X1 € (—(57 5)

From the continuity conditions d,u(z1,0+) = %&,u(xl, 0—) along the interfaces Fg[,
a combination of (2.1) and (2.2) leads to the system of integral equations

s
/ [Gl(xl,o; Y1,0) + Ga, (21, 0; 91, 0)] e(y1) dyr

o0
+/ Gl(‘rho;ylaO)SD(yl)dyl+2Ul:07
(2.3) 0

G1(x1,0;91,0) @(y1) dys

—0o0

+/ {Gl(ﬂ?ho;yh@) + G2,+(1‘1,0;11170)} ©(y1) dyy + 2u* =0,
)

where the first equation holds for z; < —4 and the second holds for z; > 6.
Due to the symmetry of the geometry for the scattering problem, one can decom-
pose the incident wave as a superposition of an even and an odd part and solve (2.3)
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for each part. Thus in what follows, we consider two cases when the incident wave
is even and odd respectively with respect to x1. To this end, let us define

uzé — %(ei(k1x1+kzmz) + ei(—klxl—&-kng)) _ COS(kll‘l) ) eikaQ
and )
ui _ 27Z'(ei(k19£1+kzrz) _ ei(7k1x1+k212)) _ sin(klxl) . pikazs
(i) u' = ul such that ¢(z1) = ¢(—z1). The system (2.3) reduces to the following
integral equation on I‘g:
(2.4)

oo
/ |:G1 (xlu 07 Y1, 0)+G1 (xlu Oa —Y1, 0)+G2,+(m17 07 Y1, 0)i| So(yl) dy1+2ul =0 T > d.
&

(i) u® = u’ such that p(z1) = —¢(—x1). The system reduces to
(2.5)
/ {01(%,0;.@170)—(;1(%1,0; —yh0)+G2,+($170;y1»0)]<ﬁ(y1)dy1+2ui =0 x> 0.
5

Define the integral operators

(2.6) Kip(r) :/ {Gl(ml,o;y1,0)+G1(x1,O; —yl,O)} o) dyr, x1 >0,
)

(2.7) K{p(r1) =/ {Gl(l‘l,o;yuo) — Gi(z1,0; —y1,0)} o) dy, x1 >0,
)

(2.8) Kzsé’(xl):/ G4 (21,0;91,0) p(y1) dyr, a1 > 0.
5

We express the integral equations (2.4) and (2.5) as
(2.9) (K$ + Ka)p = —2u!

iand (K + Ka)p = —2u,
respectively.

3. Analysis of the integral operators. In this section, we analyze the integral
operators K{, K7, and Ky via the spectral decomposition. This leads to the definition
of plasmonic poles and the decomposition of the integral operator into two parts, which
allows for the analysis of the operator in the frequency band with and without the
poles separately.

3.1. Preliminaries. Letting s € R, we denote by H*(R) the standard fractional
Sobolev space with the norm

e gy = / (1+ [¢)*[ae) [de,

where @ is the Fourier transform of u defined by

w(€) == /OO u(zy)e” % day.

— 00

Let I be an interval in R and define

H*(I):={u=Ul; |U € H*(R)}.
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Then H*(I) is a Hilbert space with the norm
lwll sy = mf{|U || =y | U € H*(R) and U|; = u}.
We also define
H(I) :={u="U|; | U € H*(R) and supp U C I}.

One can show that (see [1]) the space H*(I) is the dual of H—*(I) and the norm for
H*(I) can be defined via the duality. As such H*(I) is also a Hilbert space. We refer
to [1] for more details about the fractional Sobolev spaces. In what follows, we are
mostly concerned with the case when s = +1 and I = (6,00) for some § > 0. We
denote

H3(6,00) = H 3(T}), H3(5,00) = H*(T}).

Remark 1. For a given function ¢ € H> (Fg')7 we may associate it with a func-
tion defined over the whole real line that vanishes on R\F[}". Without stating this
explicitly and with the abuse of notation, we denote the new function as ¢ here and
in several places throughout the paper, and it is obvious that ¢ € H —3 (R).

We now define the even and odd extension operators (H~2 (U}) — H~/?(R)) by
letting

Ep(z1) = p(z1) + o(=21), Op(z1) = p(z1) — 9(—21).

It is clear that Fyp and O¢p are an even and an odd function, respectively.

LEMMA 3.1. Let p € ﬁ*%(lﬂ;) where § > 0. Then Ey and Op are an even and
an odd function, respectively, and it holds that

Ep(&) = 2(&) +0(=¢),  O0p(§) = o(&) — &(—9).
Furthermore,
el -3 ory S 1Bl a-12) S 110l g-4 (s
el -3 ey S 10@l-v) S Il -3 o

We postpone the proof of the lemma to the appendix.

3.2. Spectral representation of the integral operators and surface plas-
monic polaritons. It is known that the Hankel functions admit the spectral decom-
position (cf. [13]):

i) LT @@ it (e —w)
——H; (klz —y|) = —— e Po v2)e Y1 deg,
aflo M=l =250 | 900(@ ‘
700 _ LT @) i —)
——H km _ —_ Pm 2—Y2 1=Y1) ,
470 ( |x y|) o | me(g)e € 3

where
pO(g) =V §2 - kQ, pm(ﬁ) =V 52 - k'25m-

With the above spectral decompositions, we may rewrite the operators K7, K7, and
Ko as follows:
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(3.1) KSo(zy) = —%/m W/:O p(y1)e” "Vt dyrdg
5 [ o O+ B e e
- 217r | g Fere

B Kol = [ S [ e dne
5 [ o O - B e e
-5 Z pol(g) Op(€)eis™ de;

(33)  Kap(a1) = _;ﬂ/‘: — +(e£)5(25 “”/6 plyr)e " dydg

=—$ Z p:;f) (B(E) +e7™4p(—¢)) et dg

1 [ en

_ —i8¢ i€y
ST L@t PO

where @5 is defined by

ps(w1) = p(z1 +6).

If § = 0, the symbol (multiplier) associated with the operator K§+ K» is given by
Po(&)em+pm (§)
£0(&)pm (§)
when inverting the operator K{ 4+ Ko, the corresponding symbol will attain poles

at & = £4(k). The poles are associated with the surface plasmon polariton, which
gives rise to eigenmodes that are localized along the metal-vacuum interface [24].
Correspondingly, the spectral component of the current source function is amplified
in the neighborhood of the plasmonic frequency &/, when inverting the operator, and
the surface plasmon is excited. It can be calculated that

(3.4) € = &L +igl,

where &, = k(1+0(1/|¢},|)) and &, = O(ke”, /|e.,|?). Namely, £ lies in the vicinity
of +k.

To address the difficulties induced by the surface plasmonic poles for solving the
integral equation, we decompose the operator K{ by treating the spectral components
with and without the poles separately. To this end, let A := {&]||¢] < 2k} and x be
the corresponding characteristic function. We decompose the operator K7 as

Ki = Kio+Kiy,

, which attains zeros at £y (k) = tkv/em/(em + 1). This implies that

where

o0 1 _
(3.5) Kige(o) = —5- [ p:%(%@(a i€ g,
(30 Kiaston =5 [ g Bt e ae.
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Similarly, the operator K7 is decomposed as

Ky = Kio+ K7y,

where

1 *© 1 — .
(37) Kioplo) = —3- [ 2 X005 e e,
(3.8) K rp(e) = — = [ X280 556 giens e,

7% —00 pO(é-)

It is straightforward that the operators K7, and K7 can be extended to bounded

operators from H~'/2(T'}) to H'/?(R) and hence are bounded from H~'/2(I'}) to
HY2(TY).
We also decompose the operator Ko as

Ky = Koo+ Ko,

where K ( is the corresponding integral operator when § = 0. Namely,

(39) Kopoler) = —3- [ o Fpoe e
(3.10) FKoip(a) = _% [ p:&) (=925 1) B(—€) i€t de,

Equivalently, this gives

(3.11) Ko op(z1) = 2/ (Géo)(fl?ho;yho) + Géo)(*l’l,o;yho)) o(y1) dy,
5

(3.12) K 10(x1) = / (G27+(:z:1,0;y1,0) - 2G(20)(x130;y170)
5
—2050)(—1?1,0;%70)) o(y1) dya,

where GéO) (Il, T2,Y1, y2) = 577LH0(1)(kT)’L|x - y|)
LEMMA 3.2. The operator Ky is bounded from H='/?(T'}) to H/?(T}). Further-

more, the inverse K2_1 exists and there holds

1
ViESE

Proof. For ¢ € ﬁ_l/Q(F;), it is clear that Ks¢ can be extended naturally to
H'?(R). With abuse of notation, we also denote the extension as K. It is straight-
forward to check that Ky bounded from H~'/2(I'}) to H'/?(T'}). We next show that
K> is invertible. Indeed,

1K S

<K2<P7 @>L2(F§r) = <K2<P7 @>L2(R)

B 1/ e~ Bps(€) B(E) dé

_% oo pm(f)
1 0 Em —=— =
=5 | g PO FO
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Noting that E(;; is an even function and s — Eg;g is an odd function, we have

| Bt (70 - Bent@)) de o

Consequently,
L[ em | —— 2
(Kapo) =5 | =0 |Fesl6)] de
Therefore,
1 e m —— 2
(Kapll 2 Re {-o [~ S |ucof ac)
S ’ o 2
(3.13) zc/_ %‘Ew(&)‘

for some universal constant C. Here we have used the fact that |],| > |/} | in the
last inequality. Note that e/, < 0, hence

| m‘ i |€m| 2
S — de > .
/{|§|2>k26;n|} 62 — k2€/ ’ 906(5)‘ § \f {l€12>k2|el |} \/527‘ @6(5)’ g

el 2 el |
/ \ LI : ‘ 5)‘ dg_\”
{I€12<k?|er, [} e

Substituting into (3.13) yields

(K20 0)] > CVIEm] - 1Bl -2y = VTl - I0sl2-1/2 s
_C\/|6l HQOHH 1/2 F+
Therefore, we obtain
(3.14) 120l 120y 2 CV el - el g-1/2 )

It follows that K> is injective and the range Ran(K3) is closed.
A parallel calculation as above shows that the adjoint operator Ko¢* has a similar
property. Especially, Kop* is injective. Thus we have

/{|§|2<k25’ I} \/527 ‘ ‘

(3.15) Ran(K») = (Ker((K2)*)* = {0} = HY*(T}).
From (3.14) and (3.15), we conclude that K> is invertible and
C

ViESE

4. Solution of the integral equation for the even case. In this section,
we develop a mathematical framework for solving the integral equation (2.9) of the
even case and obtain the asymptotic expansion of the solution. In particular, we
characterize the energy of the surface plasmon wave in terms of the gap size § and
the permittivity values €,,. The study for the odd case is presented in section 5.

[iexdl=

4.1. An overview of the methodology. Let us introduce the integral operator

D= K¢ + Ko,
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and the integral equation (2.9) reads

(4.1) Dy = —2u!

e

Let D : H-Y/2(Rt) — HY?(R*) be the sum of K¢ and K, when the slit width
0 = 0. Its spectral representation is given by

o= [T (e ) By
o= 2 /—oo <P0(£) - pm(f)) E@(g)e d§, x> 0.

It follows by a direct calculation that the solution of the integral equation bgooo =
—2u! is given by

(4.2) @oo = R - cos(k121) - X(0,400)>

where the coefficient
200 (k1) pm (k1)
pm (k1) + €mpo(k1)
We view the operator D at the presence of a slit as a perturbation of D. As such
let us decompose the solution of (2.9) as ¢ = pg + @1, where

R=-

©0o = ¥00 " X[6,00)>
and ¢ satisfies

(4~3) Dy, = DﬁPoo — Dyq,

Therefore, with a suitable decomposition of ].5@00 — Dypg to be accomplished in
section 4.4, we will need to investigate the solution of the following integral equation
in order to obtain ¢y:

(4.4) Do = f,

where f lies in some finite energy space to be specified in section 4.3. From the spectral
representation of integral operators in section 3.2, the symbol of the operator D
contains plasmonic poles in the frequency band A = {¢||{| < 2k}. Consequently, the
spectral component of the source function f would be amplified in the neighborhood
of the plasmonic frequency ¢/, when inverting the operator D, and the surface plasmon
resonance OCcurs.

Following the decomposition of the integral operators (3.7)—(3.9), we decompose
the operator D as D = Do + K¢ |, where the operator Dy : H~Y/2(I'}) — HY/*(T'})
is given by

(45) Do = Kle’o'i_KQ.

We can view Dg as a preconditioner for the operator D. It is clear that the symbol
of the operator Dy does not contain plasmonic poles. In fact, it can be shown that
Dy is invertible.

PROPOSITION 4.1. The operator Dy : H=Y/2(T'f) — H'Y?(T'}) is invertible and

there holds 1

viEN

1051 <

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/13/19 to 131.204.214.153. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SURFACE PLASMON RESONANCE BY A NANO-GAP 4459
Proof. From Lemma 3.2, K, ! is invertible and we may rewrite Dy as
Do =Ky - [T+ (K2) 'K o] -

Since [|Kfoll < 1 and [|K; '] <

Therefore,

, it follows that I + K{leO is invertible.

&7 ]

1
&l

To analyze the operator D, we need to introduce two function spaces:

vl{soeﬁf“%r;):/'potf)' Ba(©)? d£<oo},

V= {0 =t : [Im@I(©)F de <o

One can show that V; is a Hilbert space with the norm

Il = | e Bwte)? de

Moreover, one can show that V5 is the dual space of V7.

D5 < |17+ K o) Il <

THEOREM 4.2. The operator D : Vi — V5 is bounded and is invertible. Moreover,

ID7HI <
m
Proof. First, it is straightforward that D is bounded. We need only to show that
D is invertible and the inverse is also bounded. Let ¢ be a solution to Dy = f, we
first show that

< Ikl
el S =201 v
m

Indeed,
(Dp,p) = (Kip, p) + (K20, )
= BT - o [ Z B T de
5 [ o B TO k-5 [ I B0 O
1 /°° 1 ) 1 /°° Em ,
— E g — — E de.
" ) oe )I Ep(¢)| o | pm(g)l Bgs(€)]
Using |/ | > e}, one can show that
Em 1 el Em lel, |

Im > - Re

pm(§) — 3 |pm(§)‘7 pm(§) — ‘pm(€)|

As a result,

k oo "
1 — 1 el —
B D)1 > [ oy BRI dee i [ 220 B0
On the other hand,

(D, o) < [(f, o)l < A fllv - [lellva-
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We obtain
o0 6J/ o 5
m | Bos ()2 dé < 1 llva - Nl
/m Sn Bs(©) dE S 1 s - el
Therefore,
1 o oo
Bo(e)]? de < [Re (Do, )| + \Re | = ©P ds\
/§>k 1po(§)] ) Pm(f)
| | o0 E:// — 2
< Iflva - el / m | Eos (6 de
11 - el + i [ 5 B (e a
||
Sl - lellvs + 220 £llv, - lllve
BN
S 2l el
It follows that
EN
lol2. = / B d < =2 fllv - el
whence
||
el S <20l

We conclude that the D is injective; moreover, the range of D is closed in V5. We
next show that the range of D is dense in V5. For this, we consider the adjoint of D,
denoted by D*, which is defined by the following identity:

(D, ) = (@, D™9)

where ¢ € V7. A direct computation shows that

. _ AT pmite ge - L [T Em st Fge) pitan
D*p(z1) 277/—00 PG Ey(&)e d¢ o) pm(é)e Ey(&)e d€, x1 > 9.
Therefore, a similar argument as for the operator D shows that D* is injective. Con-
sequently, the range of D is dense in V5. This combines with the fact that the range
of D is also closed in V5 yields that D is onto the space V5. Recall that D is also
injective. The open mapping theorem gives that D is invertible and the inverse is also
bounded. Moreover, the inverse satisfies that desired estimate. O

Remark 2. The above theorem establishes the existence and uniqueness of the
solution to the integral equation (4.1) when the source term is in the space V5. It
also provides an energy estimate for the solution. We would like to point out that
such estimation is not sharp. In what follows, we shall derive a sharp estimate for
the solution by treating the plasmonic part and the nonplasmonic part separately.
Moreover, we shall characterize the magnitude of the wave field induced by surface
plasmonic resonance.

Observe that the operator equation (4.4) can be rewritten as

(4.6) ¢+ Dy Kf o =Dl f.
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We first aim to express the term Dy 6 1 in the above equation in terms of ¢
by solving the equation Do¢ = K7 ¢, which excludes plasmoinc resonances. Then
we study the enhancement effect induced from the surface plasmoinc resonances by
solving the whole equation (4.6). These two steps are addressed in sections 4.2 and
4.3, respectively. Finally, we summarize the solution of (4.1) in section 4.4.

4.2. Solution of Dy¢ = K7 ;7. In this section, we solve the equation
(4.7) Do¢ = K7 19,

where it holds that ||

\/7||L2(A) < oco. It is clear that KY 1 € Va.

Using the spectral decomposition of the operators (3.1) and (3.3), let us decom-
pose the operator Dg as Dy = Dy g + Dg,1, where

(48) DO,O = (Kio + KQ’O) and D071 = K2,1.

We also introduce the operator Do : H~'/2(Rt) — HY/?(R") as follows:

69 Duaste =g [ (G5t ey ) PO w0

Define the function ¢gg,(z1) over the whole real line such that its Fourier trans-
form is given by

xa - () _ pm(©)

4.10 oo (€) = — CBo(E) -
( ) QbOO,dl(g) po(g) ( Em N 1— XA) Po(é)é’m 1/J(f) XA
pm(&) — po(§)
LEMMA 4.3. The following estimate holds for ¢og,q:
— 1 Ev
[é00,wll1(a) S [—=llr2(a)
Vel Vleol
Moreover, ¢,y 15 a smooth and even function with
1 EyY
| S [—=llz2(a)-
el V/Ipol
Proof. From (4.10) we see that
|P00,1(&)] S EY(§)
v V0en T lpo(6)]
Therefore,
16005122 (a) < L ' ’ xa <t ‘ By
’ ~ V ‘€4n| V ‘,00| L2(A) V |p0| L2(A) ~ |€;n| V |PO‘ L2(A)
The second estimate follows immediately. ]

Let ¢oo,+ = ©00,5 * X(0,00)- By observing that
b00.0(71) = do0.+ (1) + Goo,+(—1) = Eoo+(21)  and  doo.u(§) = Edoo.+(8),

we have

em 1—xa .
(prn(ﬁ) + ,00(§)> E¢oo,+(£) = PG Ey(€).
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Consequently, it holds that

(4.11) Do o doo+ = K5 10,

where we have extended K7 ;1 naturally to R,
We decompose the solution ¢ of the operator equation (4.7) as ¢o + ¢1, where

®0 = G00,p * X[8,00)-

Using (4.11), it is seen that ¢, satisfies

(4.12) Doér = q,
where
(4.13) q(x1) := Do o ¢oo.+ (1) — [Do.ogo(21) + Do1do(x1)]  for x1 > 4.

For brevity of notation, here and henceforth, we let
(4.14) glxy —y1) = Géo)(xl,O;yl,O) = EmHél)(kmbcl —11])-
LEMMA 4.4. Let q be defined in (4.13); then q(x1) = q1(x1) + g2(z1), where

(4.15)

q(x) = —2/0 g(x1+y1 = 9) (Po0,4 (Y1 +0) — oo, (Y1 — 0)) dy1, x1 >0,

1 [ 1-xa
27 —0 po(f)

(4.16)  ga2(z1) = (P00, - X(—8.6)"(§) €47 dE,  m1 > 6.

Moreover, the following asymptotic expansions hold for x1 > 6:

(4.17) @1(1) = ¢00.(0) - q1.0(x1) - Em0” + O(emd™) - [|do0,p [l (r),
(4.18) q2(x1) = ¢00,4(0) - g2,0(x1) + O (53\/ |Indl) - ||¢00,wHCS(JR)) ,

||q1,0HH1/2(Fg') S1 oand ”q?,o”Hl/?(Fg') Sovy |1n5|'

Proof. From the definition (3.12),

Do, 1¢0(x1) = / (G2,+($1,0;Z/170) - 2G(20)(1'1;0;y170)
5

72G§°)(7x1,0;y1,0)> ¢o(y1) dyi.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/13/19 to 131.204.214.153. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SURFACE PLASMON RESONANCE BY A NANO-GAP 4463

Therefore,

(4.19) Do1¢o(71) = 2/500 (9(z1 +y1 —20) — g(w1 +y1)) oY1) dya

2/ g(x1 +y1) do(y1 + 26) dyr — 2/ g(x1 +y1) po(y1) dyr
-6 §

2 /_5 g(z1 4+ 1) (P00, (y1 + 20) — ¢oo,4 (1)) dys

5
+2/ g(x1 + Y1) boo,y (Y1) dyr
=5

= 2/0 g1 +y1 — 0) (P00, (Y1 +6) — Poo,4(y1 — 9)) dys

5
+2/ 9(z1 4+ y1) doo,p (Y1) dy.-
-5

On the other hand, from (4.8) and (4.9), it follows that for ; > 4,

(4.20) Do $o0.+ (1) — Do odo(x1)

1 < Em + 1-— XA(§)> (¢00,d) . X(—é,é))/\(g) €i§m1 df

21 ) \ pm(§) po(§)
Note that
(4.21)
1 0o m ien )
_ﬂ/—oo p,ii(f) (b00,1 - X(=5,6))" (€) €71 d€ = 2/_5 9(w1 + y1) 00,4 (Y1) dy1,

then (4.15) and (4.16) follows by combining (4.19)—(4.21).
We now derive the asymptotics for ¢; and ¢o. Note that

G00.5 (Y1 + 6) — doo,p (1 — 6) = 26 ¢, (0)y1 + Ra(y1)yi + Ra(y1)yid + Rs(y1)y16°,
where R1, Ro, R3 are smooth functions such that
[Rjllcrwy S llgoo.wllcam), J=1,2,3.
Correspondingly, we decompose q; as
g1 =:q1,0 +q1,1 +q12 +q13,

where ¢ ; is the integral of the above density.
Setting =} = (z — 9)/d, y; = y1/0, and k' = k.0, then it follows that &' = O(1)
and

o0
q1@<xa>:::qlp<6xa%—6>::253¢alw<o>-sm~&4; H§Y (k|2 + 1)) v} dyl,
qmmw:nmm+®=&fm/’%WWM+%WMMMWM%

0
ammw:mMﬁ+®:&fm/'%WWM+MWMMMWM%
0

§m%%=%ﬂﬂ+®=&fm/‘%WWM+%WMMMN%
0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/13/19 to 131.204.214.153. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4464 JUNSHAN LIN AND HAI ZHANG

Since Hél)(ik’ lyi|) decays exponentially, we can show that

o 1 .
/ HO (k|2 + o)) o) dy
0

=0(1),

H1/2(0,00)

oo
/ HEV (iK' |2 + 5 ) R (004) (91)? dyfs S I Biller @),
0 H1/2(0,00)

/ HV (K |7 + v ) Ra(00}) (v))? S I1Bsller ),
0 H1/2(0,00)

[ H 1+ i) Ra(o) 012 ot S 1Bsllor@-
o H'/2(0,00)

By the translation and scaling invariance of || - || 12 norm, we deduce that the
integral ¢; € H'/2(T'}). Furthermore,

(4.22)  qu(@1) = 60.4(0) Emd® - qr0(z1) + O(emd®) - doo,llcawy in HYZ(TY),

where qu,OHHl/z(r;) =0(1).
We extend g2 naturally to the whole real line and still denote it as 2. Applying
the Taylor expansion, we see that

(4.23) @2(1) = do0,4(0) - (1 + O(8%)) - g,0(21),
where
1 F1—xal) — i€
= — 2t Y T e,
42,0 7= 5 [m 0@ X(-s5)(&) e 3
It follows that
o 1 sin?(8¢)
am) S d
lazollz1r2m) S S ViilE @ 3
oo 2
5. 1 sm2 ¢ de
—o0 02+ E2 €
(4.24) < CH?|Iné|.
The proof is complete by combining (4.23) and (4.24). O

From the above discussions, we can obtain the expansion of the solution for the
operator equation (4.7). In particular, by virtue of (4.12), Proposition 4.1, and Lemma
4.3-4.4, we arrive at the following conclusion.

THEOREM 4.5. Let ¢ be the solution of the equation Dop = K7 19. Let ooy be
defined by
pm ()

00,5 (&) = o©em EY(§) - xa(§)-

Then ¢ = ¢g + ¢1, where

$0 = P00, * X(5,00)5
¢ = 5T $00.4(0) - Dyt q1.0 + 600,4(0) - Dy q2.0 + Dy L.
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In addition,
B
Vol

L2(A)

£ S <5\/\ln5

<1
lanlloraes) S (5‘”%53 |1n6|) 00,6l s,

l[oo,ullcsm) SO - |

)

By

< (%% 1 5%-/2,/[In 5|) :
~ ViIpol || 2
@)
_ Ev
o1l ooy S (0% + 0"V [Ind]) || ——= :
HEAT) ( ) \/‘,00| L2(A)

4465

4.3. Solution of Dy = f and excitation of surface plasmon. Following

(4.6), we rewrite the operator equation Dy = f as
(4.25) o+ Dy K§ o =Dg'f.
By Theorem 4.2, we see that the solution ¢ € V7 and it holds that

€

Ep il a
Sllelve £ 21 f Il = 06 )11 llvs-

A% lpolll 2

(1.26) |

(A)

From Theorem 4.5, it follows that Dale’lgo = $00X(5,00) T @1, Where ¢qg is defined

by
()

~ pm
bo0(§) = 20 (©)em

Bo(8) - xal()
and
1= "1 - ¢65(0) - Dy a0 + d00(0) - Dy *a2,0 + Dy -
By virtue of Lemma 4.3 and (4.26), we have the following estimate.
LEMMA 4.6. The following estimate holds for ¢gq:

6”

N

£ llv,.-

||¢00HL1(R

Moreover, ¢go is a smooth and even function with

\6 |
doollcsmy S =71 fllva-

Substituting the expansion for Dglelcp into (4.25), we obtain

(4.27) @+ do+ > - ¢05(0) - Dy 1,0 + ¢00(0) - Dy gz.0 + Dy an
Extending evenly over the whole real line yields
Ep+ ¢oo(1 — X(—s.6) + 8> ¢05(0) - EDy g1 0
+ ¢00(0) - EDy g0 + EDy qr, = E(Dy f).

This leads to the following equation in the Fourier domain:

(4.28) Ep(€) + doo(€) + Q€) = (EDy )1 (€),

=D;'f.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/13/19 to 131.204.214.153. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4466 JUNSHAN LIN AND HAI ZHANG

where
Q&) == — (oox(=5.6)" (&) + 6T - 6,(0) - (ED; " q1,0)" (&)
+¢00(0) - (EDy " q2,0)" (&) + (EDg " qn)" (€).
From the Taylor expansion,

(P00X (—6,6))" (&) = (¢00(0) + O(6%)) - X(—s5,6)(€) = D00(0) - G2,1(&) + G2,2(€),

where G2.1(€) = Sing‘sg and ¢g 2 satisfy the estimate

<64/ |[1Indl,

1
42,1 (&)lL2(a) S0, Hmdz,1(§)

L2(R)
. 1 .
ld2.20z2(a) S lldoollcsmy - 6%, ||——==0d2.2 < lldoollcsw)y - 62/ In 4.

Correspondingly, we express Q(f ) as

Q&) = 5% - ¢y (0) - (EDg " q1,0)"(€) + ¢00(0) - [(EDg " a2,0)"(€) + G2,1(€)]
+(EDg  qn + q2.2)" (6).

LeEMMA 4.7. The following estimate holds for Q

< (1900 (0)] + 1660 (0)1) - (6772 +6) + (67/2 +6%) - [ dwoll oz
< (1900(0)| + |65 )]) - (6472 + 63/ 3])
L2(R)
+ (615 +6°/Tnd) - léoolon ey

In light of the formulas (4.10) and (4.28), the following equation holds for £ € A:

Hm

Fo0lE) (’)jfm n 1) 1 0(6) = (EDy £)(6).

m
Hence we can express the Fourier transform of ¢ as

pm(§)
p0(§>5m + pm(§>

On other hand, note that

¢00(0 /¢>00 )d§, 6’0(0)2—/A§2¢/(;J(5)d§

Substituting (4.29) into the above two formulas yields a linear system for ¢g(0) and
/!
00(0):

$00(0) |
(4.30) H[ &m)]_a

(429)  Gool) = JEpgtnre -Q©). cea
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where

1+ A1(EDy q2,0) + A1(g2.1) 53 A1 (EDy ' q10)

H - )
—As(EDy ga0) — Aa(qen) 1 — 83 A3(EDy g1 0)

AL(EDy'f) — AL(EDy tqn) — Ai(ga)
—Ay(EDy ) 4+ A2 (EDy Y q) + Aa(ga,2))

In addition, the functionals A; and Ay are defined as

Pm(§)

8= [ et PO
L 52 : Pm(f) ~
Aale) = [ o©)em + om0 PO &

We first solve the above linear system to obtain ¢go(0) and ¢g,(0), which will lead to
the estimation for Q(§) in (4.29). To this end, we study the entries in the matrix II
and the vector b. This is given in what follows.

LEMMA 4.8. The following inequalities hold:

Pm / 1
(4.31) ‘ — S Infe, [+ ——=],
POEmM +pm L2(A) |E;n| ‘E%J
Pm S 1 1
(4.32) <Slen|* + ,
V |p0‘ (P(ﬂm + pm) L2(A) V |E;n| V 5;';7,
m 1 1
(4.33) H”Op <1 (i .
(p0€m + pm) L2(A) |€;n‘ 6%1

In addition, if ¢ € L*(A), then

14; (Pl 5 ( In e, | +

1 1
I P . =12
VARV EA ) Pz 2
Proof. See Appendix B. 0
LEMMA 4.9. The following expansions hold for I and b:

1 0 _ B 0(6) 0 (53+a/2)
= a/2 B/2
m=| |+ (07 me+677) o6 O(er) |
_ | AuEDF'f) a2 oy [cirajz . <3 _
b= —AQ(EDglf) +0 (5 |In 6] +4 ) (5 +4 \/m) P00l L1 (w)-

Moreover, assume that —6 < a — 5 < 0; then ¢oo(0) and ¢4,(0) admit the following
estimate:

d00(0) = A1 (EDG f) - (14 0(1)) + O (6772 0] +677/2) 5%/ T ol oo | 1 s,
G0(0) = Az (EDGf) - (14 0(1)) + O (5772 0] +6~7/2) 5/ Tn ol oo |1 s
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Proof. From the estimation in Theorem 4.5 and Lemma 4.8, we have

pm(§)
Po (f)sm + Pm (5)

s (D5 an)" () L2(a)
L2(A

(§7a/2|1n5| +57ﬂ/2) a/2||qhHH1/2(F+)
S (67721 ma) + 57/2) (5% 4 6% /T3] Idnollco e,

pn(8) Naz22ll 2 (a)
po(§)em + pm (&) [l 2(a)

< (572 mel + 677/2) 6* /T ol ol ey

|A1(EDy ")gn| < ‘

A(a)] < \

Similarly,

|A2(EDy Man| S (67| Ing| + 67072 (64+ 22 4 6% /Iné| |) [P0 llcs (w),

a/2

|AL(EDy Yq10)] S (679/2|Ind| + 6P/2

(

|Ao(EDy  q10)] S (6792 In | +678/2) 57/2,

|AL(EDG  q2.0)] < (6792 Iné| +677/2) 61=2/2/|In 4],
(

|A1(go1)] S (6792 | +67P/2) 6,

—/2|1n g +678/2) 5,

~P2 6| +6772) 6%/ 6]l dooll s (r),

| As(g2.2)] < ( /2|10 5| + 68/2) 63 /Tt 8| | ool o (xy -

|A1 42,2 |

(5 )
(5 )3
( )
(5 )
| A2 (EDg g2.0)| < (5 a/2|1n5|+5*5/2) §1=o/2, /e,

(5 )
(5 )
(5 )

)

(
[A2(g2,1)] S

(

(

Finally, using the estimate

[Poollcs@) S lldoollr m)

we obtain the desired estimate for ¢go(0) and ¢}, (0). d

Now, we are ready to discuss the solution of the operator equation Dy = f. We
distinguish two types of source function f:

0 femary). A

(i) f=—-5 [ Xald) ) (¢) efo1 d¢, where 1h(€) is even and it holds that

oo po(€)

HmHLz(A) < Q.

The main results are given in Theorems 4.10 and 4.12, respectively, for the above
two cases. For each case, we shall establish the estimation for the energy of the solu-
tion in the frequency bands A and R\ A, respectively. Note that the surface plasmonic
pole lies in A, hence the energy in this frequency band corresponds to excitation of
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surface plasmon given the source f, while the energy in the frequency band R\ A corre-
sponds to the nonplasmonic part of the solution. More precisely, the former is given in
(4.34)—(4.35) and the latter is given in (4.36), case (i) ((4.37)—(4.38) and (4.39), re-
sectively for case (ii)).

Remark 3. In the following theorems, the estimation of the excited surface plas-
mon wave is established in terms of the L'-norm in the Fourier space. Such an
estimation leads to the L°°-norm of the excited surface plasmon wave, which shall be
used in our subsequent studies of the interaction between surface plasmon resonance
and Fabry-Perot resonance. We point out that the standard L?-norm estimate or
energy estimate for the excited surface plasmon can also be derived from our analysis.
However, such a bound is significantly larger than that of the L'-norm.

THEOREM 4.10. Under Assumption 1, further assume that a—f > —6 and 8 < 2.
If f € Hl/g(I‘;r), the following holds for the solution of Dy = f:

Eo
(4.34) d S (5_(1/2' Ind|+ 5_5/2) 1 ooy »
Po L1(A)
(4.35) [Be],. 0, = (572 48722 1l agey
(4.36) H \/T < §—o/2 ||f||H1/2(r5+) .
L2(R\A)

Proof. First, using Lemma 4.8 and Proposition 4.1, we obtain

A (EDG )] S 6772 (6722 o] + 6~772) | fllyasaqres

Aa(BDG )] 507/ (6772 md] + 6772 ) |l s e -

On the other hand, from Lemma 4.6, we have H(EO\OHLl(R) < 528 fllv,
< §o/2-B Hf”Hl/?(FI)' Therefore, using Lemma 4.9, it follows that

1600(0)] < ( ~/2|Ing| + 6 5/2) §-/? (1 1 §3ta—p, /|1n5|) 1 s o
< (5—a/2| In | + 5-5/2) 5™ fllprarty

166001 S (67721 m 8] +075/2) 572 | s s

By Lemma 4.7, we have

|

oy S (P67 670 (5 18) U

4 o) |l

LY(R)

From the formula (4.29), the Cauchy-Schwarz inequality leads to an updated
estimate for ¢qo:
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_Pm
POEM + Pm L2(A)

~2In | +579/2) (HEEO‘\lf‘

N

|00 ||Epg

L®) ™ ’

<( “fl....)
S (67721 ma) + 67/ [57/2 4 (57072 | + 6=7/2) 670/2
(

642 6) | Ifll o
+ (87002 | + 5472 (51972 4 57) || oo

L2(A)

Li(R)

Since a—f > —6, the (b/()\o term on the right-hand side can be absorbed by the left-hand

side; with the additional condition 5 < 2, one can further derive that

H%O‘

<67 (572081 + 6 2) o -

L1(R)

This also implies the improved estimates for ¢gg and Q:

H¢00||c3(R < g/ (5_a/2|ln5| +5_5/2) ||f||H1/2(r5+)

and

|,
< §mal? (5—a/2| In 8] + 5-3/2) (53+a/2 + o122, /] ln(5|> 1 £zt -

Now, it follows (4.10) from that

= pO(E)Em e
E = . for £ € A.
o(£) o (@) boo(§) 3
Using the estimate for qgo\o(f) above, we obtain
Ep . _
pT <le, H¢00‘ RS (5 /Q‘Iné\—i—& ﬂ/Z) ||fHH1/2(F5+)'

On the other hand, in view of (4.29) and Lemma 4.8, we also have

_ meo | EBr ),
| __poom ED;'f +
Hpoqboo‘Ll(R)N poem + pm || L2(a o' f+Q L2(a)
< (5-/2 L s—(at+B)/2) . HED_1 ’ H ‘
< (5 +6 ) 0 I lzaay 19l ey
< (570 4 52 [ gt
Therefore,

‘ L

<\/|57HPO €)oo (€ ‘

Ll(R) (6—04/2 + (5—(a+5)/2) ”f”Hl/?(r‘g') )
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Finally, note that the support of 5&)(5) belongs to A, and the formula (4.28)
leads to

Ep(€) = (EDG N)™NE) — Q€) for & ¢ A.
We obtain

<0G 1l +
L2(R\A)

[

L*(R)
—a/2
So6m/ 1l /2oy - U
For a source function f that takes the form in (ii), the solution of Dy¢ = f can
be expressed in the following lemma.
LEMMA 4.11. Let f € V, be in the form of (ii); then Dy Lf has the expansion

pm(f) . @ . »

ED; f(¢) = S a9+ RO,

where the low-order term R satisfies the estimate

‘ R(g) 5 (53 +617a/2 |1115|) . ” 1/J
1+|§| L2(R) |PO‘ L2(A)
Moreover,
—— ~ 1&
[£0577 Vbl S 672 | =
L2(A)
ED; '
s R Hw
A (EDG )| S (5772 467572 omo /1. ‘w , =12
V |P0‘ L2(A)

Proof. From a parallel argument as in Theorem 4.5, we obtain

Dyt f = 00,6+ X(5,00) + P15

Using the Fourier transform of ¢qg,y, it follows that

EEO_\lf(f) = ¢>/0(;p + (Po0,uX(=s,6)" (€) + E/%\f

= pZS) ' % XA (E) + (G00.4(0) + O(6)) - X (o) (€) + Edr ()
. pm(g) 7& -
e T a6+ R(O)-

By Lemma 4.3 and Theorem 4.5, we have

‘ R(¢)

< (53+51—a/2\/m> ) ” Y

1+ [¢] ol

L2(R) L2(A)
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Therefore,
— _ )
|EDGT s VInol| , se |
V |p0| L2(A)
/7\1
EDO f 5 (53+51—a/2 |1Il H
1+ |§‘ L2(R\A) \/| 0 L2(A)

Hence the estimate for EDy 1 holds. Finally, using the estimate (4.32) in Lemma
4.8, and applying the Cauchy—Schwarz inequality, we arrive at

Y
vV |Po\

THEOREM 4.12. Under Assumption 1, further assume that a—8 > —6 and g < 2.
If f is given as in (ii), the following holds for the solution of Dy = f:

Pm (5)1& + po(f)gm
po(&)em + pm(&)  po(€)em + pm(€)

where the low-order terms R and Q) have the estimate

A (EDG )| S (87072 4 57012) gmelt

L2(A)

Bp(€)xa(e) = [ R©) - Q)]

IRONa) + 10O 5 (6717 + 8- 3a/4\ﬁ|1n5|)-H pa

L2(A)
Moreover,
(4.37) =% < (5o amor) g |
po L1(A) V |P0| L2(A)
= - /2 5 Y
(4.38) HEw(g)\ < 670/ 4 §=82) ot || L :
L1(A) ( ) «/|po| L2(a)
E\
(4.39) H‘P

S (074075 618 /[Ind] + 812/ Ting] H

Vol

Proof. The proof is similar to that of Theorem 4.10. First, by Lemmas 4.9 and
4.11, we can show that

L2(A)

[600(0)] 5 (6772 4 677/2) - g=/4. [660(0)]

b

L2(A)

5 (6—a/2+6—ﬁ/2 . a/4

e

L2(a)
On the other hand, recall from (4.29) that

pm(§)
po(&)em + pm(E)

(4.40) Poo(€) = [(EDFIHNE) — Q)] for € € A.
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Applying Lemmas 4.7 and 4.11 yields

4473

o < (5-a/2 L s-6/2) so/4 . |ED-T1¢. ‘
H%JLW@N(é +67) o VIl
+(5*a/2|1n5|+5*ﬂ/2) )
£2(a)
Sj (5—04/2_,_5—6/2) 6—(1/4 w
|p0| L2(A)

N
A% |P0|

(87002 ngl0/2) (570024 012) 5o/t (540 24 )

L2(A)
+ (8702 ma| + 574/2) (61072 + 5%) [ Goo ¢)|

L'(R)

Under the assumption o — 5 > —6, the q;(;](f) term on the right-hand side above can
be absorbed by the left-hand side; with the help of the additional assumption < 2,
one can derive the estimate

L2(A)

| 6oo]

‘ v
Vv |Po|

which further implies the improved estimate for ) (using Lemmas 4.7):

A —a/2 —B/2) . 3+a/4 1-a/4 'l[}
(4.41) ‘Q’L2(A)§(6 +6702) - (geli 4 )‘ i
Q)
(4.42) |
<) (o)
- |pol I
()

Next, recall that

= p0(§)€m A

Ep(&)xa = oon(©) “ $oo(§)-
By (4.40) and Lemma 4.11, we have for £ € A,
T — po(§)em . —1 £\AleY _

_ pm(&)z/z po(é)am N A 1
= Bt o® T et @ RO Q)

with R, Q satisfying the desired estimate. This also implies that

By

P < Viemllldoollzray S (5_a/2 + 5_5/2) oo/

- H /(&
L1(A) V |P0|

L2(A)
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and

7]

<5 a/2+5 5/2 a/4
L)~

\/\To

L2(A)

Finally, from (4.28) we see that
(1= xa)Bp(€) = (ED; )" (€) = Q(€).
Applying Lemma 4.11 and the estimation (4.42), we obtain
By

et S 5 (53+61—a/2 |1n
1+ ]

L2(R\A)

L2

..,
+ (570(/2 +576/2) (53+a/4 +517a/4\/m) H U

|Po|

L2(A)
5 (53+63+a/4—ﬁ/2

+61—(x/4—[3/2 \lné\ + 51—u/2

|1n H
VIpol

Remark 4. From Theorems 4.10 and 4.12, we see that the amplitude of the excited
surface plasmon in the frequency band A depends mainly on « and (3, or the real part
e, and imaginary part €/, of the metal relative permittivity. To have strong surface
plasmon excitation, one needs to have small ¢!/ and |¢/

L2(A)

|
m

Remark 5. The approach in this paper relies on the assumption that |/, | > 1,
for which the skin depth of the metal is much smaller than the wavelength. It does not
apply to the case when |e],| = O(1). We expect some other interesting phenomenon
to occur in such scenario. We leave it as an open problem for future investigation.

4.4. Solution of the operator equation (4.1). Now we apply the mathemat-
ical framework developed in the previous section to study the solution of the operator
equation (4.1). From the discussions in section 4.1, the solution of the operator equa-
tion (4.1) can be decomposed as ¢ = g + @1, where o = ©oo * X(5,00) and @oo is
given by (4.2). In addition, ¢; satisfies the operator equation

(4.43) Dp; =p, where p:= f)(poo — Dyy.

LEMMA 4.13. Let p be defined in (4.43); then p = p1 + p2 + p3, and the following
asymptotic expansions hold for x1 > §:

p1(@1) = @0o(0) - pro(21) - £md” + O(5*T/2) in H'/2(T)),
p2(z1) = ¢00(0) - p2,o(z1) + O (53—a/2\/\ 1n5\)) in HY(TY),

oo
ps(a1) = _% n )Zﬁ((;)) (000 - X(~0.8))" () €771 de,
where
||p1,OHH1/2(r5+) S1 and | < 04/ Ind|
Moreover,

[Pl 12 T ~ S oFrer?, ”pQHHl/?(F;) S g V[ 1ndl.
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Proof. We first note from the explicit expression of ¢y that
1
lleoolles ) < ;

VIen|

Recall that D = K} + Ko = K + K29 + K21, and thus

=672

p = Doy — Dy = {DSOOO — (KT + K2,0)S00} — Kj100.
More explicitly,
Ks 1900 = / (Gz,+($1,0;y1,0) — GV (@1,0;41,0) — Gg))(_xlao;ylao)) vo(y1) dy1,
5

Degoo — (K + Ka,0)p0 = 2177/ (pgn(%) + p01(§)> (00 - X(~6.5))" (€) €71 dE.

By a parallel calculation in Lemma 4.4, we can decompose p as p = p; + p2 + D3,
where

p1(z1) = *2/ g(x1 +y1 —9) (woo(yr +6) —woo(yr —6)) dyr, 1 >,
0

p2(z1) = —i/ 1= xald) (000 - X(=5,6)) " (€) €471 dE, w1 > 6,

27 —o00 pO(g)
1 * xal§) A iExq
=—— “X(— B/ > 9.
p3(w1) = — 5 @ (o0 - X(=5,6))" (§) €571 dE a1
The same argument as in Lemma 4.4 leads to the assertion. ]

THEOREM 4.14. Under Assumption 1, further assume that a—f > —6 and 8 < 2.
Let oo be defined in (4.2). Then the solution of (4.1) admits the decomposition
@ = o + 1, where

0 = P00 " X(5,00) and 1 = D™ 'p + D7 'py + D ps.

In addition,

(4.44) = SO 4 g+ o't g1 s
Po LA
and
E/\ (N
L+ 18l )

Proof. Based on the decomposition of the source function p in Lemma 4.13, we
write the solution of (4.43) as ¢ = ( ) + 4,01 , where

DY =pi+ps and Dp(P = py.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/13/19 to 131.204.214.153. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4476 JUNSHAN LIN AND HAI ZHANG

We apply Theorem 4.10 and Lemma 4.13 for the equation Dgagl) = p1 + p2 to obtain
the following estimates:

)
B S (6772 ma) + 57572) (532 1 g1=0/2 Tng] ),
Po
L (a)
D
b}”lH < §a/? (53+a/2 + 62 /n 5|) =0+ 617/ 1Iné).
16 L2(R\A)

On the other hand, applying Theorem 4.12 to the equation Dgpf) = p3 together with
the estimate

—

oo X(—a,a)) < sl-a/2
V |PO| L2(A)
leads to
ETOE 3 a_ B
1 5 (5704/2 +67ﬁ/2> 6(1/4 . 51701/2 — §l—1o +51717§,
po(§)
L'(A)
ESDP < (s3+2 34a_8 1—a_8 1- 1—a/2
T g S{0°T2 407" e 72 4674724/ Ind|+ 6 24/|Ind|)d
+
L2(R\A)
=44 6488 425 /|Ino| + 6% /| Ind].
The proof is complete by combining the above estimates. ]

The formulas (4.44) and (4.45) in the above theorem refer to the energy estimate
for the solution of the operator equation (4.1) in the frequency band A and R\ A, re-
spectively. The former corresponds to the energy of the excited surface plasmon wave,
and the latter corresponds to the energy of the nonplasmoinc wave. It is observed
that the surface plasmon resonance is not strong unless « is small and (§ is positive,
which corresponds to small negative €/, and extremely small /..

Finally, as a consequence of the above result, we obtain the following decomposi-
tion for the wave field of the scattering problem (1.1).

COROLLARY 4.15. Under Assumption 1, further assume that « — > —6 and
B < 2. Then the solution u to the scattering problem (1.1) admits the decomposition
U = ug + uy +ug for the even incident wave, where ug is the wave field in the absence
of nano-gap, w1 and us correspond the plasmonic and the nonplasmonic part of the
wave field, with the Fourier component localized in the frequency band A and R\A,
respectively. Moreover, there holds

a—p E @
(00| ey S 835 + 8% Ing| + 614 4 61753,

s (- 04) | graary S 8% + 64575 4 617 /[Ind| + 62 2 /[Ind].
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5. Solution of the integral equation for the odd case. Let us define D :=
K7 + Ky and write the integral equation for the odd case as

(5.1) Do = —2u’.

We would like to apply an analogous perturbation argument as in section 4 to obtain
the solution ¢. To this end, let D : H~'/2(Rt) — HY?(R*) be given by

>R S S N W oA o
bo=-3: [ (g roigy) OO d6. w120

It can be calculated that the solution of D@y = —2u’ takes the form of

(5.2) woo = R - sin(kyzq) - X(0,00) >

__2po(k1)pm (k1)
pm (k1) +empo(k1)
(5.1) as ¢ = @o + 1, Where Yo = Yoo - X(5,00), then it is clear that o, satisfies the

equation

where the coefficient R = . Now if one decomposes the solution of

(5.3) Dy1 = Doy — Depo.

In order to distinguish the frequency component near and away from the surface
plasmon frequency when solving the operator equation (5.3), we introduce the oper-
ator Do : H=Y/2(I'}) — HY2(I'}) that excludes the surface plasmonic resonances by
letting

Doy := (K7 + Ka)p = —%/_ (1;3((2)(5)5;(5) + pgm)e_ié&@(f)) T ge.

Following the argument in Proposition 4.1, it holds that Dy is invertible. As such
(5.3) can be rewritten as

(5.4) w1+ D()_lKilgol =Dy'f, where f = Doy — Depy.

We discuss the solution of the above operator equation in the rest of this section.
The derivation shares similarities with the one for the even case, and we skip some of
technical calculations for conciseness.

D ||L2(A)
\/|P0\

5.1. Solution of Do¢=K7? ;9. For a function 1 that satisfies |

< 00, consider solving the operator equation

(5.5) Do = K7 19.

We decompose the operator Dy as Do = Dy o + Dg,1, where
(5.6) Do = (K{o+ Kz0) and Dg;:= Ky ;.

Define the operator Do : H~V2(Rt) — HY/?(R*) as

N B s B N B W S
67 Dot =5 [ (1055 + T ) GHoen de miz0
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Let ¢g0,4(x1) be a function over the whole real line such that its Fourier transform is
given by

xal(€) - 0P(€)  pm(©)

em | 1=xa®)Y  po(&em
polé) (pm(é) - po(§) >

Then ¢qo,y is @ smooth and odd function, and it holds that

(58) ool = -09(€) - xal€).

(5.9)
O 1 O
P00, and  |[¢oo,yllozm) S :
| / V |p0 2(A) ‘6/7n| V |p0‘ L2(A)

Let oo, + = $00,5](0,00); then it follows that

(5.10) Do,o oo+ = K719,

where we have extended K7, naturally to R*. If one decomposes the solution ¢ of
the operator equation (5.5) as ¢g + ¢1, where ¢o = P00,y - X(5,00), then ¢ satisfies the
equation

(511) Dogf)l =4q, where q = DO,O ¢)007+ - DO¢O-

LEMMA 5.1. Let q be defined in (5.11); then q(z1) = q1(z1) + g2(z1), where
(5.12)  qi(z1) = *2/ g(z1+y1 — ) (doo,y (Y1 +6) — doo,u(y1 — 9)) dya
0
—4/ 9(z1 +y1) boo,y (y1) dyr
0

5
+4/ g(x1 —y1) doo,e (Y1) dyr, x> 6,
0

I [~ 1-xa(§

(5.13)  q2(x1) = — (G00.p - X(—5.6)"(§) €47 dE,  m1 > 6.

% —0o0 pO(E)
In addition, the following asymptotic expansions hold for x1 > §:
(5.14) 01(%1) = 900.4(0) - q1,0(1) - €md” + O(emd®) - | P00,1llc2®).
(5.15) 32(71) = ¢0,4(0) - g2,0(x1) + O (53\/ 1n(1/5)) N boo,ullc2®),

where
||Q1;0||H1/2(1";r) Sl and ||Q270||H1/2(1“;) < 6%/|Ing.

Proof. Define the operator Dy : H~Y/2(R") — H'Y/?(R*) as
(5.16)

> _ [T (1=xa@) 57 _Em )isxl
Dooyp(a1) = 27r/_oo< po(§) Ow(€)+pm(€)Ew(€) e d, @ >0

We write g as

q= (Do,o $00,+ — Do ¢00,+> + (Do,o b00,+ — Do¢0) =:J; + Jo.
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For 1 > 6,

Ji(z1) = DO,O bo0,+ — D070 boo0.+
_ 1 o Em T _— iex
= rra (O¢>oo,+(§) — EquO,Jr(g)) T q¢

. N o A i€xy
T /m pi(é) (6006 * X(~o0,0)) " (€) €€ dE

0
= 4/ g(x1 —y1) oo,y (y1) dy

— 00

o0
(5.17) = —4/ g(x1 + y1) boo,y (Y1) dy1-
0
Note that Dy = Dg g + Dg,1, and we have

(5.18) Jo = Doo oo+ — Do,odo — Do,1¢0.

For 7 > 6,
Do,o $00,+ — Do,odo
1 > [1- m €21
=5 /_Oo [pox(g)(f) (O(<150<J,w><((>,5)))A (§)+p:;7(§) (E(¢oo,wX(o,5)))A (&) e dg
I [ 1-xa(§

T ) 6 (o0, - X(6.5))" (€) €7 d

oo
1 67”

S om —0 Pm(g)

Further calculation yields

(f*j(fboo,w)((o,zS)))A (&)e’™r de.

1 [ &,

(E(<25(Jo,w><(o,5)))A (&) ™™ dg

"2 o pm(©)

! b e €xy
T pi(é) (00,0 X(~5.0))"(€) €47 d€
- h i i€xq
T /—m p;i(g)((boo:w X(=5,0))" (&) €7 d

0

5
= /_69(% — 1) 00,0 (1) dy —4/ 9(x1 — y1) oo,y (Y1) dy1.

Thus

(5.19) Do,0 $00,+ — Do,obo = —%/_ 1;56(3(5) (B0, - X(—s.0)) " (€) €571 dg

5
+2/ g(x1 —y1) doo,¢ (y1) din
—s

0
74/ g(x1 — y1) doo,y (Y1) dy:.

=
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On the other hand, from Lemma 4.4, it is known that

(5.20) Dy, 1¢0 = 2/ g(x1 4+ y1 = 0) (do0,4 (Y1 +6) — doo,u (Y1 — 0)) diy
0
5
+ 2/ g(x1 + y1) boo,y (Y1) dyr
-5
= 2/0 g(z1+y1 — 9) (0,0 (Y1 + 6) — doo,¢ (Y1 — 0)) dys

5
- 2/ g(z1 —y1) boo,¢ (Y1) dy1-
=5

Then (5.12) and (5.13) follow by combining (5.17)—(5.20). The asymptotics of ¢; and
g2 can be obtained in an analogous way as in Lemma 4.4, by noting that ¢gg  is now
an odd function. 0

THEOREM 5.2. Let ¢ be the solution of the equation Dy = K? 4. Let ®00, be
defined by
n pm(g) 2
= — O . .
b00,5(§) PGS ¥(&) - xa(é)
Then ¢ = ¢o + ¢1, where
0 = D00, * X(8,00)>
61 = Bh0,4(0) - (627 Dy 10 + 6% /TIn o] - D 'g20) + Dy
=: ¢00.,(0) - 6*T* - Dy g0 + D -
In addition,

o || O¢
| poo,pllc2@my S o072 - | ;
V |l)0| L2(A)
HQ1,0||H1/2(F;) S HQ2,0||H1/2(F;) S HQOHHI/Z(F;) S,

- |l o8
||Qh||H1/2(F5+) <S8t [G00,ullc2r) < 553 \/ﬁ
0

L2(A)

—

Oy
v |pol

5.2. Solution of Dy = f and excitation of surface plasmon. Let us in-
troduce the function space

_ T—1/2 7+ . 1 DA(£)]2 00
vl_{soeH ) [ o 0RO ds < }

First, by a parallel proof as in Theorem 4.2, it can be shown that D is invertible, and
the following holds for the solution of the operator equation Dy = f:

0y
Vool
Following (5.4), the operator equation Dy = f is recast as
(5.22) ¢+ Dy K{ =Dy f.

2

||¢1||H1/2(r5+) S .
L2(A)

" o
<ol < Emli i = 06721 .

1"
Em

(5.21)

L2(a)
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Using Theorem 5.2, it follows that Dy ' K¢ ;¢ = ¢ooX(s,00) + $1, Where ¢pg is defined
by

T _ pm(g) -
boo(§) = PGS ~0p(§) - xa (),

and
¢1 = 02T ¢4 (0) - Dy qo + Dy ' g

Moreover, in light of the estimates (5.9) and (5.21), we have

—~ EXE; EXE
(5.23) lpoollriay S i Iflves  Ndoollc2my S i I £llvs-

Substituting into (5.22) and extending both sides of the above equation as odd
functions over the whole real line, we obtain

O + doo(1 = X(~5,5)) + 02+ - 9y(0) - ODg 'qo + ODg g = O(Dg ' ).
This is equivalent to the following equation in the Fourier domain:
(5.24) 0p(&) + du0(€) + Q&) = (0D ) (©),
where
Q&) = —(doox(~5.5)" (€) + 6 - ¢4 (0) - (0D q0)" (&) + (0D 41)" (€).-
Note that the Taylor expansion gives
(P00X (=5,6))" () = ¢00(0) - 41 () + G2(£),
where ¢ (§) = dsin(6€) /¢, and it holds that

< 6%y/|Ind|,

L2(R)

. 1 .
||Q1 (f)Hm(A) 5 52, Hmm(f)

. 1 .
ld2llr2(a) S llPoollcz@) - 62, || ——=1d> < |ldoollo2w) - 6%/ Indl.

Hence Q(€) may be expressed as
(5:25) Q&) = ¢6o(0) - [***(ODg 'q0)"(€) + a1 (&)] + (ODF " gn + 22)" (€).
Using the formula (5.8), we obtain the Fourier transform of by as follows:

pm(§)
Po(§)em + pm(8)

This leads to the following equation for ¢f,(0):

(5.26)  doo(6) =

[ops e -ae]. eea

where

= [1+ 6> A(0ODy q0)) + A(@1)] »
b= A(OD;'f) — A(OD; 'qn) — Alga),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/13/19 to 131.204.214.153. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4482 JUNSHAN LIN AND HAI ZHANG

and the functional A is defined by
’Lf *Pm (5)
A = /
= s 0@ + @

Now a parallel proof of Lemma 4.9 gives the expansion of ¢(,(0) in the following
lemma.

P(§) de.

LEMMA 5.3. Assume that a — 8 > —4; then Il and b admit the expansions
M=1+ (5—a/2\ In | + 5—ﬂ/2) 0 (52+a/2) :
b= AOD;f) + (5*a/2| In o] + 5*5/2) .0 (53+a/2) ool a)-
Moreover, the following holds for ¢},(0):

90(0) = AODG ) - (1+ 0(1)) + (14 579/2) -0 (87/2) | uoll s

Remark 6. The assumption that o — 8 > —4 is used throughout the subsequent
analysis. This assumption is stricter than the one for the even case.

With the above preparation, we are ready to present the solution of the operator
equation Dy = f. Again we distinguish two types of source function f when f €
HY2(T}) and
1 xal®)
21 J_oe Po(§)

The estimates for the energy of the solution in the frequency band A and R\A are
given in Theorems 5.4 and 5.5, respectively. This can be established by estimating
Q(&) using the formula (5.25) and Lemma 5.3, which then leads to the estimation for
(E&) and the solution ¢. The proof is parallel to Theorems 4.10 and 4.12 and we omit
it here for conciseness.

f=- B(€) e de.

THEOREM 5.4. Under Assumption 1, further assume that o — 3 > —4. If f €
HY2(T}), the following holds for the solution of Dy = f:

Oy /2 )
Op < (570721 md] + 5772) | fll gragey
Po |11 (a) ( ) VH L2(R\A)

S oo/ ||f||H1/2(F5+) :

THEOREM 5.5. Under Assumption 1, further assume that o — 8 > —4. If

L xal®) g e

L d
where ¥ (§) is odd and | N
Dp=f:

—

2(4) < 00, then the following holds for the solution of

P < (5*a/2 46 ﬁ/2) §ol4

L1(A)

S (024077571

HW

L2(R\A)

N

| v

L2(A)
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5.3. Solution of the operator equation (5.1). We decompose the solution
of the operator equation (5.1) as ¢ = @o + @1, where Yo = @0 * X(5,00) and oo is
given by (5.2). In addition, ¢ satisfies the operator equation

(5.27) Dy =p, where p:= Dpy— Dgy.

From a parallel calcuation as in Lemma 5.1, we obtain the following lemma.

LEMMA 5.6. Let p be defined in (5.27); then p = p1 + p2 + ps3, and the following
asymptotic expansions hold for x1 > 9:

p1(x1) = 9l (0) - pro(x1) - €102 + O(83T/2) in HY*(TF),
pa(@1) = @ho(0) - pao(r) + O (8722 Tnd]))  in HYA(TY),
Pa(@r) = _2171' o PO (( )) (1000 - X(~5,5))" (€) €™ d,
where
Hp1,0||H1/2(p;r) S1 oand  pe, 0||H1/2(r+) < 52\/m.
Moreover,

||p1HH1/2(r§r) S §*te2 and HP2HH1/2(F+) < 0% a/Q\/ |Ind].

THEOREM 5.7. Under Assumption 1, further assume that o — 3 > —4. Let @qg
be defined in (5.2). Then the solution of (5.1) admits the decomposition ¢ = o+ 1,
where

00 = P00 " X(5,00) and 1= D™ 'py+ D 'py + D ps.
In addition,

Ber < 6% ~$-5%  and HE<P1 < 62 + o088,
po L*(A) V1l L2(R\A)

Proof. Based on the decomposition of the source function p in the above lemma,

we decompose the solution of (5.27) as ¢ = ( )+ @(2) where

Dgog_l) = +p2 and Dgﬂg2) = p3.

Now if one applies Theorem 5.4 for the equation Dgagl) = p1 + p2, it follows that from
the estimate in Lemma 5.6 that

0" /2 8/2
< (5« -
oy < (67721 ma + 07572 Ipy + pall ot
L1 (a)
S (6772 ma) + 57572 g2z,
Ogogl) _
) a/2 + < (52.
T+ ~ [p1 p2||H1/2(I‘6+) ~
L2(R\A)
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On the other hand, applying Theorem 5.5 to the equation Dgof) = ps3, we obtain

—

®o0 - X(—é,é))
Po

Og{” < (o2 4 7002) gort
po(§) ~

LY(A))
Sj (67(1/2_’_575/2) 51704/47

—

©00 * X(=6,6))
Po

L2(A)

D)
OSD1 g (52+62+%7§>
1+ ¢

L2(R\A)

S (52_’_524»%7%) 51701/2.
L2(A)

The proof is complete by combining the above estimation. ]

COROLLARY 5.8. Under Assumption 1, further assume that a — > —4. Then
the solution u to the scattering problem (1.1) admits the decomposition u = ug+ui +us
for the odd incident wave, where ug is the wave field in the absence of nano-gap, and
uy and ug correspond the plasmonic and the nonplasmonic part of the wave field, with
the Fourier component localized in the frequency band A and R\A, respectively. In
addition, there holds

a—pf a_B
2

||U1(',O+)||L°°(F) < 52+ = 4 517%*§’ ||U2(‘70+)HH1/2(F) < 5% 4431

Appendix A. Proof of Lemma 3.1. We first prove some auxiliary results.

LEMMA A.1. For any L? even function f: R — R, we have

1) "2 H(W)Z Pll2 S NI F 2,

where H is the usual Hilbert transform on R and (z) = (1 + 22)2.

Proof. First observe that the regime |y| < 1 is easily handled. Therefore we may
assume that f is supported in |y| 2 1. It then suffices for us to prove the inequality
(for f even and supported in |y| 2 1):

2| "2 H(|y |2 Fll2 S 1 fl2-

By using parity, this is equivalent to showing

x”EPV %y%f(y)dy

SN2 0,00
y€(0,00) 2 —y (00

L2(0,00)

Now introduce change of variable z = ef, y = e*, y2 f(y) = f(s), 2 f(z) = f(t). Note
that s,t € R. Then we just need to show

HPV/K(t s)f(s)ds

where the kernel K is given by

It is easy to check that K is a standard Calderon—Zygmund operator (in particular K
is an odd function and the Hérmander gradient condition |K’(2)| < |2|72 on R\ {0}
is obviously true). The desired result then easily follows. 0
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LEMMA A.2. Suppose f € H*%(R) and f is supported on (0,00). Then
, < .
1715y S VB Sy oy

Proof. Denote g = Ef; then obviously f = g+ Xx(0,0), i-€-, [ is simply the restric-
tion of g to the half line. Denote g = <V>%h with h € L?; then the desired inequality
is equivalent to

V) ™2 X(0,00) (V) 2 Poll2 < [[P]|2-

Observe that the Fourier transform of x (g, o) is simply the sum of a delta distribution
and the Hilbert transform. The contribution of the delta part is harmless. Now denote
F = h. Then we only need to show for even function F': R — R

(@) "2 H() 2 F) 2 S || Fl2.

The result then follows from Lemma A.1. 0

Proof of Lemma 3.1. Tt is straightforward to check that
Ep(&) = 0(&) +2(=¢),  Op(§) = (&) — o(—=¢)
and
1B6lls-1720) S 1l ot oy 100la-1020) S Nl o
On the other hand, Lemma A.2 implies that
ol -3 g, S 1201111720y
A similar argument as in Lemmas A.1 and A.2 yields that
el -3 gy S 1091151720

This completes the proof of Lemma 3.1. 0

Appendix B. Proof of Lemma 4.8.
Proof. We first prove (4.31). Let

r(€) := Po(&)em and w(&) := po(ﬁ)i‘)m (ﬁ‘;)pm(f) =1+r(&).

Without loss of generality, we assume that k = 1 and write &,, = —a + bi, where
a,b>0and a>1,b>0, and a > b.

For ¢ € (0,1), note that pg = i4/1 — £2 and it can be shown that [Rer| ~ O(b/a).
Thus

lw| = |1+7|>1-0(b/a) > 1/2.

On the other hand,

a
Imr(§) = \/1*52'2\/ﬁ~

We obtain
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1y 1-1/a 1 1 1
. —d —d
(B-1) / ek £S/0 T () “/1 Lo TOEPE% R

Next, we aim to show
2
1
(B.2) / de <
1w lb\
To this end, note that

1
i+ 540

1 1 o <1+ b 3b? (b3)>
pm‘m‘m 2@ +a) 4 T \a))

Let t =t(§) = . Then 1 < ¢ <2 is equivalent to 0 <t < %H. Moreover, we

\/5-&-

er =t (o gt w0 (B)) =i (avo(2)).
Imr(f)_t<b2(€2a3_a)+0<zz)>.

Therefore, [Im r(£)| > %“’. It follows that

have

L4 r(©F 2 |14+ Re r(@) + [ r(©)P > (1 - ta)? + 31282

On the other hand, since t = t(§) = we have

£-1
&2+4a?

at? +1
1—t2

&=

A direct calculation shows that |£'(¢)| < at. Therefore

1 ? 1 wr atdt
[ e ) armeres ) amap e

}, where |1 — ta| > %;

We now consider three regions: I; = {0 <t <

1
a+%
I, = b} where |1 — ta| < %

—ta 2 tb. We have
1 |

/ atdt / atdt 1/a+b/z tdt 1

< = — <=,

n (L—at)2+ 1202 = J; (1—at)?  a )y (1—t)2~b
/ atdt /atdt /ad 1
< = <z
n (L—at)?+ 202 = Jp, 1202 ~b

b2
/ atdt </ atdt 1/\/34 tdt
I3 (1—&t)2+it2b2 B I3 (1_at) _a

It follows that

ﬁ }, where

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/13/19 to 131.204.214.153. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SURFACE PLASMON RESONANCE BY A NANO-GAP 4487

2 L | 21 1 1
/o wiep / (@) “/1 wef © Mty

which proves the desired estimate (4.31).
We now prove (4.32). First,

1 1-1/a
—d
/ | V1 d = / [Tm w(€ | \/1—52 /1 1/a Jw(&)|2/1 — &2 :

1— l/a 1 1 1
< —d —d
~/0 et L
1
S —.
~Va

On the other hand, note that for 1 < ¢ < 2,

VE-1=t/@+a<tVi+tag2/a

Therefore,

3

/21d£</m atdt
L lw@Pve-1 " Jo [(1—at)? + L202] - 2t/

_/a‘q’+4 Vadt
0

—
(1 —at)? + 202

It is straightforward to show that

/ Vadt </ _Vadt i
n (I—at)2+ 3202 — J;, 1—at)2 ™ b’
Vadt Vadt
/12 (1—at)? + %t2b2 = Ji, 2% /
/ Vadt </ Vadt
 (L—at)2+ 122 = J, (1—at)> ™

S

adt
b2

Va
=

Hence we have

/ i ! L
0 |w(£)|2|v1—£2| \f
which proves (4.32). Finally, the proof of (4.33) is similar. |
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