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Abstract

We investigate the Fano resonance in grating structures by using coupled resonators.
The grating consists of a perfectly conducting slab with periodically arranged subwave-
length slit holes, where inside each period, a pair of slits sit very close to each other.
The slit holes act as resonators and are strongly coupled. It is shown rigorously that
there exist two groups of resonances corresponding to poles of the scattering problem.
One sequence of resonances have imaginary part on the order of ε, where ε is the
size of the slit aperture, while the other sequence have imaginary part on the order
of ε2. When coupled with the incident wave at resonant frequencies, the narrow-band
resonant scattering induced by the latter will interfere with the broader background
resonant radiation induced by the former. The interference of these two resonances
generates the Fano type transmission anomaly, which persists in the whole radiation
continuum of the grating structure as long as the slit aperture size is small compared
to the incident wavelength.

Keywords: Fano resonance, photonics subwavelength structure, Helmholtz equation.

1 Introduction

Fano resonance is a special type of resonant wave phenomenon that gives rise to an asym-
metric spectral line shape as opposed to the conventional symmetric one. Typically the
corresponding transmission or reflection signal exhibits a sharp transition from peak to dip
within a narrow band, and this interesting phenomenon has been explored extensively in a
variety of oscillating systems and wave structures since first discovered by Ugo Fano in [8]. In
general, Fano resonance is induced by the constructive or destructive interference between
a broad background radiation and a narrow resonant state. This can be realized when a
discrete localized state becomes coupled to a continuum of states, as in the atomic system
investigated in the original paper by Ugo Fano [8] and many other optical structures includ-
ing dielectric spheres, photonic crystals, plasmonic metasurfaces, etc [13, 19, 21]. Another
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way to realize Fano resonance is by using two coupled resonators with distinct resonance
strength so that the stronger resonant state would intefere with the weaker one. See, for
instance, [9, 15, 19, 26, 29] for the realization of Fano resonance using coupled oscillators,
cavities, micro-spheres, micro-rings, etc.

For photonic grating structures comprising an array of holes etched in a dielectric or
metallic slab, it is known that certain bound states or discrete localized states appear in
the continuum (sometimes called BIC), which can lead to Fano resonance. In more details,
there exist eigenvalues embedded in the continuous (radiation) spectrum of the underlying
differential operators, and the bound states associated with those eigenvalues become narrow-
band resonant states that interact with the background radiation when the symmetry of the
system is destroyed. Such interaction generates the asymmetric resonance transmission line
shape, and the principle is the same as the one in [8] and others mentioned above. We refer
the reader to [6, 10, 12, 13, 24, 25, 28] and the references therein for the theoretical and
experimental investigation of BICs in grating structures.

BICs have been rigorously proven to exist in the first diffraction continuum for grating
structures where only one diffraction mode propagates [4, 25]. Such BICs are usually pre-
served by the symmetry in the geometry (such as reflection or rotational invariant of the
grating) and the incident wave pattern (normal incidence). Hence Fano resonance naturally
appears in this particular diffraction region under a small perturbation of the system which
destroys the symmetry. The related mathematical studies was first carried out in [24, 25],
where boundary integral equations and perturbation theories are applied to explain and pre-
dict the resonant transmission peaks and dips. In connection to this, in [18] we provided
quantitative analysis for embedded eigenvalues and their perturbations as resonances in the
context of periodic metallic grating structures with small holes, see more discussions in Sec-
tion 1.2. Outside the first diffraction regime, however, it is very challenging to find the BICs
and the associated Fano resonances, see [6, 22, 12, 27, 28] for the recent attempts in the
direction.

In this paper, instead of relying on BICs for Fano resonance, we employ the second ap-
proach mentioned above and investigate mathematically the realization of Fano resonance
in grating structures by using coupled resonators. Although such an idea has been explored
empirically for a variety of coupled resonators [9, 15, 19, 26, 29], a rigorous mathematical
analysis has not been given yet. It is the goal of this paper to fill the gap here. We shall con-
sider a grating structure which consists of a pair of two strongly coupled slit hole resonators
in each period. In contrast to usual grating structures where Fano resonance occurs above
the first radiation continuum only for very special configurations, the proposed photonic
structures allow for the appearance of Fano resonance in the whole radiation continuum, as
long as the size of the opening for the slit hole resonators ε is small compared to the incident
wavelength λ. More precisely, we shall prove rigorously that the coupled subwavelength
resonant slit holes would generate two group of resonances with close resonant frequencies
(real parts of resonances) but distinct resonance strength (imaginary parts of resonances).
The first group of resonances attain an imaginary part on an order of ε, while the second
attain much smaller imaginary parts on an order of ε2. Consequently, when coupled with
the external radiation at resonant frequencies, the narrow-band resonant scattering induced
by the latter will interfere with the broader resonant scattering induced by the former. This
gives rise to the Fano type transmission anomaly near the resonant frequencies. We point
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Helmholtz equation
∆uε + k2uε = 0 in Ωε, (1.2)

and the Neumann boundary condition

∂uε

∂ν
= 0 on ∂Ωε, (1.3)

where ν is the unit normal vector pointing to Ωε. In addition, the quasi-periodicity of the
solution is consistent with the incident field such that

uε(x1 + d, x2) = eiκduε(x1, x2). (1.4)

Finally, the diffracted field is outgoing and uε(x) admits the Rayleigh-Bloch expansions
(cf. [3, 4, 25]) above and below the grating structure:

uε(x1, x2) = uinc(x1, x2) +
∞
∑

n=−∞

us
n,1e

iκnx1+iζnx2 in Ω1, (1.5)

uε(x1, x2) =
∞
∑

n=−∞

us
n,2e

iκnx1−iζnx2 in Ω2, (1.6)

in which the coefficients us
n,i are complex amplitudes. In the above, the constants κn and ζn

are defined by
κn = κ+ nb and ζn = ζn(k, κ) =

√

k2 − κ2
n , (1.7)

where the domain of the analytic square root function is taken to be C\{−it : t ≥ 0}, with√
1 = 1. With this choice of square root,

ζn(κ, k) =

{
√

k2 − κ2
n , if |κn| ≤ k,

i
√

κ2
n − k2 , if |κn| ≥ k.

(1.8)

The Rayleigh modes with |κn| < k are propagating, and the modes with |κn| > k are
evanescent. The case of ζn = 0 corresonds to the so-called Rayleigh cut-off frequency, which
is a transition frequency when certain propagating modes convert to evanescent modes or
vice versa [23]. Due to the redistribution of energy among different diffraction orders, the
tranmission spectral line is usually nonsmooth near such frequency as depicted in Figure 4
- 6, We won’t be concerned with it in this paper. Correspondingly, for given κ and k, we
define two sets

Z1(κ, k) := {n ∈ Z ; |κn| < k} and Z2(κ, k) := {n ∈ Z ; |κn| > k}. (1.9)

Due to the quasi-periodicity of the scattering problem, let us restrict the Bloch wave
number κ to the first Brillouin zone κ ∈ (−b/2, b/2]. On the κ-k plane, we introduce the
diamond-shaped region

D1 = {(κ, k); |κ| < b/2, |κ| < k < b− κ} . (1.10)
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This is the parameter regime in which Z1(κ, k) = {0} and there is exactly one diffraction
mode. As such we call D1 the first radiation (diffraction) continuum. Let

D2 = {(κ, k); |κ| < b/2, k > b− κ} (1.11)

be the region above D1 where more than one diffraction mode are present. It is known that
D̄1 ∪ D̄2 corresponds to the continuous spectrum of the quasi-periodic scattering operator
for all κ in the first Brillouin zone [4].

1.2 BICs and Fano resonance with weakly coupled resonators

Recall that the distance between the two slit holes in each period is (` − 1)ε. When they
are not close to each other and there holds `ε = O(1), the interaction between the two
resonators are weak, and we call them weakly coupled. Mathematically, the wave field
generated from the interaction between the two resonators appear in the high-order terms
of the total diffracted field. This is in contrast to the case when ` = O(1) and the distance
between the two slits holes is on the order ε. In such a configuration, the wave field generated
from the interaction between the two resonators is dominant in the total diffracted field. This
would become clear when we express the solution of the scattering problem as layer potentials
in the next section, see, for instance, the expansions (2.15).

For weakly coupled resonators, due to the symmetry of the grating structure, embedded
eigenvalues and BICs exist in the first diffraction continuum D1, and Fano resonance appears
when the Bloch wavenumber κ is perturbed from 0 to break the symmetry. This was recently
investigated in [18], where it is shown that two group of resonances admit the following
asymptotic expansion if |κ| � 1 and (κ,mπ) ∈ D1:

k(j)
m (κ) = mπ + 2mε ln ε+ c(j)m (κ)ε+O(ε2 ln2 ε), j = 1, 2, (1.12)

where for fixed κ, c
(1)
m and c

(2)
m are constants independent of ε. Furthermore, there holds

Im k
(1)
m = O(ε) and Im k

(2)
m = O(κ2ε).
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Figure 2: Transmission |T | when d = 1, ε = 0.05, κ = 0.1, and the distance between two slits is 0.4 within one period. Fano
resonance occurs near k = 2.83.

When κ = 0, the imaginary parts of k
(2)
m vanish, and the second group of resonances

k
(2)
m are real-valued eigenvalues that are embedded in the continuous spectrum [0,+∞). If
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the Bloch wavenumber is perturbed with 0 < |κ| � 1, then k
(2)
m become complex-valued

resonances with much smaller imaginary parts than k
(1)
m . Therefore, the interaction of the

two resonant modes with different strength yields the Fano transmission anomaly as shown
in Figure 2. The readers are referred to [18] for a rigorous proof the appearance of the Fano
type transmission signal, and the studies for the associated field amplification at the resonant
frequencies. We emphasize that the above Fano resonance is induced by BICs, and it would
not occur in the higher diffraction continuum D2, for which k

(1)
m and k

(2)
m attain the same

order O(ε) for the imaginary part, and consequently, the same order of resonant strength.

1.3 Fano resonance with strongly coupled resonators

When ` = O(1) and the two slit holes in each period are strongly coupled, there will still

be two groups of resonances k
(1)
m and k

(2)
m close to each other, and their asymptotic analysis

will be derived in Theorem 3.4. For the imaginary parts of the resonances, there holds
Im k

(1)
m = O(ε) if (κ,mπ) ∈ D1 ∪D2. On the other hand, Im k

(2)
m = O(κε2) if (κ,mπ) ∈ D1

and Im k
(2)
m = O(ε2) if (κ,mπ) ∈ D2 respectively (cf. Proposition 3.5). Namely, when

κ = 0, k
(2)
m are still embedded eigenvalues in the first diffraction continuum, and similar

to the weakly coupled case, the perturbation of the Bloch wavenumber would give rise to
Fano resonance. However, above the diffraction continuum, the imaginary part of k

(2)
m is

consistently on the oder ε2, versus order ε for the imaginary part of k
(1)
m . As discussed in

Section 4, the interference of these two resonant scattering, with one broad and the other
narrow, will generate the Fano type transmission anomaly in a stable manner in this region.
Therefore, compared to the Fano resonance induced by BICs, the approach of strongly
coupled resonators allows for the appearance of Fano resonance in a much broader frequency
band.

The rest of the paper is organized as follows. We present an equivalent integral equation
formulation for the scattering problem (1.2)–(1.6) and carry out the asymptotic expansions
of the integral operators in Section 2. The asymptotic analysis of two groups of resonances
is established in Section 3. Based on the analysis of the diffracted field, the transmission
anomaly is investigated in details in Section 4.

2 Boundary-integral formulation and asymptotic anal-

ysis

For clarity of exposition, we shall assume that ` = 2 in the rest of the paper, and all the
calculations can be carried over for ` 6= 2 only with slight modification. The scattering
problem (1.2)–(1.6) can be formulated as a system of boundary-integral equations. We refer
to [1] for a systematic applications of the boundary-integral-equation method to various
scattering problems in photonics and phononics. This part is standard and is derived in
Section 2 of [18]. Here we only collect several key formulations. For each κ ∈ (−b/2, b/2], let
g1(x, y) and g2(x, y) be the d-periodic Green’s function in the semi-infinite domain Ω1 and Ω2

with the zero Neumann boundary condition along its boundary, respectively. It is known that
g1(x, y) and g2(x, y) are given by the sum of the free-space periodic Green’s function g(x, y)
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and g(x′, y), where x′ is the reflection point of x with respect to the boundary of Ω1 and Ω2

respectively. Let g±ε (x, y) be the Green’s function in the slit S0,±
ε with the zero Neumann

boundary condition along the boundaries. We may express g±ε (x, y) = g0ε(x1∓ε, x2; y1∓ε, y2),
where g0ε(x, y) is the Green’s function in the rectangular domain (− ε

2
, ε
2
)× (0, 1).

Let Ω(0) := {x ∈ R2 | − d
2
< x1 < d

2
} be reference period. By applying the Green’s

theorem, one obtains

uε(x) =

∫

Γ+
1,ε

∪Γ−

1,ε

g1(x, y)
∂uε(y)

∂ν
dsy + uinc(x) + urefl(x) for x ∈ Ω(0) ∩ Ω1,

uε(x) =

∫

Γ+
2,ε

∪Γ−

2,ε

g2(x, y)
∂uε(y)

∂ν
dsy for x ∈ Ω(0) ∩ Ω2,

uε(x) = −
∫

Γ−

1,ε
∪Γ−

2,ε

gi,±ε (x, y)
∂uε(y)

∂ν
dsy for x ∈ S0,±

ε .

In the above, ν denotes the unit outward normal direction pointing toward the domain Ω1 or
Ω2, and urefl(x) = ei(κx1+ζ0(x2−1)) is the reflected field of the ground plane {x2 = 1} without
the slits.

Taking the limit of the layer potentials to the slit apertures Γ±
1,ε and Γ±

2,ε from the exterior
and interior of the slits, and imposing the continuity condition for uε along them leads to
the following system of four integral equations:


























∫

Γ+
1,ε

∪Γ−

1,ε

g1(x, y)
∂uε(y)

∂ν
dsy +

∫

Γ−

1,ε
∪Γ−

2,ε

g∓ε (x, y)
∂uε(y)

∂ν
dsy = −(uinc(x) + urefl(x)), for x ∈ Γ∓

1,ε,

∫

Γ+
2,ε

∪Γ−

2,ε

g2(x, y)
∂uε(y)

∂ν
dsy +

∫

Γ−

1,ε
∪Γ−

2,ε

g∓ε (x, y)
∂uε(y)

∂ν
dsy = 0, for x ∈ Γ∓

2,ε.

(2.1)
Note that on the slit apertures, there holds x = x′, and the periodic Green’s functions satisfy

g1(x, y) = g2(x, y) = 2g(x1, 0; y1, 0). (2.2)

On the other hand, over the slit apertures, the slit Green’s functions can be expressed as

g±ε (x1, 1; y1, 1) = g±ε (x1, 0; y1, 0) = g0ε(x1 ∓ ε, 0; y1 ∓ ε, 0), (2.3)

g±ε (x1, 1; y1, 0) = g±ε (x1, 0; y1, 1) = g0ε(x1 ∓ ε, 1; y1 ∓ ε, 0). (2.4)

We rescale the slit aperture to the unit interval I := (−1
2
, 1
2
) by letting

x1 = ε(X ± 1) for (x1, 1) ∈ Γ±
1,ε and (x1, 0) ∈ Γ±

2,ε.

From the Rayleigh-Bloch expansion of the periodic Green’s function (cf. [20]), the rescaled
periodic Green’s function over the slit apertures Γ±

1,ε and Γ±
2,ε are given explictly by

Ge
ε(X, Y ) := 2g(εX, 0; εY, 0) = − i

d

∞
∑

n=−∞

1

ζn(κ, k)
eiκnε(X−Y ).
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Similarly, the slit Green’s function is rescaled and expressed explicitly as

Gi
ε(X, Y ) := g0ε(εX, 0; εY, 0) =

1

ε

∞
∑

m,n=0

cmnamn cos
(

mπ(X + 1
2
)
)

cos
(

mπ(Y + 1
2
)
)

;

G̃i
ε(X, Y ) := g0ε(εX, 1; εY, 0) =

1

ε

∞
∑

m,n=0

(−1)ncmnamn cos
(

mπ(X + 1
2
)
)

cos
(

mπ(Y + 1
2
)
)

,

in which the coefficients

cmn = [k2 − (mπ/ε)2 − (nπ)2]−1 and amn =







1 m = n = 0,
2 m = 0, n ≥ 1 or n = 0,m ≥ 1,
4 m ≥ 1, n ≥ 1.

Correspondingly, let us introduce the rescaled boundary-integral operators for X ∈ I:

[T eϕ](X) =

∫

I

Ge
ε(X, Y )ϕ(Y )dY, [T e,±ϕ](X) =

∫

I

Ge
ε(X, Y ∓ 2)ϕ(Y )dY (2.5)

[T iϕ](X) =

∫

I

Gi
ε(X, Y )ϕ(Y )dY, [T̃ iϕ](X) =

∫

I

G̃i
ε(X, Y )ϕ(Y )dY. (2.6)

If one defines the following quantities in the scaled interval,

ϕ±
1 (X) :=

∂uε

∂ν
(ε(X ± 1), 1), ϕ±

2 (X) :=
∂uε

∂ν
(ε(X ± 1), 0),

f±(X) := −1

2
(uinc + urefl)(ε(X ± 1), 1) = −eiκε(X±1),

then in view of (2.2) - (2.4), the system (2.1) can be recast as Tϕ = ε−1f , in which

T =









T e + T i T e,− T̃ i 0

T e,+ T e + T i 0 T̃ i

T̃ i 0 T e + T i T e,−

0 T̃ i T e,+ T e + T i









, ϕ =









ϕ−
1

ϕ+
1

ϕ−
2

ϕ+
2









, f =









2f−

2f+

0
0









. (2.7)

For each fixed κ ∈ (−b/2, b/2], we derive the asymptotic expansion of the boundary
integral operators T e, T e,±, T i, and T̃ i when the slit size ε � 1. Here and henceforth, we
assume that k = O(1) and k is away from the Rayleigh cut-off frequencies κ + nb for all
integers n. By doing this we exclude the scenario where the Green function Ge

ε(X, Y ) is not
defined because of the vanishing value for certain ζn.

It can be shown that the kernel Ge
ε(X, Y ) admits the following asymptotic expansion:

Ge
ε(X, Y ) = βe(κ, k, ε) +

1

π
ln |X − Y |+ re(κ, ε;X, Y ), (2.8)

where

βe(κ, k, ε) =
1

π
ln(εb) +

∑

n 6=0

(

1

2π

1

|n| −
i

d

1

ζn(κ, k)

)

− i

d

1

ζ0(κ, k)
. (2.9)
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The high-order term satisfies

re(κ, ε;X, Y ) = re(0, ε;X, Y ) +O(κε) if (κ, k) ∈ D1, (2.10)

where re(0, ε;X, Y ) = O(k2ε2| ln ε|) is real-valued. On the other hand,

re(κ, ε;X, Y ) = O(kε) if (κ, k) ∈ D2. (2.11)

The regions D1 and D2 are defined by (1.10) and (1.11). The above expansion for Ge
ε(X, Y )

is derived in the appendix. The asymptotic expansions of Gi
ε(X, Y ) and G̃i

ε(X, Y ) are given
by (cf. Lemma 3.1 of [16])

Gi
ε(X, Y ) = βi(k, ε) +

1

π

[

ln

∣

∣

∣

∣

sin

(

π(X − Y )

2

)∣

∣

∣

∣

+ ln

∣

∣

∣

∣

sin

(

π(X + Y + 1)

2

)∣

∣

∣

∣

]

+ ri(ε;X, Y ); (2.12)

G̃i
ε(X, Y ) = β̃(k, ε) + r̃i(ε;X, Y ). (2.13)

In the above,

βi(k, ε) =
1

ε k tan k
+

2 ln 2

π
, β̃(k, ε) =

1

ε k sin k
, (2.14)

and the real-valued high-order terms ri = O(ε2) and r̃i = O(e−1/ε).
Let P be the projection operator on the interval I defined by Pϕ(X) = 〈ϕ, 1〉1, where

1 is a function defined on the interval I and is equal to one therein. Define the functions
spaces

V1 = H̃− 1

2 (I) := {u = U |I
∣

∣ U ∈ H−1/2(R) and suppU ⊂ Ī} and V2 = H
1

2 (I).

We introduce the following integral operators from V1 to V2:

[Sϕ](X) =
1

π

∫

I

ln

∣

∣

∣

∣

(X − Y ) sin

(

π(X − Y )

2

)

sin

(

π(X + Y + 1)

2

)∣

∣

∣

∣

ϕ(Y ) dY ;

[S±ϕ](X) =
1

π

∫

I

ln |X − Y ± 2|ϕ(Y ) dY ;

[S∞ϕ](X) =

∫

I

[

re(X, Y ) + ri(X, Y )
]

ϕ(Y ) dY ;

[S∞,±ϕ](X) =

∫

I

re(X, Y ∓ 2)ϕ(Y ) dY ;

[S̃∞ϕ](X) =

∫

I

r̃i(X, Y )ϕ(Y ) dY.

For brevity, in the above we neglect the explicit dependence of the kernels re, ri and r̃i on κ
and ε. Then from the asymptotic expansion of the Green functions, the integral operators
T e + T i, T e,±, and T̃ i can be decomposed as

T e + T i = (βe + βi)P + S + S∞, T e,± = βeP + S± + S∞,±, T̃ i = β̃P + S̃∞, (2.15)
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where S∞, S∞,±
κ and S∞ are bounded from V1 to V2, with operator norm

‖S∞‖ . ε, ‖S∞,±‖ . ε, and ‖S̃∞‖ . e−1/ε. (2.16)

If (κ, k) ∈ D1, in view of the relation (2.10) and the estimation re(0, ε;X, Y ) = O(k2ε2| ln ε|),
it follows that re(κ, ε;X, Y ) = O(k2ε2| ln ε|) + O(|κ|ε). In addition, note that ri(X, Y ) =
O(ε2). Thus we have the following lemma for S∞ and S∞,±.

Lemma 2.1 If (κ, k) ∈ D1, then there holds that

‖S∞‖ . k2ε2| ln ε|+ |κ|ε and ‖S∞,±‖ . k2ε2| ln ε|+ |κ|ε. (2.17)

3 The resonances for the scattering problem

3.1 The resonance condition

For each κ ∈ (−b/2, b/2], we solve for complex-valued resonances k, whose real part lies
in the continuous spectrum of the quasi-periodic scattering operator. The corresponding
quasi-mode grows exponentially away from the grating. From the discussions in Section 2,
we see that the resonances are the complex characteristic values k of the system of integral
equations (2.1), or equivalently, the complex characteristic frequencies of the operator T in
the scaled intervals for which the system Tϕ = 0 admits a nonzero solution.

Let σ(T) be the set of complex characteristic frequencies k of T. Note that

T =

[

T̂ T̃

T̃ T̂

]

, where T̂ =

[

T e + T i T e,−

T e,+ T e + T i

]

and T̃ =

[

T̃ i 0

0 T̃ i

]

.

One can decompose the function space (V1)
4 as (V1)

4 = Veven ⊕ Vodd, where Veven and Vodd

are invariant subspaces for T given by Veven = { [ϕ−, ϕ+, ϕ−, ϕ+]
T ; ϕ± ∈ V1} and Vodd =

{ [ϕ−, ϕ+,−ϕ−,−ϕ+]
T ; ϕ± ∈ V1}. As such, it follows that

σ(T) = σ(T|Veven
) ∪ σ(T|Vodd

) = σ
(

T+

)

∪ σ
(

T−

)

,

where
T+ = T̂+ T̃ and T− = T̂− T̃. (3.1)

Hence, we shall derive the characteristic values of the operators T+ and T− to obtain σ(T).
This can be reduced to solving for the roots of certain nonlinear functions as shown it what
follows.

Let
β(κ, k, ε) = βe(κ, k, ε) + βi(k, ε)− β0, (3.2)

where the quantity βe and βi is given in (2.9) and (2.14) respectively, β0 is certain real
constant independent of ε and k to be specified in Lemma 3.3. Introduce the operators

P± =

[

(β ± β̃)P βeP

βeP (β ± β̃)P

]

, S =

[

S + β0P S−

S+ S + β0P

]

, S∞
± =

[

S∞ ± S̃∞ S∞,−

S∞,+ S∞ ± S̃∞

]

,

(3.3)
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In view of the decomposition for the integral operators in (2.15), it follows that

T± = P± + S+ S∞
± =: P+ L±,

and the homogeneous problem T±ϕ = 0 become

(P± + L±)ϕ = 0, (3.4)

where ϕ = [ϕ−, ϕ+ ]T .
It is shown in [5] that the operator S attains a bounded inverse from (V2)

2 to (V1)
2.

Consequently, L± is invertible for sufficiently small ε since ‖S∞
± ‖ . ε. By applying L−1

± on
both sides of (3.4), it can be calculated explicitly that
[

(β ± β̃)〈ϕ, e1〉+ βe〈ϕ, e2〉
]

L−1
± e1 +

[

βe〈ϕ, e1〉+ (β ± β̃)〈ϕ, e2〉
]

L−1
± e2 +ϕ = 0, (3.5)

where {ej}2j=1 ∈ V1 × V1 are given by e1 = [1, 0]T and e2 = [0, 1]T . Taking the L2-inner
product of (3.5) with e1 and e2 yields a 2× 2 linear system

M̃±

[

〈ϕ, e1〉
〈ϕ, e2〉

]

=

[

0
0

]

, where M̃±(k;κ, ε) := Q±B± + I. (3.6)

In the above, I is the identity matrix, and

Q±(k;κ, ε) :=

[

〈L−1
± e1, e1〉 〈L−1

± e2, e1〉
〈L−1

± e1, e2〉 〈L−1
± e2, e2〉

]

, B±(k;κ, ε) :=

[

β ± β̃ βe

βe β ± β̃

]

. (3.7)

Therefore, the characteristic values of the operator-valued function T±(k;κ, ε) are the roots
of λ̃1,±(k;κ, ε) and λ̃2,±(k;κ, ε), the eigenvalues of M̃±. Since the leading-order of β and βe

in ε is O(1/ε), we scale the matrix M̃± by letting

M± := ε M̃±.

The eigenvalues of M± are

λj,±(k;κ, ε) := ε λ̃j,±(k;κ, ε), j = 1, 2. (3.8)

The following proposition summarizes the resonance condition.

Proposition 3.1 For each κ ∈ (−b/2, b/2], let Cκ = {z ∈ C ; Re z > |κ|} ⊂ C. Then the
complex-valued resonances of the scattering problem (1.2)–(1.6) in Cκ are the complex roots
of the functions λj,±(k;κ, ε), (j = 1, 2), where λ1,± and λ2,± are eigenvalues of the matrix
M±.

3.2 Asymptotic expansion of resonances

From Proposition 3.1, one can solve for the roots of λj,±(k;κ, ε) to obtain resonances. To
this end, we will first approximate M± by certain symmetric matrices whose eigenvalues are
easier to analyze, and then apply the perturbation theory to study the high-order terms of
the roots. This method will be used several times throughout the rest of the paper. We
introduce it in what follows.
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3.2.1 A perturbation theory for matrices

Given a matrix

M := ε(QB+ I), where Q :=

[

q11(ε) q12(ε)
q21(ε) q22(ε)

]

, B :=

[

b(ε) b̃(ε)

b̃(ε) b(ε)

]

.

Assume that there exits q̂ij such that

qij(ε)− q̂ij = O
(

τ(ε)
)

, q̂11 = q̂22 = q and q̂12 = q̂21 = q̃,

where τ(ε) → 0 as ε → 0. We introduce a symmetric matrix

M̂ := ε(Q̂B+ I) where Q̂ =

[

q q̃
q̃ q

]

. (3.9)

It can be calculated that the eigenvalues of M̂ are

λ̂1 = ε+ ε(b+ b̃)(q + q̃), λ̂2 = ε+ ε(b− b̃)(q − q̃), (3.10)

and the corresponding eigenvectors are

v̂1 = [ 1 1 ]T , v̂2 = [ 1 − 1 ]T . (3.11)

The sensitivity of eigenvalues of the matrixM with respect to the perturbation ∆M := M−M̂

is given in the following lemma.

Lemma 3.2 Let {λj}2j=1 and {vj}2j=1 be the eigenvalues and eigenvectors of M. Assume

that Q̂ is invertible. If ‖Q− Q̂‖ = O(τ) and ‖M− M̂‖ = O(τ), then

λj = (1 +O(τ)) · λ̂j +O(ετ), vj = v̂j +O(τ), j = 1, 2. (3.12)

Proof. Let ∆λj = λj − λ̂j and ∆vj = vj − v̂j be the perturbation of the eigenvalues and
eigenvectors. The sensitivity of eigenvectors is obvious. To investigate the sensitivity of
eigenvalues, we expand the relation Mvj = λjvj to obtain

λ̂j ·∆vj +∆λj · v̂j = M̂∆vj +∆M v̂j +O(τ 2).

Multiplying by v̂Tj yields

2∆λj = v̂Tj ∆M v̂j +O(τ 2). (3.13)

Using the relation M̂v̂j = λ̂j v̂j, one can express ∆M v̂j as

∆M v̂j = ε(Q− Q̂)Bv̂j = (λ̂j − ε)(Q− Q̂)Q̂−1v̂j, (3.14)

and the assertion follows by combining (3.13) and (3.14). �
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3.2.2 Asymptotic expansions of resonances

We apply the perturbation method in the previous section to derive the asymptotic expan-
sions for the roots of the functions λj,±(k;κ, ε) (j = 1, 2). Recall that λ1,± and λ2,± are
eigenvalues of the matrix M±. We first introduce the following approximation for M±:

M̂± := ε(Q̂B± + I) where Q̂ =

[

〈S−1e1, e1〉 〈S−1e2, e1〉
〈S−1e1, e2〉 〈S−1e2, e2〉

]

. (3.15)

In the above, the operator S is defined by (3.3) and the matrix B± by (3.7).

Lemma 3.3 The matrix Q̂ is symmetric and there exists real constant β0 such that Q̂ is
invertible.

Proof. Let ϕ = (ϕ1, ϕ2)
T and ϕ̃ = (ϕ̃1, ϕ̃2)

T satisfy Sϕ = e1 and Sϕ̃ = e2. By a direct
calculation, it is seen that

(Ŝ − S−Ŝ−1S+)ϕ1 = 1, (Ŝ − S+Ŝ−1S−)ϕ̃2 = 1,

where Ŝ := S + β0P . From the definition of the operators S and S±, we see that for a
function ϕ defined over the interval I, there holds

[Sϕ̃](X) = [Sϕ](−X), [S−ϕ̃](X) = [S+ϕ](−X), [S+ϕ̃](X) = [S−ϕ](−X),

where ϕ̃(X) = ϕ(−X). Therefore, from the uniquess of the solution for the integral equation,
ϕ̃2(X) = ϕ1(−X) holds and consequently 〈S−1e1, e1〉 = 〈S−1e2, e2〉. Similarly, it can be
shown that ϕ̃1(X) = ϕ2(−X) and 〈S−1e1, e2〉 = 〈S−1e2, e1〉. This proves the symmetry of
the matrix Q̂.

We follow the lines in [5] to show the invertibility of Q̂. Introduce the operator T :

(V1)
2 × R2 → (V2)

2 × R2 such that T(g,u) :=
(

(S − β0P )g − u,

∫

I

g dx
)

, then it can be

shown that T is invertible (Lemma 4.4 of [5]). Let (ψ, a) and (ψ̃, ã) satisisfy T(ψ, a) = (0, e1)
and T(ψ̃, ã) = (0, e2) respectively, where the vectors a = [a1, a2] and ã = [a2, a1]. Then it
follows that
[ 〈Sψ,ϕ〉]
〈Sψ̃,ϕ〉]

]

=

[

β0 + a1 a2
a2 β0 + a1

]

·
∫

I

ϕ dx =

[

β0 + a1 a2
a2 β0 + a1

]

·
[

〈ϕ, e1〉
〈ϕ, e2〉

]

. (3.16)

On the other hand,
[ 〈Sψ,ϕ〉
〈Sψ̃,ϕ〉

]

=

[ 〈ψ, Sϕ〉
〈ψ̃, Sϕ〉

]

=

[ 〈ψ, e1〉
〈ψ̃, e1〉

]

= e1. (3.17)

From (3.16) and (3.17) and by repeating the calculation with ϕ̃, we obtain
[

β0 + a1 a2
a2 β0 + a1

]

· Q̂ = I.

Therefore, by choosing β0 satisfying (β0 + a1)
2 − a22 6= 0, the proof is complete. �
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Recall that L± = S + S∞
± . It follows from (2.15) - (2.17) that ‖∆Q±‖ = ‖Q± − Q̂‖ =

O(τ(κ, k, ε)) holds in D1 and D2, where

τ(κ, k, ε) =

{

ε2| ln ε|+ |κ|ε if (κ, k) ∈ D1;
ε if (κ, k) ∈ D2,

(3.18)

Thus ‖∆M±‖ = ‖M± − M̂±‖ = O(τ). We now are ready to apply the perturbation theory
in Section 3.2.1 to investigate the roots of λj,±(k;κ, ε) for the matrix M±.

Let
α = 〈S−1e1, e1〉 = 〈S−1e2, e2〉 and α̃ = 〈S−1e1, e2〉 = 〈S−1e2, e1〉.

Define the function

γ(κ, k) = 2βe(κ, k, ε) +
2

π
ln 2− 2

π
ln ε− β0.

First, using the formula (3.10) and recalling from (3.2) that β = βe + βi − β0, we obtain the
eigenvalues of M̂±:

λ̂1,±(k;κ, ε) = ε+ ε(β ± β̃ + βe)(α + α̃) = ε+ ε(βi ± β̃ + 2βe − β0)(α + α̃),

= ε+ ε

(

1

k tan k
± 1

k sin k
+

2

π
ε ln ε+ εγ(κ, k)

)

(α + α̃),

λ̂2,±(k; ε) = ε+ ε(β ± β̃ − βe)(α− α̃) = ε+ ε(βi ± β̃ − β0)(α− α̃)

= ε+ ε

(

1

k tan k
± 1

k sin k
+

2 ln 2

π
− β0

)

(α− α̃).

It is clear that, for real k, λ̂1,±(k) is complex-valued while λ̂2,±(k) is real-valued.

The leading-order term of λ̂1,+ and λ̂2,+ is equal and is given by 1
k tan k

+ 1
k sin k

. In view
of Lemma 3.2, we deduce that λ1,+ and λ2,+ share the same leading order, thus both attain
a simple root mπ for odd integers m. Let us choose the disc Bρ(mπ) with radius ρ centered
at mπ in the complex k-plane, with ρ = O(1) as ε → 0. By extending the functions βe(k),
βi(k) and β̃ to Bρ(mπ), one can show that the asymptotic expansions in ε for the kernels
Ge

ε, G
i
ε and G̃i

ε given in (2.8), (2.12), and (2.13) hold in Bρ(mπ). From Rouche’s theorem,

λj,+(k) (j = 1, 2) attains a simple root k
(j)
m that is close to mπ if ε is sufficiently small.

The asymptotics of k
(j)
m can be obtained as follows. We apply the Taylor expansion for

λ̂j,+(k) at k = mπ to obtain the expansions for their roots:

k̂(1)
m = mπ + 2mπ

[

2

π
ε ln ε+

(

1

α + α̃
+ γ(κ,mπ)

)

ε

]

+ k̂
(1)
m,h;

k̂(2)
m = mπ + 2mπ

(

1

α− α̃
+

2 ln 2

π
− β0

)

ε+ k̂
(2)
m,h,

where k̂
(1)
m,h = O(ε2 ln2 ε) and k̂

(2)
m,h = O(ε2). Furthermore, there holds

Im k̂(1)
m = O(ε) and Im k̂(2)

m = 0, (3.19)

since Im γ(κ,mπ) 6= 0 while λ̂2,+(k) is a real-valued function for real k.
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Now it follows from Lemma 3.2 that

λj,+(k)− λ̂j,+(k) = O(τ) · λ̂j,+(k) +O(ετ) in Bδ0(mπ).

Hence there exists certain constant C such that |λj,+(k) − λ̂j,+(k)| < |λ̂j,+(k)| for all k

satisfying |k − k̂
(j)
m | = C|ετ |. As such k

(j)
m = k̂

(j)
m + O(ετ). Similarly, investigating the roots

of λ̂j,−(k;κ, ε) yields resonances close to mπ with even integers m. In summary, we arrive
at the following asymptotic expansion of resonances.

Theorem 3.4 For each κ ∈ (−b/2, b/2], the scattering problem (1.2)–(1.6) admits two
groups of complex-valued resonances in the region Cκ given by

k(1)
m = mπ + 2mπ

[

2

π
ε ln ε+

(

1

α + α̃
+ γ(κ,mπ)

)

ε

]

+ k
(1)
m,h, (3.20)

k(2)
m = mπ + 2mπ

(

1

α− α̃
+

2 ln 2

π
− β0

)

ε+ k
(2)
m,h (3.21)

for mε � 1. In the above,

k
(1)
m,h = O(ε2 ln2 ε), Re k

(2)
m,h = O(ε2), and Im k

(2)
m,h = O

(

ετ(κ,mπ, ε)
)

. (3.22)

The imaginary part of k
(j)
m plays the key role in the resonance effect and we examine it

closely in what follows.

Proposition 3.5 For each κ ∈ (−b/2, b/2], let k
(1)
m and k

(2)
m be the two groups of resonances

given in (3.20) and (3.21). Then their imaginary parts attain the following orders:

Im k(1)
m = O(ε), Im k(2)

m =

{

O(κε2) if (κ,mπ) ∈ D1;
O(ε2) if (κ,mπ) ∈ D2,

where D1 and D2 are defined in (1.10) and (1.11) respectively.

Proof. First, a combination of (3.19) and (3.22) implies that

Im k(1)
m = O(ε) and Im k(2)

m = Im k
(2)
m,h = O(ετ).

It is clear that the order of Im k
(1)
m is optimal as ε → 0. If (κ,mπ) ∈ D2, from (3.18) it

follows that Im k
(2)
m attains the order O(ε2). On the other hand, if (κ,mπ) ∈ D1, one can

only tell that Im k
(2)
m = O(ε3| ln ε|+ |κ|ε2). In what follows, we apply the perturbation theory

in Section 3.2.1 recursively to obtain a sharper estimation and show that Im k
(2)
m = O(|κ|ε2)

if (κ,mπ) ∈ D1.

Without loss of generality, we focus on k
(2)
m for odd m. Let kn (n = 0, 1, 2, · · · ) be a

sequence of real numbers with k0 = k̂
(2)
m and kn ∈ (0, b) for n ≥ 1 specified below. Define

matrice

Mn := ε(QnB+ + I) where Qn =

[

〈(L−1
n,0e1, e1〉 〈L−1

n,0e2, e1〉
〈L−1

n,0e1, e2〉 〈L−1
n,0e2, e2〉

]

, (3.23)
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and Ln,0 is the operator L+(k, κ) for k = kn and κ = 0. Similar to Lemma 3.3, it can be
shown that Qn is real and symmetric. As such, by letting

αn = 〈L−1
n,0e1, e1〉 = 〈L−1

n,0e2, e2〉 and α̃n = 〈L−1
n,0e1, e2〉 = 〈L−1

n,0e2, e1〉,

the second eigenvalue of Mn reads

λn,2(k;κ, ε) = ε+ ε(β + β̃ − βe)(αn − α̃n), (3.24)

which attains real root kn+1 near k
(2)
m . A close examination using the estimation in Lemma

2.1 yields

|k1 − k0| = O(ε · (α0 − α)) = O(ε3| ln ε|), (3.25)

|kn+1 − kn| = O(ε · |αn − αn−1|) = O(ε3| ln ε|) · |kn − kn−1|. (3.26)

Recall that Q+(k) := Q+(k, κ, ε) in (3.7) and λ2,+ := λ2,+(k;κ, ε) in (3.8). Using the
relation

∆Qn := Q+(k)−Qn =
(

Q+(k)−Q+(kn)
)

+
(

Q+(kn)−Qn

)

,

it follows from (2.17) that ‖∆Qn‖ = O(ε2| ln ε|) · (k−kn)+O(κε). An application of Lemma
3.2 yields

λ2,+(k;κ, ε) = (1 +O(τn)) · λn,2(k;κ, ε) +O(ετn), where τn := ε2| ln ε| · (k − kn) + κε.

This is can be rewritten as

λ2,+(k)− λn,2(k) = O(τn) · λn,2(k) +O(ε3| ln ε|) ·
[

(k − kn+1) + (kn+1 − kn)
]

+O(κε2),

which implies that |λ2,+(k)− λn,2(k)| < |λn,2(k)| for all k satisfying

|k − kn+1| = C(ε3| ln ε| · |kn+1 − kn|+ κε2) (3.27)

for certain constant C. As such k
(2)
m , the root of λ2,+(k), sits in the disk with the above

radius by Rouche’s theorem. In light of (3.25) - (3.27), for any given nonzero κ, there exists

sufficiently large integer N such that |k(2)
m − kN | . |κ|ε2 and there holds Im k

(2)
m = O(κε2).

Finally, if κ = 0, Q± is real and symmetric for real-valued k, so does λ2,+(k). Thus k
(2)
m

is real. This completes the proof of the proposition.

4 Fano resonance for the grating structure

4.1 Asymptotics of the solution to scattering problem

We solve the system Tϕ = ε−1f with T, ϕ and f given in (2.7). To this end, we apply the de-
composition f = feven+fodd, with feven = [f−, f+, f−, f+]T and fodd = [f−, f+, −f−, −f+]T ,
and solve the two subsystems Tϕeven = ε−1feven and Tϕodd = ε−1fodd separately. From the
structure of the operator T, one can express

ϕeven = [ϕ+,ϕ+]
T and ϕodd = [ϕ−,−ϕ−]

T , (4.1)
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then these two subsystems are equivalent to the two smaller systems

T+ϕ+ = ε−1f̃ and T−ϕ− = ε−1f̃ ,

where T+ = T̂+ T̃ and T− = T̂− T̃ are defined in (3.1), and f̃ = [f−, f+]T .
The expansion of their solutions is given in the following lemma. We distinguish the two

cases: (κ, k) ∈ D1 and (κ, k) ∈ D2. We define

η±(k) =

{ 〈

[L±(0, k)]
−1e1, e1 + e2

〉

if (κ, k) ∈ D1;
〈S−1e1, e1 + e2〉 if (κ, k) ∈ D2,

and

δ(ε) =

{

|κ|ε if (κ, k) ∈ D1;
ε if (κ, k) ∈ D2.

Lemma 4.1 The following asymptotic expansion holds for the solutions ϕ+ and ϕ− in V1×
V1:

[

〈ϕ±, e1〉
〈ϕ±, e2〉

]

= − 1

λ1,±

(η± +O(δ)) · v +
1

λ2,±

·w± if (κ, k) ∈ Dj,

where v = [1, 1]T and w± = [w1,±, w2,±] with wj,± = O(δ) (j = 1, 2).

Proof. Using the decomposition T± = P±+L± and applying L−1
± on both sides, the equation

T±ϕ+ = ε−1f̃ can be expressed as

L−1
± P± ϕ± +ϕ± = ε−1L−1

± f̃ . (4.2)

A calculation analogous to that in Section 3.1 leads to

M±

[

〈ϕ±, e1〉
〈ϕ±, e2〉

]

=

[

〈L−1
± f̃ , e1〉

〈L−1
± f̃ , e2〉

]

. (4.3)

Recall that the matrix M± has eigenvalues λ1,± and λ2,±, which are associated with

the eigenvectors v1,± and v2,±. We define the matrix M̂± in the form of (3.15), where the

symmetric matrix Q̂ is now defined by

[Q̂]ij =
〈

[L±(0, k̂)]
−1ei, ej

〉

and [Q̂]ij = 〈S−1ei, ej〉

for (κ, k) ∈ D1 and D2 respectively. It follows from the relation (2.10) that ‖Q− Q̂‖ = O(δ).
In light of Lemma 3.2, one can write v1,± = v̂1 +∆v1,± and v2,± = v̂2 +∆v2,±, where v̂1 and

v̂2 are eigenvectors of M̂± given explicitly in (3.11). A direct calculation yields

M−1
± =

1

2λ1,±

([

1 1
1 1

]

+∆V1,±

)

+
1

2λ2,±

([

1 −1
−1 1

]

+∆V2,±

)

, (4.4)

where ∆Vj,± is a 2 × 2 matrix with ‖∆Vj,±‖ = ‖∆vj,±‖ = O(δ) (j = 1, 2). On the other
hand, there holds

f̃ = −(1 +O(κε))(e1 + e2),

17



δ
0 0.005 0.01 0.015 0.02

-0.02

-0.01

0

0.01

0.02

Re w1,+

Re w2,+

Re w1,+ + Re w2,+

δ
0 0.005 0.01 0.015 0.02

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Im w1,+

Im w2,+

Im w1,+ + Im w2,+

Figure 3: Real and imaginary parts of w1,+, w2,+, and w1,+ + w2,+ at the frequency k = 3.12 for various δ values.

and consequently,

[

〈L−1
± f̃ , e1〉

〈L−1
± f̃ , e2〉

]

= − (η± +O(κε))

([

1
1

]

+∆f̃

)

, (4.5)

where ‖∆f̃‖ = O(δ). The proof is completed by inserting (4.4) and (4.5) into (4.3). �

According to the lemma above, w1,± and w2,± have the same order O(δ). We would like
to point out that their phase difference argw1,± − argw2,± is about π near the resonance

frequencies Re k
(2)
m , and there holds that

w1,± + w2,± = o(δ). (4.6)

This has been observed through a large number of numerical calculations, although a rigorous
proof is lacking here. Here we demonstrate such a relation in Figure 3 for a structure with
period d = 1.5.

Let us now consider the reflected and transmitted wave above and below the grating.
From the Green’s formula, the total field above the grating is

uε(x) =

∫

Γ+
1,ε

∪Γ−

1,ε

g1(x, y)∂νuε(y)dsy + uinc + urefl in Ω1.

For x sufficiently far away from the grating, a change of variable to the scaled interval I and
the Taylor expansion leads to

uε(x) = ε
(

g1
(

x, (−ε, 1)
)

+O(ε)
)

· 〈ϕ−
1 , 1〉+ ε

(

g1
(

x, (ε, 1)
)

+O(ε)
)

· 〈ϕ+
1 , 1〉+ uinc + urefl.

In view of the decomposition (4.1) and the asymptotic expansion in Lemma 4.1, for (κ, k) ∈
Dj, we obtain

uε(x) = εr̂− ·
(

g1
(

x, (−ε, 1)
)

+O(ε)
)

+ εr̂+ ·
(

g1
(

x, (ε, 1)
)

+O(ε)
)

+ uinc + urefl, (4.7)
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where the reflection coefficients

r̂−(κ, k, ε) := 〈ϕ−
1 , 1〉 = − 1

λ1,+

(

η+ +O(δ)
)

− 1

λ1,−

(

η− +O(δ)
)

+
w1,+

λ2,+

+
w1,−

λ2,−

, (4.8)

r̂+(κ, k, ε) := 〈ϕ+
1 , 1〉 = − 1

λ1,+

(

η+ +O(δ)
)

− 1

λ1,−

(

η− +O(δ)
)

+
w2,+

λ2,+

+
w2,−

λ2,−

. (4.9)

Similarly, for x ∈ Ω2,

uε(x) = εt̂− ·
(

g2
(

x, (−ε, 0)
)

+O(ε)
)

+ εt̂+ ·
(

g2
(

x, (ε, 0)
)

+O(ε)
)

, (4.10)

where the transmission coefficients

t̂−(κ, k, ε) := 〈ϕ−
2 , 1〉 = − 1

λ1,+

(

η+ +O(δ)
)

+
1

λ1,−

(

η− +O(δ)
)

+
w1,+

λ2,+

− w1,−

λ2,−

, (4.11)

t̂+(κ, k, ε) := 〈ϕ+
2 , 1〉 = − 1

λ1,+

(

η+ +O(δ)
)

+
1

λ1,−

(

η− +O(δ)
)

+
w2,+

λ2,+

− w2,−

λ2,−

. (4.12)

Remark 4.2 From formula (4.7) and (4.10), we observe that the diffracted field generated
by the slits can be approximately viewed as the field generated by equivalent point charges
sitting on the slit apertures. The strength of the charges is determined by the coefficients r̂±
and t̂±.

4.2 Fano-type transmission anomalies

By decomposing the Green functions g1(x, y) and g2(x, y) into the propagating and expo-
nentially decaying parts, we obtain the expansion of the reflected and transmitted fields via
the formulas (4.7) and (4.10):

ur
ε(x) =

∑

n∈Z1

rne
iκnx1+iζn(x2−1), ut

ε(x) =
∑

n∈Z1

tne
iκnx1−iζnx2 ,

where the reflection and transmission coefficients of diffraction order n are given by

rn(κ, k, ε) =











1− iε

d ζ0

(

eiκεr̂− + e−iκεr̂+
)

· (1 +O(ε)) n = 0;

− iε

d ζn

(

eiκnεr̂− + e−iκnεr̂+
)

· (1 +O(ε)) n ∈ Z1\{0},
(4.13)

tn(κ, k, ε) = − iε

d ζn

(

eiκnεt̂− + e−iκnεt̂+
)

· (1 +O(ε)) . n ∈ Z1. (4.14)

Assuming that the incident power is one, then the reflection and transmission power is given
by

|R(κ, k, ε)|2 =
∑

n∈Z1

ζn
ζ0
|rn|2 and |T (κ, k, ε)|2 =

∑

n∈Z1

ζn
ζ0
|tn|2 (4.15)

respectively.
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Now let us study the transmission intensity of the scattering problem in the vicinity of the
resonance frequency k∗ := Re k

(2)
m . We focus the discussion for odd integer m only since the

calculations are parallel for even integer m. There holds ε/λ1,− = O(ε) and ε/λ2,− = O(ε)
in the O(εδ) neighborhood of k∗. Hence, from (4.8)-(4.9) and (4.11)-(4.12), it follows that

εr̂− = − εη+
λ1,+

+
εw1,+

λ2,+

+O(ε), εr̂+ = − εη+
λ1,+

+
εw2,+

λ2,+

+O(ε); (4.16)

εt̂− = − εη+
λ1,+

+
εw1,+

λ2,+

+O(ε), εt̂+ = − εη+
λ1,+

+
εw2,+

λ2,+

+O(ε). (4.17)

In view of the asymptotic expansion for the resonances frequencies in Theorem 3.4, we have
εη+
λ1,+

= c0(1 + O(ε)) in the O(εδ) neighborhood of k∗, where the constant c0 = O(1/| ln ε|).
On the other hand, a Taylor expansion at k∗ yields

λ2,+(k) = c1(k − k∗) + i c2 δ̂ +O(ε) · (k − k∗) =
(

c1(k − k∗) + i c2 δ̂
)

· (1 +O(ε)), (4.18)

where c1 and c2 are constants. As such, there holds
εw1,+

λ2,+

= O(1) and
εw2,+

λ2,+

= O(1) in the

O(εδ) neighborhood of k∗ when the resonance is excited. In addition, their phases change
rapidly due to the presence of the factor (k − k∗) in the expansion (4.18).

From the above discussion and Remark 4.2, if one substitutes (4.17) into the formula
(4.14) and use the relation (4.6), then for each diffraction order, the transmission coefficient
tn can be viewed as a sum of two signals: one is generated from a periodic array of monopoles
(the equivalent charges over the two slit apertures attain the same sign) and the other from
a periodic array of dipoles (the equivalent charges over the two slit apertures attain opposite
signs). The former almost remains constant near k∗, while the phase of the latter changes
rapidly. Such a combination leads to the Fano-type anomaly in the transmission magnitude
|T | as shown in Figure 4 - 6 for several configurations.

Remark 4.3 In the vicinity of the resonance frequency Re k
(1)
m , there holds εr̂± = − εη+

λ1,+

+

O(ε) and εt̂± = − εη+
λ1,+

+ O(ε). In this scenario, the transmission from the monopole res-

onant mode is dominant. This is the so called Fabry-Perot resonance, which would yield a
Lorentzian spectral line shape as shown in Figure 4 - 6.

Finally, we present several numerical examples. We first set the period d = 1.3 and the
slit aperture size ε = 0.02. Let the incident angle be θ = π/6. Figure 4 demonstrates the
leading-order of transmission |T | in (4.15) for k ∈ (2, 7), where the transmission coefficient
t̂± := 〈ϕ±

2 , 1〉 is obtained by solving the linear system (4.3). Fano resonance occurs near
k = 3.06 and 6.12, which is located in D1 and D2 respectively. Note that the Lorentzian
line shape near k = 2.8 and 5.9 is the Fabry-Perot type resonance, which, in contrast to the
Fano resonance involving inference of two resonances, is intrigued by resonance k

(1)
m only.

On the other hand, the non-smooth transmission line around k = 3.2 and 6.4 corresponds
the Rayleigh anomaly, when certain evanescent diffraction modes convert into propagation
modes.
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Figure 4: Top: Transmission |T | for k ∈ (2, 7) when d = 1.3, ε = 0.02. The incident angle θ = π/6. Fano resonance (highlighted
with red arrows) occurs near k = 3.06 and 6.12. Bottom: zoomed view of the two Fano-type transmission anomalies. Two Fano
resonances occurs for (κ, k) ∈ D1 and D2 respectively.
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Figure 5: Top: Transmission |T | for k ∈ (2, 7) when d = 1.5, ε = 0.005. The incident angle θ = 3π/8. Bottom: zoomed view of
the two Fano-type transmission anomalies near k = 3.12 and 6.24. Both Fano resonances occur in the region D2, when there
are two and three diffraction orders respectively.
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Figure 6: Top: Transmission |T | for k ∈ (2, 10) when d = 1.5, ε = 0.005. The incident angle θ = π/6. Bottom: zoomed view
of the three Fano-type transmission anomalies near k = 3.12, 6.24 and 9.36. All the three Fano resonances occur in the region
D2, when there are two, three and five diffraction orders respectively.

We next set the period d = 1.5 and the slit aperture size ε = 0.005, the transmission
for the incident angle θ = 3π/8 for is shown in Figure 5. Two Fano resonances appear near
k = 3.12 and 6.24, and both are in the higher diffraction continuum D2. Figure 6 plots
the transmission for k ∈ (2, 10) when the incident angle becomes smaller. As predicted by
the theory, three Fano resonances occur in this frequency band, which are all located in the
region D2.

Appendix A

Appendix A.1 Asymptotic expansion of Ge
ε
(X, Y )

Let Z̃1 := Z1\{0} and Z̃2 := Z2\{0}, where Z1 and Z2 are defined in (1.9). We split the
Green’s function as three parts by letting

Ge
ε(X, Y ) =

eiκεZ

d

(

1

iζ0(κ, k)
+ I1 + I2

)

, (A.1)

where Z = X − Y , and

I1 :=
∑

n∈Z̃1

einbεZ

iζn(κ, k)
, I2 :=

∑

n∈Z̃2

einbεZ

iζn(κ, k)
. (A.2)
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For n ∈ Z̃1, applying the Taylor expansion gives

I1 =
∑

n∈Z̃1

(

− 1

|bn| +
sgn(n)κ

|bn|2
)

einbεZ +
∑

n∈Z̃1

(

1

iζn(κ, k)
+

1

|bn| −
sgn(n)κ

|bn|2
)

+O(ε). (A.3)

For n ∈ Z̃2, one can write iζn = −
√

(κ+ bn)2 − k2 , and it follows that

1

iζn(κ, k)
= − 1

a|n|

(
√

1 +
2κ

bn
+

κ2 − k2

(bn)2

)−1

. (A.4)

There holds
∣

∣

∣

∣

2κ

bn
+

κ2 − k2

(bn)2

∣

∣

∣

∣

< 1 for n ∈ Z̃2,

and the Taylor expansion yields

I2 = −
∑

n∈Z̃2

1

b|n|

(

1 +
∞
∑

m=1

cm

(

2κ

bn
+

κ2 − k2

(bn)2

)m
)

einbεZ , (A.5)

where cm = −1 · 3 · · · (2m− 1)

2mm!
. Thus we may rewrite I2 as

I2 =
∑

n∈Z̃2

(

− 1

|bn| +
sgn(n)κ

|bn|2
)

einbεZ −
∑

n∈Z̃2

1

|bn|

∞
∑

m=2

hm(κ, k)

(bn)m
einbεZ (A.6)

for certain functions hm(κ, k) satisfying

− 1

|bn|

∞
∑

m=2

hm(κ, k)

(bn)m
=

1

iζn(κ, k)
+

1

|bn| −
sgn(n)κ

|bn|2 , n ∈ Z2. (A.7)

(i) (κ, k) ∈ D1. It follows that Z̃1 = ∅, Z̃2 = Z\{0}, and I1 vanishes. If κ = 0, an
examination of the expansion (A.5) reveals that hm(k, 0) = 0 when m is odd. The
following relations hold (cf. [7, 14])

−
∑

n 6=0

1

|n|e
inbεZ = ln

(

4 sin2 bεZ

2

)

, (A.8)

∞
∑

n 6=0

1

|n|nm
einaεZ =

∞
∑

n 6=0

1

|n|nm
+ im ·O (εmZm ln(|εZ|)) (m ≥ 2), (A.9)

where the O (εmZm ln(|εZ|)) is real. By substituting (A.8) and (A.9) with even m into
(A.6), and using the relation (A.7), we obtain

I2 =
1

b
ln

(

4 sin2 bεZ

2

)

−
∞
∑

m=2

hm(κ, k)

bm+1

∑

n 6=0

1

|n|nm
+O(ε2| ln ε|)

=
2

b
ln(bε|Z|) +

∑

n 6=0

(

1

iζn(k, 0)
+

1

|bn|

)

+O(k2ε2| ln ε|). (A.10)
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The desired asymptotic expansion follows by substituting I2 into (A.1). In addition, the
above expansion shows that re(0, ε;X, Y ) = O(ε2| ln ε|) is a function of |Z| := |X − Y |
and is real when κ = 0.

If κ 6= 0, from the relation (A.9), the second term in (A.6) can be recast as

−
∞
∑

m=2

hm(κ, k)

bm+1

∑

n 6=0

1

|n|nm
+O(ε2| ln ε|) +O(κε3| ln ε|),

where O(ε2| ln ε|) and O(κε3| ln ε|) represent the high-order terms arising from the sum
of the even and odd m respectively. Using (A.7) again, it follows that

I2 =
∑

n 6=0

(

− 1

|bn| +
sgn(n)κ

|bn|2
)

einbεZ +
∑

n 6=0

(

1

iζn(κ, k)
+

1

|bn| −
sgn(n)κ

|bn|2
)

+O(ε2| ln ε|) +O(κε3| ln ε|).

Now an application of the relation

∞
∑

n 6=0

sgn(n)

|n|2 einbεZ = −i(2bεZ ln(bε|Z|) +O(ε).

yields

I2 = (1−iκεZ)
2

b
ln(bε|Z|)+

∑

n 6=0

(

1

iζn(κ, k)
+

1

|bn|

)

+O(ε2| ln ε|)+O(κε)+O(κε3| ln ε|).

(A.11)
By substituting the above into (A.1) and using the Taylor expansion for eiκεZ , we
obtain the desired asymptotic expansion for Ge(X, Y ). In addition, by examing the
above calculations, it is clear that re(κ, ε;X, Y ) = re(0, ε;X, Y ) + O(κε), since the
O(ε2| ln ε|) term in (A.10) and (A.11) represents the high-order term arising from the
sum of the even m and are the same for κ = 0 and κ 6= 0.

(ii) (κ, k) ∈ D2. For each m ≥ 2, the Taylor expansion gives

∑

n∈Z̃1

1

|n|nm
einbεZ =

∞
∑

n∈Z̃1

1

|n|nm
+O(ε).

Thus by applying (A.9), we see that

∑

n∈Z̃2

1

|n|nm
einbεZ =

∑

n 6=0

1

|n|nm
einbεZ−

∑

n∈Z̃1

1

|n|nm
einbεZ =

∑

n∈Z̃2

1

|n|nm
+O(ε2| ln ε|)+O(ε).

As such the second term in (A.6) can be expressed as

−
∞
∑

m=2

hm(κ, k)

bm+1

∑

n∈Z̃2

1

|n|nm
+O(ε2| ln ε|) +O(ε),
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and we obtain

I2 =
∑

n∈Z̃2

(

− 1

|bn| +
sgn(n)κ

|bn|2
)

einbεZ +
∑

n∈Z̃2

(

1

iζn(κ, k)
+

1

|bn| −
sgn(n)κ

|bn|2
)

+O(ε).

(A.12)
A combination of (A.3) and (A.12) leads to

I1 + I2 =
∑

n 6=0

(

− 1

|bn| +
sgn(n)κ

|bn|2
)

einbεZ +
∑

n 6=0

(

1

iζn(κ, k)
+

1

|bn| −
sgn(n)κ

|bn|2
)

+O(ε).

The desired asymptotic expansion follows by the same calculations as in case (i).
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