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Abstract. This paper is the first of a series of papers culminating in the result
that measure preserving diffeomorphisms of the disc or 2-torus are unclassifiable.
It addresses another classical problem: which abstract measure preserving systems
are realizable as smooth diffeomorphisms of a compact manifold? The main result
gives symbolic representations of Anosov—Katok diffeomorphisms.
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1 Introduction

In 1932 J. von Neumann in [20] laid the foundations for ergodic theory. In it
he expressed the likelihood that any abstract measure preserving transformation
(abbreviated to MPT in this paper) is isomorphic to a continuous MPT and perhaps
even to a differentiable one. Recall that two MPT’s, T and S, are isomorphic if
there is an invertible measure preserving mapping between the measure spaces
which commutes with the actions of T and S. His brief remarks ! eventually gave
rise to one of the outstanding problems in smooth dynamics, namely:

Does every ergodic MPT with finite entropy have a smooth model?

By a smooth model is meant an isomorphic copy of the MPT which is given by
smooth diffeomorphism of a compact manifold preserving a measure equivalent
to the volume element. The finite entropy restriction is required by a result of
A. G. Kushnirenko that showed that the entropy of any such diffeomorphism must
be finite. An even more basic problem which von Neumann formulated in the same
paper, was that of classifying all measure preserving transformations up to isomor-
phism. This problem was solved long ago for several classes of transformations
that have special properties. P. Halmos and J. von Neumann showed that ergodic
MPT’s with pure point spectrum are classified by the unitary equivalence of the
associated unitary operators defined on the L? by the MPT, while A. N. Kolmogorov
and D. Ornstein showed that Bernoulli shifts are classified by their entropy.

One way to show that not all finite entropy ergodic MPT’s have a smooth model
would be to show that their classification is easier than the general classification

In [20] on page 590, “Vermutlich kann sogar zu jeder allgemeinen Stromung eine isomorphe stetige

Stromung gefunden werden [footnote 13], vielleicht sogar eine stetig-differentiierbare, oder gar eine
mechanische. Footnote 13: Der Verfasser hofft, hierfiir demnichst einen Beweis anzugeben.”
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problem. Set theory provides a framework for a rigorous comparison of the
complexity of different equivalence relations, and thus could potentially be a tool
for settling this question.

Indeed, starting in the late 1990’s a different type of result began to appear
that used descriptive set theoretic techniques. These anti-classification results
demonstrate in a rigorous way that positive classifications, such as those described
above, are not possible.

The first is due to Beleznay and Foreman [4] who showed that the class of
measure distal transformations used in early ergodic theoretic proofs of Szemeredi’s
theorem is not a Borel set. Later, Hjorth [16] introduced the notion of turbulence
and showed that there is no Borel way of attaching algebraic invariants to ergodic
transformations that completely determine isomorphism. Foreman and Weiss [10]
improved this result by showing that the conjugacy action of the measure preserving
transformations is turbulent—hence no generic class can have a complete set of
algebraic invariants.

An “anti-classification” theorem requires a precise definition of what a clas-
sification is. Informally a classification is a method of determining isomorphism
between transformations perhaps by computing (in a liberal sense) other invariants
for which equivalence is easy to determine. The key words here are method
and computing. For negative theorems, the more liberal a notion one takes for
these words, the stronger the theorem. One natural notion is the Borel/non-Borel
distinction. Saying a set X or function f is Borel is a loose way of saying that
membership in X or the computation of f can be done using a countable (possibly
transfinite) protocol whose basic input is membership in open sets. Saying that X
or f is not Borel is saying that determining membership in X or computing f
cannot be done with any countable amount of resources.

In the context of classification problems, saying that an equivalence relation £
on a space X is not Borel is saying that there is no countable amount of information
and no countable transfinite protocol for determining, for arbitrary x,y € X,
whether xEy. Any such method must inherently use uncountable resources.’

In considering the isomorphism relation as a collection J of pairs (S, T') of
measure preserving transformations, Hjorth showed that J is not a Borel set. How-
ever, the pairs of transformations he used to demonstrate this were inherently
non-ergodic, leaving open the essential problem:

Is isomorphism of ergodic measure preserving transformations Borel?
2Many well-known classification theorems have as immediate corollaries that the resulting equiva-

lence relation is Borel. An example of this is the Spectral Theorem, which has a consequence that the
relation of Unitary Conjugacy for normal operators is a Borel equivalence relation.
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This question was answered in the negative for ergodic transformations of
standard measure spaces by Foreman, Rudolph and Weiss in [11]. This answer can
be interpreted as saying that determining isomorphism between abstract ergodic
transformations is inaccessible to countable methods that use countable amounts
of information.

This series of papers culminates in a result that—even restricted to the Lebesgue
measure preserving diffeomorphisms of the 2-torus—the isomorphism relation is
not Borel.

Theorem 1. If M is either the torus T?, the disk D or the annulus, then the
measure-isomorphism relation among pairs (S, T') of ergodic measure preserving
C°-diffeomorphisms of M is not a Borel set with respect to the C*°-topology.

What is in this paper? The transformations built by Foreman, Rudolph
and Weiss ([11]) to prove the earlier result were based on odometers (in the sense
that the Kronecker factor was an odometer). It is a well-known open problem
whether it is possible to have a smooth transformation on a compact manifold that
has a non-trivial odometer factor. Thus proving the anti-classification theorem in
the smooth context required constructing a different collection of hard-to-classify
transformations and then showing that this collection could be realized smoothly.

The new collection of transformations, the Circular Systems, are defined as
symbolic systems constructed using the Circular Operator, a formal operation on
words. This paper defines this class and then realizes them smoothly using the
method of conjugacy originating in a famous paper of Anosov and Katok.

In fact, something much stronger is shown: Theorems 58 and 60 show that the
Circular Systems exactly coincide with the isomorphism classes of the Anosov—
Katok construction. We loosely summarize 58 and 60 as follows:

Theorem 2 (Main Result of this paper). Let T be an ergodic transformation
on a standard measure space. Then the following are equivalent:
(1) T is isomorphic to a uniform Anosov—Katok diffeomorphism.?
(2) T is isomorphic to a (uniform) circular system.

This theorem shows that a broad class of transformations can be realized as
Anosov—Katok diffeomorphisms. In fact we conjecture the following:

Conjecture. Suppose that T is a zero-entropy ergodic transformation that has
a Liouvillian irrational rotation of the circle as a factor. Then 7 is isomorphic to a
uniform circular system.

3Built using the untwisted method of conjugacy with some minor technical assumptions.
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If the conjecture is true, then all zero entropy ergodic transformations with a
Liouvillean rotation factor can be realized as smooth transformations, and more-
over, every zero entropy ergodic transformation is a factor of an ergodic smooth
transformation.

Applications of Theorem 2. Theorem 2 is primarily useful in that it reduces
questions about diffeomorphisms to combinatorial questions about symbolic shifts.
Theorem 2 implies that any systematic way of building uniform circular systems
with given ergodic properties automatically implies that there are ergodic measure
preserving diffeomorphisms of the torus with those same properties.

In a sequel to this paper ([13]) to this paper, the collection of circular shifts is
endowed with a category structure and it is shown that this category is quite large.
In particular, it contains measure theoretically distal transformations of arbitrarily
countable height.

Another sequel ([14]) reduces a complete analytic set (the ill-founded trees) to
the isomorphism relation for circular systems. By Theorem 2 this automatically
gives a reduction to the isomorphism problem for diffeomorphisms.

Acknowledgements. This work was inspired by the pioneering work of
our co-author Dan Rudolph, who passed away before this portion of the grand
project was undertaken. We owe an inestimable debt to J. P. Thouvenot who
suggested using the Anosov—Katok method of conjugacy to produce our badly
behaved transformations rather than attacking the “odometer obstacle.” The first
author would like to thank Anton Gorodetsky for patiently explaining the original
Anosov—Katok construction and its more contemporary versions as well as being
a general reference on smooth dynamics.

2 Preliminaries

In this section we establish some of the conventions we follow in this paper. There
are many sources of background information on this including any standard text
such as [22] or [21].

2.1 Measurespaces. We will call separable non-atomic probability spaces
standard measure spaces and denote them (X, B, 1), where B is the Boolean
algebra of measurable subsets of X and u is a countably additive, non-atomic
measure defined on B. We will often identify two members of B that differ by a set
of u-measure 0 and seldom distinguish between B and the g-algebra of classes of
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measurable sets modulo measure zero unless we are making a pointwise definition
and need to claim it is well defined on equivalence classes.

Remark 3. von Neumann proved that every standard measure space is
isomorphic to ([0, 1], B, 1), where A is Lebesgue measure and B is the algebra of
Lebesgue measurable sets.

If (X, B, ) and (¥, €, v) are measure spaces, an isomorphism between X and Y
is a bijection ¢ : X — Y such that ¢ is measure preserving and both ¢ and ¢! are
measurable. We will ignore sets of measure zero when discussing isomorphisms;
i.e., we allow the domain and range of ¢ to be subsets of X and Y (resp.) of
measure one.

A measure preserving system is a 4-tuple (X, B, u,T) where T : X — X
is a measure isomorphism. A factor map between two measure preserving
systems (X, B, u, T') and (Y, C, v, §) is a measurable, measure preserving function
¢ :X — Ysuchthat So¢ = ¢ oT. A factor map is an isomorphism between
systems iff ¢ is a measure isomorphism. As above we only require the domain and
range of ¢ to have measure one, rather than that ¢ be one-to-one and onto.

2.2 Partitions of measurable spaces. We will be concerned with
ordered countable measurable partitions of measure spaces. An ordered count-
able measurable partition is a sequence P = (P, : n € N) such that:

(1) each P, € B,

(2) ifn #m then P, N P,, =0,

(3) U, Pn has measure one.
We explicitly allow some of the P,’s to be measure zero. The P,’s will be called
the atoms of the partition.

If? =(P,:neN)and Q = (Q, : n € N) are two ordered partitions, then the
partition distance is defined as follows:

D,(P,Q) =) u(P;AQ).

We will frequently refer to ordered countable measurable partitions simply as
partitions. A partition is finite iff for all large enough n, u(P,) = 0. If we
let P, be the space of partitions with < n-atoms (i.e. for m > n, u(P,) = 0), then
(P, D,,) is a connected space.

If P and Q are two partitions, then we say that Q e-refines P iff the atoms of Q
can be grouped into sets (S, : n € N) such that

Z,u(PnA( U Qi)) <e

n ieS,
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If P and Q are partitions, then Q refines P iff the atoms of Q can be grouped into
sets (S, : n € N) such that

Su(ra(Ue)) =0

n ieS,
In this case we will write that Q < P. A decreasing sequence of partitions
is a sequence (P, : n € N) such that forallm < n,?, < P,. If A€ Bisa
measurable set and P is a partition, then we let P | A be the partition of A defined
as (P,NA:neN).

Definition 4. Let (X, B, 1) be a measure space. We will say that a sequence
of partitions (P, : n € N) generates (or generates B) iff the smallest o-algebra
containing | J, P, is B (modulo measure zero sets). If T is a measure preserving
transformation, we will write TP for the partition (7a : a € P). In the context of
a measure preserving 7 : X — X we will say that a partition P is a generator
for T iff (T'P : i € Z) generates B.

We will be manipulating partitions of [0, 1) and [0, 1) x [0, 1) in various ways
so we develop some notation for doing so. We let J; be the partition of [0, 1) with
atoms ([i/q, (i +1)/q) : 0 < i < q), and refer to [i/q, (i + 1)/q) as I].* If P and Q
are partitions of spaces X and Y respectively, we let P ® Q be the partition of X x Y
given by {P; x Q; : i, j € N}. To make this definition complete we need to fix in
advance an arbitrary ordering of N x N that is used to order P ® Q. Finally, we use
the notation I ® Q for the partition P ® Q where P has one element /.

If7T:X — Xand P = (a; : i € ) is a partition of X, then the (7, P, n)-name
of sis a; if and only if 7"(x) € a;. If T is invertible, then the (7, P)-name is s € P*
if and only if for all n € Z, T"(x) € s(n). We suppress P and/or T if either is
obvious from the context.

3 Presentations of measure preserving systems

Measure preserving systems occur naturally in many guises with diverse topologies.
As far as is known, the Borel/non-Borel distinction for dynamical properties is the
same in each of these presentations and many of the presentations have the same
generic classes. (See the forthcoming paper [12].)

In this section we briefly review the properties of the presentations relevant to
this paper. These are: abstract invertible preserving systems, smooth transforma-
tions preserving volume elements and symbolic systems.

“If i > q then Il refers to I}, where i’ < gand i’ =i mod g.
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3.1 Abstract measure preserving systems. As noted in Section 2.1
every standard measure space is isomorphic to the unit interval with Lebesgue
measure. Hence every invertible measure preserving transformation of a stan-
dard measure space is isomorphic to an invertible Lebesgue measure preserving
transformation on the unit interval.

In accordance with the conventions of [22] we denote the collection of measure
preserving transformations of [0, 1] by MPT.> We note that two measure preserving
transformations are identified if they are equal on sets of full measure.

We can associate to each invertible measure preserving transformation
T e MPT aunitary operator Uy : L*([0, 1]) — L*([0, 1]) by defining U(f) = foT.
In this way MPT can be identified with a closed subgroup of the unitary operators
on L*([0, 1]) with respect to the weak operator topology on the space of unitary
transformations. This makes MPT into a Polish space. We will call this the weak
topology on MPT (see [15]).

A concrete description of the topology can be given as follows: Let S € MPT,
P be a finite measurable partition and € > 0. Define

NS, P, e) = {T eMPT: Y IT'AAS'A) < e}.
AeP,i==+1

If (P, : n € N) is a generating sequence of partitions for B, then
{N(S,P,,¢): S e MPT,n e N, € > 0}

generates the weak operator topology on MPT.

We will denote the ergodic transformations belonging to MPT by €. Halmos
([15]) showed that € is a dense Gs set in MPT. In particular, the weak topology
makes € into a Polish subspace of MPT.

The following is easy to check.

Lemma 5. Let (T, : n € N) be a sequence of measure preserving transforma-
tions and (P, : n € N) be a generating sequence of partitions. Then the following
are equivalent

(1) The sequence (T, : n € N) converges to an invertible measure preserving
system in the weak topology.
(2) For all measurable sets A, for all € > O there is an N for all n,m > N and
i =41 one has u(TIAAT}A) < e
(3) Foralle > 0,p € N thereis an N for allm,n > N such that
> WTiAATLA) < e.
AP, i=+1

SRecently several authors have adopted the notation Aut(u) for the same space.
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In case the sequence (T, : n € N) converges, then we can identify the limit as the

unique T such that for all measurable sets A,
w(T,AATA) — 0.

There is another topology on the collection of measure preserving transfor-
mations of X to Y for measure spaces X and Y. If S,7 : X — Y are measure
preserving transformations, the uniform distance between S and T is defined to
be

dy(S,T) = u{x: Sx # Tx}.

This topology refines the weak topology and is a complete, but not separable
topology.

3.2 Diffeomorphisms. LetM bea C*-smooth compact finite-dimensional
manifold and ¢ be a standard measure on M determined by a smooth volume
element. For each k there is a Polish topology on the k-times differentiable home-
omorphisms of M, the C*-topology. The C*-topology is the coarsest topology
refining the C*-topology for each k € N. Itis also a Polish topology and a sequence
of C*°-diffeomorphisms converges in the C*°-topology if and only if it converges
in the C*-topology for each k € N. The C* topology is also a Polish topology and
we will sometimes use a Polish metric d°° on the diffeomorphisms inducing this
topology.

The collection of u-preserving diffeomorphisms forms a closed nowhere dense
set in the C*-topology on the C*-diffeomorphisms, and as such inherits a Polish
topology. © We will denote this space by Diff*(M, u).

The measure preserving diffeomorphisms of a compact manifold can also be
endowed with the weak topology, which is coarser than the C*-topology. To
see that the weak topology is coarser than the C*-topologies, note that if M is
compact and has dimension n, then M has a countable generating sequence of finite
partitions into “half-open’ sets whose boundaries are finite unions of submanifolds
of dimension less than n. Let P be such a partition. Then the boundaries of the
elements of P all have measure zero and if S and T are close in the C*-topology,
then S and 7T take the boundaries to very similar places. In particular, SP and TP
don’t differ very much.

%One can also consider the space of measure preserving homeomorphisms with the || ||oo topology,
which behaves in some ways similarly.
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One can also consider the space of abstract u-preserving transformations on M
with the weak topology. In [5] it is shown that the collection of a.e.-equivalence
classes of smooth transformations form a Hg—set (Gs5s) in MPT(M), and hence the
collection has the Property of Baire. In particular, by invariance it is either meager
or comeager.

3.3 Symbolic systems. Let X be a countable or finite alphabet endowed
with the discrete topology. Then £ can be given the product topology, which
makes it into a separable, totally disconnected space that is compact if X is finite.

Notation. If u = (09, ..., 0,-1) € 2= is a finite sequence of elements of X,
then we denote the cylinder set based at k in % by writing (u);. If k = 0 we
abbreviate this and write (u). Explicitly, (u); = {f € % : f | [k, k+n) = u}. The
collection of cylinder sets form a base for the product topology on X%, thus we
frequently refer to them as “basic open sets.”

The shift map
sh: x4 — 3%,

defined by setting sh(f)(n) = f(n+1)is ahomeomorphism. If x is a shift-invariant
Borel measure, then the resulting measure preserving system (X%, B, u, sh) is
called a symbolic system. The closed support of u is a shift-invariant closed
subset of X7, called a symbolic shift or sub-shift.

We can construct symbolic shifts from arbitrary measure preserving systems as
follows: If (X, B, u, T) is a measure preserving system and P = {A; : i € [} is a
measurable partition (where / is countable or finite), let £ = {q; : i € I}, then we
can define a map

p:X - 3t

by setting ¢(x)(n) = a; iff T"x € A;.

The map ¢ induces a shift-invariant Borel measure v = ¢*u on X7 by setting
v(B) = u(¢~'(B)). The resulting invariant measure makes (X%, C, v, sh) into a
factor of (X, B, u, T') with factor map ¢. Since X is standard, if P generates then ¢
is an isomorphism.

Remark 6. We will use the fact that we can systematically change symbols
in some positions of letters in x € X” to get a new element x’ € X% as long as the
change is equivariant with the shift and the map x — x’ is one to one. Because the
change is one to one we can copy over the measure v to a measure V' so that the
resulting measure on (X)% will define an isomorphic system.
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Notation. For a word w € X< we will write |w] for the length of w.

We want to be able to unambiguously parse elements words and elements of
symbolic shifts. For this we will use construction sequences consisting of uniquely
readable words.

Definition 7. Let X be an alphabet and W be a collection of finite words in X.
Then W is uniquely readable iff whenever u, v, w € W and uo = pws then
either p or s is the empty word.

Symbolic shifts are often described intrinsically by giving a collection of words
that constitute a clopen base for the support of an invariant measure. Fix an
alphabet X, and a sequence of uniquely readable collections of words (W, : n € N)
with the properties that:

(1) for each n all of the words in W,, have the same length g,,,

(2) each w’ € W,,; contains each w € W,, as a subword,

(3) there is a summable sequence (¢, : n € N) of positive numbers such that for
each n, every word w € W,;; can be uniquely parsed into segments

UpWoU W] - - - W UI+]

such that each w; € W,,, u; € £=N and for this parsing

- u;
) sl o
qn+1
Definition 8. A sequence (W, : n € N) satisfying items (1)—(3) will be called

a construction sequence.

Define K to be the collection of x € 7 such that every finite contiguous subword
of x occurs inside some w € W,. Then K is a closed shift-invariant subset of X%
that is compact if X is finite.

Definition 9. Let (W, :neN) be a construction sequence. Then (W, :neN)
is uniform if there are (d, : n € N), where d,, : W, — (0, 1), and a sequence
(€n : n € N) going to zero such that for each n, all words w € W, and w’ € W,
if f(w, w’) is the number of i such that w = w;,

f(w, w)

weW, Qn+1/Qn

2)

— dy(w)| < €py1.

The words u; are often called spacers. The d, are target values for the densities
of n-words in n + 1 words. The uniformity is that each n-word occurs nearly the
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same number of times in every n+ 1-word. If K is built from a uniform construction
sequence we will call K a uniform symbolic system.

If f(w, w’) is a constant (depending on n) for all w € W,, v’ € W,,; we can
take d,(w) = ]; (i‘i’/“;/) and satisfy Definition 9. In this case we call the construction
sequence and K strongly uniform.

IfK ¢ X% isasymbolic system, then an element x € Kis a functionx : Z — X.
If 7 is a finite or infinite interval in Z, then we write x | / for the function x restricted
to this interval. In our constructions we will restrict our measures to a natural set:

Definition 10. Suppose that (W, : n € N) is a construction sequence for a
symbolic system K with each W,, uniquely readable. Let S be the collection x € K
such that there are sequences of natural numbers (a,, : m € N), (b, : m € N)
going to infinity such that for all large enough m, x | [—a,,, b)) € W,,.

Note that S is a dense shift-invariant G5 set.

Lemma 11. Fixa construction sequence (W, : n € N) for a symbolic system K
in a finite alphabet X. Then:

(1) K is the smallest shift-invariant closed subset of ” such that for all n,
and w € W,, K has non-empty intersection with the basic open interval
(w) c X%

(2) Suppose that (W, : n € N) is a uniform construction sequence. Then there is
a unique non-atomic shift-invariant measure v on K concentrating on S and

this v is ergodic.

Proof. Item (1) is clear from the definitions. To see item (2), fix a measure v
concentrating on S. It suffices to show that the v-measures of sets of the form ()
for u € Wy, are uniquely determined by (W, : n € N). Fix au € Wy for some k. By
the Ergodic Theorem it suffices to show that for all € > 0 and all large enough n,
if w', w” € W,,1, then the proportion of occurrences of u among the k-words in w’
is within € of the proportion of the k-words occurring in w”.

For each w € W, let 1,,(u#) be the proportion of occurrences of # among the
k-words occurring in w. Then the proportion of occurrences of u among the k-
words in w’ is approximated up to the proportion of w’ taken up by spacers (which
is summably small) by

S a0

weW, qn+1/Qn
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and a similar approximation holds for w”. Computing:
n(w, W) n(w, w")

S du” — 3 2w

weW, qn+1/Qn weW, Qn+1/Qn
Z iw(u) fl‘l(waw) _fn(w,u) )

weWw, qn+1 /Qn Qn+1/Qn
Z fl‘l(wa U)/) _ fn(wa w”)

weWw, qn+1 /Qn Qn+1/Qn

< Z (f,,(w, w’)

weW, qn+1 /Qn

IN

IN

Ja(w, w")
qn+1/Qn

_ dn(w)‘ +

dn(w) -

)

§2€n+l .

Taking n large enough we have shown that v({«)¢) is uniquely determined. Since
there is a unique measure on S, that measure must be ergodic. (]

Remark 12. We make two remarks about Lemma 11.

(1) If X is a Polish space, T : X — X is a Borel automorphism and D is a
T-invariant Borel set with a unique 7-invariant measure on D, then that
measure must be ergodic.

(2) If (K, sh) is an arbitrary symbolic shift then its inverse is (K, sh~!), where
sh='(f)(n) = f(n — 1). If x is in K, we define the reverse of x by set-
ting rev(x)(k) = x(—k). We can view (K, sh~!') as the symbolic system
(rev(K), sh), where rev(IK) consists of all of the reverses of elements of K.

(3) Assuming the hypothesis of Lemma 11, the proof also shows that there
is a unique non-atomic shift-invariant measure on rev(S) and that for this
measure, which we denote v™!, we have v((w)) = v ({rev(w))).

4 Circular symbolic systems

We now define a class of symbolic shifts that we call circular systems. The main
result of this paper is that the circular systems are symbolic representations of
the smooth diffeomorphisms defined by Anosov—Katok method of conjugacies.
The construction sequences of circular systems have quite specific combinatorial
properties that will be important to our understanding of the Anosov—Katok systems
in the sequels to this paper.

These symbolic systems are built from construction sequences (W, : n € N),
where W, is the result of applying an abstract operation € to sequences of words
from W,. We call these systems circular because they are closely tied to the
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behavior of rotations by a convergent sequence of rationals a,, = p,/q,. The
rational rotation by p/q permutes the 1/¢ intervals of the circle cyclically along a
sequence determined by some numbers j; =g s p~li (mod g).” To have a symbolic
representation of an Anosov—Katok diffeomorphism, one must be able to describe
how the intervals of length 1/, are permuted by addition of a,,.; mod(1) in terms
of the intervals of length 1/g,. The abstract symbolic operation € does this. We
explain this in detail in Section 7. Theorem 60, which says that all strongly uniform
systems built with C and a suitable coefficient sequence can be realized as measure
preserving diffeomorphisms, is the part of this paper that we use in later papers
to construct measure preserving diffeomorphisms with complicated combinatorial
structures. Theorem 58 is the companion to Theorem 60. It says that all (unwisted,
strongly uniform) Anosov—Katok diffeomorphisms can be represented by circular
symbolic systems.

Let &, [, p, g be positive natural numbers with p and ¢ relatively prime. Set
Ji =4 (p)~'i with j; < g. Itis easy to verify that

3) q=Ji = Jg-i-

The operation € is defined on sequences wy, . . ., w;—1 of words in an alphabet
X U {b, e} (where we assume that neither b nor e belongs to X) by setting:

q—1k—1
) Clwo, w1, w2, ..., we—r) = [ [ [JB 0! e?).
i=0 j=0
Remark 13.
— Suppose that each w; has length g. Then the length of C(wo, w1, ..., Wir_1)
is klg*.
— Whenever e occurs in C(wy, . .., wi_1) there is an occurrence of b to the left
of it.

— Suppose that n < m and b occurs at position n and e occurs at position m,
and neither occurrence is in a w;. Then there must be some w; occurring
between n and m.

The following unique readability lemma is used to show that many construction
sequences for circular systems are strongly uniform. We will also use it when we
show that our symbolic representations of diffeomorphisms come from generating
partitions.

7We assume that p and g are relatively prime and the exponent —1 denotes the multiplicative inverse
of p mod gq.
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Lemma 14. Suppose that X is a finite or countable alphabet and that uy, . . .,
Uj—1, DOy - - - » Vk—1 and wo, . . ., Wr— are words in the alphabet X U { b, e} of some
fixed length g < 1/2. Let

u = Clug, uy, ..., u—1),
v = 6(1)03 (25 PRI vk—l)a
w = C(wo, wy, ..., Wr_1).

Suppose that uv is written as pws where p and s are words in XU{b, e}. Then either
p is the empty word and u = w, v =s, or s is the empty word and u = p, v = w.

Proof. We note that the map i — j; is one-to-one. Hence each location in the
word of length klg? is uniquely determined by the lengths of nearby sequences of

b’s and e’s. U

In fact something stronger is true: if o € X occurs at place m in w, then m is
uniquely determined by wq, w1, ..., wx_; and the g'/2 + 1 letters on either side
of o.

We now describe how to use the € operation to build a collection of symbolic
shifts. Our systems will be defined using a sequence of natural number parameters
k, and [, that are fundamental to the version of the Anosov—Katok construction as
presented in [18].

The numbers (1,) will be assumed to go to infinity quite rapidly.® From the &,
and [, we define other sequences of numbers: (p,, g,, o, : n € N) (with more
defined later). We begin by letting pp = 0 and gp = 1 and inductively set

(5) Pn+1 :annknln +1, qdn+1 = knannz-
Thus p; =1 and g; = kolp. Letting a,, = p,,/g, we see that

Pn+1 1
=a,+ .
qn+1 ! kulng ;21
We note that p, and g,, are relatively prime for n > 1 and hence it makes sense

to define an integer j; with 0 < j; < g, by setting’

(6) ji =@~ mod g,.

Let X be a non-empty finite or countable alphabet. We will construct the
systems we study by building collections of words W,, in £ U {b, e} by induction.

8In particular, in what follows we will assume that 3 11,, is finite.

9For qo = 1, Z/qoZ has one element, [0], so po~! = py = 0. Also, formally j; should have a
notation indicating that it depends on n, i.e. j;'. We neglect this to reduce notational complexity.
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We set
Wy = X.

Having built W, we choose a set of prewords P,.; C (W,)* and form W,,; by
taking all words of the form C(wq, w1, ..., wi,—1) with (wo, . .., wg,—1) € Ppp1.10
It follows from Lemma 14 that each 'W,, is uniquely readable.

Strong unique readability assumption. Let n € N, and view W,, as a
collection A, of letters. We will say that P, satisfies strong unique readability if
and only if when viewing each element of P,.; as a word with letters in A, the
resulting collection of A,,—words is uniquely readable.

Definition 15. A construction sequence (W, : n € N) will be called circular
if it is built using the operation €, a circular coefficient sequence and each P,
satisfies the strong unique readability assumption.

We now show that strongly uniform circular systems are uniform.

Lemma 16. Suppose (W, : n € N) is a circular construction sequence such
that:
(1) > 1/1, is finite and
(2) for each n there is a number f, such that each word w € 'W,, occurs exactly
fn times in each word in P,,.
Then (W, : n € N) is strongly uniform.

Proof.
Foreachw e W,, w'e W1, if we set f (w, )= fugn(l,—1) and d,=([)(1—(} )
then:
f(wa U)/) qn fn 1
= fuqn(l, — 1 = 1 — =d,.
g =T =0( L) = (1) (1= () 0

Definition 17. A symbolic shift K constructed from a circular construction
sequence will be called a circular system. If K is constructed from a (strongly)
uniform circular construction sequence, then we will say that K is a (strongly)
uniform circular system.

Lemma 11 gives a characterization of the support of a uniform circular system
and shows that there is a unique shift-invariant measure on the set S.

l(’Passing from W, to W,,;; we use C with parameters k = k,,! =1,,p =p, and g = q,. The j; is
(pn)~'i modulo g,. Strictly speaking, we should probably write G, for the operation € at stage n that
uses these parameters and write j; as j;'. By Remark 13, the length of each of the words in W, is
qn+1-
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Definition 18. Suppose that w = C(wyg, wy, ..., wr—1). Then w consists of
blocks of w; repeated I — 1 times, together with some b’s and ¢’s that are not in
the w;’s. The interior of w is the portion of w in the w;’s. The remainder of w
consists of blocks of the form »77/i and e/i. We call this portion the boundary
of w.

In a block of the form wé_l the first and last occurrences of w; will be called
-1

the boundary portion of the block w}™". The other occurrences will be the

interior occurrences.

We note that the boundary consists of sections of w made up of b’s and e’s.
However, not all b’s and e’s occurring in w are in the boundary, as they may be

li—1
i .

part of a power w
The boundary of w constitutes a small portion of the word:

Lemma 19. The proportion of the word w written in (4) that belongs to its
boundaryis 1/1. Moreover, the proportion of the word that is within q letters of its
boundary is 3/1.

We now characterize the set S C K for circular systems and show a strong
unique ergodicity result.

Lemma 20. Let K be a circular system. Then:

(1) Let v be a shift-invariant measure on K. Then v concentrates on S iff v
concentrates on the collection of s € K such that {i : s(i) ¢ {b,e}} is
unbounded in both 7~ and 7*.

(2) Suppose that K is a circular system. If v is a non-atomic shift-invariant
measure on K, then v(S) = 1. If K is uniform, there is a unique non-atomic
shift-invariant measure on K.

Proof. To start the proof we note that if e occurs at mg in s € S, then there
isan m; < mg and a ¢ € X such that o occurs at m; in s. Similarly, if b occurs
at mg, there is an m; > mg and a o0 € X such that o occurs at m;. To see this fix an
occurrence mg of e in s. (The argument for b is symmetric.) Let n be the smallest
natural number such that there is a w € W, occurring in s on the interval [a, b]
witha < my < b. Then w = C(wy, ..., wi,—1), for some w; € W,. Since m( does
not occur in the first occurrence of wq in w, this first occurrence is at an interval
[ao, bg] with by < mg. Since some o € X must occur in wy we have the mg as
required.

From this we see thatif s € S and {i : s(i) ¢ b, e} is bounded below in Z, then s
must have a left tail consisting of the letter b, and a similar statement holds for e’s
and right tails.
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Let v be a shift-invariant measure concentrating on S and (v; : i € I) be v’s
ergodic decomposition. Let 7 be the set of s € S such that for some k& € Z,
s | (—o0, k) is constantly b (i.e. those elements of s that are constantly b on a tail
going left). Then T is a shift-invariant set. We claim v(7") = 0. If v(T") # 0, then
for some i, v;(T') # 0. Thus without loss of generality we can assume that v is
ergodic. The ergodic theorem applied to the basic open set (b) centered at 0 and
the averages . S0 va1 SH'((b)) shows that v((b)) = 1. The shift invariance and
countable completeness of v implies that v gives the constant b sequence measure
one, contradicting the assumption that v concentrates on S. The proof that v gives
the collection of s € S with a positive tail constantly e measure zero is very similar,
using the ergodic averages in the positive direction.

For the reverse implication we show that the collection of s € K such that
{i: s(i) ¢ {b, e}} is unbounded in both Z~ and Z* is a subset of S. Let s have
this property. Suppose that we are given a,b € N. We must find an a’ > a
and a o' > b such thats | [—a’,b’) € W,,. Choose ani > a,i’ > b such that
s(—i) ¢ {b, e} and s(i") ¢ {b, e}. Let n be so large that g, > i +i’+ 1 and consider
s [ [=10¢gu+1, 10g,41]. This must be a subword of some word w* in W,,,; with
m > n+ 1. Suppose that w* = C(wy, ..., wg,—1). Since the connected segments
of the boundary of w* are of length g,+1 > i + i’ + 1, and neither —i nor i’
are in a position in s corresponding to the boundary of w*, the positions of w*
corresponding to —i and {* must be in a segment of w* of the form w,lg”_l. If
—i — 1 and i’ + 1 are positions in w* in different copies of wy, then they must be
separated by a segment of »’s and e’s of length ¢,,, a contradiction. Hence they
lie in a particular copy of wy. Letting —a’ be the beginning position of that copy
and b’ be the end position, we have finished the proof of the first claim.

To see the second item, let v be an ergodic non-atomic measure. Then, as in the
first claim, v gives measure zero to those elements of K that are constant on a tail in
either direction. Hence v concentrates on those s that have arbitrarily large positive
and negative i in both directions where s(i) is not in {b, e¢}. Hence v concentrates
onsS.

If v is an arbitrary non-atomic measure, then the measures in its ergodic
decomposition have to give measure zero to those elements of K that are
constant on a tail in either direction, and hence v concentrates on S. Thus the
last assertion follows from Lemma 11. O

We now define a canonical factor of a circular system.
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Definition 21. Let (k,, [, : n € N) be a coefficient sequence for a circular
system with > 1/1, < co. Let £y = {*}. Define a uniform circular construction
sequence such that each W,, has a unique element as follows:

(1) Wy = {x*} and
2) IftW, ={w,}then W, ={C(w,, w,, ..., w,)}.
Let K be the resulting circular system.

Let K be an arbitrary circular system with coefficients (k,, [,,), > 1/, < oco.
Then K has a canonical factor isomorphic to K as we see by defining the following
function:

x(i) if x(i) € {b, e},

* otherwise

(7) T(x)(i) =

The following easy lemma justifies the terminology of Definition 21:

Lemma 22. Let & be defined by (7). Then:
(1) 7 : K — X is a Lipshitz map,
(2) n(sh*'(x)) = sht'(x(x)), and thus
(3) = is a factor map of K to KX and K=" to K.

Definition 23. We will call X the circle factor or rotation factor of any
circular system with the same construction coefficients (k,, I, : n € N).

Let p, and g, be defined as in (5), a, = p,»/q,. Then, if > 1/1, < oo, the
sequence of a,, converges to an irrational a. Theorem 43 says that X is isomorphic
to a rotation by a. In the smooth realization of a circular system K, the factor K
corresponds to a rotation of the equator.

Because the rotation by a is a discrete spectrum, X is a factor of the Kronecker
factor of a circular system K. In general, it is not the whole Kronecker factor;
in [14] we show that if the sequences of words w; used by € satisfy randomness
assumptions, then K coincides with the Kronecker factor.

5 Periodic processes

An important tool in the Anosov—Katok method of conjugacy is the use of periodic
processes to build a measure preserving transformation. We give a somewhat
simplified version of the method here—it is described in more generality in [18]
and [17].

The idea behind the method is the following standard proposition ([15]):
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Proposition 24. Let T be an ergodic measure preserving transformation,
n € N and e > 0. Then there is a periodic transformation S with period n such
that dy(S, T) < €. In particular, T is a weak limit of periodic transformations.

Taking this as a starting point we now describe a method for determining an
ergodic transformation by using a sequence of periodic transformations. Rather
than view our transformations as point-maps, we will view a periodic transforma-
tion as a periodic permutation of a partition. Our view is less general than that
in [17] in that we take the cycles of the permutation to all be of the same length.
Adapting to the general case is routine.

Definition 25. Let P be a partition of the measure space X. A periodic
process is a permutation of the atoms of P such that:
(1) each cycle has the same length,
(2) the atoms in each cycle have the same measure.
If all of the atoms of P have the same measure, we will call P a uniform periodic
process.

Itis convenient to view the cycles T, T», ... T, of r as “towers.” This is done by
arbitrarily choosing an element B of J; and designating it as the base and viewing
the k™ level of the tower to be 7%(B).

A slightly subtle point is that the periodic process is a map that permutes the
partition and is not defined pointwise. We will frequently manipulate periodic
processes 7 by considering measure preserving transformations /' that permute
the partition in the same manner as 7 does. We will call such an F a pointwise
realization of 7.

We need to have a notion of convergence to use periodic processes to determine
an ergodic transformation. We use a uniform version of e-refinement.

Definition 26. Let 7 be a periodic process defined on P and ¢ be a periodic
process defined on Q. We will say that o e-approximates 7 iff there are disjoint
collections of Q-atoms {S4 : A € P} and a set D C X of measure less than € such
that for some choice of bases for the towers of z:

(1) foreach A € P we have (JSa)\ D C A,

(2) if A € P is not on the top level of a z-tower and B € S, we have
a(B)\ D C 7(A),
and

(3) for each tower T} of ¢ the measures of the intersections of X \ D with each
level of T are the same.
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This definition is saying that after removing a set of measure less than e, the
action of ¢ is subordinate to the action of z, except on the top level of the towers
of 7. We note that in the definition of e-approximation, the second and third clauses
imply that we can view ¢ as a periodic process defined on the set X that is built by a
“cutting and stacking” construction from the restriction of 7 to X \ D using subsets
of D as fill sets. We make this explicit when we compute symbolic representations
of limits of periodic systems in Section 7.1.

Remark 27. Inthe version of the Anosov—Katok construction we consider, the
situation is somewhat simpler than the general construction given in Definition 26
in that the levels of the towers of 7,4, are either subsets of or disjoint from the
levels of the towers in 7,,. In this case | JSa C A.

We will use periodic processes to build an ergodic transformation in the fol-
lowing manner.

Lemma 28. Let (¢, : n € N) be a summable sequence of positive numbers
and (t, : n € N) be a sequence of periodic processes defined on a sequence of
partitions (P, : n € N). Suppose that

(1) tu41 &n-approximates t,
and
(2) the sequence (P, : n € N) o-generates the measure algebra.
Then there is a unique transformation T : X — X such that for all ng

(8) lim ﬂ( U (T,AATA)) =0.

n— oo
AeiP,,O

Proof. For each n, let F,, be a pointwise realization of z,,. Using the fact that
the sequence of partitions generates the o-algebra, we can apply Lemma 5 to see
that the sequence (F, : n € N) converges in the weak topology. If T is the limit,
then clearly (8) holds. ]

We will call a sequence satisfying the hypothesis of Lemma 28 a convergent
sequence of periodic processes. We note that the proof of Lemma 28 shows the
following.

Lemma 29. Let (¢, : n € N) be a summable sequence of positive num-
bers. Suppose that (t, : n € N) is a sequence of periodic processes converging
to a measure preserving transformation T. Let (F, : n € N) be an arbitrary
sequence of measure preserving, invertible transformations such that for each n,
> ep, MF,AAT,A) < &, Then (F, : n € N) converges weaklyto T.
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Proof. Same as Lemma 28. [l

We will use the next lemma to construct isomorphisms between limits of
measure preserving transformations.

Lemma 30. Fix a summable sequence of positive numbers (¢, : n € N). Let
(X, p) and (Y, v) be standard measure spaces and (T, : n € N), (S, : n € N) be
measure preserving transformations of X and Y that converge in the weak topology
to T and S respectively. Suppose that (P, : n € N) is a decreasing sequence of
partitions and (¢, : n € N) is a sequence of measure preserving transformations
such that

(1) ¢, : X = Y is an isomorphism between T, and S,,
(2) the sequences (P, : n € N) and (¢p,(P,) : n € N) generate the measure
algebras of X and Y respectively,
3) Dv(¢n+1(Tn)o ¢n(ﬂ>n)) < é&n.
Then the sequence (¢, : n € N) converges in the weak topology to an isomorphism
between T and S.

Proof. Conditions 2 and 3 verify the hypothesis of Lemma 5. Thus the
sequence of ¢, converges. The proof that the limit is an isomorphism is similar.[]

6 The Anosov—Katok method of conjugacy

We now give a brief exposition of a method developed by Anosov and Katok
([1]) for realizing abstract measure preserving systems as C*°-transformations on
the unit disk, the annulus or the two-torus (T?).!" The main result of [1] is that
there is an ergodic measure preserving diffeomorphism of the unit disk in R?
that is isomorphic to an irrational rotation of the circle. An important feature
of the construction is that the irrational is Liouvillean; the irrationals for which
the construction works can all be approximated rapidly by rational numbers. The
Anosov—Katok method has been simplified and extended by several people ([8, 6]).
We discuss only two such results.

Herman ([9]) proved that if 7 is a C*-diffeomorphism (k > 2) that has Dio-
phantine rotation number on the boundary, then there are 7 -invariant closed curves
arbitrarily close to the boundary, a property violating ergodicity. In particular, if T
is an ergodic area-preserving C¥-diffeomorphism of the unit disk measure with
rotation number a on the boundary, then a is Liouvillean.

A remarkable converse of this theorem is proved in [8], where it is shown that
if a is an arbitrary Liouvillean irrational, then there is a C*°-diffeomorphism of the

1T As noted earlier, we only describe the untwisted case of the Anosov—Katok method.
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torus (or unit disk or annulus) that is isomorphic to rotation by a and has rotation
number a.

Given these results, it is natural to ask if behavior opposite to that of irrational
rotations can be realized as diffeomorphisms. This question was answered in
the original paper of Anosov and Katok ([1]) where it is shown that there are
area-preserving diffeomorphisms of the disk (or torus or annulus) that are weakly
mixing. This result was extended in [7] to get weakly mixing diffeomorphisms
with arbitrary Liouvillean rotation number.

These results are proved by careful examination of the norms of a convergent
sequence of diffeomorphisms. We give up this control in our construction which
is closer to the original untwisted Anosov—Katok method.

All of the theorems in this section are variations of the known results appearing
in [18]. What is new in this paper is a symbolic representation of the untwisted
Anosov—Katok systems as uniform circular systems. In applications of the results
of this paper we are concerned with building circular systems with intricate com-
binatorial properties. To get diffeomorphisms with these properties we appeal to
the results in the next few sections to see that the circular systems can be realized
as measure preserving diffeomorphisms.

6.1 Abstract Anosov—Katok-method. The Anosov—Katok construction
inductively defines a sequence 7, of periodic processes that converge to the
desired transformation 7. From a high-level point of view, what is useful to
us in later applications is that this construction allows us to insert an arbitrary finite
amount of information into each 7, and still make the construction converge to a
diffeomorphism provided that a simple equivariance condition is satisfied.

We elucidate the method on the torus, for convenience. The techniques are
easily modified to give symbolic representations of Anosov—Katok diffeomor-
phisms of the disk or annulus.

We will present the method in two stages. In the first we follow [18] very
closely, repeating the discussion and using the notation there as far as possible,
consistent with our later purposes. That construction has three sequences of
numbers (k, : n € N), (I, : n € N) and (s, : n € N) as parameters. The assertion
will be that if (I, : n € N) goes to infinity fast enough (the size of I, depends on
(ky :m < n)and (s, : m < n+1)), sp51 < s& and s, goes to infinity, then the
method creates a sequence of periodic approximations that converges to an ergodic
transformation 7.

Given coefficient sequences (k,) and (/,,) we can build sequences {p,) and (g,
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as in (5), starting with py = 0 and g9 = 1. The rationals

Pn
qn

©)) On =

will approximate a Liouvillean number a = lim a,,. It is clear that this approxima-
tion is very fast once we note that

1 1
Pn+1 :pn+ = a, +

qn+1 qdn  4n+1 qn+1 )
Thus if the [, grow fast enough, a is Liouvillean.

The only condition we put on the sequence of s,,’s is that s, divides s,4; and
that they go to infinity.

What we call the abstract method defines a transformation on an abstract
measure space (X, B, u) by periodic processes. Since approximation by periodic
processes produces a weakly convergent sequence, we will get no information
about the continuity properties of the limit.

There is an auxiliary space A = [0, 1) x [0, 1] which provides the combinatorial
basis for the approximations. For the abstract method we will neglect a set of
measure zero and view A as [0, 1) x [0, 1). This is appropriate because we are
not concerned about continuity properties. In the smooth case we must worry
about the boundary; there the action on the two boundary segments [0, 1) x {0}
and [0, 1) x {1} of the limit transformation will be identical so, a fortiori, we are
working on the torus.

We let S! act on A by “rotation” on the first coordinate. We will denote this
additively, viewing the rotation action on S' as “addition mod 1 in the x-direction
of the unit square. Specifically we identify [0, 1) with S! by the map x — €>*™,
Then rotation by a corresponds to addition in the exponent. Given a € R, we
denote the “rotation” of the unit interval determined by a as R, and the horizontal
rotation of the rectangle A by a as R,.

For positive g, s € N we let & = Jg ® T, i.e. the partition of A that has atoms
of the form

i/q, i +1)/q) x [j/s,(j+1D/s)

with0 <i < gand 0 < j < s. For given sequences (k,), (I,) and (s,,), we simplify
notation by setting §, = J,, ®J;,. If Z : A — X is an invertible measure preserving
transformation, then Z defines partitions of X by setting ¢ = Z&! and ¢, = Z&,.
We will refer to the rectangle [i/q,, (i + 1)/qn) X [j/$n, (j +1)/5,) as R{fj and call
R} ; the (i, j)™ element of &,.

If a = p/q with p, g relatively prime, then the atoms of & are permuted by
the action R, and this permutation has s cycles, each of length ¢g. Conjugating
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by Z gives a periodic process t defined on X with partition ¢ that has s towers
of length g. When building periodic processes we often want to view 7 as the
permutation of the atoms of ¢§/ and not as a pointwise realization of a measure
preserving map.

In this paper our periodic processes will be strongly uniform and have pointwise
realizations of the following form:

Ty =Z,0R,, 0Z

where the sequence of a,, is defined by (5) and (9) and Z,, is a measure isomorphism
between A and X. For notational simplicity we let Zy =Z, where Z : A — X is a
fixed isomorphism from (A, B, 1) to (X, B, u). Forn > 1, Z, will be of the form

Z,=Zohio---0oh,

where each h; is a measure preserving transformation of A that induces a permu-
tation of the atoms of J;,_,_, ® J;,. Thus Z, : A — X is an invertible measure
preserving transformation. Because &, refines Ji,_4,_, ® J5,, we can view h,, as
permuting the atoms of &,.

Definition 31. Since R,, gives a periodic process with partition &,, the map 7,
induces a periodic process with partition (,, which we take to be z,. When we
want to view 7, as a collection of towers, we take the bases of 7, to be the sets
ZnRg o, for s < s,.

To start the inductive construction we let 5o > 2 and take 7 to be the periodic
process based on the partition & induced by the action on &, given by R,, (which
is the identity map). Thus 7¢ has 59 towers of height one.

What remains is to describe how to pass from Z, to Z,,;. The trick (due to
Anosov and Katok) is to note that if /,,; commutes with R, , then

T, = anRanZn_l = Znhn+1h;+lljzanzn_l = ZnhnﬂfRanhr;llZn_l = anRan n_+ll

Consequently, if a,,+| is chosen sufficiently close to a,,, the map T},,; will permute &,
very similarly to the way that 7,, does. It follows that the periodic process 7,
will be very close to the periodic process 7,,. We note that determining those € for
which 7, e-approximates 7, is independent of the choice of pointwise realizations
T, and T, as it is a property of the partitions.

Summarizing, if 4, is chosen so that it commutes with X, and the sequence
(a, : n € N) converges fast enough, then the sequence of periodic processes
we construct converges in the weak topology to an invertible measure preserving
system. Moreover, we can guarantee that the «, converge arbitrarily fast by
choosing the [,-sequence to grow fast.
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Remark 32. The foregoing construction of an invertible measure preserving
transformation is determined up to isomorphism by the following data:
(1) The sequences (k,, I,, s, : n € N) and
(2) the maps (h, : n € N).

Constructing /,,.;. We will build 4, of a special form. We choose numbers
sp+1 and k,, with s,,; and k,, being multiples of s,, and s’n‘" > s,+1. We think of k,, and
sp+1 as very large. (In later applications, k, will be chosen after s,,; and will be
large enough to satisfy some requirements determined by the law of large numbers.)
The map h,.; is taken to be a measure preserving transformation permuting &,

that also induces a permutation of J; ,, ® J;,, , i.e. it takes atoms of J; 4, ® I, ,, to

Sn+12
atoms of Jp , ®17T;, .

Our transformations will be untwisted in the language of [18]. This means
that h,,; induces a permutation of the atoms of J, ® I,
[0, 1/g,) x [0, 1). Since R,, cyclically permutes the towers of &, starting with
bases of the form Rg and the A, commute with R, , the A,.;’s are determined
by what they do on [0, 1/g,) x [0, 1).

We start the process of defining h,,; with an arbitrary permutation p of
gy ®J5,.) 1 10,1/g,) x [0, 1) and let A%, be any pointwise realization of p

n+1

that lie inside

that gives a permutation of &, [ [0, 1/g,) x [0, 1). We then extend hg . toa

pointwise map on A that commutes with R, by “copying over” equivariantly
Having defined the 4, with the numbers k, and s,+; so that it commutes with

R, , we choose [, large enough that a4 is very close to a, 2 Since hy.q permutes

the elements of J, 4, ® Js,,, it permutes the elements of &, as well.

Sn+1

Lemma 33. For each n, the partition (4 refines (, and the collection of
partitions { ¢, : n € N} generates the measure algebra of X.

Proof. Since (&, : n € N) is a decreasing sequence of partitions that generates
the measure algebra of A, (Z&, : n € N) is a decreasing sequence that generates the
measure algebra of X. Each 4, is a permutation of &, for m < n. Consequently,
Z¢&, = ZyE, = ¢ Hence the ¢, are decreasing and generate. ]

Ergodicity. We introduce some requirements to guarantee the ergodicity of
our systems. The requirements we state here are stronger than necessary,'> but

12The limit of the sequence only depends on the periodic processes, and hence the permutation of
&, is determined by h,,, rather than h, as a pointwise map. It will follow that there are functions
Lr(X0s « s Xpne1s Y05 -+« 5 Vs 205 - - - » Zn1) SUch that if 1, > ¥(lo, ..., ly—1, ko -, kn, S0y - - 5 Spy1) fOr
all n, then the construction converges.

13Cleverer versions of Z, (e.g. [7]) can be constructed that guarantee ergodicity even if every s, is
equal to 2. It is not difficult to check that these have symbolic representations very similar to the ones
we are describing here. We use Requirements 1-3 to guarantee ergodicity for circular systems with
fast growing /,-sequences.
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easy to verify. We postpone the proof that these requirements imply ergodicity
until Theorem 58 in Section 7.5.
Here are our requirements:

Requirement 1. The sequence s, tends to co.

Requirement 2. (Strong Uniformity) For each Rg, ;€ &, and each s < 5,41 we
have that the cardinality of

{t < kn : hn+l([t/knCIn: (r+ 1)/anH) X [S/S,H_], (s+ 1)/Sn+l)) - R(r)l’j}
is ky, /Sp.

Given s < 5,41 We can associate a k,-tuple (jo, ..., jk,—1)s SO that

(10) hn+l([t/knCIn: (r+ 1)/kn%1) X [S/S,H_], (s+ 1)/Sn+l)) - R(r)l’jt-
Requirement 3. We assume that the map s — (jo, ... jk,—1)s 1S One-to-one.

Discussion. There are k, atoms a of Ji, ® J,, that lie in the strip
[0,1/q,) x [s/sn, (s + 1)/s,). For each such a, h,.1(a) C R(’)"j for some j. If
we assign this j to a, then we get a sequence of j’s of length k,. Requirement 2
says that each j occurs k,/s, times. It follows that the proportion of the atoms
of &,+1 contained in any strip [0, 1/g,) X [$/Sp+1, (s + 1)/5,41) Whose h,,-image is a
subset of a given Rj ; is k,/s,. Requirement 3 says that we get different sequences
of j’s for different s.

We have the following lemma which describes the mechanism for inserting
arbitrary finite information into each stage of the Anosov—Katok construction.

Lemma 34. Let wo, ..., w,,,—1 €{0,1,...5,— 1YY be words such that each
iwithO < i < s, o0ccurs k,/s, timesin each w;. Then there is an invertible measure
preserving h,,i commuting with R, and inducing a permutation of Ji,q, ® J
such that if j, is the t" letter of wy, then

Sn+1

i1 ([2/ KnGns (t + 1)/ KknGn) X [5/Sns1, (5 +1)/Sn41))
is a subset of Ry ; .

Proof. Construct h%,, as follows: The atoms of Jy, ,, ®J;,., partition each atom
of &, into kn(S;:') pieces. Each index i occurs in each w; exactly k, /s, times and
there are 5,1 many words w,. Hence it is possible to construct a bijection between
kg ®J5,,0) 110, 1/g,) x [i/s,, (i +1)/s,) and the occurrences of i in all of the
words w,. Ranging over i one gets a bijection b between the numbers occurring in
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all of the words and (Jy, 4, ®Jy,,,) | [0, 1/g,) x [0, 1) such that if j is the " letter of
wy, then b associates [t/k,q,, (t + 1)/k,q,) X [S/Sp+1, (s + 1)/s,41) with an element
of Ji,q, ® I, | RG ;-

We can interpret each w; as assigning numbers to the atoms of Ji ,, ® J;,,, that
are subsets of the strip [0, 1/q,) X [s/su+1, (s + 1)/s,+1). Hence b can be interpreted

Sn+1

as a permutation of (Jy 4, ®J,.,) [ [0, 1/g,) x [0, 1). We take h2+1 to be a pointwise
realization of b and extend 42, equivariantly. g

6.2 Approximating partition permutations by diffeomorphisms. In
this section we prove that any permutation of a matrix of rectangles can be well-
approximated by a C*°-measure preserving transformation. We note that similar
results were attained independently in [3], [2] and earlier in [19]. With the goal of
a self-contained exposition, we present a proof of the theorem here.

Theorem 35. Let n horizontal lines and m vertical lines divide [0, 1] x [0, 1]
into an array of mn equal size rectangles. Let o be a permutation of the rectangles
and € > 0. Then there is a C*, invertible, measure preserving transformation ¢ of
[0, 11x [0, 1] that is the identity on a neighborhood of the boundary of [0, 1] x [0, 1]
such that for a set L of Lebesgue measure at least 1 — €, for all rectangles R

(11) If x e LN R, then ¢(x) € o(R).

We say that ¢ is e-approximated by ¢, if ¢ and ¢ satisfy the conclusion of
Theorem 35. The collection of permutations ¢ that can be e-approximated for all
€ > 0 1is closed under composition.

We first prove a lemma about vertical and horizontal swaps.

Lemma 36. Consider [0,2] x [0,1]. Then for any 6 > 0, there is a
C™>®-measure preserving transformation ¢q that is the identity on a neighborhood
of the boundary of [0, 2] x [0, 1] and for all but € measure sends [0, 1] x [0, 1] to
[1,2] x [0, 1] and vice versa.

Proof. Let D C R? be the disk centered at (0, 0) that has area 2 — €/2 and
radius R = R(e). Let y > 0O be such that the disc of radius R — y has area
2 —e. Itis a standard result that for any positive y, we can find a C* function
f 1 [0,R] — [0, w] such that f is identically equal to = on [0, R — y] and is
identically equal to zero in an arbitrarily small neighborhood of R in [0, R].

Let F : D — D be defined in polar coordinates by setting F'(r, 0) = (r, 0+ f(r)).
Then F is C*°, measure preserving, rotates the disk of radius R — y by « and is the
identity on a neighborhood of the boundary of the disk of radius R. (See Figure 1)
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Figure 1. The transformation F.

Figure 2. The transformation G.

Consider now [0, 2] x [0, 1]. We can remove a set of measure €/2 near the
boundary of [0, 2] x [0, 1], so that we are left with a flattened disk

D* C[0,2] x [0, 1]

that has C*°-boundary. By [19] there is an invertible measure preserving C*
function G : D — D™ that takes the left half disk to D* N ([0, 1] x [0, 1]) and the
right half disk to D* N ([1, 2] x [0, 1]). (See Figure 2.)

Then ¢y = GFG~! is the desired function. (]

Clearly Lemma 36 can be rescaled arbitrarily. The result analogous to Lemma 36
holds for vertically exchanging the two rectangles [0, 1] x [0, 1] and [0, 1] x [1, 2].
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Proof of Theorem 35. Number the mn rectangles {0, ..., mn—1}1in a zig-
zag fashion by giving the first row the numbers O, 1, ..., m — 1 from left to right,
enumerating the second row from right to left by the numbersm, m+1, ...,2m—1,
the third row from left to right with the numbers 2m,2m + 1, ...,3m — 1 and so
on.

0 1 2 m-2 m-1
2m-1 2m-2 2m-3 m+1 m

2m 2m+1 2m+2 3m-2 3m-1

(n-1)m | (n-1)m+1 | (n-1)m+2 | | nm-2 | nm-1

Figure 3. Labeling the partition of [0, 1] x [0, 1] into rectangles.

This allows us to view ¢ as a permutation of {0, 1,2, ..., mn — 1}. We will
call permutations corresponding to exchanging vertically or horizontally adjacent
rectangles swaps. With this numbering the swaps include all transpositions of the
form (k, k+1)for 0 < k < nm —1. The smooth measure preserving approximations
to swaps given by Lemma 36 will be called J-approximate swaps.

Lemma 36 implies that for all £ with 0 < &k < mn — 1 and all 6 > O there is
a C™ ¢g-approximate swap ¢y of the rectangles labelled k£ and k£ + 1. This can be
extended to a measure preserving diffeomorphism of [0, 1] x [0, 1] by taking ¢
to be the identity outside the rectangles.

Since every permutation of mn can be written as a composition of less than or
equal to (nm)? transpositions of the form (k, k + 1), given any ¢ we can build ¢ by
taking 0 small enough and composing d-approximate swaps corresponding to the
transpositions composed to create o. (]

6.3 Smooth Anosov-Katok-method. We now show how the Anosov—
Katok method of Section 6.1 can be used to construct smooth transformations
isomorphic to the abstract transformations constructed in Section 6.1. In this case
the measure space X will also be A, the initial map Z will be the identity, and the
spatial maps &, will be replaced by measure preserving diffeomorphisms 7/}, that
closely approximate them. Thus for n > 1, we replace the Z, by functions

H,=hjo---oh,
where the /] are C°°-measure preserving transformations of A. We let

S, =H,R, H .
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Because we want the limit of the S,,’s to be a diffeomorphism, we must consider the
pointwise properties of the S,; in particular, we are no longer working with periodic
processes, but concrete realizations of measure preserving transformations. For
the limit of the sequence (S, : n € N) to be a smooth transformation it suffices to
arrange that ||S,+1 — S,ll¢n < €, for some summable sequence ¢,. Alternately, we
fix a metric d*° giving the C* topology; we can require that d*°(Sy+1, S,) < &5.
These, in turn, can be arranged by taking a,.; sufficiently close to a, which is
done by choosing the number /, large enough.

Remark 37. The transformations H, will all be equal to the identity on a
neighborhood of the boundary of A. This guarantees that each S, is equal to R,,,,,
on a neighborhood of the boundary of A. In particular, we can view each S, as a
C*-measure preserving transformation of the torus. Thus we can view the limit
transformation S as a C*°-measure preserving transformation of the torus that is
equal to rotation by a along the line determined by identifying the top and bottom

boundaries of A.

The main theorem of this section states that we can realize any transformation
built by the version of the abstract Anosov—Katok method-of-conjugacy'* as a
measure preserving diffeomorphism. This theorem is implicit in the results in
[18].

Theorem 38. Suppose that T : A — A is a measure preserving transforma-
tion that is built by the abstract Anosov—Katok method using a parameter sequence
(kn, I, : n € N) such that the sequence of I, grows fast enough. Then there is a
C®>°-measure preserving transformation S : A — A that is measure theoretically
isomorphicto T.

Proof. Fix asummable sequence (g, : n € N). Let (T, : n € N) be a sequence
of transformations built by the abstract Anosov—Katok method using (h, : n € N)
(thus T,, = Z,R,,Z; ) and let T be the limit of the T, in the weak topology.
Using Theorem 35 we will build smooth approximations (4 : n € N) and define a
sequence of smooth transformations by setting Hy to be the identity map and, for
n > 1, setting H, = hj o--- o h;,. We show that if the &), approximate £, closely
enough and (a, : n € N) converges fast enough, then the sequence S, = H, R, H,
converges to a C*°-measure preserving transformation S and that S is isomorphic
to 7" as a measure preserving transformation of (A, B, 1).

To see that rapid convergence of (o, : n € N) implies that the S, converge in
the C*°-topology, we note that since 4, commutes with R, for each n it follows

14The method of proof of Theorem 38 can be easily adapted to other treatments.
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that
Sy = Hn:Raan_l = ths+lgzan(hi+l)_1Hn_l'

n

Hence, by the continuity of d°° with respect to composition, if we take a4 close
enough to a,,, we can arrange that d*>°(S,+1, Sp) < &5.

Let n > 0. To define %},, we need to both approximate /,,; and make &},
commute with R, . We use Theorem 35 to choose a smooth measure preserving,
invertible /)., : [0, 1/g,] x [0, 1] = [0, 1/g,] x [0, 1] such that:

(1) If o is the permutation of the atoms of Ji ,, ® J, inside [0, 1/g,) x [0, 1)
determined by /.1, then for all but a set of measure €, /¢g,, we satisfy (11);
i.e. for the atoms R of Jy ,, ® J;, inside [0, 1/g,) x [0, 1), we know that the
vast majority of x € R have &, ,(x) € o(R);
and

(2) the function 7, is the identity map on a neighborhood of the boundary of
[0, 1/g,] x [0, 11.

Since /., is the identity on a neighborhood of the boundary of [0, 1/g,] % [0, 1],
we can copy it onto each [i/qg,, (i + 1)/q,] x [0, 1] and thereby extend it to a
C*°-measure preserving £, that commutes with R,,. If o is the R, -equivariant
permutation of &,,; determined by 4,1, then there is a set L,,; of measure at least

1 — ¢,+1 such that for all atoms R of &, and x € L,,1:
(12) If x € L,41 NR, then k), (x) € o(R).

We now use Lemma 30 to show that T is isomorphic to S. We let ¢, = H,0Z,!
and P, =¢,.

A
PN
X - A

®n
We must verify conditions (1)—(3) of Lemma 30. It is clear that ¢, is an isomor-
phism between T, and S, since Z, and H,, are isomorphisms between X, and T,
and S, respectively. Thus condition (1) is clear. To see condition (2) we must
prove the following claim:

Claim. The partition (¢, : n € N) generates the measure algebra of X and
(¢pn(Cn) = n € N) generates the measure algebra of A.

Proof of Claim. That the ,’s generate is the content of Lemma 33. We
must check that the ¢,(¢;,) generate. Since ¢, = Z~ 'H,,, this is equivalent to the
statement that the H,,&, generate.
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Since the sequence ¢, is summable, the Borel-Cantelli lemma tells us that there
is an increasing sequence of sets (G, : n € N) with G,, C A such that the measures
of A(G,) approach 1 and for all m > n h,, and k), permute that partition &, | G,
the same way.

Explicitly: for all ¢ > 0 we can find an n so large that

(13) G =def Ln N () 0 Mg 0+ - 0 B5) 'Ly,

m>n

has measure at least 1 — .19

By definition, for all x € G, and all m > n,
hys10-++0h,(x) € L,.

Fix a measurable set D C A and a 6 > 0. We must find a large enough n that
the atoms of H,¢&, can be used to approximate D within a set of measure 6. We
first choose an ng so large that 2(G,,) > 1 —J/100. Let D’ = H,EI(D).

Since the &,’s generate, we can find an n > ng and a collection C’ of atoms of &,
such that (| C’)AD’ has measure less than J/100. Hence we can find a collection
of atoms of H,,&, whose union approximates D within J/100.

We note that for ny < m < n, h,, permutes the atoms of £,. From the definition
of Gy, forng <m < n,a € {;andx € aNGy,,, weknow thath, ,,oh, .,o---ohy, (x)
belongs to the same atom of & as /1,41 © - - - © Ay, (x) does. It follows that

1< @y om0 0hi(@) A hyyi oo hm(a))> < 6/50.

aeé,

Since 11, - - . , h, permute the atoms of &,, we can define a bijectiono: &, — &,
such that

,1( U yer 0By in 0+ 0 (@) A O'(a))) < 6/50

aeg,
Thus
,1( U [Hu(a) A Hno(a(a))]) < 6/50.

aeg,
or equivalently

,1< U Hu(e7 (@) A Hno(a)]) < 6/50.

aeé,

Since D can be approximated within J/100 by a union of atoms of H,,&,, it can
be approximated within J/25 by a union of atoms of H,(£,). We have verified the
claim. (]

15The L,’s are defined in (12).



34 M. FOREMAN AND B. WEISS

To use Lemma 30, we are left with showing that ¢,.1(,) &,-approximates
¢n(&n)- Chasing the following diagram, where the leftmost and rightmost triangles

commute:
Z, A H,
n+1 n+l
X%, A- y A T A
we see that
Gu(G) = HiZy ' (G) = Halni1 Z, 1 (Gn)
while

¢n+1([n> = Hn+IZn_+11 (Cn) = th;s1+1Zn_+11 (Cn)

Letting Q, = ,;rll (¢n), we need to see that H,,h;,, (Q,) &,-approximates H,h,,1(9,).
This follows easily, since H, is measure preserving and 4;,, was chosen so that
k. 1(Q,) closely approximated /,.1(2,). [

Remark 39. Let d*° be a Polish metric inducing the C*°-topology. Then by
taking a,4; sufficiently close to a;,, we can arrange d*°(S,+1, Sn) < €,/4.

What does fast enough mean? We do not produce explicit lower bounds
on the speed of growth of the [,’s; instead we give inductive lower bounds. Here
is what we mean by fast enough in the statement of Theorem 38.

Fix a summable sequence (¢, : n € N); without loss of generality

en/4 > em.

m>n

Fix a metric d*° inducing the C*°-topology on the diffeomorphisms of the 2-torus.
For each choice (k; : i < n), (l; : i <n),and (s; : i < n+ 1) there are only finitely
many permutations of the relevant partitions and thus only finitely many choices
for the periodic processes determined by (h; : i < n). Hence there is a single
number I = 1i((k;i i < n),(l; : i <n),(s; i <n+1))such that for all [, > [}
we can choose a smooth approximation %), such that

(14) doo(Sna Sn+1) < gn/4-

Without loss of generality we can assume that for all n, [, > 2".

Indeed we can say more. In our construction we have the inequality that
Sl < s’,‘l Hence there is a sequence of bounds b,, = b,(| 2|, (k; : i < n)) such that
sp < b,. By ranging over all s,, < b, in the previous paragraph we get a sequence
=Dk i <n+1),(l; :i < n)) such that any sequence [, > I* grows fast
enough for the hypothesis of Theorem 38.

From now on, by fast enough we mean a sequence of /,, with [, > [;.
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7 A symbolic representation of Anosov—Katok-systems

In this section we show two theorems. The first (Theorem 60), which is
used in the sequel, is that if K is a strongly uniform circular system with fast
growing coefficients, then K is isomorphic to a measure preserving Anosov—Katok
diffeomorphism of A. As usual A is our proxy for the unit disk, annulus or T2,

The second theorem (Theorem 58), which we hope is of independent interest,
is that if T is built by the (untwisted) Anosov—Katok method with coefficients
(kn, Ly, sn : n € N) and (I, : n € N) grows fast enough, then 7 has a representation
as a circular symbolic system with the same coefficients.

By Theorem 38, to represent the Anosov—Katok diffeomorphisms it suffices to
represent the transformations built by the abstract method. We will use the notation
(such as k,, 1,,, Z,, X) from that Section 6.1. We take X = A and Z, = Z to be the
identity map.

7.1 Symbolic representations of periodic processes. We begin with
a very general discussion of how periodic processes can be viewed as symbolic
systems. Our symbolic description is a variant of standard cutting and stacking
constructions where spacers are added at both the bottom (the “beginning,” denoted
by b’s) and at the top (the “end,” denoted by e’s). Our representation is given
explicitly for the case where all of the cycles in the periodic process have the same
length. It is straightforward to adapt our analysis to the general case.

A sequence of periodic processes converging sufficiently rapidly to a transfor-
mation 7" gives rise to a symbolic presentation of a factor of 7" that has a special
form. Here is how this works. Let (¢, : n € N) be a summable sequence. Fix a
sequence (7, : n € N) of periodic processes converging to a transformation 7 with
partitions (P, : n € N). Suppose that the length of the towers corresponding to
7, 1s g, and that 7, &,-approximates 7,. Since 7,.| €,-approximates z,, we can
find a set D, (as in Definition 26) such that on the complement of D,,, the action
of 7,41 is subordinate to z,,. Without loss of generality, go = 1 and by skipping a
finite number of steps at the beginning of the approximation we can assume that
uUDy) < 1/2.

Setting G, =X \ U
such that:

(1) the measure of G, goes to one,

D, we get an increasing sequence of sets (G, : n € N)

m>n

(2) on G,, the sequence (P, : m > n) is a decreasing sequence of partitions, and
(3) for each tower T of 7,,, the measures of the intersections of G,, with the levels
of T are all the same.
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We describe a sequence of collections of sets Qq, (B, : n € N) and (E, : n € N)
such that Qq U {B,, E,} is a partition of G,,.'°

Let (T; : i < s0) be the collection of towers for 7y. Because we assume that
qo = 1, each of the towers of 7y has height 1. Let Qy be the partition of Gy
into s¢ pieces consisting of the sets in these towers of 7 intersected with Gy. Let
By = Ey = 0.

We inductively define the B,, and E,, so that B,;; D B, and E,,,; D E,. Suppose
that B, E,, are defined, and we want to define B,., E,+;. By assumption, each
tower of 7,4 restricted to G, consists of

(1) contiguous sequences of length g, consisting of portions of consecutive levels

of the towers of 7, interspersed with

(2) new levels of the towers of 7, intersected with G,..;.
The interspersed levels are first divided into maximal contiguous portions. We
now arbitrarily divide the levels of each of these portions into two contiguous
subcollections of levels.!” One of these subcollections comes before the other in
the natural ordering of the tower by the cyclic permutation 7,,;. We view the
subcollection that comes first as ending a block of levels coming from 7, and the
second as beginning the next block of levels. The set B, consists of the union
of B,, with the unions of the points in these second contiguous subcollections of
levels and E,; as E,, together with the first contiguous subcollection of levels (see
Figure 4).

The partition Q =47 Qo U {{UB,, JE,} will generate the transformations we
eventually construct, but may not do so in general. We now describe a symbolic
representation of the factor of 7" determined by Q.

Suppose that the number of towers in the partition corresponding to 7 is So.
Let X be an alphabet of cardinality sop. We view X as indexing the partition Qg;
e.g. if Qy ={A; :i € I} then £ = {a; : i € I}. The alphabet of our symbolic shift
will be {b, e} U X, where b and e are symbols not in X. Proceeding as in Section 3,
we define a factor map 7 : X — (Z U {b, e})” by letting:

(1) p()(m) = a; iff T"(x) € A;,
(2) ¢(x)(m) =biff T"(x) € J, By, and
(3) p(x)(m) =eift T"(x) € U, E,.
The symbolic representation is the resulting system ((X U {b, e})?, C, ¢* u, sh).

We now examine the construction of the approximations and the partition

Qo U{UBy,, UE,} to get a clear description of the support of the measure ¢* u.
16The use of B’s and E’s correspond to the mnemonic beginning and end.
171f a tower T of 7,41 both begins and ends with levels not in a tower of 7,, then we include the new

top portion with the new bottom portion and view it as one contiguous block when we do this division.
This is consistent with our view of the z, as periodic.
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Ending __[ =====.====

ending < ZZ177IIIC

Section of a tower from
T, of length q,,.

VI

Beginning - .

Ending -

Section of a tower from
T, of length gq,,.

VI

Beginning -

Figure 4. A typical tower in 7, built from sections of towers in 7, filled in with
beginning and ending levels.

We inductively define a sequence of collections of words (W, : n € N) with the
following properties:
(1) There is a surjection ¢, from {J N G, : T is a tower for 7, and G, N T is
non-empty} to W,.
(2) The length of each word in W,, is g,,.
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Let Wy = X. Suppose that we have defined W,, and ¢,,. We want to define W,
and ¢,,1. The levels of each § N G,,, where § is a tower of 7,1, come in blocks of
three kinds:

(1) a contiguous block of length ¢g,, coming from a tower of z,,
(2) a contiguous block of levels in B, \ B,, and
(3) a contiguous block of levels in E,;; \ E,,.
The word in W,,,.; we associate with 8 N G,, via ¢, is the word of length ¢,
whose j letter is v if
(1) the j™ level is in the k™ place of a block coming from a tower T of 7, and the
k™ letter of ¢,(T) is v, or
(2) v =b and the j® level is in B,..; \ B, or
(3) v =eand the j" level is in E,,; \ E,.

Working as in Section 3.3, we let K be the collection of x € £Z such that every
finite contiguous subword of x occurs inside some w € W,,. Then K is a closed
shift-invariant set that constitutes the support of ¢* u.

We will use this technique to represent the smooth transformations we construct.
It will follow from the “Requirements 1-3” that in our representation we can choose
the partition Q so that it generates the transformation 7" and the system K will satisfy
Lemma 11. In particular, the unique non-atomic measure will be ¢* 1 and we will
have a symbolic representation of our transformation 7.

7.2 The dynamical and geometric orderings. Fix a rational o = p/g
in reduced form. We endow the partition J, of [0, 1) with two orderings. The first
is straightforward: ordering these intervals from left to right according to their left
endpoint gives us the geometric ordering; in other words, I/ < I]’.’ iffi < j.

The rotation by a gives us a different ordering which we call the dynamical
ordering, <4, which we now define explicitly:

We set an interval [/ <4 I7 iff there are n < m < g such that np =i mod ¢
and mp = j mod gq.

This can be rephrased conceptually as follows. The firstinterval in the ordering
is I7. Repeatedly applying R,, we get a sequence of intervals

Iy, Rulo, R2Iy, . .., RI7,.
The list

(Io, Rado, Rodo, . .., RE~'1o)
gives the dynamical ordering of J,,.

Remark 40. If we let j; = (p)~'i mod g (with 0 < j; < g), then the i"
interval in the geometric ordering, I/, is the j interval in the dynamical ordering.
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7.3 Transects.

Wikipedia Entry: A transect is a path along which one records and
counts occurrences of the phenomena of study.'®

We now see how the periodic processes 7, and 7,.; compare.

7.3.1 Without the partitions. Let a = p/g and f = p'/q', where we
1
klg**
interacts with the dynamical ordering determined by «. In the discussion that

assume ff = a + 19 We compare how the dynamical ordering determined by 3
follows we use j; to denote (p)~!i mod g, i.e. we refer to the dynamical ordering
of J, with respect to a.

If J =1[/q,( +1)/q) is a subinterval of I = [t/q, (t+1)/q), then RpJ is
a subinterval of R,7 unless J is the geometrically last interval in the subdivision
of I into intervals of length ¢’. In the latter case Rz J is the first subinterval of the
geometric successor of R, /. (See Figure 5.)

I Rl
— e ayo

N L

b N

\ \:r \
I Rgl RgJ

Figure 5. A diagram of R, and Ry acting on the first coordinate of [0, 1] x [0, 1],

showing where R,, Rz send I x [0, 1] and J x [0, 1].

Restating this, if R,/ is the j" interval in the dynamical ordering, and J is the
geometrically last subinterval of 1, then Ry J is the geometrically first subinterval
of the ji, interval in the dynamical ordering of J,.

If J =[0,1/q) is the geometrically first subinterval of I = I, then for
0 <n < klg, RyJ C RyI and fR]/;ZqJ is the geometrically first subinterval of I7.
Since Ry91 = I for all m, we have IR;WJ is a subinterval of I for 0 < m < kl.

In general, the n’s between mklg and (m + 1)klg can be split into three pieces:

— the beginning interval [mklq, mklg + q — j,) that has length g — j,,,

18Retrieved August 15, 2011.
9Thus ¢’ = kig?.
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— the middle interval [mklg+q — j,,, mklg+q — j, +(kl —1)q) that has length
(kl — 1)g, and

— the end interval [mklg + q — j,, + (kl — 1)q, (m + 1)klg) that has length j,,,.
Assume inductively that fR'gquJ is the geometrically first subinterval of /9. Then for
mklg < n < mklg+q— jn, fR%J transits the intervals in places j,;, jm+1,...,g—1
in the dynamical ordering of J,. The next application of Ry puts the orbit in the
first interval of J, in the dynamical ordering, which coincides with the first interval
in the geometric ordering.

For the middle range (those n for which mkl+qg—j,, <n <mkl+q— j,+(kl—1)q),
Starting as a subset of 17, fR;J transits the intervals J, following the dynamical
ordering coming from a.

In the end range (those n for which mkln+q — j,, +(kl — 1)g < n < (m+ 1)klq)
the R} J transits the intervals in places O up to j, — 1 in the dynamical ordering
on the I{’s, ending up in the geometrically last subinterval of 72. Finally, we have
that fR;mH)quJ is the geometrically first subinterval of I} .

We illustrate this in Figure 6 where we have three vertical columns, each
representing all of the intervals of J, in their R,-dynamical ordering. The transfor-
mation R, moves the larger rectangles up the columns, and R moves the flatter
rectangles. The left-hand column shows the beginning J, intervals (starting with
the first 1/g’-interval for simplicity), the middle column shows one pass (of many)
through the middle section, and the last column shows the end portion. Note
that the end portion ends in the rectangle just below where the beginning portion
started. The black rectangle indicates the beginning of the next sequence after
jumping over some of the J, rectangles in the geometric ordering.

7.3.2 With the partitions of [0, 1). We continue our examination of the
path of J = [0, 1/¢’) through the unit interval by considering it in light of the
partition Jy,. In the discussion in this section we denote I simply as /;.

IfJ = J;I/ is a subinterval of /; an application of IRZI moves J' to the right,
kigz = qu. In particular, it moves it from being a subinterval of an element of Jy, to
the subinterval of the element of J;, adjacent on the right.

If J’ is the leftmost subinterval of I;, then an application of fRzlq moves J’
over m elements of Jy,. For0 < m <k, nglq keeps J’ a subinterval of ;, but ﬂll/iqu !
is the leftmost subinterval of I;,.

We divide the atoms of Ji, into k ordered sets wy, . . ., wi_; where
k
(15) w; :<Ij_'itk:0§t<q>.

Thus each w; is the orbit under R, of [j/kq, (j +1)/kq). We can view w; as a
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Start of next klq steps inside
next interval in the
geometrical ordering

D..

Skipping intervals in
the dynamical ordering

First 1/¢’ rectangle
inside a 1/q rectangle

D5:EEMH
DI COCED- (0
SN

BEE

fter klq steps

/

Middle orbits

Figure 6. With vertical orientation: Each column is the whole 1/¢ partition in
dynamical ordering. The first shows the beginning trajectory of the 1/4’ partition,
the second shows one pass of many through the middle section, and the last column
is the ending portion of the 1/¢’ trajectory. After the last step the end portion will
jump some 1/¢ pieces in the dynamical ordering to begin a new trajectory.

word of length ¢ in the alphabet J,.

We now follow our original interval J through the w; under the iterates of Ry.
The Rg-orbit of J has length g’. The first klg iterates are straightforward. Any
number 7 less than klg can be written in the form mlqg + sq + t, where 0 < m < k,
0<s <land 0 <t < g. By the remarks in the previous paragraph, IR;;J is a
subinterval of the /" element w,,. We could then write the Ji,-name of any point
in J in the first klg iterates as

(16) whwhw - wh_ .

Applying IR’/;lq to J makes it the geometrically first subinterval of /;. The above
pattern would repeat itself with respect to the partition Ji,, were it not for the fact
that the w;’s start in /o, and hence fR]/i’qu is a subinterval of the j;' element of wy.



42 M. FOREMAN AND B. WEISS

Thus we must use g — j; applications of Rz to bring ﬂll/iqu back to Iy. Then (I —1)g
more applications carry ﬂll/‘;lwq_j v through [ — 1 copies of wy, and j; additional
applications bring it back to /; as a subinterval of an interval in the middle of w;.

In summary, using ¢ — j; iterates we are back in [, but in the first interval
in w;. Using (I — 1)g more iterates carries us through / — 1 copies of w;, and a j,
more puts us into the jj' element of w, and so on. Hence we can write the Ji,
name of any point in J in iterates klg < n < 2klg in the form

q—j1, (I=1) _jipq—ir, =1 _jip.q—j1, [—1 J1 -1 _j1
17) by 'wy ey by wiT e b wy ey - el

where b;z._j ' and e;:l are the last ¢ — j; elements of w; and the first j;-elements
of w;.

The interval Réqu.l is the leftmost subinterval of I, of length 1/¢’. This is a
subinterval of the j3¢ element of the word w,. Here the pattern repeats itself, but
with j, playing the role of j; and so on.

Inductively one shows that the J;,-names of any element of J have the following
form between interates mklg and (m + 1)klg with 1 < m < g:

(18) bg—]mwl—leémbfli—]mwi—le{mbq—]m wlz—leém . wllcillei’il

Since jo = 0, we can make (16) a special case of (18) by replacing the first copy
of each w; by b?_jo = b]. Using Remark 6, we see that we get an isomorphic
symbolic system.

Summarizing, any point in J can have its Ji,-name written in the form

g—1k—1

(19) w =[] @4 wi e
i=0 j=0

where the b’s and e’s have the definition given above.

The letters occurring in particular locations of w are in a specific one-to-one
correspondence with intervals in the partition J,. So, for example, the second b
in the third string of the form 577/ uniquely labels an interval in J, and so on.
We will make much use of the correspondence between the letters of w and the
corresponding intervals.

Another observation is that if we omit the subscripts on the b’s and e’s, we
can still decode this correspondence using the arithmetical properties of their
exponents. Omitting the subscripts we see that the word w in (19) takes the form
Clwg, ..., Wi_1).

Remark 41. By Lemma 19, for all but the 3// portion of x € [0, 1), the
[—g, g]-name of x with respect to Ji, under Ry is the same as the [—g, g]-name
of x with respect to J, under R,,.
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7.3.3 What this means for the 7,,. The partition ¢, slices A into s, equal
height horizontal strips and into g, vertical strips over the atoms of J,. We
examine the analysis in the previous section taking & = a, and f = a,4+1 (sO
P =Pn>q =qn. P =pne1and ¢’ = gpi1).

The action of R, on A exactly mimics the action of R, on the x-axis. Hence on
each horizontal strip of Ji ,, ®J,,,, of the form Ji 4, X [5/Spe1, (s +1)/5,11) we get
the same analysis of the comparisons of R
and R,

The labeling of J,,,, into words in equation (19) can be copied over to
Jgua X [8/Sns1, (s +1)/5,11) and reflects the names of the partition Ji ,, ® J;,,, with
respect to the action of R Doing this labels some of the atoms of J, ., ®J

o, and R, , as we did in comparing R,

Op+1*

Sn+1

Onp+l* Sn+1

with some b’s and e’s, corresponding to the boundaries of the words of the type that
occur in (19). Explicitly, if a is an atom of J,,,, labeled with a b (respectively e) in

(19), then all of the atoms in {a} x J; , are labeled with a b (respectively e).

Sn+1

Definition 42. Let By = Ey = () and let B, (respectively E,.1) be the union

of B, with the set of x € A that occurs in an atom of J,,, ® J,,,, labeled with a b

Sn+1

(respectively ane). Let B, ., =B,y \B,and E,,| =E,;; \ E,.

n

For n > 0, the measure of B,,, UE , is 1/1,. Moreover, the collection of

x € A, whose [—¢, g]-name with respect to the partition Ji 4, ® J;,., under R, is

Sn+1

the same as its [—¢, g]-name with under the action of R has measure at least
1—-3/1,.

‘We now define

On+l >

(20) I, ={x e X :forall m > n, x does not occur in Z,(B,, U E,)}.

Then T,y 2 T, Since > 1/1, < oo, the Borel-Cantelli Lemma implies that for
almost every x € A thereisanm foralln > m,x € [,

We note that the sets B,, E, and I',, correspond to the B,, E, and G, in Sec-
tion 7.1. The B,, E, are those x that are first labeled b or e at stage n.

7.4 The factor X is a rotation of the circle. As a warm-up for the
symbolic representation of Anosov—Katok diffeomorphisms of surfaces, we are in
a position to give a one-dimensional representation of the circular system X given
in Definition 21. Let (k,, [, : n € N) be a sequence of numbers such that k, > 2
and > 1/1, < oco. Let p, and g, be defined as in (5), a, = p,/q,. Then the
sequence of a,, converges to an irrational a.
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Theorem 43. Let v be the unique non-atomic shift-invariant measure on X.
Then

(X, B, v, sh) = (S', D, 4, Ra),
where R, is the rotation of the circle S' and ). is Lebesgue measure.

In the forthcoming [13] we give a completely different (short) algebraic proof
of this result. We give a geometric proof here because it gives more information
that is used in [14].

Proof. Recall that the construction sequence for X consists of W,, = {w,},
where wg = * and w,11 = C(w,, ..., w,).

Let X = [0,1) and take 4 = A. Define a sequence of uniform periodic
processes that converge to R,,, by taking the n'" periodic process 7, to be the cyclic

n

permutation of J,, given by the dynamical ordering. The base of ¢, is J,, = 1;" and

the levels are
(Io, Ro, Io, RS Io, .., RE ).

The periodic approximation o, can be realized pointwise by the transfor-
mation R,,. Since the R, ’s converge to R, and > g,/qn+1 < 00, Lemma 28
shows that the o,,’s converge (as periodic processes) to R,,.

We now follow the method described in Section 7.1. Let (G, : n € N) be as
defined there. Let Qg be the trivial partition of Gy. Labeling elements of Gy with
letter “+”, we inductively define (B,, E, : n € N) and show that if x € G, is in the
bottom level of o, then the {*, b, e}-name of x is w,,.

We start with oy, the trivial action on the tower that has one level, the partition J; .
The next periodic process o; is a single cycle of length g;. We take the first level
of o) to consist of a subset of B; followed by [, — 1 levels which we view as levels
of gy concatenated without spacers, followed by a single level contained in By,
followed by [y — 1 levels without spacers, followed by a single level contained
in B; and so on. There are q; = kolyp many levels total, of these ky are equally
spaced subsets of B;. The set E; = ().

If we label the levels that are not subsets of B; with *’s and the levels of B,
with b’s, we get a string that starts with a b, is followed by Iy — 1 *’s, followed by
a b and so on, k; many times. Keeping in mind t hat pyp = 0 and g9 = 1 (so every
ji = 0) this has the form

—Jji wlo—=1 ,ji
HHbqu*o el

i<qo j<ki

as desired.
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We now describe the induction step. Passing from ¢, to ¢,,; we assume that
the words corresponding to elements of the bottom level of g, are given by w,.
Following the analysis of Section 7.3.2, we can partition the levels of ;4 into
contiguous segments that have names w”~! interspersed with »’s and e’s yielding
the word C(wy,, w,, ..., w,). We let B, be the levels newly labelled with b’s and
E, the levels newly labeled with e’s. By Lemma 19, the measure of B, UE, is 1/1.

Let S C X be as in Definition 10. By Lemma 20, v(S) = 1 and for all s € S,
there is an N for all » > N with a,, b, > 0 such that s | [—a,, b,) = w,.2° For
such an s and n, let r,(s) = a,. We interpret r,(s) as the position of s’s “0” in w,,.

Supposing that r,(s) exists, we define

21) pu(s) =

n

iff qu” is the 7,,(s)" interval in the dynamical ordering of Jg,- (This is equivalent to
i = j,-)°! Equivalently, since the i interval in the geometric ordering is I;I,I,’r,,(s)’
[ = para(s) mod gp.
Thus p,(s) is the left endpoint of the r,(s)" interval in the periodic process ,,.
Because the 7,1 (s)" letter in w4 is in the r,(s)" position in a copy of w,, we
see that the 7,41 (s)™ interval in the dynamical ordering of J,,,, is a subinterval of
the r,(s)™ interval in the dynamical ordering of Jq,- It follows that

Pre1(8) = pu(s)

and that
[pn+1(s) — pu($)| < 1/qy.

Since Y, 1/q, < oo, the sequence (p,(s) : n € N) is Cauchy. We define
Po(s) =1im p(s).

It is easy to check that ¢o(sh(s)) = R,(¢o(s)), and hence by the unique ergodicity
of the measure v on S

(j{’ e’ v’ Sh) ; ([03 1)3 B’ l’ :R'a)'
This finishes the proof. (|

20The s’s for which a,, and b, do not exist are those s for which s(0) is in the boundary portion of
w,, for some m > n.

21Thus r,, and pn both have the same subset of S as their domain and contain the same information.
They map to different places r, : S — N, whereas p, : S — [0, 1) and is the left endpoint of the r,‘,h
interval in the dynamical ordering.
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The following is immediate from the proof of Theorem 43

h interval

Proposition 44. For x € [0, 1), let D,(x) = j if x belongs to the j
in the dynamical ordering of J,, (or equivalently, D,(x) = j ifx € I;Il’,’n ). Then for

all s € S and all large enough n,

rn(S) = Dn(¢0(s))

7.5 A symbolic representation of the abstract Anosov—Katok sys-
tems. We now give a symbolic representation of the transformations built by the
version of the Anosov—Katok technique as described in Section 6. Our symbolic
representation will consist of the names of points in A with respect to a generating
partition Q that we build in Section 7.1, with the addition of a systematic method
of assigning b’s and e’s. To find the names we compute them with respect to
the periodic processes 7, and show that for every k£ and almost every point x, the
[—k, k]-name of x with respect to Q and 7, stabilizes for large n.

If Q is a partition that is refined by the levels of the towers of a periodic process 7,
then the Q-names of any pointwise realization of 7 are constant on the levels of
the tower. Hence we can view these names as naming the levels themselves in the
periodic orbits of the action of 7 on various towers. We call the resulting collection
of names the (7, Q)-names.

We begin our exercise by fixing an arbitrary partition Q* of X that is refined by
the partition ¢, and comparing the Q*-names of points under z,, and ;.

Remark 45. For each n we take the base of the s"-tower in the periodic
process 7, to be Z, (R ;). It will follow that the word giving the Q*-names for the
s"-tower is the same as the word consisting of the (R, , Z, !(Q*))-names of the
tower based at Rj ; (which is the first atom of ¢, lying on the s™ horizontal strip

of &,).

To compute the (7,41, Q*)-names, we copy Q* to A via Z” ! to get a partition
P =ger Zn_lQ*. Because

Tn+l = Zn(hn+1:Ra,,+1h;+11 )Zn_la

this reduces the problem of finding (7,:+1, Q*)-names to that of computing the
(Mns1R,, 172, P)-names of the towers whose levels constitute the partition Z, !¢ 41 -
Since Z, lg“n = ¢, and h,,,; permutes the atoms of &1, we see that Z~ lCn+1 =&t
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How each rectangle moves. For notational simplicity, let & = k,,, g = q,,
I; = I and Jj = I}Z”*‘ .22 Fix a rectangle R in &,,;. We have two cases. The first
case is that &, | +11R = RZ’;I, where J; is not the geometrically last 1/g,+; subinterval
of an interval in Ji,. (See Figure 7.)

ﬁ“’n +1 (‘H,IPT ! )

= [ 1]

Figure 7. Case 1.

In this case know that R, and R, send RZ’;I to a rectangle whose base is
a subinterval of the same element of Ji,. Since h,,; commutes with R, and
LR is a
subrectangle of the same member of J;, ®J;,,, as R, R is. In particular, the P-name
of huy1 Ry, h L R is the same as the P-name of R, R.

The second case is when J; is the geometrically last 1/g,+; subinterval of an

permutes the atoms of the partition Ji 4, ® J,.,, we see that h,.1R,,,,

interval in Ji,; then R, sends RZ’;I to the geometrically first subrectangle of a

Thus A, R h,;llR is a subset of /,..1(R"). (See

On+1

new element R" of J, ® J

Sp+l * On+1

Figure 8.)
How the tower moves. Since the bases of the towers for 7,,; are the sets

Zu 1 RGE the base for the s tower for 7, Ry, ;!

1 1s of the form

—1 n+l _ n+1
Zn Zn+1R0,s —hn+1Ro,s .

Computing:
— 1
Prus1 Rty ) (M RS = hi Ry RE

Thus if Fy, ..., F,,,,—1 are the levels of the s™ tower for A1 Ry, b,

h L F, = R™!, where iy = 0 and the sequence of intervals (J;, : t < q,41) is the

1,8

orbit of Jy under R

we see that

On+l*

22We note that the behavior of J;’s with respect to the partition J,,, is that of the transects we
discussed in Section 7.3.2.
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ﬁr"’!|+1 (h):!_j l)

ull

R
-2 T R K W VO
s ]

Jilq Gi+1)/a  Ji+1/q (Ji+1 +1)/q

Figure 8. Case 2.

In Section 7.3.2, we labeled the intervals (J;, : < gn41) With w’s and b’s and
e’s. From our discussion of how each rectangle moves we observe that for those ¢
where J;, is labeled with a part of a w, the two transformations A, R,k and
Ra, move F; to subrectangles of the same element of Ji, ®J
element of P.

and hence the same

Sn+1
Now, for j < k,t < gands < s,.1, let R, ; be the rectangle

[(J + 1K)/ kq, ((j + 1K) + 1) /kq) X [s/Sp+1, (s + 1)/Sns1).

This is the product of the /" interval in the w ;j of equation (15) and the interval
[s/Sp+1, (s +1)/5,41). Let uj; be the sequence of P-names of the intervals

(22) <hn+l(Rj,t,s) < Q>

Then u;, is the sequence of names of the A, -image of subrectangles of
[0, 1) x [s/Sn+1, (s + 1)/s,4+1) taken along the transect whose horizontal intervals
form the word w ;. Because h,,; commutes with R, , we note the following:

Remark 46. The word u;, is the sequence of P-names of the levels of the
tower (R, b (R : 0 < 1 < g,). for any J; C Lj/kq. (j +1)/kq).

Following our analysis of the transects on [0, 1), we can now describe the
P-name of the orbit of Fy = .1 RjY} under h,,1 Ry, hy ) . The letter ¢ refers to the
number of applications of ,11R,,,, A, and thus the level of the tower.

On+1

On+1

(1) To begin with, there is a segment of ¢’s where the (/1,11 R, ;. +11, P)-name
agrees with the R, -name ug ;. This segment has length lg,, as the intervals J;,
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move to the right. Atstage ¢ = Ig, these intervals cross a boundary for the Ji,
partition. At this point the name changes to u; ; repeated [-times. Then uy ¢
is repeated [/ times and so on. This occurs k times through the u,, until
t = kyl,q, — 1, where the J; becomes the geometrically last subinterval
of I, ;. Then J;
(2) We then have a segment where the transect is labeled with g, — j; many b’s,

.., 1s the geometrically first subinterval of [1/g,, (1 +1)/g,).
after which ¢t = k1,9, + g, — j1.

(3) Ift = kg’ + q, — ji1, then J; is a subinterval of the geometrically first interval
in Ji4. In particular, the name of F; is the first letter of u ;.

(4) At this point the h,.1 R, A, +11 -names are the same as the R, -names for
g(l — 1) iterations yielding the name (.

Oln+1

(5) This is followed by a segment of length j; where the transect is labeled
with e’s.

(6) The pattern begins again with a portion of the tower where the transect is
labeled with »9~/1, followed by u{7' followed by e/'. This is repeated for
uy.s, Uz s and so forth.

(7) Atstage t = 2k,l,q, — 1, J; is the geometrically last subinterval of y. This

implies that J; , is the geometrically first subinterval of I,.

1+1
(8) Here we get a block of b’s of length ¢ — j, and the pattern described in items
(3)-(6) begins again with j, replacing j;.

(9) The pattern described in items (3)—(8) repeat until we get to ¢ = klg* — 1, at

—1

which point we have completed the period of /1,41 R, i, -

We illustrate this with two diagrams. The levels of both Figures 9 and 10 are
the rectangles of the partitions in the dynamical ordering with the R,, and R,,,,,
moving in the vertical direction. In Figure 9 we show how the &, transects move
through A in the global fashion at scale 1/k,,q,—neglecting the 1/k,l,q, portions.
The small light rectangles show the initial pass of a £,,.; atom, with the more darkly
shaded rectangles showing a later pass.

In Figure 10 we magnify the first diagram to show the features at the 1/k,/,q,
scale. This is part of the darker rectangle transect from Figure 9 as it passes through
a portion of width 1/k,q,, going from j/kgq, to (j +1)/kq, in 1/k,l,q> increments.

We have shown:

Theorem 47. Let Fy be the base of a tower T for h, .1 R
h L Fo = Ros. Then the P-names of T agree with

hl. Suppose that

Ont1

qg—1k—1

)

i=0 j=0

on the interior of u.
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Figure 10. A finer diagram of the transects.

From this we immediately get

Corollary 48. Suppose that J; C [j/kq, (j + 1)/kq — (1/q,11)) with j < kq
and R = R},. Then the levels (fR;”hnH(R) 1t < q) coincide with the levels
((Mpr1Ra, h7 L) huiR 8 < q) in the tower for t,. In particular, their Q*-names

An+1"n+1

agree.

Proof. J; C[j/kq,(j+1)/kq—1/q,+1)1s equivalent to J; being labeled with
the first letter of a w,, in a transect. O
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In light of Remark 19, we know:

Corollary 49. For a set of x € X having measure at least 1 — 3/1,, the
(Tpt1, Q%) and (z,,, Q) names of x agree on the interval [—q, q].

We draw attention to the connection with the sets I',, from (20). Recall that
these are the collections of points that do not get labeled with b’s or ¢’s for the first
time at some stage m > n. With this in mind the following corollary is clear:

Corollary 50. Suppose that x € T',, and x is on level t,, of a t,-tower and the
level t,y1 of a ty1-tower. Let wy, be the Q*-name of x with respect to t,, and w,,| be
the Q*-name of x with respect to t,.1. Then wpyy | [the1 — by, tirl + Gn — B) = Wy

This corollary is saying that for x € I, the Q*-name has stabilized on the
interval of length g, corresponding to x’s position in a z,-tower.

The symbolic representation. Let
B={xeX: forsomem <n,xel, andZ,;lx € B,,}

and
E={xeX: forsomem <n,xel, andanlerm},

where the B,,’s and E,’s are given by Definition 42 and I',, is defined in (20).
Let {A; : i < s} be the partition ¢ [ (X \ B UE)?? and

(23) Q={A;:i<s,)U{B,E}.

We now do the following:
(1) Compute the doubly infinite names of a typical point with respect to Q.
(2) Show that the function sending an x € X to its Q-name has range in the set S
in Definition 10.
(3) Show that *“ Requirements 1-3” (just before Lemma 34) imply Q is a gener-
ator for the transformation 7 = lim z,,.

The names will be in the alphabet ZU{ b, e}, where X = {q; : i < so}. Naturally,
a point x € X will get a name f € (X U {b, e})” with f(n) being a; if T"x € A;
and f(n) being b or e if T"x € B or T"x € E, respectively.

To give a complete description of the (7, Q)-names of points in | J I, we proceed
by induction on n. If n =0, then 7y =id, and I'g = X \ (B U E). The rp-names of
x € I’y are simply the elements of X.

Suppose that Fy is the base of a tower T for 7,4 and Z,,;Ry = Fy, where
Ry = Rg,"si for some s* < s5,41. Inductively assume that the (z,, Q)-names of the
towers with bases ZHR&S (with s < s,,) are up, ..., Ug,—1.

23Explicitly o | (X \ BUE) is given by the sets Z[[0, 1) x [s/s0, (s + 1)/s0)] \ (B UE).
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Definition 51. Define a sequence of words wy, . .., wg,_; by setting w; = u,
where

Pt (Lj/kn, (G + 1)/ kgn) X [8™/sper, (87 + 1)/spe1)) € Ry

We will say that (wy, . .., wg,—1) is the sequence of n-words associated with 7.

We define a circular system by inductively specifying the sequence (W,, : neN).
Let Wy ={a; : i < so}.
Suppose that we have defined W,,. Define

Wyt = {Cpi(wo, ..., wr,—1) :

(wo, . .., wy,—1) is associated with a tower J in 7,4 }.

We will call (W, : n € N) the construction sequence associated with the Ansov—
Katok construction. The following is worth noting.

Proposition 52. Assume that the Anosov—Katok construction satisfies
Requirements 1-3 in Section 6.1. Then (W, : n € N) is strongly uniform.

Theorem 53. Suppose that T is a limit of a sequence of Anasov—Katok
periodic processes with 1, growing fast enough. Then almost all x € X have
Q-names in K, the circular system with construction sequence (W, : n € N). In
particular, there is a measure v on K that makes (K, B, v, sh) isomorphic to the
factor of X generated by Q.

Proof. LetM be apositive integer. Then for almost all x there is an N so large
that for all n > N, x does not occur in the first or last M levels of any tower in 7.

Fix an arbitrary point x € |JI',. Fix ng with x € I';,; and consider n > ny.
Then x belongs to a level of a tower T of z,,. Without loss of generality we can
assume that x does not occur in the first or last M levels of J. By Corollary 50, if x
is in the t}lh level of a 7,,-tower, then the T-name of x agrees with the z,,-name of x
on the interval [—¢,, g, — 1,).

Applying Theorem 47, with P = Z'Q, we see that a tower T for 7, gets the

name
qn—l_l kn—l_1
w= T I o ruen,
i=0  j=0
where (w, ..., wg, ,—1) is the sequence of words associated with J. If x is at

level t,,, then the Q-name of x on the interval [—1,, g, — 1) 1S

qg—1k—1

H H(bq_j"w;_leji) = Cu(wo, ..., Wk,_,—1).

i=0 j=0

Since M < min(¢,, g, — t,), x | [—M, M ] is a subword of some word in W,,.
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Thus, for a typical x, every finite subinterval of the (7, Q)-name for x is a
subword of some W,,,;. It follows that the factor of (X, B, A, T') corresponding
to the partition Q is a factor of the uniform circular system we defined from the
sequence of W,,’s.

Conversely, by Lemma 11, the uniform circular system K determined by
(W, : n € N) is characterized as the smallest shift invariant closed set inter-
secting every basic open set (w) in (X U {b, e})* determined by some w € W,.
However, each w € W, is represented on I',, N T for some T, hence each (w) has
non-empty intersection with the set of words arising from (7, Q)-names. (]

We will need the following lemma that follows from the proof of Theorem 53.

Lemma 54. Let ag, by € N. Then for almost all x and all large n, x € T,
and x does not occur in the first ay levels or last by levels of a tower of t,. In
particular, for almost all x € X there are a > ag, b > by such that the Q-name of x
restricted to the interval [—a, b) belongs to 'W,,.

From Lemma 54 and Theorem 53 we conclude:

Corollary 55. For almost all x € X the Q-name of x is in S. In particular,
if v is the unique non-atomic shift-invariant measure on K, then the factor Y of
(X, B, 1, T) generated by Q is isomorphic to (K, B, sh, v). In particular, there is a
unique non-atomic, shift-invariant measure on Y.

Generation. To illustrate the potential difficulty, suppose that each tower T
of each 7, is associated to the same sequence of n — 1-words; then for every
x,t1, € [0, 1), the (t,, Q)-names of (x, #{) and (x, t,) are the same. This would
imply that Q generates a proper factor of X.

Hence if h,.; does not vary enough on each horizontal strip of the form
[s/sp+1, (s + 1)/s,41), the partition Q may not be generated. Fortunately, Require-
ments 1-3 (stated just before Lemma 34) are sufficient conditions to guarantee
generation.

Lemma 56. Suppose that hypothesis 1-3 (stated before Lemma 34) hold.
Then Q-generates the transformation T .

Proof. Without loss of generality we can take X = A and Z to be the identity
map. Since the (Z,&, : n € N) is a decreasing sequence of partitions that generate
the measure algebra, and x(T',,) increases to 1, the atoms of (Z,(&,) [ [, : n € N)
also o-generate the measure algebra. Thus it suffices to show that each member of
a Z,&, | T'), belongs to the smallest translation invariant g-algebra B generated by
(V_yTH(QU{B,E}):N eN}.

i=
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Each P € Z,&, is the 1" level of some tower T for 7,,. Let w € (X U {b, e})? be
the (z,,, Q)-name of T. Then the j™ letter of w determines an

S,'j (S ({B} @) {E} U {A, i< So}).
Since the (7, Q)-name of 7T is correcton I',,,

PNT,C (] T"/(S;)NT,.
0<j<qn
On the other hand, since the map sending towers to names w is one-to-one, we
see that
PN, 2 () T/(S;)NT,,
0<j<qn
which is what we needed to show. O

It remains to show that the hypothesis of Lemma 56 holds.

Lemma 57. Suppose that our sequence of h,,’s satisfy Requirements 1-3 in
Section 6.1. Then Q generates the transformation T .

Proof. We use Requirement 3 to show inductively that for all n > 1, if T
and 77 are two 7, towers then the Q-names associated with T and 7" are different.

For n = O this is trivial. Suppose it is true for n; we show it for n+1. Let T and T’
be two towers and assume that they have bases jo'sl and RS’*S}. By Requirement 3,
if (jo,...» jx,—1) and (jg, ..., j; 1) are the k, tuples associated with s and &',
then they are distinct. Let w, be the Q-name associated with the n-tower with
base Rj; ;. By induction, the w,’s are distinct. By Theorem 47, the Q-name of T is
C(wjy, ..., wj, _,) and the Q-name of T" is G(wjé, ... wji,,fl)' Since (jo, - - - jk,—1)
and (jg, - - -, ji ) are different we know C(wj, ..., w;, _,) and C(wjy, . . ., wj;m_l)
are different.

It now follows from Lemma 56 that Q generates. (]

Ergodicity of the Anosov—Katok systems. We can now show that abstract
Anosov—Katok systems are ergodic and isomorphic to uniform circular systems.

Theorem 58. Suppose that (X, B, u, T) is built by the Anosov—Katok method
using fast growing coefficients and h,’s satisfying Requirements 1-3. Let Q be the
partition defined in (23). Then the Q-names describe a strongly uniform circular
construction sequence (W, : n € N). Let K be the associated circular system
and ¢ : X — K be the map sending each x € X to its Q-name. Then ¢ is one-
to-one on a set of u-measure one. Moreover, there is a unique non-atomic shift-
invariant measure v concentrating on the range of ¢, and this measure is ergodic.
In particular, (X, B, 1, T) is isomorphic to (K, B, v, sh) and is thus ergodic.
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Proof. Since the [,-sequence grows fast, we know that the sequence of W,,’s
forms a uniform construction sequence and hence there is a unique shift-invariant
non-atomic measure v on the set S C K given in Definition 10 and v is ergodic.
By Lemma 54, the range of ¢ is a subset of the set S. Hence the factor determined
by ¢ is isomorphic to (S, B, u, sh). In particular, this factor is ergodic.

Since the sequence of #,’s satisfy Requirements 1-3 the partition Q
generates X. Hence ¢ is an isomorphism. (]

Corollary 59. If T is a diffeomorphism of the disk built using the Anosov—
Katok method of conjugacy satisfying Requirements 1-3 in Section 6.1 then T is
measure theoretically isomorphic to a strongly uniform circular system.

7.6 Tying it all together. In Sections 6 and 7, we have described a class
of area-preserving diffeomorphisms of the disk, annulus or torus. We have shown
that, subject to some requirements (Requirements 1-3, in Section 6.1), these
transformations are ergodic and have a symbolic presentation in a particular form,
that of uniform circular systems.

The Anosov—Katok systems are built recursively depending on some data:
some sequences of numbers k,, [, s,. Having been given these numbers, the final
bit of data needed to determine the system is a sequence of permutations #,, of the
partitions ¢&,. These permutations can be viewed as labeling the horizontal strips
of the partition &, with bases of the towers from the previous periodic process.

The numerical sequences and the labeling completely determine a construction
sequence that is built recursively using an operator C. The resulting sequence is
uniform and circular and thus carries a unique non-atomic measure.

In our applications we take a different tack. We will view the results of
this section as showing that uniform circular systems satisfying some minimal
requirements are isomorphic to C°°-measure preserving transformations on the
disk, annulus or torus. Here is a converse to Corollary 59.

Theorem 60. Suppose that (k,,l,,s, : n € N) are sequences of natural
numbers tending to infinity such that the [, grow sufficiently fast, the s, grow to
infinity, and s, divides both k, and $,1.

Let (W, : n € N) be a circular construction sequence in an alphabet X U { D, e}
such that:

(1) Wo = %, and forn > 1, |[Wyi1| = Spe1.
(2) (Strong Uniformity) For each w' € W11, and w e W, if w' =C(wy, . .. wi,—1),
then there are k, /s, many j with w = w.
Then:
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(A) IfKisthe associated symbolic shift, then there is a unique non-atomic ergodic
measure v on K.

(B) There is a C*-measure preserving transformation T defined on the torus
(resp. disk, annulus) such that the system (A, B, 1, T) is isomorphic to
(K, B, v, sh).

Before we begin the proof of the theorem, we note that we do not know any a
priori formulas for a growth rate for the /, that is sufficient for the conclusion of the
theorem; the growth rate is determined inductively as described in the comments
at the end of Section 6.

Proof. We show that Lemma 34 allows us to inductively construct a sequence
(h, : n € N) thatyields (W, : n € N) as its construction sequence. Suppose that we
have defined (h,- : n* < n). From the definition of circular construction sequence
(Definition 15) we can find P,.,; € (W,)* such that W, is the collection of w’ such
that for some sequence (wy, . . ., Wg,—1) € Pyt1, 0 =C(wy, . . ., wy,—1). Enumerate

Ppiaswg, ..., w Now apply Lemma 34 to get /,,; from wy, . .

a1 W .
We claim that the (h, : n € N) satisfy Requirements 1-3 Requirement 1 is just
that the s, go to infinity. Requirement 2 follows from item (2) and Requirement 3

follows since the words in P, are distinct. O

The smooth transformation 7" built in Theorem 60 is determined by the collec-
tions of words (P! : n € N) and our particular description of the Anosov—Katok
construction. The words in P! determine the maps &, in the Anosov—Katok
construction. Recall at the end of Section 6.3 we chose a summable sequence
(¢n : n € N) such that ¢,/4 > >
C*>-topology. The sequence of ¢, give estimates for the smooth approximations

mon €m and a metric d*° that determined the
ki to h, and the sequence (S, : n € N) converging to 7. Equation (14) shows
that d*°(S,,, Sy+1) < €,/4. From this we observe that the sequence (P! : n < M)
determines an ¢y, neighborhood in which 7" must lie.

Conversely, different choices of P, give quite distant /,’s and hence distant %},
in the C*°-norm. We record this for use in applications.

Proposition 61. Supposethat (U, : n € N) and (W, : n € N) are construction
sequences for two circular systems and M is suchthat (U, : n<M) =W, : n<M).
If S and T are the smooth realizations of the circular systems using the Anosov—
Katok method given in this paper, then the d*°-distance between S and T is less
than ¢y;.
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Proof. Given the circular construction sequences, we have associated se-
quences (kY, 1V, hY sV : n e N) and k), 1V, nY,sY : n € N) determining
approximation (S, : n € N), (T,, : n € N) to diffeomorphisms S, 7. From the
hypothesis we see (kY, 1V, Y, sV :n < M) = (KW, 1V, hY,s¥ :n < M). Thus

Sy = Ty . By Remark 39 and (14) we see that

dOO(SmaS) < SM/25
dOO(TM, T) < SM/2

It follows that d*°(S, T) < ep. ]

We end with a remark that seems relevant to the classification of diffeomor-
phisms of the torus up to conjugacy by homeomorphisms.

Remark 62. In Theorem 3.3 of [6] it is shown that there are exactly three
ergodic invariant measures on the disk D? with respect to the Anosov—Katok
diffeomorphism constructed there. There is one concentrating on the fixed point
in the center, one concentrating on the boundary (where T is a rotation), and one
that gives every open set positive measure (Lebesgue measure).

Because we are working on the torus, the top and bottom lines of A are
identified, rather than having one of them collapsed to a point. Thus we get two
ergodic invariant measures. One concentrates on the “equator” of the torus—the
horizontal line corresponding to the top and bottom of the annulus on which we
base our construction. T restricted to this line is the rotation R, (& =lima,). The
second invariant measure is Lebesgue measure.

If v is an invariant ergodic measure that gives every open set positive measure,
then v is Lebesgue measure. We can also prove this consequence in a different way.
If T is an Anosov—Katok diffeomorphism and K is the circular system isomorphic
to 7', then there is a unique non-atomic invariant measure on K (Lemma 20). If

$:K— T?

is the isomorphism, then the range of ¢ is T invariant and has a unique non-atomic
invariant measure. By considering the sets G,, defined in (13) one can establish
that if v is a T -invariant measure giving positive measure to every open set, then v
gives positive measure to the range of ¢. It follows that if v is ergodic, then v is
Lebesgue measure.

7.7 Two projects. Here are two projects that we believe are of interest.
The first is to extend the symbolic representation given in this paper to other
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versions of the Anosov—Katok construction—in particular to the twisted case, or

to the constructions of weakly mixing transformations in [7].

Secondly, the fact that weakly mixing transformations can be realized by the

Anosov—Katok method suggests the possibility that a comeager collection of trans-

formations (with respect to the weak topology) could be realized by a method

similar to the Anosov—Katok method.
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