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Abstract

Differentialnetworkanalysisisanimportantstatisticalproblemwithwideapplications.Manystatisticiansfocus

onbinaryproblemsandproposetoperformsuchanalysisbyobtainingsparseestimatesofthedifferencebetween

precisionmatrices.Thesemethodsaresupportedbyexcellenttheoreticalpropertiesandpracticalperformance.

However,efficientcomputationforthesemethodsremainsachallengingproblem.Anovelalgorithmreferredtoas

theSMOREalgorithmisproposedfordifferentialnetworkanalysis.TheSMOREalgorithmhaslowstoragecost

andhighcomputationspeed,especiallyinthepresenceofstrongsparsity.Inthemeantime,theSMOREalgorithm

providesaunifiedframeworkforbinaryandmultiplenetworkproblems.Inaddition,theSMOREalgorithm

canbeappliedinhigh-dimensionalquadraticdiscriminantanalysisproblemsaswell,leadingtoanewapproach

formulticlasshigh-dimensionalquadraticdiscriminantanalysis.Numericalstudiesconfirmthestabilityandthe

efficiencyoftheproposedSMOREalgorithminbothdifferentialnetworkanalysisandquadraticdiscriminant

analysis.

Keywords:Coordinatedescent,Dantzigselector,differentialnetworkanalysis,LASSO,quadraticdiscriminant

analysis

1.Introduction

Duetoitswideapplicationsinscientificproblems,differentialnetworkanalysishasbeenreceivingincreasing

attentionintheliterature.Forexample,researchersoftenperformsuchanalysistounderstandtheinteractions

amongproteinsorgenesinbiologystudies[1,2,3,4,5,6].Differentialnetworkanalysisaimstodetectchanges

ofnetworksunderdifferentconditions.ConsidervariablesX∈RpandtheconditionlabelY=1,...,K.In5

differentialnetworkanalysis,itisoftenassumedthat

X|(Y=k)∼N(µk,Σk), k=1,...,K, (1.1)
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whereµk∈R
p,Σk∈R

p×p.WithinthelevelY=k,XfollowstheGaussiangraphicalmodel.LetΩk=Σ
−1
k .

ThenΩkcharacterizestheconditionaldependencestructureamongXatLevelk. Ourgoalisestimatingthe

differencesamongΩk’s.Itisoftenassumedthatthedifferencesaresparse,indicatingthatmostpairs(Xi,Xj)

havetheconstantinteractionsinallthelevels,whilewestrivetoidentifythepairswithdifferentinteractionsacross10

levels[7,8,e.g].

AnintuitiveapproachtodifferentialnetworkanalysisistofirstestimateΩk,andthentakethedifferences

amongtheestimatedΩk’s.TheestimationofΩkcanbeperformedeitherindividually[9,10,11,12,13,14,

15,16,17,18,19,20]orjointly[21,22,23,24].However,thisapproachrequiresstrongerassumptionsthanwe

desire.InordertoestimateΩkinhighdimensionsbytheabovemethods,weneedtoassumethateachΩkis15

sparse.Thisassumptioncanbestringentinpractice.Forexample,[25,26]showedthattranscriptionalnetworks

areoftennotsparseontheirown.Fromthestatisticalperspective,sparsityintheindividualΩk’sismuchstronger

thansparsityintheirdifferences.Forexample,considertwoprecisionmatricesΩ1andΩ2.Ifbothofthemare

sparse,thenapparentlytheirdifferenceΩ2−Ω1hastobesparseaswell.However,whenΩ2−Ω1issparse,we

donotnecessarilyhavesparseΩ1andΩ2.BydirectlyassumingthatΩ2−Ω1issparse,wecanavoidsparsity20

assumptionsonΩ1andΩ2individually.

Consequently,effortshavebeenspentondirectestimationofthedifferentialnetworks[7,8,27,28].These

methodsdirectlyestimatethedifferentialnetworks,withoutimposingassumptionsontheindividualprecision

matrices.Thus,theyareparticularlysuitablewhenwearereluctanttomakesparsityassumptionsoneachnetwork,

asisthecaseinthetranscriptionalnetworks.Thesemethodologicaldevelopmentsgreatlyenrichtheliteratureof25

differentialnetworkanalysis.Newstatisticaltheorieshavebeenderivedforthesemethods,andresearchershave

appliedthemonrealdatasetstoobtainnewfindings.

However,thecomputationofdifferentialnetworkanalysisremainsacriticalissue. Someoftheexisting

methodscanbedemandingonthestorage,whileothershaveroomforimprovementonthecomputationefficiency.

Notethatweaimtoestimateparametersofdimensionsp×p,wherepcanbeverylargeinpractice.Therefore,30

itisessentialtoaccompanythemethodswithalgorithmsthatscalewellwithp. Tothisend,weproposean

algorithmwithcheaperandfastercomputationforthetwopromisingdifferentialnetworkanalysismethodsin

[7,28]. Complexityanalysisshowsthattheimprovementsareparticularlysignificantwhenthetruthisvery

sparse. Moreover,mostexistingmethodsfocusonbinaryproblems,butouralgorithmeasilyaccommodates

multiplenetworkproblems.35

Further,ouralgorithmcanbeappliedtoquadraticdiscriminantanalysis(QDA)aswell.QDAisoneofthemost

classicalclassificationmethods[29,e.g].Itprovidesnonlinearseparationofthedatabymodelingheterogeneity.

Therehavebeenconsiderableinterestsinitshigh-dimensionalgeneralizations[30,31,28].Ouralgorithmcanbe

appliedinhigh-dimensionalQDA.TheQDAclassifierincludesquadraticandlinearterms.Similartodifferential
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networkanalysis,thequadratictermsaredifferencesamongprecisionmatrices,andouralgorithmeasilyprovides40

estimatesforthem.Ontheotherhand,bysupplyingappropriateinitialestimatestoouralgorithm,weareableto

obtainestimatesforthelineartermsaswell. Moreover,unlikeexistingmethodsthatfocusonbinaryproblems,

ouralgorithmprovidesaframeworkformulticlassQDAproblems.

Inourdevelopment,wefirstintroduceagenericoptimizationproblemcalledtheSMOREproblem,inshort

forSecond-orderMatrixOptimizationwithREgularization.TheSMOREproblemincludesdifferentialnetwork45

analysisandQDAasspecialcases.ThenwedeveloptheSMOREalgorithmtosolvetheSMOREproblem.The

SMOREalgorithmhaslowstorageandcomputationcosts.TheoriesconfirmtheconvergenceoftheSMORE

algorithmundermildconditions.WethenapplythisalgorithmindifferentialnetworkanalysisandQDA.Numer-

icalstudiesdemonstratethecomputationaladvantagesoftheSMOREalgorithminbothapplications.Therestof

thepaperisorganizedasfollows.InSection2webrieflyreviewdifferentialnetworkanalysis.InSection3we50

introducetheSMOREproblemandtheSMOREalgorithm.Convergenceanalysisisprovidedaswell.Section4

containstheapplicationoftheSMOREalgorithminbinarydifferentialnetworkanalysis.Theextensiontomulti-

plenetworkproblemsisdiscussedinSection5. WereviewQDAandconsideritshigh-dimensionalextensionin

Section6.InSections7&8,wepresentnumericalstudiesonsimulatedandrealdata.Adiscussionisgivenin

Section9.Allthetechnicalproofsarerelegatedtotheappendix.55

2.Backgroundondifferentialnetworkanalysis

Wereviewthedifferentialnetwork(DN)analysismethodsby[7]and[28]thatmotivateouralgorithmicde-

velopments.Forsimplicity,wedistinguishthembythepenaltiestheyuse. Werefertotheproposalby[7]asthe

Dantzig-DNmethod,becauseitemploystheDantzigselector.[28]appliestheLASSOpenaltyandwereferto

theirmethodasLASSO-DN.Bothmethodsassumethemodelin(1.1)restrictedtoK=2.Thegoalistoestimate60

∆=Ω2−Ω1.Straightforwardcalculationshowsthat

Σ2∆Σ1=Σ1−Σ2. (2.1)

Letvecdenotethevectorizationoperatorthatconvertsap×pmatrixtoap2-dimensionalvector,and⊗denote

theKroneckerproduct.Then(2.1)impliesthat

(Σ1⊗Σ2)vec(∆)=vec(Σ1−Σ2). (2.2)

Hence,theDantzig-DNmethodestimates∆byreplacingΣk’swiththeirsampleestimatesΣkandapplying

theDantzigselector[32]:65

∆=argmin
∆
vec(∆)1, s.t.(Σ1⊗Σ2)vec(∆)−vec(Σ1−Σ2)∞ ≤λ, (2.3)

3



whereλ>0isatuningparameter.Theconstraint(Σ1⊗Σ2)vec(∆)−vec(Σ1−Σ2)∞ ≤λguranteesthat

(2.1)isroughlytrue,whiletheobjectivefunctionvec(∆)1imposessparsity.Dantzig-DNdirectlyestimatesthe

difference∆,withoutimposingadditionalassumptionsonΣkorΩk.Italsohasimpressivetheoreticalproperties

andnumericalperformance.

However,amajorchallengeinDantzig-DNisthecomputation.Intheoriginalpaper,theauthorsproposed70

twoalgorithmstosolve(2.3).ThefirstistocalculateΣ =Σ1⊗Σ2,andthenuseagenericalgorithmfor

Dantzigselector[32,33,34].However,inordertocomputeΣ,thestorageandthecomputationcostsareboth

attheprohibitiveorderofp4.Toresolvethisissue,theauthorsdevotedasectiontoasecondalgorithm.They

exploitedthesymmetryofΣandreducedthestoragecostbyhalf.Thisalgorithmalleviatestheissueofstorage

tosomeextent,butthestoragecoststillgrowsattheorderofp4.WewillshowinSection4.2thatbyhonoringthe75

KroneckerproductstructureinΣ,wecanreducethestoragecosttoO(p2)andthecomputationcosttoO(p3).

Ontheotherhand,theLASSO-DNmethodwasproposedasacomputationallyefficientalternativetoDantzig-

DNbyadoptingadifferentformulation,althoughitwasdevelopedunderthecontextofquadraticdiscriminant

analysis.Withsomealgebraicderivation,itcanbeshownthat(2.1)implies

∆=arg min
∆∈Rp×p

Tr(∆TΣ1∆Σ2)−2Tr{∆(Σ1−Σ2)}, (2.4)

whereforanymatrixM ∈Rq×q,Tr(M)=
q
i=1miiisthesummationofallitsdiagonalelements.Taking80

derivativeof(2.4)withrespectto∆,werecover(2.1).

Hence,toobtainasparseestimateof∆,LASSO-DNsolvesfor

∆=arg min
∆∈Rp×p

[Tr(∆TΣ1∆Σ2)−2Tr{∆(Σ1−Σ2)}+λ
i,j

|∆ij|], (2.5)

whereλ>0isatuningparameterand i,j|∆ij|isthewell-knownLASSOpenalty[35]. AsDantzig-DN,

LASSO-DNdirectlyestimates∆,anddoesnotneedsparsityassumptionsontheindividualprecisionmatrices.

TheoriesconfirmthatLASSO-DNisconsistentunderproperconditions,andnumericalstudiesdemonstrateits85

outstandingperformance.

Forcomputation,anADMMalgorithmwasproposedforLASSO-DNwiththestoragecostofO(p2),and

thecomputationcostofO(p3).IncontrasttoDantzig-DN,LASSO-DNnevercomputesthebigmatrixΣ =

Σ1⊗Σ2.AlltheoperationsareperformedontheindividualmatricesΣ1andΣ2.Asaresult,LASSO-DNis

computationallymoreefficientthanDantzig-DN,butwewillseethatitscomputationcostcanbefurtherlowered90

withouralgorithminthepresenceofstrongsparsity.

Dantzig-DNandLASSO-DNmotivateustoconsideragenericoptimizationproblemwerefertoasthe

SMOREproblem.LASSO-DNisaspecialcaseoftheSMOREproblem,whileDantzig-DNcanbeperformed

byiterativelysolvingasequenceofSMOREproblems.Moreover,LASSO-DNandDantzig-DNfocusonbinary
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problemswithK=2,whiletheSMOREproblemlaysthefoundationtodealwithmultiplenetworkproblems.95

Weintroducethisproblemandanefficientalgorithminthenextsection.Itsconnectiontodifferentialnetwork

analysiswillbeexplainedindetailinSections4&5.

3.TheSMOREalgorithmanditsconvergenceanalysis

3.1.TheSMOREproblem

WestartwithintroducingtheSMOREproblemasagenericoptimizationproblem,withoutregardstostatistical100

models. Weusethefollowinggenericnotation.LetUk∈R
q1×q1,Vk∈R

q2×q2,k=2,...,Kbesymmetric

matrices,Gk∈R
q1×q2andλ>0beatuningparameter.Notethattheindicesstartfrom2suchthatwecan

keepusingthesamenumberingsystemwhenwedescribetheapplicationsofouralgorithmindifferentialnetwork

analysisandQDA.Weareinterestedinthefollowingproblem:

(B2,...,BK)=arg min
B2,...,BK∈Rq2×q1






K

k=2

Tr(BTkVkBkUk)−2Tr(BkGk)+λ
i,j

K

k=2

B2k,ij





.(3.1)

Theobjectivefunctionin(3.1)isapenalizedquadraticfunctionwithmatricesasarguments.Hence,werefer105

to(3.1)asthesecond-ordermatrixoptimizationwithregularization(SMORE)problem.Thepenaltyfunction

i,j
K
k=2B

2
k,ijisthegrouplassopenalty[36]thattreatsB2,ij,...,BK,ij asagroup,butitreducestothe

lassopenaltywhenK=2.

TheSMOREproblemincludesvariousstatisticalproblemsasspecialcaseswhenwesubstituteUk,Vk,Gk

withappropriateestimates.Forexample,whenK=2,V2=Σ1,U2=Σ2,G2=Σ1−Σ2,(3.1)reducesto110

LASSO-DNdefinedin(2.5).IfwemakeotherappropriatesubstitutionsofVk,Uk,Gk,theSMOREproblem

reducestoasub-problemofDantzig-DNorhigh-dimensionalQDA.Indeed,theseapplicationsoftheSMORE

problemarediscussedinSections4–6.Also,seeTableB.8intheappendixforthechoicesofUk,Vk,Gkinall

thestatisticalapplicationsinthispaper.

3.2.TheSMOREalgorithm115

WesolvetheSMOREproblemwithablockwisecoordinatedescentalgorithm.Thealgorithmcanbemost

conciselydescribedwhenwevectorizeBk.Letβk=vec(Bk)∈R
q1q2andgk=vec(Gk).Equation(3.1)can

berewrittenas

(β2,...,βK)=arg min
β2,...,βK

K

k=2

{βTk(Uk⊗Vk)βk−2g
T
kβk}+λ

j

K

k=2

β2kj. (3.2)
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Equation(3.2)isapenalizedquadraticprobleminβk,wherethequadraticcoefficientsUk⊗Vkhavea

Kroneckerproductstructure.InprinciplewecouldletWk=Uk⊗Vkandusegenericalgorithmstosolve120

(3.2),butthestorageandcomputationofWkcanbeveryexpensive.Hence,itismoredesirabletodevelopan

algorithmhonoringtheKroneckerproductstructure.Tothisend,wederivealemmaconcerningthesolutionof

β·j=(β2j,...,βKj)whenβ·jisgivenforallj=j.

WeletBjk∈R
q2×q1suchthatthej-thelementofvec(Bjk)coincideswithβkj forj=j,andthej-th

elementofvec(Bjk)iszero.ThevectorUk,·jisthej-thcolumnofUk. Wedenote%asmodulooperation,and125

theoperator(x)+=xifx>0and(x)+=0ifx≤0.Forgivenq1,q2,j,defineindicesj1,j2as

j1= (j−1)/q2 +1 and j2=(j−1)%q2+1. (3.3)

ForamatrixU ∈Rq×q,definediag(U)∈RqasavectorcontainingallthediagonalelementsinU. We

considerthefollowingconditiononVk,Uk.

(C1)diag(U2⊗V2)=···=diag(UK⊗VK).

Lemma1.Foreachj=1,...,q1q2,thesolutiontoβ·jof(3.2)givenβ·j,j=j,isthesameas130

argmin
β·j

K

k=1

(βkj−βkj)
2+

λ

Uk,j1j1Vk,j2j2
β·j, (3.4)

where

βkj=
gkj−V

T
k,·j2
BjkUk,·j1

Uk,j1j1Vk,j2j2
. (3.5)

FurtherassumethatCondition(C1)istrue.Thesolutionto(3.4)is

β·j=β·j 1−
λ

β·j +

. (3.6)

Lemma1indicatesthat,underCondition(C1),wehaveanexplicitsolutiontoβ·jgivenalltheotherelements.

Condition(C1)isamildcondition. WhenK =2andweonlyhaveonepairofUk,Vk,Condition(C1)is

triviallytrue.WhenK>2,wewillshowinSections5&6thatCondition(C1)canbesatisfiedeitherwithproper135

standardizationorreparametrization.

MotivatedbyLemma1,weproposetosolve(3.2)byiteratingoverβkandβkdefinedin(3.5)and(3.6)until

convergence.WerefertotheresultingalgorithmastheSMOREalgorithm,whichissummarizedinAlgorithm1.

Atconvergence,wereshapeβktoobtainBk.IntheSMOREalgorithm,weonlyneedthej2-thcolumnofVkand

j1-thcolumnofUkwhenweupdateβkj.Theindexrelationshipbetweenj1,j2andjcomesfromtheKronecker140

product.SincetheSMOREalgorithmhaselement-wiseoperationsandweupdateeachelementby(3.7),thereis
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Algorithm1TheSMOREalgorithm

1.InputUk,Vkandgk,k=1,...,K.Initializeβ
(0)
k =0fork=1,...,K.

2.Forstepsw=1,2,...,dothefollowinguntilconvergence:

foreachelementj=1,...,q1q2,

(a)UpdateBjkbasedoncurrentβ
(w−1)
·j forallj=jandcompute

β
(w−1)
kj =

gkj−[V
T
k,·j2
BjkUk,·j1−Vk,j2j2β

(w−1)
k,j Uk,j1j1]

Uk,j1j1Vk,j2j2
, (3.7)

(b)Computeβ
(w)
kj ←−β

(w−1)
kj



1−
λ

K
k=1(β

(w−1)
kj )2





+

fork=1,...,K.

3.Outputβk,k=2,...,Katconvergence.

noneedtocalculateUk⊗VkdirectlyorperformmatrixoperationsonVkandUk.Thisfactdrasticallyreduces

thecomputationalcomplexityinbothtimeandmemory.

Furthermore,wenotethatthemostexpensivestepintheSMOREalgorithmisthecalculationofVTk,·j2B
j
kUk,·j1

in(3.7).Tospeedupthisstep,weapplytheactive-setstrategytoexploitthesparsityofBjk[37,38].LetDk1,Dk2145

denotetheindicesofthecolumnsandrowswithnonzeroelementsinBk,respectively.Thesesetsareupdated

ineachiteration.ThenincalculatingVTk,·j2B
j
kUk,·j1,werestrictourattentiontoDk1,Dk2andonlycalculate

VTk,D2j2B
j
k,D2D1

Uk,D1j1.Thisstrategyfurtherimprovesthecomputationspeed.

3.3.Convergenceandcomputationcomplexity

Weinvestigatetheconvergenceandtheper-iterationcomplexityoftheSMOREalgorithminthissection.Since150

theSMOREalgorithmisacoordinatedescentalgorithm,ineachstepweminimizetheobjectivefunctionoverone

coordinatewithothersfixed.Hence,theobjectivefunctionmonotonicallydecreasesthroughiterations,andthe

algorithmisguaranteedtoconverge.WefurtherexamineunderwhatconditionstheSMOREalgorithmconverges

totheglobalminimizer.Forsimplicity,wemakethefollowingassumption:

(C2)ThematricesUk,Vkarepositivedefinite.155

Theorem1.UnderConditions(C1)&(C2),theSMOREalgorithmconvergestotheglobalminimizerof(3.2).

Theorem1guaranteesthattheoutputoftheSMOREalgorithmcoincideswiththeglobalminimizeratcon-

vergenceundertheadditionalCondition(C2).Condition(C2)impliesthat(3.1)isstrictlyconvex,whichisa
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technicalconditiontofacilitatetheproof.Inpractice,wecaneasilyconstructestimatestosatisfyCondition(C2).

WealsotestedouralgorithmincaseswhereUkandVkwereonlypositivesemidefinite,andobservedthatthe160

SMOREalgorithmcontinuedtoconvergetoanaccurateestimator.TherelaxationofCondition(C2)willbean

interestingresearchtopicinthefuture.

Asforthestorageandcomputationcosts,itiseasytoseethatthestoragecostisO(K{q21+q
2
2}),whichis

thesameorderofsavingthematricesUk,Vk.Fortheper-iterationcomputationalcomplexityoftheSMORE

algorithm,wehavethefollowinglemma.165

Lemma1.ThecomputationalcostforeachiterationisO(Kq1q2dmax),wheredmaxisthemaximumnumberof

nonzeroelementsinβkthroughouttheiterations.

ByLemma1,theper-iterationcomputationalcostisanincreasingfunctionofK,q1,q2anddmax.Itisintu-

itivethatlargervaluesofK,q1andq2leadtomoretime-consumingcomputation,asweneedtoestimatemore

parameters.Butthecomputationcostgrowslinearlywithrespecttoeachofthem,indicatingthattheSMORE170

algorithmscaleswellwithq1,q2andK.Thenumberdmaxrepresentsthesparsitylevelofβkacrosstheiterations.

Whenβkremainsverysparseacrossiterations,thecomputationcostislow.

4.Binarydifferentialnetworkanalysis

4.1.TheSMOREalgorithminLASSO-DN

LASSO-DNisaspecialcaseoftheSMOREproblem.Recallthat,inLASSO-DN,weassumethedifferential175

networkanalysismodelin(1.1)withK=2. Wewanttoidentifythesparsitypatternin∆ =Ω2−Ω1,where

Ωk,k=1,2areprecisionmatrices.

LASSO-DNestimates∆ with(2.5).IntheSMOREproblem,ifweletK =2,U2= Σ2,V2= Σ1

andG2= Σ1−Σ2,itreducestotheLASSO-DNproblemdefinedin(2.5),withtheoutputB2beingour

estimate∆.Also,sinceK=2,Condition(C1)istriviallytrue.Hence,theSMOREalgorithmcanbeusedasan180

implementationforLASSO-DN.WhenweapplytheSMOREalgorithmtosolve(2.5),werefertotheresulting

methodasSMORE-LDN.

ThestoragecostofSMORE-LDNmatchesthatofLASSO-DN;bothofthemhavethestoragecostofO(p2).

However,SMORE-LDNismorecomputationallyefficientif∆isverysparse.ThecomputationcostforLASSO-

DNisO(p3),whilethecomputationcostforSMORE-LDNisO(p2dmax)byLemma1,wheredmax isthe185

maximumnumberofnonzeroelementsintheiterations. Thecomparisonbetweenthesetwomethodsappar-

entlydependsonthemagnitudeofdmax.Ingeneral,dmax iscomparabletothenumberofnonzeroelements

in∆.Therefore,inwhatfollowswediscussthecomparisonofcomputationcostsundertheassumptionthat
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dmax =O(∆ 0).[7]consideredthecasewhere∆isverysparsewith∆ 0=o(p).Inthiscase,SMORE-

LDNhasacomputationcostofo(p3),whichislowerthanLASSO-DN.Incontrast,[28]showedthatLASSO-DN190

isconsistentif∆ 0=o p4
n

logp
. Hence,if∆ isrelativelydense,i.e,p ∆ 0=o p4

n

logp
,

SMORE-LDNmayhaveaslightlyhighercomputationcomplexitythanLASSO-DNbyafactorsmallerthan

4
n

logp
.However,thisfactorgrowsslowly,andinournumericalstudiesweobservethatSMORE-LDNisin

generalveryefficient,withfasterorcomparablecomputationtimeasLASSO-DN.Moreover,SMORE-LDNcan

beappliedtomultiplenetworkproblems,whileLASSO-DNcannot.195

Asfortheconvergenceproperties,SMORE-LDNisalwaysguaranteedtoconverge,sincetheobjectivefunc-

tionmonotonicallydecreasesineachiteration.IfonefurtherdesiressomeassurancethatSMORE-LDNproduces

theglobalminimizer,wecanslightlyperturbthesamplecovarianceΣktomakethemsatisfyCondition(C2).In

otherwords,wecansupplyΣkinsteadofΣktotheSMOREalgorithm,where

Σk=
1

nk−1
Yi=k

(Xi−µk)(Xi−µk)
T+ξI, (4.1)

withξ>0beingasmallconstant,suchas10−2.TheestimateΣkisalsoknownastheLedoit-Wolfestimator200

[39]thathasbeenwidelyappliedinstatistics.Bycontrollingξtobesmall,weonlyintroduceatinyamountof

bias,butΣkisguaranteedtobepositivedefiniteandCondition(C2)issatisfied.ByTheorem1,SMORE-LDN

withΣkconvergestotheglobalminimizer.

4.2.TheSMOREalgorithminDantzig-DN

TheSMOREalgorithmcanalsobeappliedtoreducethestorageandcomputationcostofDantzig-DNin(2.3),205

becauseDantzig-DNinvolvesiterativelysolvingaseriesofSMOREproblems.Toseethis,wefirstbrieflyreview

thealgorithmforDantzig-DN.Letδ=vec(∆).Rewritetheoptimizationproblemin(2.3)as

δ=argminf(r)+δ1, s.t.r+(Σ2⊗Σ1)δ=2vec(Σ1−Σ2), (4.2)

wheref(r)=∞ifr∞ >λandf(r)=0otherwise.Dantzig-DNalternativelyupdatesr,δandadualvariable

wgivenalltheotherargumentsineachiteration.Forcompleteness,weincludethisalgorithminAppendix A

asAlgorithm3.Theupdatingrulesofrandwareofclosedforms.ThemostchallengingstepinDantzig-DNis210

updatingδby

δ(t+1)=argmin w(t)/ρ−r(t+1)+2vec(Σ1−Σ2)−(Σ2⊗Σ1)δ
2
2/2+δ1/ρ, (4.3)

whereρ>0isthetuningparameterintheADMMalgorithm.

Equation(4.3)isaspecialcaseoftheSMOREproblem,asshownbythefollowinglemma.
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Lemma2.Define

∆(t+1)=argmin
∆
{Tr(∆TΣ21∆Σ

2
2)−2Tr(∆Ψ)+∆ 1/ρ}, (4.4)

whereΨ=Σ2{2(Σ1−Σ2)+W
(t)/ρ−R(t+1)}Σ1,withvec(W

(t))=w(t),vec(R(t+1))=r(t+1).Then215

vec(∆(t+1))=δ(t+1),whereδ(t+1)isdefinedasin(4.3).

Lemma2revealsthat(4.3)isequivalentto(4.4). Wefurthernotethat(4.4)isagainaspecialcaseofthe

SMOREproblemin(3.1).ForK=2,letU2=Σ
2
2,V2=Σ

2
1andG2=Ψ.Then(3.1)reducesto(4.4).Wecan

incorporatetheSMOREalgorithminDantzig-DNtosolve(4.3).SuchanalgorithmisproposedasSMORE-DDN

inAlgorithm2,inwhich(4.4)issolvedbytheSMOREalgorithm.Inaddition,inAlgorithm2,wealsorewritethe220

updatingformulasforr,winaformthatsteersclearofΣ2⊗Σ1.Seethecomparisonsbetween(4.5)and(4.6)

and(A.1)and(A.4),respectively.

Algorithm2TheSMORE-DDNalgorithm

1.InputΣ1,Σ2.Initializew
(0)=0.

2.Iterativelydothefollowinguntilconvergence.

(a)Update

r(t+1)=Wλ[w
(t)/ρ+2vec(Σ1−Σ2)−vec(Σ1∆

(t)Σ2)], (4.5)

wheregivend-dimensionalvectorν=(ν1,...,νd)
T,WλisdefinedasWλ(ν) =[sign(νj)·

min{|νj|,λ}]
d
j=1.

(b)Solve(4.4)withtheSMOREalgorithm,inwhichweletK =2,U2=Σ
2
2,V2=Σ

2
1andG2=

Σ2{2(Σ1−Σ2)+W
(t)/ρ−R(t+1)}Σ1.

(c)Update

w(t+1)=w(t)+ρ(2vec(Σ1−Σ2)−r
(t+1)−vec(Σ1∆

(t+1)Σ2)). (4.6)

3.Output∆(t+1)wherevec(∆(t+1))=δ(t+1)atconvergence.

TheproposedSMORE-DDNalgorithmhassignificantadvantagesinboththestorageandthecomputation

costs.TheDantzig-DNmethodhasastoragecostofO(p4),asitneedstocalculateatleasthalfoftheelementsin

(Σ2⊗Σ1).However,inSMORE-DDNwenevercalculatethisKroneckerproduct,whichbringsdownthestorage225

costtoO(p2).Forthecomputationcost,wenotethattheDantzig-DNneeds∆ 0=o(p)tobeconsistent.Hence,

thecomputationcostforSMORE-DDNisO(p3),wherethemostexpensivepartisincomputingΣ2k.Itiseasyto

seethatSMORE-DDNhaslowercomputationcomplexitythanDantzig-DN.
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5. Multiplenetworkanalysis

WefurtherdiscusstheapplicationoftheSMOREalgorithminmultiplenetworkproblems.Forthemore230

generalcaseK≥2,weassumethatthedata{Xi,Yi}
n
i=1havebeenstandardizedwithineachlevel,sothatthe

samplevarianceofXjwithineachlevelis1.Ifonedoesnotwishtostandardizethedata,analternativeisgiven

inSection6.3.1.

WeaimtoidentifytheelementsinΩkthatarenon-constantacrossk=1,...,K.Inotherwords,ourgoalis

toidentifythepairsofvariableswhoseinteractionsareaffectedbytheconditionY.Tothisend,weletthelevel235

k=1bethebaseline,and∆k=Ωk−Ω1.Theparameters∆kcapturethechangesofthenetworkstructureacross

levels.Inparticular,ifapair(Xi,Xj)hasthesameinteractionacrosslevels,wemusthaveω1,ij=···=ωK,ij,

whichimplies

δ2,ij=···=δK,ij =0. (5.1)

Therefore,weseeksparseestimatesfor∆k.Notethat,∆karesolutionstothefollowingestimatingequation:

(∆2,...,∆K)=arg min
∆2,...,∆K

K

k=2

{Tr(∆TkΣ1∆kΣk)−2Tr(∆k(Σ1−Σk))}. (5.2)

Sparseestimatesof∆kcanbeobtainedbyreplacingΣkwiththesamplecovarianceΣkandaddinganap-240

propriatepenaltyin(5.2).Bythesparsitycriterionin(5.1),δk,ijhasthegroupsparsitystructureacrossk,asthey

allquantifytheinteractionsbetweenthesamepair. Weenforcethegroupsparsitystructurewiththegrouplasso

penaltyandobtainthefollowingformulaformultipledifferentialnetworks:

(∆2,...,∆K) (5.3)

= arg min
∆2,...,∆K






K

k=2

Tr(∆TkΣ1∆kΣk)−2Tr(∆k(Σ1−Σk))+λ
i,j

K

k=2

δ2k,ij





.

Theestimators{∆2,···,∆K}tellusaboutthechangeofdependencestructureacrosslevels.If̂δ2,ij=...=

δ̂K,ij =0forsome(i,j),thedependencebetweenXi,Xjisconstantgivenalltheothervariables.Otherwise,the245

dependencebetweenXi,XjdependsonY.

Equation(5.3)isaspecialcaseoftheSMOREproblem.IfweletUk=Σk,Vk=Σ1,Gk=Σ1−Σk,k=

2,...,K,theSMOREproblemin(3.1)coincideswith(5.3),withtheoutputBkbeing∆k.Becauseweassume

thatdataarestandardizedwithineachclass,Condition(C1)ismet.Hence,weagainemploytheSMOREalgorithm

tosolve(5.3).Notethat(5.3)reducestoSMORE-LDNinthespecialcaseofK=2.Therefore,forsimplicity,we250

referto(5.3)withK>2asSMORE-LDNaswell.ForgeneralK,SMORE-LDNhasthestoragecostofO(Kp2)

andtheper-iterationcomputationcomplexityofO(Kp2dmax).Becausethestorageandcomputationcostsare

linearinK,SMORE-LDNisexpectedtobeefficientaswellifKisverylarge.Justasinbinaryproblems,
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SMORE-LDNisguaranteedtoconvergeandisobservedtobeaccurateinnumericalstudies.Butifonedesires

theoreticalguaranteefortheconvergencetotheglobalminimizer,wecanperturbΣkbyaddingξI,whereξ>0255

isasmallconstant.

6.High-dimensionalquadraticdiscriminantanalysis

6.1.Backgroundonquadraticdiscriminantanalysis

AnotherapplicationoftheSMOREalgorithmisinhigh-dimensionalQDA.Foreaseofpresentation,wefirst

brieflyreviewQDA.ConsiderthepredictorsX∈RpandtheclasslabelY∈{1,...,K}.Ourgoalistobuilda260

classifierthatpredictsYbasedonX.Definethepriorprobabilityπk=Pr(Y=k).Itisknownthattheoptimal

classifieris

Y=argmax
k
{logPr(Y=k|X=x)}=arg

K
max
k=1
{logπk+logfk(x)}, (6.1)

wherefkistheconditionalprobabilitydensityfunctionforXgivenY=k.Thisclassifierisoftenknownas

theBayes’rule,whichachievesthelowestclassificationerrorratepossible[29]. WehopetoestimatetheBayes’

rulefromdata.However,fullynonparametricestimationoffkisusuallydifficult,especiallyinhighdimensions.265

Therefore,parametricassumptionsareoftenimposedonfktoeasethechallengesinestimation.

TheQDAmodelassumesthatfkisthenormaldistributionwithparametersµk,Σk.Inotherwords,theQDA

modelis

Pr(Y=k)=πk,X|(Y=k)∼N(µk,Σk),k=1,···,K, (6.2)

where0<πk<1,
K
k=1πk=1arethepriorprobabilities,µk∈R

pisthemeanofXwithinClasskand

Σk∈R
p×pisthecovariancematrixwithinClassk. Withoutlossofgenerality,weassumeµ1=0.Inpractice,270

wecansubtractthesamplemeanofXwithinClass1fromalltheobservationstomakethisassumptiontrue.

UndertheQDAmodel,theBayes’ruleissimplifiedtobeaparametricclassifier.Defineγk=Ωkµk∈R
p,and

∆k=Ωk−Ω1∈R
p×p,whereΩk=Σ

−1
k .TheBayes’ruleundertheQDAmodel(6.2)is

Y=argmax
k
{ak−X

T∆kX+2X
Tγk}, (6.3)

where

ak=2logπk−2logπ1+log(|Σ
−1
k |)−log(|Σ

−1
1 |)−γ

T
kµk, (6.4)

isaconstant.275

QDAisregardedasaflexiblealternativetothelineardiscriminantanalysis(LDA)modelbyrelaxingtheequal

covarianceassumption.Thereisalargebodyofliteratureonhigh-dimensionalLDAmethods[40,16,41,42,

43,44,45,46].Butrelativelyfewhigh-dimensionalQDAmethodshavebeenproposed,becausetheestimation,
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computation,andtheoreticalanalysisaremorechallengingundertheQDAmodel.Someexistingworksinclude

[30,31,28].280

OurworkisinthesamelineastheDA-QDAmethodproposedby[28],whichimposessparsityontheBayes’

rule.DirectregularizationontheBayes’ruleavoidsadditionalassumptionsonthenuisanceparameters,andis

thusoftenmoreefficientandaccurate.Notethat(6.3)isfullydeterminedbytheparametersak,∆k,γk.Inhigh

dimensionswherepismuchlargerthann,weassumethatthetwohigh-dimensionalparameters∆k,γkaresparse

andconstructtheirestimatesaccordingly.Theparameter∆kisthedifferencebetweentwoprecisionmatrices.285

Hence,theestimationof∆kissimilartodifferentialnetworkanalysis.Indeed,whenK=2,DA-QDAestimates

∆2withtheformulain(2.5).Inthenextafewsections,weshowthattheSMOREalgorithmcanbeusedtospeed

upthecomputationofDA-QDAinbinaryproblems.Moreover,SMOREalgorithmcanbeappliedtoestimateγk

aswell,andoffersageneralizationofDA-QDAtomulticlassproblems.Wefirstbrieflydiscussthebinaryproblem

withK=2inSection6.2,andthenproceedtomulticlassproblemswithK>2inSection6.3.290

6.2.Binaryhigh-dimensionalquadraticdiscriminantanalysis

Inbinaryproblems,weneedtoestimate∆2,γ2anda2.Toestimate∆2,weincorporatetheSMOREalgorithm

withtheproposalofDA-QDA.DA-QDAestimates∆2by(2.5),whichisaSMOREproblemwithK =2,

U2=Σ2,V2=Σ1andG2=Σ1−Σ2.SinceK=2,Condition(C1)isalwaystrue,andweapplytheSMORE

algorithmtosolvefor∆2.295

Ourestimatesforγ2anda2areslightlydifferentfromDA-QDA,though,forthesakeofeasierextensionto

multiclassproblems.Forγ2=Ω2µ2,wenotethatγ2=argminγ2{γ
T
2Σ2γ2−2γ

T
2µ2}.Itfollowsthatasparse

estimateofγ2canbeobtainedby

γ2=argmin
γ2
{γT2Σ2γ2−2γ

T
2µ2+λγ2 1}, (6.5)

whereΣ2,µ2aresampleestimates.Equation(6.5)isalsoaSMOREproblemwithU2=Σ2,V2=1∈R,and

Gk=µ2.Condition(C1)istruebecauseK=2,andweemploytheSMOREalgorithmtosolveforγk.300

Toestimatea2,wenotethattheBayes’ruleisalinearfunctionin∆2,γ2.Therefore,afterweobtain∆2,γ2,

weestimatea2byperforminglogisticregressionon{Y,X
T∆2X,X

Tγ2}todeterminea2.Thisisdifferentfrom

DA-QDA,whichsearchesfora2withcrossvalidation.OurapproachisfasterthanDA-QDAintheestimation

ofak,andthemarginsharplyincreasesaswemoveontomulticlassproblems. Werefertoourproposalas

SMORE-QDA.305
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6.3. Multiclasssparsequadraticdiscriminantanalysis

6.3.1.Estimationof∆kforK>2

Fromnowon,weconsidermulticlassproblemswithK>2.Inthissection,wefocusontheestimationofthe

quadraticterms∆k,k=2,...,K.Thereisnoneedtoestimate∆1,becauseitisalwayszerobydefinition. We

startbyrigorouslyinvestigatingthesparsityassumptionfor∆k,k=2,...,K,inthecontextofQDA.According310

totheBayes’rulein(6.3),δk,ij,k=1,...,KarethecoefficientsforXiXj.Therefore,aninteractiontermXiXj

isirrelevanttotheclassificationifandonlyifδ1,ij=···=δK,ij =0.Consequently,ifweassumethatthe

quadraticterminQDAissparse,itisequivalenttoassumingthatmostinteractionsXiXjareunimportant,with

δ2,ij=···=δK,ij =0.

Nowwediscusstheconstructionofsparseestimatesof∆k.Oneappealingapproachmaybeusingthesame315

methodinSection5,since∆karedifferencesamongprecisionmatrices,andarethesolutionsto(5.3).How-

ever,inQDAwithK>2,theSMOREalgorithmisgenerallynotdirectlyapplicableinsolving(5.3)because

Condition(C1)isusuallynotmet.RecallthattheSMOREalgorithmrequiresCondition(C1),whichreducesto

diag(Σ2)=···=diag(ΣK)in(5.3).Indifferentialnetworkanalysis,wecanguaranteethisassumptionby

standardizingthedatawithinclass.However,inQDAourultimategoalistopredictYforfutureobservations.320

Wecannotstandardizeobservationswithinclass,asitinvolvestheknowledgeofY.Ingeneral,weexpectΣkto

havedifferentdiagonalelements.BecauseoftheviolationofCondition(C1),theSMOREalgorithmcannotbe

directlyappliedinQDA.

Toresolvethisissue,weproposeareparametrizationof∆k.Let∆
∗
k=Λ

1/2
1 ∆kΛ

1/2
k ,whereΛkisadiagonal

matrixwithΛk,jjbeingthevarianceofXjwithinClassk.Oncewehaveestimatesfor∆
∗
k,wecaneasilyrescale325

themtoobtain∆k. Moreover,theSMOREalgorithmeasilyobtainsasparseestimatefor∆
∗
kwiththeSMORE

algorithm,asaconsequenceofthefollowinglemma.

Lemma3.LetRk=Λ
−1/2
k ΣkΛ

−1/2
k andZk=Λ

−1/2
k Λ

1/2
1 R1−RkΛ

1/2
k Λ

−1/2
1 .Wehave

(∆∗2,...,∆
∗
K)=arg min

Φ∗2,...,Φ
∗
K

K

k=2

{Tr((Φ∗k)
TR1Φ

∗
kRk)−2Tr(Φ

∗
kZk)}. (6.6)

Theproblemin(6.6)isanunpenalizedSMOREproblemwithUk=Rk,Vk=R1.Moreover,becauseRk

isthecorrelationmatrixwithallthediagonalelementsequalto1,Condition(C1)holds.However,theparameters330

Rk,Zkin(6.6)needtobeestimatedfromdata. LetR
0
kbethesamplecorrelationofXwithinClasskand

Rk=R
0
k+ξI,whereξ>0isasmallconstant. WeuseRkassampleestimatesofRk. NotethatRkare

positivedefinitewithconstantdiagonalelements,satisfyingbothConditions(C1)&(C2).Inaddition,wedefine

ΛktobeadiagonalmatrixwithΛk,jjbeingthesamplevarianceofXjwithinClassk. WeestimateZkby

Zk=Λ
−1/2
k Λ

1/2
1 R1−RkΛ

1/2
k Λ

−1/2
1 .335
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Toenforcesparsityintheestimationof∆∗k,wenotethat∆
∗
khasthesamesparsitypatternas∆k(i.e,δk,ij=0

ifandonlyifδ∗k,ij=0).Therefore,sparsityin∆kimpliesthatformost(i,j),wehaveδ
∗
2,ij=···=δ

∗
K,ij =0.

Inotherwords,thesparsitystructureof∆∗kisgroupedacrossk.Hence,weestimate∆
∗
kby

∆∗k=arg min
∆∗2,...,∆

∗
K




K

k=2

{Tr((∆∗k)
TR1∆

∗
kRk)−2Tr((∆

∗
k)
TZk)}+λ

i,j

K

k=2

(∆∗k,ij)
2



. (6.7)

IfwesetUk=Rk,Vk=R1andGk=Zk,(6.7)isaSMOREproblemwithCondition(C1)satisfied.

Therefore,weapplytheSMOREalgorithmtosolve(6.7).BecauseCondition(C2)alsoholds,theSMOREalgo-340

rithmconvergestotheglobalminimizer.ThestoragecostisO(Kp2),whilethecomputationcostisO(Kp2dmax).

Asaresult,thecomputationisespeciallyefficientwhenthesolutionremainssparseacrossiterations.Moreover,

thecomputationscaleswellwithK. With∆∗k,weestimate∆kby∆k=Λ
−1/2
1 ∆∗kΛ

−1/2
K .Theestimate∆kis

pluggedinto(6.3)forprediction,alongwiththeestimatorsofγkandakdiscussedinthenextsection.

6.3.2.EstimationofγkandakforK>2345

WefurtherdiscusstheestimationofγkandakforK>2.Theparameterγkisthecoefficientinthelinearterm

XTγk.Inhighdimensions,weassumethatthelineartermissparseinthesensethatmostpredictorsdonotaffect

it.Specifically,apredictorXjisunimportantinthelineartermifandonlyifγ2j=···=γKj =0.Therefore,

sparsityinthelineartermindicatesthatformostj,wehaveγkj=0,k=2,...,K.Foreasycomputation,we

againreparametrizeγk.Letγ
∗
k=Λ

1/2
k γk=R

−1
k (Λ

−1/2
k µk).Obviously,γ

∗
kj=0ifandonlyifγkj=0.Hence,350

thesparsityinγkimpliesthat,formostj,wehave

γ∗2j=···=γ
∗
Kj =0. (6.8)

Moreover,itiseasytoseethat

(γ∗2,...,γ
∗
K)=arg min

γ∗2,...,γ
∗
K

{
K

k=2

(γ∗k)
TRkγ

∗
k−
1

2
(γ∗k)

TΛ
−1/2
k µk}. (6.9)

Motivatedby(6.8)and(6.9),weestimateγ∗kby

(γ∗2,...,γ
∗
K)=arg min

γ∗2,...,γ
∗
K






K

k=2

(γ∗k)
TRkγ

∗
k−
1

2
(γ∗k)

TΛ
−1/2
k µk+λ

p

j=1

K

k=2

(γ∗kj)
2





. (6.10)

Theproblemin(6.10)isagainaspecialcaseof(3.1),withUk=Rk,Vk=1∈RandGk=Λ
−1/2
k µk.It

followsthat(6.10)canbesolvedbytheSMOREalgorithm.Withγ∗k,weestimateγkbyγk=Λ
−1/2
k γ∗k.355

Finally,weturntotheestimationofak.TheBayes’rule(6.3)isalinearfunctionin{X
T∆kX,X

Tγk}.

Hence,weapplythemultinomialregressiononthepseudodata{Y,XT∆kX,X
Tγk}todetermineak.Thisis
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differentfromDA-QDA.Recallthat,inbinaryproblems,DA-QDAsearchesforthebestinterceptoveraninterval

withcrossvalidation.Ifwecontinuetousecrossvalidationtosearchforakinmulticlassproblems,wewillhave

tosearchforakina(K−1)-dimensionalcube,whichmaybecomputationallyprohibitive.Incontrast,byfitting360

themultinomialregressionmodelonthepseudodata,SMORE-QDAfindsakmoreefficiently.

Alternatively,ifp<nkfork=1,...,K,wherenkisthesamplesizewithinClassk,wecouldalsoestimate

akby(6.4).Morespecifically,Σ
−1
1 andγ1areestimateddirectlybymatrixinverseΣ

−1
1 andΣ

−1
1 µ1,respectively.

OtherprecisionmatricesarecalculatedbyΣ−1k =Σ
−1
1 +∆k,where∆kisobtainedfrom(5.3),andγkisobtained

asdiscussedabovefork=2,···,K.Alltheseestimatesarepluggedin(6.4)toformestimatesforak.Inpractice,365

onecouldchoosebetweenthesetwowaysofestimatingakonavalidationset.

Forsimplicity,werefertoourproposalformulticlasshigh-dimensionalQDAasSMORE-QDAaswell.In

contrasttoDA-QDA,SMORE-QDAsolvesalltheoptimizationproblemwiththeSMOREalgorithm,andcan

handlemulticlassproblems.Inbinaryproblems,bothmethodshavethestoragecostofO(p2),whilethecompu-

tationcostisO(p2dmax)forSMORE-QDA,andO(p
3)forDA-QDA.Therefore,SMORE-QDAismoreefficient370

whenstrongsparsityexists.

7.Numericalstudies

7.1.Differentialnetworkanalysis

Inthissection,wecomparetheSMOREmethodswithLASSO-DNandDantzig-DNindifferentialnetwork

analysis.Ourcomparisonconcernstheaccuracyandthecomputationcost.Inbinaryproblems,SMORE-LDNand375

LASSO-DNsolvethesameoptimizationproblem.Hence,weaimtoconfirmthattheyhaveroughlythesamelevel

ofaccuracy.Similarly,wehopetoseethatSMORE-DDNperformssimilarlytoDantzig-DN.Inthecomparison

ofcomputationcost,wewillshowthattheSMOREmethodsaremoreefficientthantheircounterparts.

Weconsiderbothbinaryandmultipledifferentialnetworkcases.Foreachmodel,weconsiderdimensions

p=40,60andsamplesizesn=100,300.Inallthemodels,westartbydeterminingthesetD0thatcon-380

tainsalltheedgesinΣ−11 . WeobtainD0usingthepowerlawdegreedistributionsimilartothatin[7].Let

α=2andc=(
∞
k=1

1
kα)

−1beanormalizationconstant. Wecalculateasequenceofconstants{hi}
p
i=1 by

hi=(
c
α−1)

1
α−1(pi)

1
α−1.Thenforeachpairofnodes(i,j),wegenerateaBernoullirandomvariableZij∼

Bernoulli(
hihj
p
k=1hk

).IfZij=1,(i,j)∈D0;otherwise,(i,j)/∈D0.AfterweobtainD0,theelements(Σ
−1
1 )ij

foreachmodelarespecifiedasinModels(B1)–(B3)&(M1)–(M3)inSections7.1.1&7.1.2.Wesetthediagonals385

ofΣ−11 tobe1andfinallysymmetrizeΣ
−1
1 byaveragingitwithitstranspose. WithΣ

−1
1 ,weletDbetheindex

setofthepairsoftopρ%largestabsolutevaluesontheM nodeswithmostconnections.Thentheothernetworks

Σ−1k aredifferentfromΣ
−1
1 onlyonthesetD.
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7.1.1.Binarynetworks

Inbinaryproblems,welet(Σ−12 )ij=a1(Σ
−1
1 )ijfor(i,j)∈Dand(Σ

−1
2 )ij=(Σ

−1
1 )ijfor(i,j)∈D

c.The390

parametersinthethreemodelsweconsiderareasfollows.

Model(B1):If(i,j)∈D0,(Σ
−1
1 )ij=0.7

|i−j|/2whenp=40and(Σ−11 )ij=0.7
|i−j|/3whenp=60.Then

a1=−1,ρ%=10%,M =4.

Model(B2):If(i,j)∈D0,(Σ
−1
1 )ij=0.7

|i−j|/2whenp=40and(Σ−11 )ij=0.7
|i−j|/3whenp=60.Then

a1=−1,ρ%=20%,M =2.395

Model(B3):EachnonzeroentryofΣ−11 followsauniformdistributionwithsupport[−1/6,−1/15]∪[1/15,1/6].

Thena1=−0.8,ρ%=20%,M =2.

WeapplySMORE-LDN,SMORE-DDN,LASSO-DNandDantzig-DNonthegenerateddata. Wecompare

theFrobeniusnormof∆−∆,where∆ isthedifferentialnetwork,and∆ isitsestimate.Ineachreplicate,

werecordtheestimationerror ∆−∆ F,where ·FdenotestheFrobeniusnorm.Themeansandstandard400

errorsof100replicatesarereportedinTable1.ItcanbeseenthattheaccuracyofSMORE-DDNiscomparable

toLASSO-DN,sincetheysolvethesameoptimizationproblem.Similarly,SMORE-DDNgivesresultscloseto

Dantzig-DN.SuchresultsconfirmthattheSMOREmethodsreproducetheresultsoftheircounterparts. Wewill

laterseethattheSMOREmethodshavecomputationaladvantages.

7.1.2. Multiplenetworks405

Inmultiple-networkproblems,wegenerateModels(M1)–(M3)withΣ−11 ,Σ
−1
2 thesameasthoseinModels

(B1)–(B3),respectively. ThenwefurtherspecifyΣ−13 bysettingΣ3,ij=−0.5×Σ1,ijfor(i,j)∈Dand

Σ3,ij=Σ1,ijfor(i,j)∈D
c.Weaimtoestimate∆k=Σ

−1
k −Σ

−1
1 fork=2,3.NotethatbyourdesignΣ

−1
3

isclosertoΣ−11 thanΣ
−1
2 .Hence,∆3hasweakersignalsandisexpectedtobemoredifficulttoestimate.

Weagainapplythefourmethodsconsideredinbinarycases.SMORE-LDNsimultaneouslyestimates∆k,410

whileSMORE-DDN,LASSO-DNandDantzig-DNestimate∆kindividually. Wereport∆k−∆k FinTa-

ble2.ItcanbeseenthatSMORE-DDNagainachievesaccuracysimilartoDantzig-DN,astheysolvethesame

optimizationproblem.Ontheotherhand,SMORE-LDNemploysthegrouplassopenaltyinmultiplenetwork

problems,whichdistinguishesitfromalltheothermethods. WecanseethatSMORE-LDNissimilartothe

competitorsinestimating∆2,butuniformlyoutperformsallthecompetitorsinestimating∆3.Recallthat∆3415

hasweakersignalsandismoredifficulttoestimate.InSMORE-LDN,weusethegrouplassopenaltytopoolthe

informationfrom∆2tofacilitatetheestimationof∆3,whichleadstoitssuperiorperformance.

7.1.3.Computationcost

Wefurthercomparethecomputationcostsofthefourmethods.Forsimplicity,wefocusonthemostchalleng-

ingcasewithn=100,p=60.Werecordthecomputationtimeononesingletuningparameterfor20replicates.420
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Model p n min(SE) SMORE-LDN LASSO-DN Dantzig-DN SMORE-DDN

ModelB1

40
100 0.0172 1.2840 1.2742 1.2952 1.2818

300 0.0094 0.7982 0.7923 0.8008 0.7882

60
100 0.0156 1.4251 1.4385 1.4450 1.4420

300 0.0103 0.9764 0.9764 0.9914 0.9852

ModelB2

40
100 0.0184 1.1294 1.1227 1.1415 1.1271

300 0.0097 0.7375 0.7274 0.7450 0.7320

60
100 0.0179 1.0879 1.0896 1.1082 1.1053

300 0.0110 0.7785 0.7753 0.7923 0.7877

ModelB3

40
100 0.0074 1.1866 1.1898 1.1951 1.1923

300 0.0081 0.8478 0.8409 0.8400 0.8348

60
100 0.0095 1.3861 1.3662 1.3926 1.3850

300 0.0092 0.9454 0.9046 0.9232 0.9130

Table1:Simulationresultsforbinarydifferentialnetworks.Wereportthemeansof ∆−∆ Fbasedon100replicates.Withineachmodel,

thestandarderrorsofallthemethodsareveryclose,soweonlyreporttheminimumstandarderrorineachmodelasmin(SE).Basedonthe

standarderrors,allthecomparisonsbetweenLASSO-DNandSMORE-LDNareinsignificant,andsoarethecomparisonsbetweenDantzig-

DNandSMORE-DDN.Inotherwords,LASSO-DNandSMORE-LDNproduceapproximatelyidenticalestimates,andsodoDantzig-DN

andSMORE-DDN.

Thetuningparameterispre-chosentominimizethenormofdifference.TheresultsareinTable3.SMORE-LDN

isthefastest,followedbyLASSO-DN.Theothertwomethodsaremuchslower,astheyusetheDantzigselec-

tor.Nevertheless,SMORE-DDNmanagestogreatlyreducethecomputationtimeofDantzig-DN.Therefore,the

SMOREmethodsaremoreefficientthantheircounterpartsinthemodelsweconsidered.

7.2.High-dimensionalquadraticdiscriminantanalysis425

Inthissection,wedemonstratetheapplicationofourproposedSMORE-QDAasahigh-dimensionalQDA

method.Inallthemodels,weconsidertwoscenarioswithp=50,200. Wegeneratedtrainingsetsaccordingto

(6.2),withthesamplesizewithineachclassbeing100.Wefurthergeneratedvalidationsetstochoosethetuning

parameters,andtestingsetstoevaluatetheperformanceoftheclassifiers.Boththevalidationsetsandthetesting

setsareofthesamesamplesizeasthetrainingdata.Whenwedescribethemodelsettings,wesayΩ=AR(ρ)if430

Ωij=ρ
|i−j|andΩ=CS(ρ)ifΩii=1andΩij=ρfori=j.
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p n ∆2−∆2 F ∆3−∆3 F

SMORE LASSO Dantzig SMORE SMORE LASSO Dantzig SMORE

LDN DN DN DDN LDN DN DN DDN

M1

40 100
1.3418 1.2742 1.2952 1.2818 1.0590 1.2246 1.2322 1.2270

(0.0168) (0.0175) (0.0173) (0.0174) (0.0131) (0.0165) (0.0161) (0.0163)

40 300
0.8294 0.7923 0.8008 0.7882 0.6680 0.8062 0.8040 0.7980

(0.0091) (0.0104) (0.0098) (0.0099) (0.0077) (0.0103) (0.0096) (0.0096)

60 100
1.4484 1.4385 1.4450 1.4420 1.1167 1.2016 1.2073 1.2046

(0.0169) (0.0158) (0.0156) (0.0157) (0.0134) (0.0143) (0.0143) (0.0142)

60 300
0.9884 0.9764 0.9914 0.9852 0.7779 0.9177 0.9294 0.9267

(0.0102) (0.0108) (0.0106) (0.0105) (0.0079) (0.0095) (0.0092) (0.0092)

M2

40 100
1.1970 1.1227 1.1415 1.1271 0.9320 1.0473 1.0560 1.0482

(0.0182) (0.0186) (0.0188) (0.0188) (0.0144) (0.0173) (0.0169) (0.0173)

40 300
0.7690 0.7274 0.7450 0.7320 0.6107 0.7136 0.7228 0.7180

(0.0094) (0.0101) (0.0097) (0.0097) (0.0083) (0.0105) (0.0101) (0.0102)

60 100
1.1074 1.0896 1.1082 1.1053 0.8464 0.8959 0.9046 0.9020

(0.0182) (0.0181) (0.0181) (0.0181) (0.0143) (0.0155) (0.0155) (0.0154)

60 300
0.7861 0.7753 0.7923 0.7877 0.6086 0.7087 0.7177 0.7150

(0.0118) (0.0110) (0.0113) (0.0113) (0.0093) (0.0108) (0.0110) (0.0111)

M3

40 100
1.2107 1.1898 1.1951 1.1923 1.0189 1.0396 1.0442 1.0432

(0.0065) (0.0074) (0.0076) (0.0051) (0.0057) (0.0053) (0.0078) (0.0052)

40 300
0.8403 0.8409 0.8400 0.8348 0.7207 0.7991 0.7962 0.7954

(0.0075) (0.0088) (0.0082) (0.0084) (0.0071) (0.0085) (0.0085) (0.0085)

60 100
1.4623 1.3662 1.3926 1.3850 1.2361 1.2475 1.2545 1.2572

(0.0080) (0.0103) (0.0068) (0.0067) (0.0065) (0.0070) (0.0068) (0.0067)

60 300
0.9922 0.9046 0.9232 0.9130 0.8511 0.9144 0.9248 0.9279

(0.0086) (0.0092) (0.0100) (0.0098) (0.0070) (0.0083) (0.0083) (0.0083)

Table2:Multipledifferentialnetworks.Meanandstandarderroroftheminimumnormofdifferencesbasedon100replicatesarereported.
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Model SMORE-LDN LASSO-DN Dantzig-DN SMORE-DDN

B1 0.6813 1.0138 202.87 25.97

B2 0.3757 1.0549 200.81 18.75

B3 1.0500 1.0724 239.37 79.03

M1 0.8161 1.9213 402.11 40.33

M2 0.4355 1.9971 399.88 30.64

M3 1.1575 2.1398 468.67 129.27

Table3:Time(seconds)ofmodelfittingonagivenparameterof20replicates.Theparameterλischosentominimizethenormofdifference.

7.2.1.Binarysimulations

Weconsiderthefollowingfourmodels,whichwerealsousedin[28].Foreachmodel,weletµ1=0and

µ2=Σ2γ,whereγ=(0.6,0.8,0,...,0)
T.TheparametersΣ1andΣ2aresetasfollows.

Model(B1): Σ−12 isabandmatrixwithdiagonalelementsbeing1andΣ
−1
2,ij=0.3for|i−j|=1.Σ

−1
1 =435

Σ−12 +Σ
−1,whereΣ−1isasymmetricandsparsematrixwithΣ−110,10=−0.3758,Σ

−1
10,30=Σ

−1
30,10=0.0616,

Σ−110,50=Σ
−1
50,10=0.2037,Σ

−1
30,30=−0.5482,Σ

−1
30,50=Σ

−1
50,30=0.0286,andΣ

−1
50,50=−0.4614.

Model(B2):Σ−12 =AR(0.5).Σ
−1
1 =Σ

−1
2 +I.

Model(B3):Σ−12 =Σ
−1
1 =AR(0.5).

Model(B4):Σ−12 =AR(0.5).Σ
−1
1 =Σ

−1
2 +Σ

−1whereΣ−1isabandmatrixwithdiagonalelementsbeing1440

andΣ−1ij =0.5for|i−j|=1.

WecompareSMORE-QDAwithDA-QDAtoconfirmthattheyproducesimilarresults,astheysolvethesame

optimizationproblemwithdifferentalgorithms.Thepredictionerrorandvariableselectionresultsarereported

inTable4.InSMORE-QDA,weperturbthecovariancematricesbyξ=0.05forp=200cases.Theerror

ratesofthetwomethodsarecomparableoverall,althoughSMORE-QDAoftenappearstobelessaccurate.This445

isbecauseDA-QDAdoesagridsearchfortheoptimalinterceptak,whileinSMORE-QDAwerefitthelogistic

regressionmodelonthereduceddata. Wefurtherplotthesolutionpathof∆inModel(B2)inFigureS1inthe

supplement.Thetwoalgorithmsyieldsimilarsolutionpaths.

Finally,wecomparethecomputationalcostofSMORE-QDAandDA-QDA.Werecordthecomputationtime

ofestimating∆ inModels(B1)and(B2)forthesamepre-tunedparameter,whichischosentoyieldthebest450

classifier.ThereportedtimeinFigure7.1isaveragedfrom20replicates. Aswehaveshown,DA-QDAhas

computationcomplexityoforderO(p3)andourmethodofO(p2dmax). Model1isaverysparsecasewhere∆

haslessthanpnonzeroelements.Therefore,ourmethodissignificantlyfasterthanDA-QDA.InModel(B2),the

numberofimportantvariablesin∆isexactlyp,andtwoalgorithmshavecomparablecomputationtime.
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Model p=50 p=200

SMORE-QDA DA-QDA SMORE-QDA DA-QDA

Mean SE Mean SE Mean SE Mean SE

ModelB1 25.45 (0.29) 26.08 (0.30) 25.05 (0.35) 24.68 (0.31)

ModelB2 2.00 (0.11) 1.85 (0.11) 0.51 (0.07) 0.13 (0.03)

ModelB3 35.09 (0.42) 34.07 (0.39) 36.30 (0.44) 33.82 (0.36)

ModelB4 16.34 (0.29) 15.85 (0.32) 8.03 (0.20) 7.91 (0.23)

Table4:Binarysimulations.Themeansandstandarderrorsof100replicatesarereported.

Figure7.1:Computationtime(seconds)from20replicates.Werecordthetimeofestimating∆inModel(B1)andModel(B2).

7.2.2. Multi-classsimulations455

Wefurtherincludemulti-classsimulationswhenK =3. WeadoptalltheparametersΣ−11 ,Σ
−1
2 ,µ1,µ2in

binaryclassproblems.Forthethirdclass,weletµ3=(1.2,1.6,0,...,0)andspecifytheΣ3accordingtothe

followingsettings.

ModelM1:Σ−11 =Σ
−1
2 +Σ

−1,Σ−13 =Σ
−1
2 −2Σ

−1.

ModelM2:Σ−11 =Σ
−1
2 +I,Σ

−1
3 =Σ

−1
2 +2I.460

ModelM3:Σ−11 =Σ
−1
2 =Σ

−1
3 .

ModelM4:Σ−11 =Σ
−1
2 +Σ

−1,Σ−13 =Σ
−1
2 +1.6Σ

−1.

Inmulticlassproblems,DA-QDAisnolongerapplicable,butweconsiderawiderangeofothercompetitors.

Weincludetwoversionsofpenalizedmultinomialregression(PMR)methods.ThefirstPMRmethod,referred
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toasPMR1,onlyincludesthemaineffects,whilethesecondPMRmethod,PMR2,fitsamodelwithboththe465

maineffectsandthetwo-wayinteractions.Popularmachinelearningmethodssuchasrandomforest[47,48],

linearsupportvectormachineandkernelsupportvectormachine[49,50]arealsoincludedforcomparison.The

classificationerroroftheBayes’ruleisalsoreportedasabaseline.InSMORE-QDA,weperturbthecovariance

matricesbyξ=0.01forp=200cases.TheclassificationerrorratesarerecordedinTable5.Itcanbeseenthat

SMORE-QDAuniformlyoutperformsallthecompetitors.Hence,SMORE-QDAhascompetitiveperformanceas470

aclassifieraswell.

Error(%) p Bayes SMORE-QDA SVM-l SVM-k RF PMR1 PMR2

ModelM1

50
30.74 32.75 51.54 48.35 41.33 44.93 38.17

(0.29) (0.30) (0.30) (0.33) (0.30) (0.26) (0.31)

200
29.53 31.64 57.87 56.50 43.93 45.14 38.43

(0.24) (0.28) (0.27) (0.28) (0.28) (0.27) (0.29)

ModelM2

50
7.53 9.51 53.98 11.26 18.01 48.30 19.21

(0.14) (0.19) (0.33) (0.19) (0.23) (0.33) (0.27)

200
0.60 1.49 58.18 2.40 9.97 49.06 17.91

(0.04) (0.08) (0.27) (0.09) (0.21) (0.31) (0.28)

ModelM3

50
42.14 43.3 51.09 52.03 47.88 43.62 44.85

(0.22) (0.24) (0.28) (0.29) (0.27) (0.22) (0.25)

200
42.41 44.56 57.71 57.43 51.56 44.95 46.51

(0.29) (0.30) (0.29) (0.31) (0.29) (0.32) (0.28)

ModelM4

50
15.23 34.46 55.18 30.49 38.03 51.35 35.57

(0.19) (0.32) (0.30) (0.32) (0.31) (0.31) (0.28)

200
5.64 29.66 60.42 22.6 33.24 52.54 34.62

(0.12) (0.31) (0.30) (0.25) (0.30) (0.31) (0.3)

Table5:Multiclasssimulations.Theaverageclassificationerrorsin100replicatesarereported.Standarderrorsareinparentheses.

8.Realdata

8.1.TheTCGAgloiblastomadata

WecompareallthedifferentialnetworkanalysismethodsconsideredinsimulationsonthemodifiedTCGA

glioblastomadataprovidedinRpackageDINGOandstudiedindifferentialnetworkapproachDINGO[51].The475

datawascollectedinastudyonglioblastomamultiforme,whichisaprimarybraintumorforadults,with233
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subjetsintotal. Westandardizeexpressionsfor18genesand156observations.Theobservationsareseparated

intotwosub-groupsbasedontheirsurvivaltimes,LTSsandSTSs.The83patientsinLTSgrouparethetop45%

inthestudywithsurvivaltimelongerthan407days,andthe73patientsinSTSgrouparethebottom45%with

lessthan341dayssurviving.480

WeappliedSMORE-LDN,LASSO-DN,Dantzig-DNandSMORE-DDNonthegeneexpressionsandplotted

thesolutionpathsinFigure8.1.Therangeoftuningparameterswaschosensuchthatallthefourpathswould

give∆withdnonzeroelements,wheredrangedfromO(p2/log(p))to0.Itcanbeseenthatthesolutionpath

ofSMORE-LDNissimilartoLASSO-DN,andthesolutionpathofSMORE-DDNissimilartoDantzig-DN.

ThecomputationtimeofthesolutionpathsarealsoreportedinTable6.SMOREmethodsarefasterthantheir485

counterparts.

Figure8.1:SolutionpathontheTCGAglioblastomadata.Displayedarethecoefficientsofthefollowingpairs:(11,11),(14,14),(17,5),(8,11),

(15,14).

Method SMORE-LDN LASSO-DN Dantzig-DN SMORE-DDN

Time(s) 0.1035 0.1082 3.3830 0.6539

Table6:Computationtimeofasolutionpath.

8.2.TheVehicleSilhouettesdata

Wefurtherconsideramulti-classclassificationproblemontheVehicleSilhouettesdataset. Thedataset

isavailableonUCIMachineLearningRepository(https://archive.ics.uci.edu/ml/datasets/
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Statlog+(Vehicle+Silhouettes)).Itrecords18featuresextractedfromthesilhouettesoffourtypes490

ofvehicles.Allthefourclasseshavearelativelybalancedsamplesizeamong846subjectsintotal. Wewantto

buildaclassifiertopredictthetypesofvehiclesbasedonthesilhouettes.Thedatasetisrandomlypartitionedinto

training,validationandtestingsetswiththeratio1:2:2,i.e,170trainingsamples,348validationsamplesand348

testingsamples.Allthetuningparametersarechosenbyminimizingthevalidationerror.

SimilartoSection7.2.2,wecompareSMORE-QDAonthisdatasetwithfivesuccessfulclassifiers,including495

randomforest,linearandkernelsupportvectormachines,andtwoversionsofpenalizedmultinomialregression

methods,PMR1andPMR2.PMR1onlyincludesthemaineffects,butPMR2furtherincludesallthetwo-way

interactions.NotethatDA-QDAisnotapplicableonthisdatasetbecausewehaveamulticlassprobleminstead

ofatwo-classproblem.Beforefittingtheclassifiers,eachvariableisstandardized.InSMORE-QDA,weslightly

perturbthesamplecovariancematricesby0.01tospeedupthecomputation.Meansandstandarderrorsofclassi-500

ficationerrorratesontestingdataover100replicatesarereportedinTable7.ItcanbeseenthatSMORE-QDAis

significantlymoreaccuratethanallthecompetitors,whichsupportsitsapplicationinclassification.

Errorrate(%) SMORE-QDA PMR1 PMR2 SVM-l SVM-k RF

Mean 22.34 23.80 24.32 25.16 44.30 28.60

SE 0.25 0.24 0.24 0.26 2.03 0.22

Table7:TestingerrorsontheVehicleSilhouettesdataset.Meansandstandarderrorsfrom100replicatesarereported.

9.Discussion

Inthispaper,wedeveloptheSMOREalgorithmthatcanbeappliedtodifferentialnetworkanalysisandQDA.

SeeTableB.8intheappendixforasummaryoftheseapplications.Inalltheapplications,theSMOREalgorithm505

haslowstorageandcomputationcostsincomparisontoLASSO-DNandDantzig-DN,whichwelistinTableB.9

intheappendix.TheSMOREmethodsareparticularlyfavorableinthepresenceofstrongsparsity.Undermild

conditions,theSMOREalgorithmistheoreticallyshowntohaveniceconvergenceresults.Further,thisalgorithm

providesanaturalapproachtogeneralizeexistingmethodsforbinaryproblemstomulticlassproblems. The

superiorperformanceoftheSMOREalgorithmisconfirmedbynumericalstudies.510

OurSMOREalgorithmisacoordinatedescentalgorithm.Coordinatedescentalgorithmsareknowntobe

efficientandstableinhigh-dimensionalproblems[52,38,53].However,incomparisonwithexistingcoordinate

descentalgorithms,theSMOREalgorithmiscarefullytailoredfortheSMOREproblemtotakeadvantageofits

specialformanddrasticallyreducethestorageandcomputationcosts.Someofthetechniquesweusetodevelop

theSMOREalgorithmaresimilartothosein[54],buttheSMOREalgorithmtargetsamorecomplicatedproblem515
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andhasmuchbroaderapplications. WeacknowledgethoughthattheobjectivefunctionoftheSMOREproblem

isconvex,andotheralgorithmsmaybeapplicableaswell,suchasthealternatingdirectionmethodofmultipliers

(ADMM)[33,55],Bregman-basedapproaches[56,57],stagewisemethod[58],minorize-maximization(MM)

[59,60,61],ODE-basedmethods[62,63]andproximalgradientdescentalgorithms[64].Athoroughstudyof

thesealgorithmsinsolvingtheSMOREproblemisleftforfuturestudy.520

Finally,wenotethattheSMOREalgorithmenforcessparsityinestimation. Aspointedoutbyareferee,

sparsitymaynotbereasonableinsomereal-lifeproblems.Ifthesparsityassumptionisdeemedinappropriate

foraparticulardataset,onepossiblealternativeisthelow-rankassumption;see[65,66,67,68,69,70,71]for

example.Intheseworks,itisassumedthatthevariationacrossallthecovarianceorprecisionmatricesisfully

capturedbyacommonlow-ranksubspace.Thesemethodsarestronglysupportedbytheoreticalandnumerical525

results.However,theyofteninvolvenon-convexoptimization,andthustheSMOREalgorithmcannotbedirectly

appliedtoimplementthem.Itwillbeinterestingtoseeinthefutureifthelow-rankmethodscanbereformulated

asconvexoptimizationproblemsandifalgorithmssimilartotheSMOREalgorithmcanbedevelopedforthem.
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AppendixA.TheDantzigalgorithm

WedescribetheDantzigalgorithmproposedby[7]forcompleteness.TheDantzigalgorithmsolves(4.2)as

follows.535
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Algorithm3TheDantzigalgorithm

1.InputΣ1,Σ2.Initializew
(0)=0.

2.Forstepst=1,2,...,iterativelydothefollowinguntilconvergence:

(a)Update

r(t+1)=argmin
r

w(t)/ρ+2vec(Σ1−Σ2)−(Σ2⊗Σ1)δ
(t)−r 2

2/2+f(r)/ρ. (A.1)

(b)Update

δ(t+1)=argmin
δ

w(t)/ρ−r(t+1)+2vec(Σ1−Σ2)−(Σ2⊗Σ1)δ
2
2/2+δ1/ρ. (A.2)

Intheimplementation,thisisapproximatedwithclosedform

δ(t+1)=S1
ρ
(δ(t)−(Σ2⊗Σ1)

T[(Σ2⊗Σ1)δ
(t)−w(t)/ρ+r(t+1)−2vec(Σ1−Σ2)]). (A.3)

(c)Update

w(t+1)=w(t)+ρ(2vec(Σ1−Σ2)−r
(t+1)−(Σ2⊗Σ1)δ

(t+1)). (A.4)

3.Outputδ(t+1)atconvergence.

AppendixB.AdditionalTablesandFigures

TableB.8summarizesthechoicesofUk,Vk,Gkinalltheapplications.

Method Uk Vk Gk

SMORE-LDN Σk Σ1 Σ1−Σk

SMORE-DDN Σ22 Σ21 Σ2{2(Σ1−Σ2)+W
(t)/ρ−R(t+1)}Σ1

SMORE-QDA Quadraticterm Rk R1 Λ
−12
k Λ

1
2
1R1−RkΛ

1
2

kΛ
−12
1

Linearterm Rk 1 Λ
−12
k µk

TableB.8:ChoicesofUk,Vk,Gk.ThematrixΣkisthesamplecovariancematrix,Rkistheperturbedsamplecorrelationmatrixwithin

classk,andΛk=diag(Σk)isthediagonalelementofcovariancematrix.

AcomparisononstorageandcomputationcostsfordifferentialnetworkanalysisisgiveninTableB.9.Our

SMOREalgorithmhaslowstorageandcomputationcostsinallapplications.
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LASSO-DN SMORE-LDN Dantzig-DN SMORE-DDN

Storage O(p2) O(p2) O(p4) O(p2)

Computation O(p3) O(p2dmax) O(p4) O(p3)

TableB.9:ComparisonofstorageandcomputationcostsfortheSMOREmethods,LASSO-DNandDantzig-DN.Thequantitydmax isthe

maximumnumberofnonzeroelementsintheiterations.

TofurthercomparethesolutionpathofSMORE-QDAandDA-QDA,weconsidertheQDAModel(B2)in540

Section7.2asanexample.FigureB.1showsthatthesolutionpathsofSMORE-QDAandDA-QDAaresimilarto

eachother.

FigureB.1:Solutionpathof∆ inModel(B2)definedinSection7.2.Displayedarethecoefficientsofthefollowingpairs:(6,6),(13,13),

(33,33),(36,36),(43,43).
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AppendixC.ProofsforLemmas

ProofofLemma1.First,defineWk=Uk⊗Vk.Forfixj=1,···,p,notethat

βTkWkβk=
l,m

Wk,lmβklβkm (C.1)

=β2kjWk,jj+2
l=j

Wk,ljβklβkj+
l=j,m=j

Wk,lmβklβkm, (C.2)

gTkβk=gkjβkj+
l=j

gklβkl. (C.3)

Therefore,

βTkWkβk−2g
T
kβk=β

2
kjWk,jj+2(

l=j

Wk,ljβkl−gkj)βkj+sk, (C.4)

whereskisthesumoftermsthatdonotinvolveβkj.Hencegivenβ·j,j=j,thesolutionofβ·jtoproblem545

(3.2)isequivalenttosolving

min
β·j

K

k=1

(βkj−βkj)
2+

λ

Wk,jj
β·j, (C.5)

where

βkj=
gkj− l=jWk,ljβkj

Wk,jj
. (C.6)

BythedefinitionofKroneckerproduct,wehave

Wk,jj=Uk,j1j1Vk,j2j2, (C.7)

l=j

Wk,ljβkj=V
T
k,·j2B

j
kUk,·j1, (C.8)

withj1,j2definedasin(3.3).Hence,(3.4)holds.BycheckingtheKKTconditionwehave(3.6).

FortheproofofLemma2,werecalltwousefulfacts.First,fortwomatricesA∈Rp1×p2,B∈Rp2×p1,we550

havevecT(A)vec(B)=Tr(ATB).Second,formatricesA∈Rp1×p2,B∈Rp2×p3,C∈Rp3×p4,wehavethat

vec(ABC)=(CT⊗A)vec(B).

ProofofLemma2.Givenw(t)andr(t+1)fixed,equation(4.4)isequivalentto

δ(t+1)=argmin δT(Σ2⊗Σ1)(Σ2⊗Σ1)δ

−2δT(Σ2⊗Σ1)
T[w(t)/ρ−r(t+1)+2vec(Σ1−Σ2)]+

δ1
ρ

≡argmin L1−2L2+
δ1
ρ

.

(C.9)
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where

L1 = δT(Σ2⊗Σ1)(Σ2⊗Σ1)δ,

L2 = δT(Σ2⊗Σ1)
T[w(t)/ρ−r(t+1)+2vec(Σ1−Σ2)].

ForL1,wehave

L1 = δT(Σ2⊗Σ1)(Σ2⊗Σ1)δ=vec
T(∆)(Σ22⊗Σ

2
1)vec(∆)={(Σ

2
2⊗Σ

2
1)vec(∆)}

Tvec(∆)

= vecT(Σ21∆Σ
2
2)vec(∆)=Tr(Σ

2
2∆

TΣ21∆)=Tr(∆
TΣ21∆Σ

2
2).

ForL2,notethat

δT(Σ2⊗Σ1)
Tvec(Σ1−Σ2)=vec

T(Σ1∆Σ2)vec(Σ1−Σ2)=Tr(Σ2∆
TΣ1(Σ1−Σ2))

=Tr((Σ1−Σ2)Σ1∆Σ2)=Tr(∆Σ2(Σ1−Σ2)Σ1),

δT(Σ2⊗Σ1)
T(w(t)/ρ−r(t+1))=vecT(Σ1∆Σ2)vec(W

(t)/ρ−R(t−1))=Tr[Σ2∆
TΣ1{W

(t)/ρ−R(t−1)}]

=Tr[{W(t)/ρ−R(t+1)}Σ1∆Σ2]=Tr[∆Σ2{W
(t)/ρ−R(t+1)}Σ1].

Hence,L2=vec
T(∆)vec(Ψ)=Tr(∆Ψ),andtheconclusionfollows.555

ProofofLemma3.Since∆k=Σ
−1
k −Σ

−1
1 ,∆kcanbesolvedby

∆k=arg min
Φ2,...,ΦK

K

k=2

Tr(ΦTkΣ1ΦkΣk)−2Tr(Φk(Σ1−Σk)). (C.10)

ForanyΦk,defineΦ
∗
k=Λ

1/2
1 ΦkΛ

1/2
k .Thenwehave

K

k=2

Tr(ΦTkΣ1ΦkΣk)−2Tr(Φk(Σ1−Σk)) (C.11)

=
K

k=2

[Tr{(Λ
−12
1 Φ

∗
kΛ
−12
k )

TΛ
1
2
1R1Λ

1
2
1(Λ

−12
1 Φ

∗
kΛ
−12
k )Λ

1
2

kRkΛ
1
2

k} (C.12)

−2Tr{Λ
−12
1 Φ

∗
kΛ
−12
k (Λ

1
2
1R1Λ

1
2
1−Λ

1
2

kRkΛ
1
2

k)}] (C.13)

=
K

k=2

{Tr((Φ∗k)
TRkΦ

∗
kR1)−2Tr(Φ

∗
kZk)}. (C.14)

Itfollowsthat,foranyΦ∗anditscorrespondingΦ,

K

k=2

{Tr((∆∗k)
TRk∆

∗
kR1)−2Tr(∆

∗
kZk)}=

K

k=2

Tr(∆TkΣ1∆kΣk)−2Tr(∆k(Σ1−Σk))

≤
K

k=2

Tr(ΦTkΣ1ΦkΣk)−2Tr(Φk(Σ1−Σk))=
K

k=2

Tr((Φ∗k)
TRkΦ

∗
kR1)−2Tr(Φ

∗
kZk).
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Andtheconclusionfollows.560

AppendixD.ProofsforTheorem1(ConvergenceanalysisforAlgorithm1)

Inthissection,weprovetheresultsinTheorem1.First,wepresentthefollowingdefinitionsandpropositions

in[72].Foranobjectivefunction

f(x1,...,xN)=f0(x1,...,xN)+
N

k=1

fk(xk), (D.1)

wheref0:R
n1+···+nN → R∪{∞}andsomefk:R

nk → R∪{∞},k=1,...,N. Wehavethefollowing565

definitions:

Definition1(Gâteaux-differentiable[73]).ForafunctionF:Rp→R,defineGâteauxderivativeas

F(x;y)=lim
λ 0

F(x+λy)−F(x)

λ
. (D.2)

IfF(x;y)existsforallyatx,thenFisGâteaux-differentiableatx.

Definition2(Stationarypoints[72]).Apointzisstationaryforfunctionhifg(z;ν)≥0foranyν,where

g(z;ν)=liminf
λ 0

h(x+λν)−h(x)

λ
. (D.3)

Definition3(Regular[72]).Afunctionfisregularatzif570

f(z;ν)≥0,foranyν=(ν1,...,νN)suchthatf(z;(0,...,νk,···,0))≥0,k=1,...,N. (D.4)

Wewillalsousethefollowingpropositions.

Proposition1(AsimplifiedversionofLemma3.1in[72]).Iff0isGâteaux-differentiable,fisregularateachz.

Proposition2(AsimplifiedversionofTheorem4.1in[72]).AssumethatthelevelsetX0={x:f(x)≤f(x0)}

iscompact,wherex0istheinitialvalueofthealgorithm,andthatfiscontinuousonX0.Furtherassumethat

f(x1,...,xN)ispseudoconvexin(xk,xi)foralli,k∈{1,...,N},andiffisregularateveryx,thenthe575

solutiongeneratedbythecycliccoordinatedescentmethodconvergestoastationarypointoff.

WemakeuseoftheseresultstoproveTheorem1.

Lemma2.IfWkispositivedefinite,thesetB
0={β:L(β)≤L(β0)}iscompactforanyβ0,where

L(β)=
K

k=1

βTkWkβk−2β
T

kgk+λ

p

j=1

β·j. (D.5)
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Proof.Firstly,B0mustbeclosedsinceL(β)iscontinuous.ThenweshowthatB0isbounded. WhenΣkis

invertible,foranyβk∈R
p,wehave580

βTkWkβk−2g
T

kβk≥−g
T

kW
−1
k gk. (D.6)

Takesummationoverkanditfollowsthat,foranyβ∈B0,

−
K

k=1

gTkW
−1
k gk+λ

p

j=1

β·j ≤L(β)≤L(β
0). (D.7)

whichsuggeststhatB0isboundedby

p

j=1

β·j ≤
1

λ

K

k=1

gTkW
−1
k gk+L(β

0)foranyβ∈B0. (D.8)

Therefore,B0iscompact.

ProofofTheorem1.Letfj(β·j)=λβ·j,j=1,...,pand

f0(β)=
K

k=1

{βTkWKβk−2g
T

kβk}, (D.9)

whereWk=Uk⊗Vkandvec(Gk)=gk.Obviouslyf0(β)isdifferentiable.TheSMOREproblemisequivalent585

tominimizingL(β)=f0(β)+
p
j=1fj(β·j).ThenbyProposition1,wehavethatL(β)isregularateachβ.

SinceWk=Uk⊗Vkispositivedefinite,withLemma2,wehavecompactsetB
0={β:L(β)≤L(β0)}.

SinceL(β)iscontinuousandconvex,byProposition2,thecoordinatedescentalgorithmconvergestoastationary

pointofL(β),whichisexactlytheglobalminimizerasL(β)isstrictlyconvex.
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