Efficient Computation for Differential Network Analysis with Applications to
Quadratic Discriminant Analysis

Yuging Pan?, Qing Mai®*

“Microsoft, Redmond, WA 98052
bDepartment of Statistics, Florida State University, Tallahassee, FL, 32306

Abstract

Differential network analysis is an important statistical problem with wide applications. Many statisticians focus
on binary problems and propose to perform such analysis by obtaining sparse estimates of the difference between
precision matrices. These methods are supported by excellent theoretical properties and practical performance.
However, efficient computation for these methods remains a challenging problem. A novel algorithm referred to as
the SMORE algorithm is proposed for differential network analysis. The SMORE algorithm has low storage cost
and high computation speed, especially in the presence of strong sparsity. In the meantime, the SMORE algorithm
provides a unified framework for binary and multiple network problems. In addition, the SMORE algorithm
can be applied in high-dimensional quadratic discriminant analysis problems as well, leading to a new approach
for multiclass high-dimensional quadratic discriminant analysis. Numerical studies confirm the stability and the
efficiency of the proposed SMORE algorithm in both differential network analysis and quadratic discriminant
analysis.

Keywords: Coordinate descent, Dantzig selector, differential network analysis, LASSO, quadratic discriminant
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1. Introduction

Due to its wide applications in scientific problems, differential network analysis has been receiving increasing
attention in the literature. For example, researchers often perform such analysis to understand the interactions
among proteins or genes in biology studies [1, 2, 3, 4, 5, 6]. Differential network analysis aims to detect changes
of networks under different conditions. Consider variables X € IRP and the condition label Y = 1,... K. In

differential network analysis, it is often assumed that

X [(Y =k)~ N(ux, Zx), k=1,...,K, (L1)
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where p, € RP 2, € RP*P. Within the level Y = k, X follows the Gaussian graphical model. Let 2 = Z;l.
Then £ characterizes the conditional dependence structure among X at Level k. Our goal is estimating the
differences among {2;’s. It is often assumed that the differences are sparse, indicating that most pairs (X;, X;)
have the constant interactions in all the levels, while we strive to identify the pairs with different interactions across
levels [7, 8, e.g].

An intuitive approach to differential network analysis is to first estimate {2, and then take the differences
among the estimated §2;’s. The estimation of £2; can be performed either individually [9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20] or jointly [21, 22, 23, 24]. However, this approach requires stronger assumptions than we
desire. In order to estimate {2, in high dimensions by the above methods, we need to assume that each €2 is
sparse. This assumption can be stringent in practice. For example, [25, 26] showed that transcriptional networks
are often not sparse on their own. From the statistical perspective, sparsity in the individual €2;’s is much stronger
than sparsity in their differences. For example, consider two precision matrices {2, and £25. If both of them are
sparse, then apparently their difference €22 — €24 has to be sparse as well. However, when 2 — §2; is sparse, we
do not necessarily have sparse {2; and 2. By directly assuming that £25 — €2 is sparse, we can avoid sparsity
assumptions on 2, and €2, individually.

Consequently, efforts have been spent on direct estimation of the differential networks [7, 8, 27, 28]. These
methods directly estimate the differential networks, without imposing assumptions on the individual precision
matrices. Thus, they are particularly suitable when we are reluctant to make sparsity assumptions on each network,
as is the case in the transcriptional networks. These methodological developments greatly enrich the literature of
differential network analysis. New statistical theories have been derived for these methods, and researchers have
applied them on real datasets to obtain new findings.

However, the computation of differential network analysis remains a critical issue. Some of the existing
methods can be demanding on the storage, while others have room for improvement on the computation efficiency.
Note that we aim to estimate parameters of dimensions p x p, where p can be very large in practice. Therefore,
it is essential to accompany the methods with algorithms that scale well with p. To this end, we propose an
algorithm with cheaper and faster computation for the two promising differential network analysis methods in
[7, 28]. Complexity analysis shows that the improvements are particularly significant when the truth is very
sparse. Moreover, most existing methods focus on binary problems, but our algorithm easily accommodates
multiple network problems.

Further, our algorithm can be applied to quadratic discriminant analysis (QDA) as well. QDA is one of the most
classical classification methods [29, e.g]. It provides nonlinear separation of the data by modeling heterogeneity.
There have been considerable interests in its high-dimensional generalizations [30, 31, 28]. Our algorithm can be

applied in high-dimensional QDA. The QDA classifier includes quadratic and linear terms. Similar to differential
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network analysis, the quadratic terms are differences among precision matrices, and our algorithm easily provides
estimates for them. On the other hand, by supplying appropriate initial estimates to our algorithm, we are able to
obtain estimates for the linear terms as well. Moreover, unlike existing methods that focus on binary problems,
our algorithm provides a framework for multiclass QDA problems.

In our development, we first introduce a generic optimization problem called the SMORE problem, in short
for Second-order Matrix Optimization with REgularization. The SMORE problem includes differential network
analysis and QDA as special cases. Then we develop the SMORE algorithm to solve the SMORE problem. The
SMORE algorithm has low storage and computation costs. Theories confirm the convergence of the SMORE
algorithm under mild conditions. We then apply this algorithm in differential network analysis and QDA. Numer-
ical studies demonstrate the computational advantages of the SMORE algorithm in both applications. The rest of
the paper is organized as follows. In Section 2 we briefly review differential network analysis. In Section 3 we
introduce the SMORE problem and the SMORE algorithm. Convergence analysis is provided as well. Section 4
contains the application of the SMORE algorithm in binary differential network analysis. The extension to multi-
ple network problems is discussed in Section 5. We review QDA and consider its high-dimensional extension in
Section 6. In Sections 7 & 8, we present numerical studies on simulated and real data. A discussion is given in

Section 9. All the technical proofs are relegated to the appendix.

2. Background on differential network analysis

We review the differential network (DN) analysis methods by [7] and [28] that motivate our algorithmic de-
velopments. For simplicity, we distinguish them by the penalties they use. We refer to the proposal by [7] as the
Dantzig-DN method, because it employs the Dantzig selector. [28] applies the LASSO penalty and we refer to
their method as LASSO-DN. Both methods assume the model in (1.1) restricted to K = 2. The goal is to estimate

A = 2y — ). Straightforward calculation shows that
3oAY =3 — . 2.1

Let vec denote the vectorization operator that converts a p X p matrix to a p?-dimensional vector, and ® denote

the Kronecker product. Then (2.1) implies that
(X1 ® Xa)vec(A) = vec(21 — 2a). (2.2)

Hence, the Dantzig-DN method estimates A by replacing X’s with their sample estimates 35 and applying

the Dantzig selector [32]:

A = argmin||vec(A)[l1, st [|(E1 ® Bg)vec(A) — vee(S1 — La)lloo < A, (2.3)
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where A > 0 is a tuning parameter. The constraint ||(f}1 ® f‘.g)vec(A) — vec(f]l — f)g)”m < A gurantees that
(2.1) is roughly true, while the objective function ||[vec(A)||; imposes sparsity. Dantzig-DN directly estimates the
difference A, without imposing additional assumptions on X or 2. It also has impressive theoretical properties
and numerical performance.

However, a major challenge in Dantzig-DN is the computation. In the original paper, the authors proposed
two algorithms to solve (2.3). The first is to calculate s = f‘.l ® f]g, and then use a generic algorithm for
Dantzig selector [32, 33, 34]. However, in order to compute f], the storage and the computation costs are both
at the prohibitive order of p*. To resolve this issue, the authors devoted a section to a second algorithm. They
exploited the symmetry of 3 and reduced the storage cost by half. This algorithm alleviates the issue of storage
to some extent, but the storage cost still grows at the order of p*. We will show in Section 4.2 that by honoring the
Kronecker product structure in 3, we can reduce the storage cost to O(p?) and the computation cost to O(p?).

On the other hand, the LASSO-DN method was proposed as a computationally efficient alternative to Dantzig-
DN by adopting a different formulation, although it was developed under the context of quadratic discriminant
analysis. With some algebraic derivation, it can be shown that (2.1) implies

A =arg min [Tr(ATE,A%;) - 2Tr{A(Z; — 2)}], (2.4)
AcCRP*P

where for any matrix M € R?%?, Tr(M) = Y7, my; is the summation of all its diagonal elements. Taking
derivative of (2.4) with respect to A, we recover (2.1).
Hence, to obtain a sparse estimate of A, LASSO-DN solves for
A =arg min [Tr(ATS;AS,) —2Tr{A(Z; - Z)}+ A |44, (2.5)

AcCRP*P -
E!J

where A > 0 is a tuning parameter and }_, - |A;;| is the well-known LASSO penalty [35]. As Dantzig-DN,
LASSO-DN directly estimates A, and does not need sparsity assumptions on the individual precision matrices.
Theories confirm that LASSO-DN is consistent under proper conditions, and numerical studies demonstrate its
outstanding performance.

For computation, an ADMM algorithm was proposed for LASSO-DN with the storage cost of O(p?), and
the computation cost of O(p3). In contrast to Dantzig-DN, LASSO-DN never computes the big matrix & =
f]l ® f}z. All the operations are performed on the individual matrices f)l and flz. As a result, LASSO-DN is
computationally more efficient than Dantzig-DN, but we will see that its computation cost can be further lowered
with our algorithm in the presence of strong sparsity.

Dantzig-DN and LASSO-DN motivate us to consider a generic optimization problem we refer to as the
SMORE problem. LASSO-DN is a special case of the SMORE problem, while Dantzig-DN can be performed
by iteratively solving a sequence of SMORE problems. Moreover, LASSO-DN and Dantzig-DN focus on binary
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problems with K = 2, while the SMORE problem lays the foundation to deal with multiple network problems.
We introduce this problem and an efficient algorithm in the next section. Its connection to differential network

analysis will be explained in detail in Sections 4 & 5.

3. The SMORE algorithm and its convergence analysis

3.1. The SMORE problem

We start with introducing the SMORE problem as a generic optimization problem, without regards to statistical
models. We use the following generic notation. Let U, € RN ™% 'V € R%%% k = 2 ..., K be symmetric
matrices, G € R?%2*92 and A > 0 be a tuning parameter. Note that the indices start from 2 such that we can
keep using the same numbering system when we describe the applications of our algorithm in differential network

analysis and QDA. We are interested in the following problem:

K
(B,,...,Bg) =arg min Y Tr(ByViByUyx) — 2Tr(BxGr) + A

Ba,...,Bx €RI2 %91

K

> B GD

k=2

k=2 i,

The objective function in (3.1) is a penalized quadratic function with matrices as arguments. Hence, we refer
to (3.1) as the second-order matrix optimization with regularization (SMORE) problem. The penalty function
Ei‘j Ef:z B.r%,ij is the group lasso penalty [36] that treats By, ..., Bk ;; as a group, but it reduces to the
lasso penalty when K = 2.

The SMORE problem includes various statistical problems as special cases when we substitute Uy, Vi, G
with appropriate estimates. For example, when K = 2, V5 = f)l, U, = f]g, Gy = f)l — f)g, (3.1) reduces to
LASSO-DN defined in (2.5). If we make other appropriate substitutions of Vi, Uy, G, the SMORE problem
reduces to a sub-problem of Dantzig-DN or high-dimensional QDA. Indeed, these applications of the SMORE
problem are discussed in Sections 4-6. Also, see Table B.8 in the appendix for the choices of Uy, Vi, G in all

the statistical applications in this paper.

3.2. The SMORE algorithm

We solve the SMORE problem with a blockwise coordinate descent algorithm. The algorithm can be most
concisely described when we vectorize By. Let 8, = vec(Bi) € R192 and g = vec(Gyg). Equation (3.1) can

be rewritten as

K K
Bz, Bi) =arg _min > {87 (Uk ® Vi)Bi — 285 B} + A3 \| 2 By (3.2)
ZreoBK o i \k=2
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Equation (3.2) is a penalized quadratic problem in 3, where the quadratic coefficients U ® V. have a
Kronecker product structure. In principle we could let Wy = Ui ® V; and use generic algorithms to solve
(3.2), but the storage and computation of W, can be very expensive. Hence, it is more desirable to develop an
algorithm honoring the Kronecker product structure. To this end, we derive a lemma concerning the solution of
B.; = (B2j,- -, Br;) when B.; is given for all ' # j.

We let Bi € R%*%1 such that the j'-th element of vec(B“;';) coincides with S for 5 # 7, and the j-th
element of vec(B7) is zero. The vector Uy, .; is the j-th column of Uy. We denote % as modulo operation, and

the operator ()4 = zif z > 0 and (z); = 0if z < 0. For given ¢4, g2, j, define indices j;, j2 as
n=10-1)/g)+1 and j2=(j—1)%g+ 1. (3.3)

For a matrix U € R?*9, define diag(U) € RY as a vector containing all the diagonal elements in U. We

consider the following condition on Vg, Ug.
(Cl) diag(Ua® V) =--- =diag(Uk ® V).

Lemma 1. Foreach j =1,...,q1qs, the solution to 3.; of (3.2) given 3.;:, j' # j, is the same as

K
= A
argmin » (By; _Bk')z‘l' 1351l (3.4)
P ; ! ! Uk:j‘ljl Vk:j‘zjz !
where . )
—~ Gk —V '-EB Uk‘.‘-l
By = j k,-j2 Ok i (3.5)

Uksjljl Vk:j‘zjz

Further assume that Condition (C1) is true. The solution to (3.4) is

-~ — A
18.' = ‘6.' 1— — . (3.6)
T ( ||,6.;;||)+

Lemma 1 indicates that, under Condition (C1), we have an explicit solution to ,@ ; given all the other elements.
Condition (C1) is a mild condition. When K = 2 and we only have one pair of Uy, Vi, Condition (C1) is
trivially true. When K > 2, we will show in Sections 5 & 6 that Condition (C1) can be satisfied either with proper
standardization or reparametrization.

Motivated by Lemma 1, we propose to solve (3.2) by iterating over Bk and Ek defined in (3.5) and (3.6) until
convergence. We refer to the resulting algorithm as the SMORE algorithm, which is summarized in Algorithm 1.
At convergence, we reshape ,@k to obtain ﬁk. In the SMORE algorithm, we only need the j-th column of V. and
j1-th column of Uy when we update Ekj. The index relationship between j;, j2 and j comes from the Kronecker

product. Since the SMORE algorithm has element-wise operations and we update each element by (3.7), there is
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Algorithm 1 The SMORE algorithm

1. Input Uy, Vi and 8, k = 1,..., K. Initialize B\ = 0fork=1,...,K.

2. For steps w = 1,2, . ., do the following until convergence:

foreachelement j =1,...,q1q2,

(a) Update B, based on current 6_(;?_1) for all j* # j and compute

] 1
JS(w 1) gk.ﬁr‘ - W{'jEB-;CUks‘.?l Vkshh!g!(cw )Uk,.:l'l.h]

— (3.7
Uk:j‘l.?l Vk:j‘zj‘z

(b) Compute 3;(:;.: — ,B(w Dil1- A fork=1,...,K.

VB )

3. Output ,@k, k=2,..., K atconvergence.

no need to calculate Uy, ® V. directly or perform matrix operations on V, and Uy. This fact drastically reduces
the computational complexity in both time and memory.

Furthermore, we note that the most expensive step in the SMORE algorithm is the calculation OfV;,sziUk,-jl
in (3.7). To speed up this step, we apply the active-set strategy to exploit the sparsity of B [37, 38]. Let Dy, Dga
denote the indices of the columns and rows with nonzero elements in By, respectively. These sets are updated
in each iteration. Then in calculating V{‘I‘jZBiUk,.jl, we restrict our attention to Dyq, Dy2 and only calculate

V{,Dzszi,,DngUk,Dljr This strategy further improves the computation speed.

3.3. Convergence and computation complexity

We investigate the convergence and the per-iteration complexity of the SMORE algorithm in this section. Since
the SMORE algorithm is a coordinate descent algorithm, in each step we minimize the objective function over one
coordinate with others fixed. Hence, the objective function monotonically decreases through iterations, and the
algorithm is guaranteed to converge. We further examine under what conditions the SMORE algorithm converges

to the global minimizer. For simplicity, we make the following assumption:
(C2) The matrices Uy, V, are positive definite.

Theorem 1. Under Conditions (C1) & (C2), the SMORE algorithm converges to the global minimizer of (3.2).

Theorem 1 guarantees that the output of the SMORE algorithm coincides with the global minimizer at con-

vergence under the additional Condition (C2). Condition (C2) implies that (3.1) is strictly convex, which is a
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technical condition to facilitate the proof. In practice, we can easily construct estimates to satisfy Condition (C2).
We also tested our algorithm in cases where Uy and V were only positive semidefinite, and observed that the
SMORE algorithm continued to converge to an accurate estimator. The relaxation of Condition (C2) will be an
interesting research topic in the future.

As for the storage and computation costs, it is easy to see that the storage cost is O(K {q? + ¢3}), which is
the same order of saving the matrices Uy, V. For the per-iteration computational complexity of the SMORE

algorithm, we have the following lemma.

Lemma 1. The computational cost for each iteration is O(K q1q2dmax ), where dmax is the maximum number of

nonzero elements in 3y throughout the iterations.

By Lemma 1, the per-iteration computational cost is an increasing function of K, g1, g2 and dmax. It is intu-
itive that larger values of K, ¢; and g2 lead to more time-consuming computation, as we need to estimate more
parameters. But the computation cost grows linearly with respect to each of them, indicating that the SMORE
algorithm scales well with g1, g2 and K. The number dp,ax represents the sparsity level of ,@k across the iterations.

When 3, remains very sparse across iterations, the computation cost is low.

4. Binary differential network analysis

4.1. The SMORE algorithm in LASSO-DN

LASSO-DN is a special case of the SMORE problem. Recall that, in LASSO-DN, we assume the differential
network analysis model in (1.1) with K = 2. We want to identify the sparsity pattern in A = (22 — 24, where
€, k = 1,2 are precision matrices.

LASSO-DN estimates A with (2.5). In the SMORE problem, if we let K = 2, Uy = 55, V, = 3,
and G, = f)l — f}g, it reduces to the LASSO-DN problem defined in (2.5), with the output ﬁg being our
estimate A. Also, since K = 2, Condition (C1) is trivially true. Hence, the SMORE algorithm can be used as an
implementation for LASSO-DN. When we apply the SMORE algorithm to solve (2.5), we refer to the resulting
method as SMORE-LDN.

The storage cost of SMORE-LDN matches that of LASSO-DN; both of them have the storage cost of O(p?).
However, SMORE-LDN is more computationally efficient if A is very sparse. The computation cost for LASSO-
DN is O(p?), while the computation cost for SMORE-LDN is O(p?dmax) by Lemma 1, where day is the
maximum number of nonzero elements in the iterations. The comparison between these two methods appar-
ently depends on the magnitude of dyax. In general, dyax is comparable to the number of nonzero elements

in A. Therefore, in what follows we discuss the comparison of computation costs under the assumption that
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dmax = O(||Al|o). [7] considered the case where A is very sparse with |A|lo = o(p). In this case, SMORE-
LDN has a computation cost of o(ps), which is lower than LASSO-DN. In contrast, [28] showed that LASSO-DN

is consistent if ||Allp = o[ pg¢ " ). Hence, if A is relatively dense, ie, p < ||Allo = o pg *)),
logp logp
SMORE-LDN may have a slightly higher computation complexity than LASSO-DN by a factor smaller than

) L However, this factor grows slowly, and in our numerical studies we observe that SMORE-LDN is in
ogp
general very efficient, with faster or comparable computation time as LASSO-DN. Moreover, SMORE-LDN can

4

be applied to multiple network problems, while LASSO-DN cannot.

As for the convergence properties, SMORE-LDN is always guaranteed to converge, since the objective func-
tion monotonically decreases in each iteration. If one further desires some assurance that SMORE-LDN produces
the global minimizer, we can slightly perturb the sample covariance 3% to make them satisfy Condition (C2). In
other words, we can supply f}k instead of f}k to the SMORE algorithm, where

1
Rk—]_

S = 37 (Xi = i) (X — fix) T+ €L @.1)

Yi=k

with £ > 0 being a small constant, such as 10~2. The estimate f}k is also known as the Ledoit-Wolf estimator
[39] that has been widely applied in statistics. By controlling £ to be small, we only introduce a tiny amount of
bias, but f]k is guaranteed to be positive definite and Condition (C2) is satisfied. By Theorem 1, SMORE-LDN

with & , converges to the global minimizer.

4.2. The SMORE algorithm in Dantzig-DN

The SMORE algorithm can also be applied to reduce the storage and computation cost of Dantzig-DN in (2.3),
because Dantzig-DN involves iteratively solving a series of SMORE problems. To see this, we first briefly review

the algorithm for Dantzig-DN. Let § = vec(A). Rewrite the optimization problem in (2.3) as

6 =argmin f(r) + ||6]1, st. r+ (B3®31)8 = 2vec(E; — ), (4.2)

where f(r) = oo if ||r||s > A and f(r) = 0 otherwise. Dantzig-DN alternatively updates r, 4 and a dual variable
w given all the other arguments in each iteration. For completeness, we include this algorithm in Appendix A
as Algorithm 3. The updating rules of r and w are of closed forms. The most challenging step in Dantzig-DN is

updating & by
6+ = argmin || w®/p—r*1) + 2vec(81 — o) — (B2 @ T)3 (15 /2 + [8ll1/p, 43

where p > 0 is the tuning parameter in the ADMM algorithm.
Equation (4.3) is a special case of the SMORE problem, as shown by the following lemma.



Lemma 2. Define
A — mgmin{Tr(ATﬁfAf:g) —2TT(A¥) + ||All1/p}, (4.4)

25 where U = 35,{2(81 — £5) + WO /p — RIS, with vee(W®) = w®), vec(R(+D) = r(E+1), Then
vec(ATTD) = §t+1) ywhere §(+1) is defined as in (4.3).

Lemma 2 reveals that (4.3) is equivalent to (4.4). We further note that (4.4) is again a special case of the
SMORE problem in (3.1). For K = 2,let U, = $2, V, = 32 and G, = ¥. Then (3.1) reduces to (4.4). We can
incorporate the SMORE algorithm in Dantzig-DN to solve (4.3). Such an algorithm is proposed as SMORE-DDN

220 in Algorithm 2, in which (4.4) is solved by the SMORE algorithm. In addition, in Algorithm 2, we also rewrite the
updating formulas for r, w in a form that steers clear of f)z ® f)l. See the comparisons between (4.5) and (4.6)

and (A.1) and (A.4), respectively.

Algorithm 2 The SMORE-DDN algorithm

1. Input 84, 5. Initialize w® = 0.
2. Iteratively do the following until convergence.
(a) Update
) = Wi w® /p + 2vec(B; — £5) — vec(B1AD,)], (4.5)

where given d-dimensional vector v = (v1,...,vq)7, W is defined as Wy (v) = [sign(v;) -

min{|v;], A}]§_;.

(b) Solve (4.4) with the SMORE algorithm, in which we let K = 2, Uy = 32, V, = 32 and G, =
${2(21 — £2) + WO /p — RS

(c) Update
wlttD = w® 4 p(2vec(T; — Bg) — rltHY) —vec(B;ATTVS,)). (4.6)

3. Output A+ where vec(A 1)) = §(+1) at convergence.

The proposed SMORE-DDN algorithm has significant advantages in both the storage and the computation

costs. The Dantzig-DN method has a storage cost of O(p*), as it needs to calculate at least half of the elements in

225 (f]g ®f31). However, in SMORE-DDN we never calculate this Kronecker product, which brings down the storage
cost to O(p?). For the computation cost, we note that the Dantzig-DN needs | A ||o = o(p) to be consistent. Hence,

the computation cost for SMORE-DDN is O(p?), where the most expensive part is in computing f‘.ﬁ It is easy to

see that SMORE-DDN has lower computation complexity than Dantzig-DN.

10
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5. Multiple network analysis

We further discuss the application of the SMORE algorithm in multiple network problems. For the more
general case K > 2, we assume that the data {X;, ¥;}™ ; have been standardized within each level, so that the
sample variance of X ; within each level is 1. If one does not wish to standardize the data, an alternative is given
in Section 6.3.1.

We aim to identify the elements in €2, that are non-constant across k = 1,..., K. In other words, our goal is
to identify the pairs of variables whose interactions are affected by the condition Y. To this end, we let the level
k = 1 be the baseline, and Ay = €2;—€2;. The parameters Ay, capture the changes of the network structure across
levels. In particular, if a pair (X, X;) has the same interaction across levels, we must have wy 4 = - - - = Wk 45,
which implies

02,45 = --- = 0k,i; = 0. (5.1)

Therefore, we seek sparse estimates for Ajy. Note that, Ay are solutions to the following estimating equation:

K
(Az, sy AK) = 3..I‘g‘A 1'1'111'11A Z{TT(A'{ElAka) - ﬂ—'T(Ak(El - Ek))} {52)
2y K k=2

Sparse estimates of Ay, can be obtained by replacing 3J; with the sample covariance 31 and adding an ap-
propriate penalty in (5.2). By the sparsity criterion in (5.1), Jx ;; has the group sparsity structure across k, as they
all quantify the interactions between the same pair. We enforce the group sparsity structure with the group lasso

penalty and obtain the following formula for multiple differential networks:

(As,...,Ak) (5.3)
K
- i Tr(ATS1AxS:) — 2Tr(Ak(E; - & A
arg , min kZ::z (AL X1 ALYE) T(Ag(Xy k) + EZJ:
The estimators {32, cee ,3;{} tell us about the change of dependence structure across levels. If 32,” =...=

) ki = 0 for some (%, 7), the dependence between X;, X; is constant given all the other variables. Otherwise, the
dependence between X;, X; depends on Y.

Equation (5.3) is a special case of the SMORE problem. If we let Uy = ik, Vi = f)l, Gr = f]l — f]k, k=
2,...,K, the SMORE problem in (3.1) coincides with (5.3), with the output B, being ﬁk. Because we assume
that data are standardized within each class, Condition (C1) is met. Hence, we again employ the SMORE algorithm
to solve (5.3). Note that (5.3) reduces to SMORE-LDN in the special case of K = 2. Therefore, for simplicity, we
refer to (5.3) with K > 2 as SMORE-LDN as well. For general K, SMORE-LDN has the storage cost of O(Kp?)
and the per-iteration computation complexity of O(Kp®dmax). Because the storage and computation costs are

linear in K, SMORE-LDN is expected to be efficient as well if K is very large. Just as in binary problems,

11



SMORE-LDN is guaranteed to converge and is observed to be accurate in numerical studies. But if one desires
theoretical guarantee for the convergence to the global minimizer, we can perturb Sk by adding &I, where £ > 0

is a small constant.

6. High-dimensional quadratic discriminant analysis

6.1. Background on quadratic discriminant analysis

Another application of the SMORE algorithm is in high-dimensional QDA. For ease of presentation, we first
briefly review QDA. Consider the predictors X € RP and the class label Y € {1,..., K }. Our goal is to build a
classifier that predicts Y based on X. Define the prior probability m; = Pr(Y = k). It is known that the optimal
classifier is

Y =arg mgx{log Pr(Y =k | X =x)} =arg T}é{{bg 7, + log fr(x)}, (6.1)

where fj is the conditional probability density function for X given Y = k. This classifier is often known as
the Bayes’ rule, which achieves the lowest classification error rate possible [29]. We hope to estimate the Bayes’
rule from data. However, fully nonparametric estimation of fj, is usually difficult, especially in high dimensions.
Therefore, parametric assumptions are often imposed on f, to ease the challenges in estimation.

The QDA model assumes that f, is the normal distribution with parameters i, 2. In other words, the QDA
model is

Pr(Y = k) = m, X|(Y =k) ~ N(px, Zx), k=1, --- , K, (6.2)

where 0 < 7 < I,Zle mr = 1 are the prior probabilities, ptr € RP is the mean of X within Class &k and
3, € RP*P is the covariance matrix within Class k. Without loss of generality, we assume y¢; = 0. In practice,
we can subtract the sample mean of X within Class 1 from all the observations to make this assumption true.
Under the QDA model, the Bayes’ rule is simplified to be a parametric classifier. Define v = Q. € RP, and
Ap = Q. — O € RP*P_where 2, = Ek_l. The Bayes’ rule under the QDA model (6.2) is

Y = arg :m?x{ak — XTARX +2XT~, 1, (6.3)
where
ax, = 2logm, — 2log w1 +log(|X5 ) — log(I=7]) — i ek, (6.4)

is a constant.
QDA is regarded as a flexible alternative to the linear discriminant analysis (LDA) model by relaxing the equal
covariance assumption. There is a large body of literature on high-dimensional LDA methods [40, 16, 41, 42,

43, 44, 45, 46]. But relatively few high-dimensional QDA methods have been proposed, because the estimation,
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computation, and theoretical analysis are more challenging under the QDA model. Some existing works include
[30, 31, 28].

Our work is in the same line as the DA-QDA method proposed by [28], which imposes sparsity on the Bayes’
rule. Direct regularization on the Bayes’ rule avoids additional assumptions on the nuisance parameters, and is
thus often more efficient and accurate. Note that (6.3) is fully determined by the parameters ag, Ay, k. In high
dimensions where p is much larger than n, we assume that the two high-dimensional parameters A, 7y, are sparse
and construct their estimates accordingly. The parameter Ay, is the difference between two precision matrices.
Hence, the estimation of Ay is similar to differential network analysis. Indeed, when K = 2, DA-QDA estimates
A, with the formula in (2.5). In the next a few sections, we show that the SMORE algorithm can be used to speed
up the computation of DA-QDA in binary problems. Moreover, SMORE algorithm can be applied to estimate g
as well, and offers a generalization of DA-QDA to multiclass problems. We first briefly discuss the binary problem

with K = 2 in Section 6.2, and then proceed to multiclass problems with K > 2 in Section 6.3.

6.2. Binary high-dimensional quadratic discriminant analysis

In binary problems, we need to estimate Az, 2 and az. To estimate A», we incorporate the SMORE algorithm
with the proposal of DA-QDA. DA-QDA estimates Az by (2.5), which is a SMORE problem with K = 2,
Uy = f‘.g, V, = f)l and Go = f‘.l — f‘.g. Since K = 2, Condition (C1) is always true, and we apply the SMORE
algorithm to solve for 32.

Our estimates for v and aq are slightly different from DA-QDA, though, for the sake of easier extension to
multiclass problems. For 7y = (2212, we note that 73 = arg min-, {vE 2oy, — 29T po}. 1t follows that a sparse

estimate of 2 can be obtained by
Y2 = arg ﬂ}rign{'}’;iz'}’z — 275 fig + Alyall1}s (6.5)

where f]g, fio are sample estimates. Equation (6.5) is also a SMORE problem with Us = f]g, Va=1€eR, and
Gy, = ji2. Condition (C1) is true because K = 2, and we employ the SMORE algorithm to solve for 7.

To estimate az, we note that the Bayes’ rule is a linear function in As,-ys. Therefore, after we obtain 32, Y2,
we estimate ag by performing logistic regression on {Y, XTEZX, XT3} to determine as. This is different from
DA-QDA, which searches for az with cross validation. Our approach is faster than DA-QDA in the estimation
of ax, and the margin sharply increases as we move on to multiclass problems. We refer to our proposal as

SMORE-QDA.
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6.3. Multiclass sparse quadratic discriminant analysis

6.3.1. Estimation of Ay for K > 2

From now on, we consider multiclass problems with K > 2. In this section, we focus on the estimation of the
quadratic terms Ay, k = 2,..., K. There is no need to estimate A1, because it is always zero by definition. We
start by rigorously investigating the sparsity assumption for Ay, k = 2,..., K, in the context of QDA. According
to the Bayes’ rule in (6.3), 6x;5,k = 1, ..., K are the coefficients for X; X;. Therefore, an interaction term X; X ;
is irrelevant to the classification if and only if §,;; = --- = dk; = 0. Consequently, if we assume that the
quadratic term in QDA is sparse, it is equivalent to assuming that most interactions X; X; are unimportant, with
2,45 =+ =0k,i; = 0.

Now we discuss the construction of sparse estimates of A. One appealing approach may be using the same
method in Section 5, since A, are differences among precision matrices, and are the solutions to (5.3). How-
ever, in QDA with K > 2, the SMORE algorithm is generally not directly applicable in solving (5.3) because
Condition (C1) is usually not met. Recall that the SMORE algorithm requires Condition (C1), which reduces to
diag(3;) = --- = diag(Ex) in (5.3). In differential network analysis, we can guarantee this assumption by
standardizing the data within class. However, in QDA our ultimate goal is to predict Y for future observations.
We cannot standardize observations within class, as it involves the knowledge of Y. In general, we expect flk to
have different diagonal elements. Because of the violation of Condition (C1), the SMORE algorithm cannot be
directly applied in QDA.

To resolve this issue, we propose a reparametrization of Ay. Let A} = A}/zAkAi/z, where Ay is a diagonal
matrix with Ay ;; being the variance of X; within Class k. Once we have estimates for A, we can easily rescale
them to obtain A ;. Moreover, the SMORE algorithm easily obtains a sparse estimate for Aj with the SMORE

algorithm, as a consequence of the following lemma.

Lemma3. Let Ry = A, /*Se AL Y% and Zy, = A V?AY?Ry — Ry AL P AT We have

K
(A3, Af) =arg_min > {Tr((®;) RiB;Ry) — 2r($; i)} (6.6)
2100 Kk=2

The problem in (6.6) is an unpenalized SMORE problem with U, = Ry, Vi = Ry. Moreover, because Ry,
is the correlation matrix with all the diagonal elements equal to 1, Condition (C1) holds. However, the parameters
Ry, Zj in (6.6) need to be estimated from data. Let ﬁg be the sample correlation of X within Class £ and
ﬁk = f{2 + &1, where £ > 0 is a small constant. We use ﬁk as sample estimates of Ry. Note that f{k are
positive definite with constant diagonal elements, satisfying both Conditions (C1) & (C2). In addition, we define

Ay to be a diagonal matrix with Ay ;; being the sample variance of X; within Class k. We estimate Z; by
Zr=A; ARy - ReA PR
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To enforce sparsity in the estimation of A}, we note that A}, has the same sparsity pattern as Ay, (i.e, 635 = 0
if and only if & ;; = 0). Therefore, sparsity in Ay, implies that for most (z, j), we have 63 ;; = --- = di ;; = 0.

In other words, the sparsity structure of A}, is grouped across k. Hence, we estimate A}, by

K
Nk . =TT * w\T 7 M
A} = arg A;?P,ILI( kg_z{Tr((Ak) RiARg) —2Tr((Ay) Zp)} + A ?j kg_z(Ak‘jj )2 . (6.7)

If we set Uy = Ry, Vi = Ry and G = Zy, (6.7) is a SMORE problem with Condition (C1) satisfied.

uo Therefore, we apply the SMORE algorithm to solve (6.7). Because Condition (C2) also holds, the SMORE algo-
rithm converges to the global minimizer. The storage cost is O(K p?), while the computation cost is O( K p%dmax)-

As a result, the computation is especially efficient when the solution remains sparse across iterations. Moreover,

the computation scales well with K. With 5*, we estimate Ay, by ﬁk = 31—1/23;;{;{1/2‘ The estimate Ek is

plugged into (6.3) for prediction, along with the estimators of -+, and a;, discussed in the next section.

wus 6.3.2. Estimation of vy, and ay for K > 2
We further discuss the estimation of v, and ay, for K > 2. The parameter y;, is the coefficient in the linear term
XT~4. In high dimensions, we assume that the linear term is sparse in the sense that most predictors do not affect
it. Specifically, a predictor X; is unimportant in the linear term if and only if y2; = --- = yx; = 0. Therefore,
sparsity in the linear term indicates that for most j, we have v; = 0,k = 2,..., K. For easy computation, we
s again reparametrize . Lety} = Ai/zfyk = R;l(A;”zuk). Obviously, fy,:j = 0if and only if -; = 0. Hence,

the sparsity in v, implies that, for most j, we have

Vo5 =" =k; =0 (6.8)
Moreover, it is easy to see that
X 1
* * . * % % —1/2
(- %) =arg_min {3 (Vi) Revi = 5(0)7A, e} (6.9)
i

Motivated by (6.8) and (6.9), we estimate ~y}, by

K P K
% % - * 5] * 1 T & —1/2 ~ *
(.- k) =arg_min ¢ > (v) Revi — 5 ()7 Ag P+ 2342 (6.10)
BERESLE g j=1 \ k=2
J
The problem in (6.10) is again a special case of (3.1), with U, = R, Vi, =1 Rand G, = K;Uzﬁk. It

a5 follows that (6.10) can be solved by the SMORE algorithm. With %}, we estimate -y, by % = Kk_llzﬁ;.

Finally, we turn to the estimation of a;. The Bayes’ rule (6.3) is a linear function in {X7 A X, XT~}.

Hence, we apply the multinomial regression on the pseudo data {Y, XTALX, XT5,} to determine ay. This is
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different from DA-QDA. Recall that, in binary problems, DA-QDA searches for the best intercept over an interval
with cross validation. If we continue to use cross validation to search for aj in multiclass problems, we will have
to search for a, in a (K — 1)-dimensional cube, which may be computationally prohibitive. In contrast, by fitting
the multinomial regression model on the pseudo data, SMORE-QDA finds a; more efficiently.

Alternatively, if p < ng for k = 1,..., K, where ny, is the sample size within Class k, we could also estimate
ax, by (6.4). More specifically, £ and ~; are estimated directly by matrix inverse f‘.l_l and f};lﬁl, respectively.
Other precision matrices are calculated by f];l = il_l —I—ER, where Bk is obtained from (5.3), and 7, is obtained
as discussed above for k = 2,-- - , K. All these estimates are plugged in (6.4) to form estimates for a,. In practice,
one could choose between these two ways of estimating a;, on a validation set.

For simplicity, we refer to our proposal for multiclass high-dimensional QDA as SMORE-QDA as well. In
contrast to DA-QDA, SMORE-QDA solves all the optimization problem with the SMORE algorithm, and can
handle multiclass problems. In binary problems, both methods have the storage cost of O(p?), while the compu-
tation cost is O(p2dmax) for SMORE-QDA, and O(p?) for DA-QDA. Therefore, SMORE-QDA is more efficient

when strong sparsity exists.

7. Numerical studies

7.1. Differential network analysis

In this section, we compare the SMORE methods with LASSO-DN and Dantzig-DN in differential network
analysis. Our comparison concerns the accuracy and the computation cost. In binary problems, SMORE-LDN and
LASSO-DN solve the same optimization problem. Hence, we aim to confirm that they have roughly the same level
of accuracy. Similarly, we hope to see that SMORE-DDN performs similarly to Dantzig-DN. In the comparison
of computation cost, we will show that the SMORE methods are more efficient than their counterparts.

We consider both binary and multiple differential network cases. For each model, we consider dimensions
p = 40,60 and sample sizes n = 100,300. In all the models, we start by determining the set Dy that con-
tains all the edges in El_l. We obtain Dy using the power law degree distribution similar to that in [7]. Let

a=2and c = (352, m) ! be a normalization constant. We calculate a sequence of constants {h;}¥_; by

h; = (afl)ﬁ(%)ﬁ. Then for each pair of nodes (7, ), we generate a Bernoulli random variable Z;; ~

Bernoul]i(% .If Zij = 1, (i, 5) € Dy; otherwise, (i, 5) ¢ Dy. After we obtain Dy, the elements (X7);;
for each model are specified as in Models (B1)—(B3) & (M1)-(M3) in Sections 7.1.1 & 7.1.2. We set the diagonals
of 27! to be 1 and finally symmetrize $7 ' by averaging it with its transpose. With 27, we let D be the index
set of the pairs of top p% largest absolute values on the M nodes with most connections. Then the other networks

%, ! are different from X7 only on the set D.
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7.1.1. Binary networks

In binary problems, we let (£51);; = a1(27");; for (4,7) € D and (£51);; = (£71)45 for (4, ) € De. The
parameters in the three models we consider are as follows.

Model (B1): If (i, j) € Do, (27)i; = 0.7/ /2 when p = 40 and (27");; = 0.7/7771/3 when p = 60. Then
a1 = —1, p% = 10%, M = 4.

Model (B2): If (i, j) € Dy, (£71);; = 0.718771/2 when p = 40 and (X£7");; = 0.7/7=71/3 when p = 60. Then
a1 = —1, p% =20%, M = 2.

Model (B3): Each nonzero entry of X! follows a uniform distribution with support [~1/6, —1/15]U[1/15,1/6].
Then a; = —0.8, p% = 20%, M = 2.

We apply SMORE-LDN, SMORE-DDN, LASSO-DN and Dantzig-DN on the generated data. We compare
the Frobenius norm of A — A, where A is the differential network, and A is its estimate. In each replicate,
we record the estimation error ||3 — A||p, where || - || denotes the Frobenius norm. The means and standard
errors of 100 replicates are reported in Table 1. It can be seen that the accuracy of SMORE-DDN is comparable
to LASSO-DN, since they solve the same optimization problem. Similarly, SMORE-DDN gives results close to
Dantzig-DN. Such results confirm that the SMORE methods reproduce the results of their counterparts. We will

later see that the SMORE methods have computational advantages.

7.1.2. Multiple networks

In multiple-network problems, we generate Models (M1)—-(M3) with El_l, 22_1 the same as those in Models
(B1)—~(B3), respectively. Then we further specify 23_1 by setting X3 ;; = —0.5 x ¥ for (¢,5) € D and
Y3,ij = B1,45 for (i,7) € D°. We aim to estimate Ay = X" — X7 for k = 2,3. Note that by our design X3
is closer to 7! than 35 '. Hence, A3 has weaker signals and is expected to be more difficult to estimate.

We again apply the four methods considered in binary cases. SMORE-LDN simultaneously estimates Ay,
while SMORE-DDN, LASSO-DN and Dantzig-DN estimate A, individually. We report ||Ax — Ag||p in Ta-
ble 2. It can be seen that SMORE-DDN again achieves accuracy similar to Dantzig-DN, as they solve the same
optimization problem. On the other hand, SMORE-LDN employs the group lasso penalty in multiple network
problems, which distinguishes it from all the other methods. We can see that SMORE-LDN is similar to the
competitors in estimating A, but uniformly outperforms all the competitors in estimating As. Recall that Az
has weaker signals and is more difficult to estimate. In SMORE-LDN, we use the group lasso penalty to pool the

information from A to facilitate the estimation of Ag, which leads to its superior performance.

7.1.3. Computation cost

We further compare the computation costs of the four methods. For simplicity, we focus on the most challeng-

ing case with n = 100, p = 60. We record the computation time on one single tuning parameter for 20 replicates.
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Model p n  min(SE) SMORE-LDN LASSO-DN Dantzig-DN SMORE-DDN

100 0.0172 1.2840 1.2742 1.2952 1.2818
40
300 0.0094 0.7982 0.7923 0.8008 0.7882
Model B1
60 100 0.0156 1.4251 1.4385 1.4450 1.4420
300  0.0103 0.9764 0.9764 0.9914 0.9852
100 0.0184 1.1294 1.1227 1.1415 1.1271
40
300  0.0097 0.7375 0.7274 0.7450 0.7320
Model B2
100 0.0179 1.0879 1.0896 1.1082 1.1053
60
300  0.0110 0.7785 0.7753 0.7923 0.7877
100 0.0074 1.1866 1.1898 1.1951 1.1923
40
300  0.0081 0.8478 0.8409 0.8400 0.8348
Model B3
100 0.0095 1.3861 1.3662 1.3926 1.3850
60
300  0.0092 0.9454 0.9046 0.9232 0.9130

Table 1: Simulation results for binary differential networks. We report the means of || A — A || based on 100 replicates. Within each model,
the standard errors of all the methods are very close, so we only report the minimum standard error in each model as min(SE). Based on the
standard errors, all the comparisons between LASSO-DN and SMORE-LDN are insignificant, and so are the comparisons between Dantzig-
DN and SMORE-DDN. In other words, LASSO-DN and SMORE-LDN produce approximately identical estimates, and so do Dantzig-DN
and SMORE-DDN.

The tuning parameter is pre-chosen to minimize the norm of difference. The results are in Table 3. SMORE-LDN
is the fastest, followed by LASSO-DN. The other two methods are much slower, as they use the Dantzig selec-
tor. Nevertheless, SMORE-DDN manages to greatly reduce the computation time of Dantzig-DN. Therefore, the

SMORE methods are more efficient than their counterparts in the models we considered.

7.2. High-dimensional quadratic discriminant analysis

In this section, we demonstrate the application of our proposed SMORE-QDA as a high-dimensional QDA
method. In all the models, we consider two scenarios with p = 50, 200. We generated training sets according to
(6.2), with the sample size within each class being 100. We further generated validation sets to choose the tuning
parameters, and testing sets to evaluate the performance of the classifiers. Both the validation sets and the testing
sets are of the same sample size as the training data. When we describe the mode] settings, we say 2 = AR(p) if

Qi; = pli=Il and Q = CS(p) if Qi = 1 and Q;; = p fori # j.
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p n | Az — Az ||F | Az —As|r
SMORE LASSO Dantzig SMORE SMORE LASSO Dantzig SMORE

LDN DN DN DDN LDN DN DN DDN
M1

1.3418 1.2742 1.2952 1.2818 1.0590 1.2246 1.2322 1.2270
40100 (0.0168) (0.0175) (0.0173) (0.0174) (0.0131) (0.0165) (0.0161) (0.0163)

0.8294 0.7923 0.8008 0.7882 0.6680 0.8062 0.8040 0.7980
4030 (0.0091) (0.0104) (0.0098) (0.0099) (0.0077) (0.0103) (0.0096) (0.0096)

1.4484 1.4385 1.4450 1.4420 1.1167 1.2016 1.2073 1.2046
o0 1% (0.0169) (0.0158) (0.0156) (0.0157) (0.0134) (0.0143) (0.0143) (0.0142)

0.9884 0.9764 0.9914 0.9852 0.7779 0.9177 0.9294 0.9267
00 300 (0.0102) (0.0108) (0.0106) (0.0105) (0.0079) (0.0095) (0.0092) (0.0092)
M2

1.1970 1.1227 1.1415 1.1271 0.9320 1.0473 1.0560 1.0482
40100 (0.0182) (0.0186) (0.0188) (0.0188) (0.0144) (0.0173) (0.0169) (0.0173)

0.7690 0.7274 0.7450 0.7320 0.6107 0.7136 0.7228 0.7180
4030 (0.0094) (0.0101) (0.0097) (0.0097) (0.0083) (0.0105) (0.0101) (0.0102)

1.1074 1.0896 1.1082 1.1053 0.8464 0.8959 0.9046 0.9020
o0 1% (0.0182) (0.0181) (0.0181) (0.0181) (0.0143) (0.0155) (0.0155) (0.0154)

0.7861 0.7753 0.7923 0.7877 0.6086 0.7087 0.7177 0.7150
00 300 (0.0118) (0.0110) (0.0113) (0.0113) (0.0093) (0.0108) (0.0110) (0.0111)
M3

1.2107 1.1898 1.1951 1.1923 1.0189 1.0396 1.0442 1.0432
40100 (0.0065) (0.0074) (0.0076) (0.0051) (0.0057) (0.0053) (0.0078) (0.0052)

0.8403 0.8409 0.8400 0.8348 0.7207 0.7991 0.7962 0.7954
4030 (0.0075) (0.0088) (0.0082) (0.0084) (0.0071) (0.0085) (0.0085) (0.0085)

1.4623 1.3662 1.3926 1.3850 1.2361 1.2475 1.2545 1.2572
o0 1% (0.0080) (0.0103) (0.0068) (0.0067) (0.0065) (0.0070) (0.0068) (0.0067)
60 300 0.9922 0.9046 0.9232 0.9130 0.8511 0.9144 0.9248 0.9279

(0.0086) (0.0092) (0.0100) (0.0098) (0.0070) (0.0083) (0.0083) (0.0083)

Table 2: Multiple differential networks. Mean and standard error of the minimum norm of differences based on 100 replicates are reported.
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Model SMORE-LDN LASSO-DN Dantzig-DN SMORE-DDN

Bl 0.6813 1.0138 202.87 25.97
B2 0.3757 1.0549 200.81 18.75
B3 1.0500 1.0724 239.37 79.03
M1 0.8161 1.9213 402.11 40.33
M2 0.4355 1.9971 399.88 30.64
M3 1.1575 2.1398 468.67 129.27

Table 3: Time (seconds) of model fitting on a given parameter of 20 replicates. The parameter A is chosen to minimize the norm of difference.

7.2.1. Binary simulations

We consider the following four models, which were also used in [28]. For each model, we let p; = 0 and
o = 2oy, where ¥ = (0.6,0.8,0,...,0)T. The parameters X; and X5 are set as follows.

Model (B1): X5 is a band matrix with diagonal elements being 1 and Eg,ilj =03for|i—j| =1 27! =
35! + 21, where £ ~! is a symmetric and sparse matrix with 21_01,10 = —0.3758, 51_01,30 = 23701,10 = 0.0616,
Sios0 = Sso10 = 0.2037, B3y, = —0.5482, B3, = By, = 0.0286, and B, = —0.4614.

Model (B2): ;' = AR(0.5). X' =21 + 1L

Model (B3): ;' = 27! = AR(0.5).

Model (B4): ;' = AR(0.5). 7' = ;' + X! where 3! is a band matrix with diagonal elements being 1
and X' = 0.5 for [i — j| = 1.

We compare SMORE-QDA with DA-QDA to confirm that they produce similar results, as they solve the same
optimization problem with different algorithms. The prediction error and variable selection results are reported
in Table 4. In SMORE-QDA, we perturb the covariance matrices by £ = 0.05 for p = 200 cases. The error
rates of the two methods are comparable overall, although SMORE-QDA often appears to be less accurate. This
is because DA-QDA does a grid search for the optimal intercept ay, while in SMORE-QDA we refit the logistic
regression model on the reduced data. We further plot the solution path of A in Model (B2) in Figure S1 in the
supplement. The two algorithms yield similar solution paths.

Finally, we compare the computational cost of SMORE-QDA and DA-QDA. We record the computation time
of estimating A in Models (B1) and (B2) for the same pre-tuned parameter, which is chosen to yield the best
classifier. The reported time in Figure 7.1 is averaged from 20 replicates. As we have shown, DA-QDA has
computation complexity of order O(p®) and our method of O(p?dmpax ). Model 1 is a very sparse case where A
has less than p nonzero elements. Therefore, our method is significantly faster than DA-QDA. In Model (B2), the

number of important variables in A is exactly p, and two algorithms have comparable computation time.
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Model p=50 p=200
SMORE-QDA DA-QDA SMORE-QDA DA-QDA
Mean SE Mean SE Mean SE Mean SE
Model B1 2545 (0.29) 26.08 (0.30) 25.05 (0.35) 24.68 (0.31)
Model B2 2.00 (0.11) 1.8 (0.11) 051 (0.07) 0.13 (0.03)
Model B3 35.09 (0.42) 3407 (0.39) 3630 (0.44) 33.82 (0.36)
Model B4 16.34 (0.29) 1585 (0.32) 8.03 (0.200 791 (0.23)

Table 4: Binary simulations. The means and standard errors of 100 replicates are reported.
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Figure 7.1: Computation time (seconds) from 20 replicates. We record the time of estimating A in Model (B1) and Model (B2).

w5 7.2.2. Multi-class simulations

We further include multi-class simulations when K = 3. We adopt all the parameters El_l, E;l, 1, M2 in

binary class problems. For the third class, we let 3 = (1.2,1.6,0,...,0) and specify the X3 according to the

following settings.

Model M1: 7! =271 + 21 Bt =327 — o3 1L
w ModelM2: X7 =371+ 1,27 =351 + 2L

Model M3: I7! =271 =

»n

Model M4: 7! =371+ 21 B =371 41651

In multiclass problems, DA-QDA is no longer applicable, but we consider a wide range of other competitors.

We include two versions of penalized multinomial regression (PMR) methods. The first PMR method, referred
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«s to as PMRI, only includes the main effects, while the second PMR method, PMR2, fits a model with both the
main effects and the two-way interactions. Popular machine learning methods such as random forest [47, 48],
linear support vector machine and kernel support vector machine [49, 50] are also included for comparison. The
classification error of the Bayes’ rule is also reported as a baseline. In SMORE-QDA, we perturb the covariance
matrices by £ = 0.01 for p = 200 cases. The classification error rates are recorded in Table 5. It can be seen that

g0 SMORE-QDA uniformly outperforms all the competitors. Hence, SMORE-QDA has competitive performance as

a classifier as well.

Error (%) p Bayes SMORE-QDA SVM-1 SVM-k RF PMR1 PMR2

30.74 32.75 51.54 48.35 41.33 4493 38.17
50
(0.29) (0.30) (0.30) (0.33) (0.30) (0.26) (0.31)
Model M1
20.53 31.64 57.87 56.50 4393 45.14 3843
200
(0.24) (0.28) (0.27) (0.28) (0.28) (0.27) (0.29)
- 7.53 9.51 53.98 11.26 18.01 48.30 19.21
(0.14) (0.19) (0.33)  (0.19) (0.23) (0.33) (0.27)
Model M2
0.60 1.49 58.18 2.40 9.97 49.06 1791
200
(0.04) (0.08) (0.27)  (0.09) (0.21) (0.31) (0.28)
42.14 433 51.09 52.03 4788 43.62 44385
50
(0.22) (0.24) (0.28) (0.29) (0.27) (0.22) (0.25)
Model M3
200 42.41 44.56 57.71 5743 51.56 4495 46.51
(0.29) (0.30) (0.29) (0.31) (0.29) (0.32) (0.28)
15.23 34.46 55.18 30.49 38.03 51.35 35.57
50
(0.19) (0.32) (0.30) (0.32) (0.31) (0.31) (0.28)
Model M4
200 5.64 29.66 60.42 22.6 33.24 5254 3462
(0.12) (0.31) (0.30) (0.25) (0.30) (0.31) (0.3)

Table 5: Multiclass simulations. The average classification errors in 100 replicates are reported. Standard errors are in parentheses.

8. Real data

8.1. The TCGA gloiblastoma data

We compare all the differential network analysis methods considered in simulations on the modified TCGA
as glioblastoma data provided in R package DINGO and studied in differential network approach DINGO [51]. The

data was collected in a study on glioblastoma multiforme, which is a primary brain tumor for adults, with 233
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subjets in total. We standardize expressions for 18 genes and 156 observations. The observations are separated
into two sub-groups based on their survival times, LTSs and STSs. The 83 patients in LTS group are the top 45%
in the study with survival time longer than 407 days, and the 73 patients in STS group are the bottom 45% with
less than 341 days surviving.

We applied SMORE-LDN, LASSO-DN, Dantzig-DN and SMORE-DDN on the gene expressions and plotted
the solution paths in Figure 8.1. The range of tuning parameters was chosen such that all the four paths would
give A with d nonzero elements, where d ranged from O(p?/log(p)) to 0. Tt can be seen that the solution path
of SMORE-LDN is similar to LASSO-DN, and the solution path of SMORE-DDN is similar to Dantzig-DN.
The computation time of the solution paths are also reported in Table 6. SMORE methods are faster than their

counterparts.

SMORE-LDN LASSO-DN

.
I
Y

(%]
1

coefficient
— %]
1 1
(=]
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(5]
1
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Dantzig— DN SMORE —-DDN
4 47
£ 31 5 \
S, | o, ]
g2 5°
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\\=¥ M
01 : - : - 04 ; - . -
05 1.0 15 20 05 1.0 15 20
lambda lambda

Figure 8.1: Solution path on the TCGA glioblastoma data. Displayed are the coefficients of the following pairs: (11,11), (14,14), (17,5), (8,11),
(15,14).

Method SMORE-LDN LASSO-DN Dantzig-DN SMORE-DDN
Time (s) 0.1035 0.1082 3.3830 0.6539

Table 6: Computation time of a solution path.

8.2. The Vehicle Silhouettes data
We further consider a multi-class classification problem on the Vehicle Silhouettes data set. The data set

is available on UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
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Statlog+ (Vehicle+Silhouettes)). It records 18 features extracted from the silhouettes of four types
of vehicles. All the four classes have a relatively balanced sample size among 846 subjects in total. We want to
build a classifier to predict the types of vehicles based on the silhouettes. The data set is randomly partitioned into
training, validation and testing sets with the ratio 1:2:2, i.e, 170 training samples, 348 validation samples and 348
testing samples. All the tuning parameters are chosen by minimizing the validation error.

Similar to Section 7.2.2, we compare SMORE-QDA on this dataset with five successful classifiers, including
random forest, linear and kernel support vector machines, and two versions of penalized multinomial regression
methods, PMR1 and PMR2. PMRI1 only includes the main effects, but PMR?2 further includes all the two-way
interactions. Note that DA-QDA is not applicable on this dataset because we have a multiclass problem instead
of a two-class problem. Before fitting the classifiers, each variable is standardized. In SMORE-QDA, we slightly
perturb the sample covariance matrices by 0.01 to speed up the computation. Means and standard errors of classi-
fication error rates on testing data over 100 replicates are reported in Table 7. It can be seen that SMORE-QDA is

significantly more accurate than all the competitors, which supports its application in classification.

Error rate (%) SMORE-QDA PMRI PMR2 SVM-l1 SVM-k RF
Mean 22.34 2380 2432 2516 4430  28.60
SE 0.25 0.24 0.24 0.26 203 0.22

Table 7: Testing errors on the Vehicle Silhouettes data set. Means and standard errors from 100 replicates are reported.

9. Discussion

In this paper, we develop the SMORE algorithm that can be applied to differential network analysis and QDA.
See Table B.8 in the appendix for a summary of these applications. In all the applications, the SMORE algorithm
has low storage and computation costs in comparison to LASSO-DN and Dantzig-DN, which we list in Table B.9
in the appendix. The SMORE methods are particularly favorable in the presence of strong sparsity. Under mild
conditions, the SMORE algorithm is theoretically shown to have nice convergence results. Further, this algorithm
provides a natural approach to generalize existing methods for binary problems to multiclass problems. The
superior performance of the SMORE algorithm is confirmed by numerical studies.

Our SMORE algorithm is a coordinate descent algorithm. Coordinate descent algorithms are known to be
efficient and stable in high-dimensional problems [52, 38, 53]. However, in comparison with existing coordinate
descent algorithms, the SMORE algorithm is carefully tailored for the SMORE problem to take advantage of its
special form and drastically reduce the storage and computation costs. Some of the techniques we use to develop

the SMORE algorithm are similar to those in [54], but the SMORE algorithm targets a more complicated problem
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and has much broader applications. We acknowledge though that the objective function of the SMORE problem
is convex, and other algorithms may be applicable as well, such as the alternating direction method of multipliers
(ADMM) [33, 55], Bregman-based approaches [56, 57], stagewise method [58], minorize-maximization (MM)
[59, 60, 61], ODE-based methods [62, 63] and proximal gradient descent algorithms [64]. A thorough study of
these algorithms in solving the SMORE problem is left for future study.

Finally, we note that the SMORE algorithm enforces sparsity in estimation. As pointed out by a referee,
sparsity may not be reasonable in some real-life problems. If the sparsity assumption is deemed inappropriate
for a particular dataset, one possible alternative is the low-rank assumption; see [65, 66, 67, 68, 69, 70, 71] for
example. In these works, it is assumed that the variation across all the covariance or precision matrices is fully
captured by a common low-rank subspace. These methods are strongly supported by theoretical and numerical
results. However, they often involve non-convex optimization, and thus the SMORE algorithm cannot be directly
applied to implement them. It will be interesting to see in the future if the low-rank methods can be reformulated

as convex optimization problems and if algorithms similar to the SMORE algorithm can be developed for them.
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Appendix A. The Dantzig algorithm

We describe the Dantzig algorithm proposed by [7] for completeness. The Dantzig algorithm solves (4.2) as

follows.
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Algorithm 3 The Dantzig algorithm

1. Input £, &, Initialize w(® = 0.
2. Forsteps t =1, 2,.. ., iteratively do the following until convergence:
(a) Update
£ = argmin | W/ + 2vec(S1 — £) — (82 © £1)50 —r |3 /2+ £(r)/p.

(b) Update

8¢+ = argmin || W /p — "V 4 2vec(£1 — £p) — (E2® £1)6 |13 /2 + [|6]l1/p.

In the implementation, this is approximated with closed form

8D = 51 (8@ - (B0 8)T[(E2®£1)8W —w® /p+ D _ 2vec(E; — 5,)]).

(c) Update
wttD = w® 4 p(2vec(B; — 8p) — rtH) — (8, @ 57)s¢+D).

3. Output 6(**1) at convergence.

(A.T)

(A.2)

(A.3)

(A4

Appendix B. Additional Tables and Figures

Table B.8 summarizes the choices of Uy, Vi, Gy, in all the applications.

Method Ue Vi Gx
SMORE-LDN DTS SN N SN
SMORE-DDN $2 52 5,{2(81 - ) + WO /p - REFDYS,
SMORE-QDA  Quadratic term Ry Ry APAIR, —ReAZA[?
Linearterm Ry 1 K;% I

Table B.8: Choices of Uy, V, Gg. The matrix ﬁk is the sample covariance matrix, f{k is the perturbed sample correlation matrix within

class k, and A, = diag(X},) is the diagonal element of covariance matrix.

A comparison on storage and computation costs for differential network analysis is given in Table B.9. Our

SMORE algorithm has low storage and computation costs in all applications.
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LASSO-DN SMORE-LDN Dantzig-DN SMORE-DDN
Storage 0?) o) o) o)
Computation O(p?) O(p?dmax) O(p*) O(p?)

Table B.9: Comparison of storage and computation costs for the SMORE methods, LASSO-DN and Dantzig-DN. The quantity dmax is the

maximum number of nonzero elements in the iterations.

To further compare the solution path of SMORE-QDA and DA-QDA, we consider the QDA Model (B2) in
Section 7.2 as an example. Figure B.1 shows that the solution paths of SMORE-QDA and DA-QDA are similar to

each other.

SMORE-QDA DA-QDA
04 04
-1 -1
5 5
L] @
S 2- S 2
-3 -34
4 a3 2 0 1 4 3 2 0 i
log(lambda) log(lambda)

Figure B.1: Solution path of A in Model (B2) defined in Section 7.2. Displayed are the coefficients of the following pairs: (6,6), (13,13),
(33,33), (36,36), (43.43).
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Appendix C. Proofs for Lemmas

Proof of Lemma 1. First, define Wy, = U, ® V. Forfix 7 =1, --- , p, note that

BEWiBe = Wi imBriBem (C.1
Im
= 52;Wk,jj + QZ Wi 15 BriBrj + Z Wi imBri Bem. (C.2)
15 1£5.m#
1 Br = g Brj + Z 9r1Bri- (C.3)
175
Therefore,
BEW By — 2g7 B = .ngwk,jj + Q(Z W13 Brt — 9rj) Brj + Sk (C4)
1%

where sy, is the sum of terms that do not involve ;. Hence given 3., j’ # j, the solution of 3.; to problem

(3.2) is equivalent to solving

K
. ~ A
min ) ~(Bey — Brs)® + =—I18.ll; (C.5)
) W3
where .
— Tii — W13 Bri
By = 9 Ejej ktiBrs (C.6)
Wi jj
By the definition of Kronecker product, we have
Wk:jj‘ = ﬁks.}'—ljli}ksjEjE! (C.7)
Z Wk,:jﬁkj = ‘7{,.3-2 B! Uy j,, (C.8)
1]
with j1, j2 defined as in (3.3). Hence, (3.4) holds. By checking the KKT condition we have (3.6).
O

For the proof of Lemma 2, we recall two useful facts. First, for two matrices A € RP**P2 B e RP2*P1_we
have vecT (A)vec(B) = Tr(ATB). Second, for matrices A € RP1*Pz B € RP2XPs C € RPs*P1_we have that
vec(ABC) = (CT @ A)vec(B).

Proof of Lemma 2. Given w(®*) and r(t+1) fixed, equation (4.4) is equivalent to
8+ — arg min {5T(’f:2 2SS0 51)d
_26T(i2 ® il)T[w(t)xp _ r(t+1) T 2\’60(21 _ 22)] + m} (C.9)
p

= arg min {L1 — 2L+ m} .
p
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where

Li = T(2:035)(52054)0,
Ly = 8T(Z:03)T[w®/p—rtth) 4 2vec(8; — )]
For L, we have
Li = 6720351220 31)8 = vecT (A) (22 @ £2)vec(A) = {(22 @ £2)vec(A)} vec(A)

= vecl (22A52)vec(A) = Tr(Z2ATS2A) = Tr(ATE2A52).
For L5, note that
6T (B2 @ £1)Tvec(B1 — 3) = vecT (B1A ) vec(B1 — 0) = Tr(2,ATS(21 — 7))
= Tr((E1 — 82)81A%,) = Tr(AZ, (3 — £,)8),
8T (B2 @ )T (w® /p — 1)) = vecT (81 AS;)vec(W® /p — RE-V) = Tr[S,ATS {W®) /p — RE-D}]
=Tr[{W®/p— RIS A, = Tr[AS{W® /p — RETD}S, .

555 Hence, Ly = vecT (A)vec(¥) = T'r(A¥), and the conclusion follows.

O
Proof of Lemma 3. Since A = Ek_l — El_l, Ay can be solved by
K
Ap=arg_min > [Tr(@{EltikEk) T (B(D — zk))]. (C.10)
Po,... Px P
For any @, define ®; = AiﬁtI)kAi/z. Then we have
K
3y [Tr(@{zli-kzk) T (B (1 — Ek))} (€11
k=2
K 1 1 1 1 1 1 1 1
= Y ITr{(A]7®;AL ) TATRIAT (AP ®;A; T)ARLAT )} (C.12)
k=2
—2Tr{A; * @} A, (AT R1A7 — AZRAR)}] (C.13)
K
= Y {Tr((®;)"Rx®;R1) — 2Tr (D5 Zs)}- (C.14)
k=2

It follows that, for any * and its corresponding ®,

K K
S {Tr((ANTReALRy) — 2Tr(ALZ)} = [Tr(A{ElAkEk) — OTr(Ak(S1 — zk))]
k=2 k=2

K K
< 3 [Tr@TSi 8% - 2Tr(84(B1 — Zx)| = 30 Tr($7) TRuB;Ry) — 2Tr(81Zs).

k=2 k=2
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And the conclusion follows.

Appendix D. Proofs for Theorem 1 (Convergence analysis for Algorithm 1)

In this section, we prove the results in Theorem 1. First, we present the following definitions and propositions

in [72]. For an objective function

N
f(Xl,---,XN)=f0(K1,---,KN)+ka(Xk), (D.1)

k=1
where fp : Rut+n8 3y R U {oco} and some f; : R™ — R U {co},k = 1,...,N. We have the following

definitions:

Definition 1 (Gateaux-differentiable [73]). For a function F' : R — R, define Gateaux derivative as

F Ay)—F

If F'(x;y) exists for all y at X, then F is Gateaux-differentiable at x.

Definition 2 (Stationary points [72]). A point z is stationary for function h if g(z; 1) > 0 for any v, where

h(x+ Av) — h(x)

3 (D.3)

;v) = liminf
9(z;v) imin
Definition 3 (Regular [72]). A function f is regular at z if
f’(Z;V) = 01f0raﬂyv = (V].:"':VN) SHChIkﬂIf’(z;(o,...,b’k,--- 10)) > 01'1‘: = 1)"':N- (D-4)
We will also use the following propositions.

Proposition 1 (A simplified version of Lemma 3.1 in [72]). If fo is Gateaux-differentiable, f is regular at each z.

Proposition 2 (A simplified version of Theorem 4.1 in [72]). Assume that the level set X° = {x : f(x) < f(x°)}
is compact, where x° is the initial value of the algorithm, and that f is continuous on X°. Further assume that
f(x1,...,Xy) is pseudoconvex in (Xg,X;) for all i,k € {1,..., N}, and if f is regular at every X, then the

solution generated by the cyclic coordinate descent method converges to a stationary point of f.
We make use of these results to prove Theorem 1.

Lemma 2. If W, is positive definite, the set B® = {3 : L(3) < L(3°)} is compact for any [3°, where

K P
L(B) =Y BrWiBr — 2Bk + A Y 18,1l- (D.5)

k=1 i=1
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Proof. Firstly, B® must be closed since L(/3) is continuous. Then we show that B° is bounded. When Sy is

invertible, for any 3 € RP, we have
BrWiBr — 2818k > —gL W, gk

Take summation over k and it follows that, for any 3 € B°,
K P
S G Wi g + A 118,41 < L(B) < L(B°).
k=1 j=1
which suggests that B is bounded by
P
j:

Therefore, B is compact.

Proof of Theorem 1. Let f;(3.;) = A||B|,i =1,...,pand

K

fo(B) = Z{a@}cwffﬁk — 28,5},

k=1

K
1 T
1841 < 5 D> gk Wi gk + L(B°) for any 3 € B°.
1 k=1

(D.6)

(D.7)

(D.8)

(D.9)

where Wy = U, ®Vy, and vec(Gy) = gi. Obviously fo(/3) is differentiable. The SMORE problem is equivalent
to minimizing L(83) = fo(8) + E?:l fi(B.;). Then by Proposition 1, we have that L(/3) is regular at each 3.
Since Wy = Uy, ® V. is positive definite, with Lemma 2, we have compact set B = {3 : L(8) < L(8%)}.

Since L(/3) is continuous and convex, by Proposition 2, the coordinate descent algorithm converges to a stationary

point of L(3), which is exactly the global minimizer as L(3) is strictly convex.
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