Secret Key Agreement from Correlated Data,
with No Prior Information

Marius Zimand
Towson University, MD, USA
mzimand@towson.edu

—— Abstract
A fundamental question that has been studied in cryptography and in information theory is whether
two parties can communicate confidentially using exclusively an open channel. We consider the
model in which the two parties hold inputs that are correlated in a certain sense. This model has
been studied extensively in information theory, and communication protocols have been designed
which exploit the correlation to extract from the inputs a shared secret key. However, all the
existing protocols are not universal in the sense that they require that the two parties also know
some attributes of the correlation. In other words, they require that each party knows something
about the other party’s input. We present a protocol that does not require any prior additional
information. It uses space-bounded Kolmogorov complexity to measure correlation and it allows the
two legal parties to obtain a common key that looks random to an eavesdropper that observes the
communication and is restricted to use a bounded amount of space for the attack. Thus the protocol
achieves complexity-theoretical security, but it does not use any unproven result from computational
complexity. On the negative side, the protocol is not efficient in the sense that the computation of
the two legal parties uses more space than the space allowed to the adversary.

2012 ACM Subject Classification Theory of computation — Models of computation; Mathematics
of computing — Information theory; Security and privacy — Information-theoretic techniques

Keywords and phrases secret key agreement, Kolmogorov complexity, extractors
Digital Object Identifier 10.4230/LIPIcs.STACS.2020.21

Funding Marius Zimand: The author has been supported in part by the National Science Foundation
through grant CCF 1811729.

Acknowledgements I want to thank Andrei Romashchenko for useful discussions. I also thank the
anonymous referees for their observations which have helped me correct some errors and improve

the presentation.

1 Introduction

The goal of a secret key agreement protocol is to allow two parties that communicate
through a public channel to obtain a shared string that is secret in some reasonable sense
(e.g., information-theoretical, complexity-theoretical, or some other sense) to anyone that
has observed the communication. There are some well-known such protocols, such as the
Diffie-Hellman protocol, or various public-key cryptosystems, that are efficient and used in
the real world. However, they have the disadvantage of relying on some unproven hardness
conjectures in computational complexity. Another setting is to assume that the two parties
hold at the beginning of the protocol pieces of information that have a certain degree of
correlation. Then, in some circumstances, it is possible to compute the shared secret key
without any unproven assumption. For a simple illustration, suppose that Alice holds a line
L in the 2-dimensional affine space, and Bob holds a point P which lies on L. Then Alice
sends Bob the slope of L, after which Bob, knowing that his P is on L, can compute the
intercept of L. Now, both Alice and Bob have the intercept of L, which they can use as
a secret key, because the adversary has only seen the slope, which is independent of the
intercept.

© Marius Zimand; L)

37 licensed under Creative Commons License CC-BY V"
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). m I_
Editors: Christophe Paul and Markus Bléser; Article No. 21; pp. 21:1-21:12 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mzimand@towson.edu
https://doi.org/10.4230/LIPIcs.STACS.2020.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2

Secret Key Agreement from Correlated Data, with No Prior Information

In this paper, we consider the latter type of secret key agreement protocols. Thus, Alice
starts with a string x, Bob starts with y, and, after several rounds of interacting via messages
exchanged over a public channel, they obtain at the end of the protocol a common secret
key, that is a string z which is random conditioned by the transcript of the protocol. The
protocol is probabilistically computable, i.e., there exists a probabilistic algorithm so that
Alice computes each of her messages by running the algorithm on her input and on the
messages that she has received from Bob so far, and Bob computes his messages similarly.
As in the above example, if x and y are correlated in some way, one can hope to use the
information that is common to these strings to extract with high probability a secret key.

The study of this scenario has a long history in Information Theory and the common flavor
of the results is that for many interpretations of “correlated,” secret key agreement is possible.
Leung [7], Bennett et al. [3], Maurer [8], Ahlswede and Csiszar [1] have started an extensive
research line dedicated to the case when x and y are generated by a stochastic process, whose
properties describe their correlation (see the survey of Narayan and Tyagi [11]). Recently,
Romashchenko and Zimand [13] have studied this problem in the very general framework of
Algorithmic Information Theory using Kolmogorov complexity to gauge correlation without
using any generative model for the provenance of z and y. !

In all these works, Alice and Bob possess at the beginning of the protocol, in addition
to x and y, some information about how these strings are correlated. For instance, in
the above example, Bob knows that the point P is on the line L. In the scenarios based
on generative models, Alice and Bob know various attributes of the joint distribution of
the two random variables (X,Y") which describe the stochastic process that generates the
pair (z,y), such as entropy, ergodic properties, etc. In the algorithmic information theory
setting used in [13], Alice and Bob know the complexity profile of (z,y), which is the 3-tuple
(C(x),C(y),C(x,y)), where C(-) denotes Kolmogorov complexity. (Throughout this paper,
C(z), called the Kolmogorov complexity of z or the minimal description length of z, is the
length of a shortest program that when executed by a universal Turing machine prints x.)

Can Alice and Bob agree on a secret key without any additional prior information? A
disclaimer: This is not really a problem relevant for cryptography, because the protocols are
not efficient. We rather view it as a question about the fundamental limits of information
processing and communication. The challenge is that Alice and Bob have to detect a type
of correlation of their inputs through rounds of communication without leaking too much
information to the eavesdropper, so that they can compute a shared secret key of reasonable
length.

What is a reasonable length of the secret key? The relevant parameter that comes into
play is the mutual information of x and y, denoted I(z : y), which intuitively represents the
amount of information that is shared by x and y. In case we use Kolmogorov complexity
to measure the amount of information, I(x : y) is defined as C(z) + C(y) — C(z,y), and,
up to logarithmic precision, is also equal to C(z) — C(z | y) and to C(y) — C(y | z). It is
shown in [13] (extending a classical result from [1] which is valid for inputs generated by
memoryless processes, and which is using Shannon entropy to measure information), that
no computable protocol (even probabilistic) can obtain a shared secret key longer than the
mutual information of the inputs and y. On the other hand, a protocol is presented in
[13] that with high probability produces a shared secret of length I(z : y) (up to logarithmic

1 We point out that unlike the protocols based on hardness assumption (e.g., Diffie-Hellman protocol)
which achieve complexity-theoretic security and are efficient, the protocols in the works above achieve
information-theoretic security but do not run in polynomial time.

M. Zimand

precison), provided, as mentioned above, the two parties know the complexity profile of the
inputs. Thus, the above discussion suggests that it is natural to aim for a shared secret
key whose length is equal to the mutual information of the inputs, for some concept of
information that measures the detectable correlation.

Our contribution. We identify space-bounded Kolmogorov complexity as a concept of
information that allows secret key agreement without any prior information or special setup
(e.g., shared randomness, special extra channel) between the two parties. The space-bounded
Kolmogorov complexity with space bound S of a string x, denoted C°(z), is similar to
standard Kolomogorov complexity except that the universal Turing machine is restricted to
use at most S cells on the working tape (see Section 1.1 for the formal definition). We show
that the correlation induced by space-bounded Kolmogorov complexity can be determined
without revealing much about z and y, which, in turn, allows the parties to compute a
common secret key.

The protocols that we design produce a key z that is random given the transcript in the
sense of space-bounded Kolmogorov complexity, where the transcript is the set of messages
sent by Alice and Bob. Formally, we require that C*(z | transcript) is close to the length of
z (denoted |z|), for some space bound S. In other words, an eavesdropper which is bounded
to use space S and knows the transcript, needs essentially |z| bits to find the secret key z,
which is the same as if she did not know the transcript. If C(z | transcript) > |z| — A, we
say that A is the randomness deficiency of z with respect to the transcript, and thus we want
to obtain z with small randomness deficiency. We also want the length of z to be close to the
mutual information of z and y, which in the case of space-bounded Kolmogorov complexity
is defined as C1(z) — C2(x | y) for space bounds S; and Sy. We next present our results.

We recall that a function S(n) is fully space constructible if there is a Turing machine M
that uses exactly S(n) cells for every natural number n and for every input of length n.

» Theorem 1. Let S be any fully space constructible function.such that S(n) > n.
There is a randomized protocol that allows Alice on input x (an n-bit string) and Bob on
input y (of arbitrary length) to obtain with probability (1 — €) a common string z such that
(i) |o] 2+ CY 30 (z) — P25 (2 | y),
(i) OS5 (2 | transcript) > |z| — A,
where A < C*33() () — CAMS(M) (1), A\, Xo, A3, Ay are constants that depend only on the
universal Turing machine, and >T hides a loss of precision bounded by O(log(n/€)).

Note: The notation a >T b means that a > b— «, where « is the specified loss of precision.

The communication complexity of the protocol in the above theorem is n24+O(n log(1/€))+
C3M) (x| y), which is very large. The protocol in [13] (in which the parties also hold the
complexity profile of (z,y)) has communication complexity roughly C(z | y), which is shown
to be optimal. Thus, in our case, it would be desirable to have a protocol with communication
complexity close to C*(™ (x| 3). The protocol in the next theorem has information complexity
C3M)(z | y) plus a polylogarithmic term and communication complexity 2C5() (x| y) plus
a polylogarithmic term.

» Theorem 2 (Main Result). Let S be a fully space constructible function such that S(n) >
po(n), where po(n) is a fized polynomial that only depends on the universal Turing machine.
There is a randomized protocol that allows Alice on input x (an n-bit string) and Bob on
input y (of arbitrary length) to obtain with probability (1 — €) a common string z such that
(i) |2] >+ C5(z) = O™ (x| y),
(ii) OS5 (2 | transcript) > |z| — A,

21:3

STACS 2020

21:4

Secret Key Agreement from Correlated Data, with No Prior Information

where A <% C)‘fls(")(;v) — CMSM(x), X is a constant that depends only on the universal
Turing machine, and >T hides a loss of precision bounded by O(log®(n/e)).
Furthermore, the length of the transcript is bounded by 2C5™ (z | y) + O(log®(n/e)).

In the above theorems, the key z has A, the randomness deficiency conditioned by the
transcript, bounded by C5' (" (z) — C'5" (") (z), where S" and S” differ by a multiplicative
constant. Thus, intuitively, A is small. A particularly favorable case is when x is a shallow
string. A string x is S-shallow if C5(")(z) =+ C(x), i.e., if S(n) is enough space to allow the
construction of z from a description which is close to a shortest description. For every space
bound S, most strings are S-shallow and in case z is such a string then A =7 0.

1.1 Prerequisites

The S-space bounded Kolmogorov complexity of x conditioned by y with respect to a Turing
machine M, denoted C3,(x | y), is defined by

CY(x | y) = min{|p| | M(p,y) = = and M uses at most S cells.}

In the case of space-bounded Kolmogorov complexity, simulation by the universal machine
incurs a constant blow-up in space usage. More precisely, there exists a universal Turing
machine U and a constant v > 1 such that for any space bound S, for any Turing machine
M and for all strings x, vy,

3P (@ | y) < C3p(x | y) +O(1).

As usual, we fix a universal machine U, and denote more simply C¥(-) instead of C§(+). Also,
in case the string y used in the condition is the empty string, we drop the condition in the
notation.

The chain rules for space-bounded Kolmogorov complexity are as follows: There exists a
constant v > 1 such that for any space bound S, it holds that:

C(wy) < C%z)+C%(y | x) + O(log(|e| + ly])),)
Co(w,y) = (@) +C(y | @) + Olog(|z] + [y]))-

To simplify the writing of expressions, we sometimes use the notation C'S (i)(. ..) instead
of C7""5(...), where S is a space bound and (or sometimes \) is a constant which is clearly
defined in the context. For instance, the last inequality will be written as C'S (O)(z,y) >
CSW(z) +CSM(y | x) + O(log(|z| + [y])-

2 QOutline of the proofs

The proofs of both Theorem 1 and Theorem 2 have the same structure. We present an
outline, in which, for simplicity, we skip some technical details and ignore small factors in
the quantitative relations. Recall that initially Alice holds x and Bob holds y. The protocols
in both proofs have two phases: (1) Information reconciliation, in which Alice communicates
x to Bob by sending him just enough information that allows him to obtain x given his vy,
and (2) Secret key construction, in which, separately, Alice and Bob compute the secret key
z. All the communication happens in the Information reconciliation phase.

Phase 1 (Information reconciliation): First, Alice and Bob agree on a space bound
S = S(n). Next, Alice sends Bob a randomized hash function h. The goal is for Alice to send
Bob, as a fingerprint, some prefix of h(x) that permits Bob to construct Alice’s string x using

M. Zimand

the fingerprint and his string y. To avoid sending more information than what Bob needs,
Alice sends the bits of h(x) sequentially one bit per round. At each round, Bob attempts
to construct x by checking if the fingerprint of some string in a set of possible candidates
matches the prefix of h(z) that he has received so far. More precisely, at each round j, the
candidates are those strings whose S-space-bounded complexity conditioned by y is at most
j. If Bob finds a string among these candidates with a fingerprint that matches the prefix of
h(z) sent so far by Alice, he believes that he has found z, tells Alice to stop sending further
bits by sending her “1”, and Phase 1 stops. Otherwise, he tells Alice that he needs more bits
by sending her “0” (in which case Alice sends in the next round the next bit of h(z)).
Let p be the prefix of h(z) that Alice sends to Bob during the entire Phase 1. Then, with
high probability, at the end of Phase 1,
1. Bob has =z,
2. |p| € C%(z | y), because we show that Bob can reconstruct = by round j = C%(z | y). In
the proof of Theorem 1, a random matrix H also appears in the condition (as we explain
below), but this has little impact, because H is a random.

Phase 2 (Secret key construction): After Phase 1, both Alice and Bob have x (with high
probability). They both compute the shared secret key z by exhaustive searching a minimal
length program of x given p in space S. So, from p and z, it is possible to construct z. It
follows that z and p are independent, because otherwise z would not be minimal. But then
z and the transcript of the protocol are also almost independent, because the transcript
consists of p and the sequence “0...01” sent by Bob, and the complexity of 0...01 is low (at
most logn 4+ O(1)). Thus, z is a secret key. Let us now estimate the length of z. Since = can
be constructed from p and z in space S, it follows that C*°(x) < |p| + |2, and thus the length
of z is at least C°(x) — |p|, which, by the above bound of |p|, is at least C(x) — C*(z | y),
which is the mutual information of z and ¥ in the framework of space-bounded Kolmogorov
complexity.

The main technical issue is finding the hash function that is used in Phase 1. In the proof
of Theorem 1, this is just a random linear function given by a random matrix H, chosen by
Alice. H is roughly n? bits long, and Alice needs to also send H to Bob. This is the reason
the communication complexity is large. Also, the information-theoretical considerations in
Phase 2, are somewhat more delicate, because we need to take into account H. To reduce
the communication complexity, one has to use a shorter hash function. One idea is to use
Newman’s theorem from communication complexity, in which H is chosen from a smaller
sample space. But the sample space needs to be effectively constructed, and the obvious
way to do this leads to a loss of precision that is logarithmic in both the length of and
of y, which can be very damaging in case y is much longer than x. In Theorem 2, we use
for hashing an explicit extractor of Raz, Reingold, and Vadhan [12], which has the special
property that if we take prefixes of the output, the extractor property is preserved. These
type of extractors, called prefix extractors, allow much more communication-efficient hashing,
in the sense that Alice does not need to send the hashing function to Bob, at the cost of
making Bob’s reconstruction of x more complicated.

In our technical approach, we were inspired by several papers. Muchnik [9] has introduced
bipartite graphs similar to extractors and has used for a certain type of information reconcili-
ation concepts similar to what we call heavy nodes and poor nodes in the proof of Theorem 2.
Prefix extractors have been used for information reconciliation in [10] and [15], and the
first paper analyzes the case of space-bounded Kolmogorov complexity. The application to
secret-key agreement is a novel contribution of this paper. Some of the information-theoretical

21:5

STACS 2020

21:6

Secret Key Agreement from Correlated Data, with No Prior Information

estimations are similar to those in [13]. The idea of sending pieces of a fingerprint in several
rounds for the problem of information reconciliation (similarly to our Phase 1) has been used
before in [4, 6], and, the closest to our approach, in [5], where they study the communication
complexity of this problem in terms of the Kolmogorov complexity of the two inputs. There
is however a significant difference with the information reconcilation phase in our main result,
because, as standard in communication complexity, the protocol in [5] is not computable,
and therefore they can use random hash functions for fingerprinting.

3 Proof of Theorem 1

Phase 1: Information reconciliation. Before sending the first message, Alice takes a random
matrix H with entries in the finite field GF[2], with (n + log(1/d)) rows and n columns,
where n is the length of and 6 = ¢/2n. The random matrix H defines a random linear
function h mapping n bit strings to n + log(1/0) bit strings (viewed as vectors over GF[2]),
given by the expression h(v) = H - v.

In Round 0, Alice sends to Bob n, H, and the first 1 + log(1/0) bits of h(z).

Then in each subsequent round, Alice sends to Bob the next bit of h(x) till Bob announces
that he does not need any additional bits. Thus, at round j > 1, Bob has received the first
(7 +1) +1og(1/9) bits of h(x), a string which we denote p;. Bob checks if there is a string u
in B = {u€{0,1}" | C5™(u |y, H) < j} such that p; is a prefix of h(u). If there is such a
string u, he believes that w is x, and announces that he does not need any extra bits and the
information reconciliation stops here. If there is no such string u, Bob announces that he
needs more bits and the protocol proceeds with the next round.

Bob may be wrong at round j, if there is a string w different from z in B; such that
the prefixes of length (j + 1) + log(1/6) of h(u) and h(x) coincide. For an arbitrary string
u # x, the probability that h(u) and h(z) agree in the first (j + 1) + log(1/d) bits is
2~ ((G+D)+10g(1/9)) = §/27+1. Since B; has less than 277! elements, by the union bound, the
probability that Bob is wrong at round j is less than §.

Let k = C°™(x | y, H). Let £ be the event that Bob is wrong at one of the rounds
1,...,k. & has probability at most k§ < (n + ¢)d < 2nd = e. Conditioned by £ not being
true, the protocol reaches round k, when Bob finds z. Thus, with probability 1 — €, at the
end of round k, Bob has obtained x, and the string p := py is a program for = given y and
H in space 7 - S(n), for some constant 4/, and p has length C5") (| y, H).

Phase 2: Secret key construction. By exhaustive search, Alice and (separately) Bob find
z, the first program of x given p and H in space S. We show that z satisfies the conclusion
of the theorem.

We denote S := S(n) and we let >* hide a loss of precision of O(log(n/e)). Recall that
we use the notation C'S(™(...) in lieu of C*%(...), where X is here the maximum between
the above 7" and +y (the constant from the chain rule (1)).

First, we notice that, with high probability, conditioning by a random H does not decrease
complexities by too much.

> Claim 3. For every space bound S, for every n-bit string u, for every string v, if H is
chosen uniformly at random independent of v and v, we have

CSO(u | v, H) >+ CS® (u|v) with probability 1 — e.

M. Zimand 21:7

Proof.
CSO(u|v,H) >t CSV(u,H |v)—CSOH |v)
>+ CS@(u|v)+CS(H | u,v) — CSO(H | v) (2)
>+ €SP (u | v) with probability 1 — e.

In the first two lines, we use the chain rule, and in the last line, we use the fact that, for
every i, CSW(H | u,v) > |H| —log(1/e) — 1, with probability 1 — € (by a standard counting
argument) and CSW (H | v) < |H| + O(1) for every H. <

Now we can show part (i) of Theorem 1.

o] = O8O | p,H) 2+ CSD(a,p| H)—CSO(p | H)
(chain rule)
>+ CSP (x| H) — |p]
(because [p| >+ CS©O(p | H)) 5
>+ CSP (x| H) — CSO (x| y, H) with probability 1 — e (3)
(because |p| = CSO)(z | y, H))
>+ CSW(z) — €SO (x | y) with probability 1 — 2e
(by Claim 3)

Next we move to part (ii), where we need to show that the complexity of the secret key z,
conditioned by the transcript of the protocol, is close to the length of z. The transcript consists
of p, H, n (all sent by Alice to Bob) and of Bob’s sequence of responses s = 000. .. 01 of length
¢ =k+1+log(1/e). Bob’s sequence has complexity bounded by log ¢+ O(1) = O(log(n/e)),
and therefore, for every i we have CSW(z | s,p, H,n) =t CS®(z | p, H). Thus we can
ignore s and n in the condition and it is enough to bound from below C'S®)(z | p, H). We
show the following estimation, which ends the proof of the theorem.

> Claim 4. With probability 1 — 26, CS® (2 | p, H) >% |2z| — A, where A = CS(~2)(z) —
CS®) (z).
Proof. We need an upper bound of |z|:
2| =CSO(x|p,H) < CSTV(z,p|H)-CSO(p| H)
(chain rule)
<t 0S8 (x| H) — CSM (x| y, H) with probability 1 — e
(p can be computed from x, H and its length; and « from p,y, H)
<t 082 (x) — CSB)(z | y) with probability 1 — 2¢
(by Claim 3)
(4)

Next,
CSO)(p,z | H) >t CS©) (x| H) with probability 1 — ¢
(z can be computed from p, z, H) (5)
>+ CS®)(z) with probability 1 — 2e (by Claim 3),
and

CSO(p,z | H) <t CSW(p|H)+CSD(z|p, H)
(chain rule)
<t SOz |y, H)+CSW(z | p,H) (6)
(p can be computed from z, H and its length)
<t CS®(x|y)+CSW(z | p, H)

STACS 2020

21:8

Secret Key Agreement from Correlated Data, with No Prior Information

Combining inequalities (6) and (5), we obtain

CSW(z | p, H) > C08®(z) — CS® (x| y) with probability 1 — 2e. (7)
Using inequality (4), we finally obtain

CSW(z | p,H) > |2| — A with probability 1 — 4e, (8)
where A = CS(=2)(z) — CS® (). The conclusion follows after rescaling e. <

4 Proof of Theorem 2

We first present extractors, which have been studied in the theory of pseudorandomness (for
example, see [14]). A particular type of extractor, prefiz extractor, is used in the protocol in
the proof of Theorem 2 for hashing.

We recall that a (k,€) extractor is a function E : {0,1}" x {0,1}¢ — {0,1}"™ with the
property that for every subset B C {0, 1}" of size at least 2¥ and for every subset A C {0,1}™:

PI‘Ob[E(UB,Ud) € A] - % < €, (9)
where Up and Uy are independent random variables that are uniformly distributed over B
and, respectively, {0, 1}%.

It is useful to view an extractor F as a bipartite graph G, whose set of left nodes is
{0,1}", the set of right nodes is {0,1}™, and each left node = has 2¢ (not necessarily distinct)
right neighbors {E(z,w) | w € {0,1}?}. The right node E(x,w), for random w € {0,1}4, is
viewed as the random fingerprint of the left node .

As usual, we use explicit extractors. An explicit extractor is a family of extractors { E,, } nen
as above, indexed by n, and with the rest of the parameters k, d, m, e being functions of
n, such that there exists an algorithm that computes F,(z,w) in time polynomial in n.
Actually, for us it is more important the space complexity of the algorithm that computes
the extractor.

We denote D = 2%, M = 2™. Let B be a set of left nodes. The average numbers of
neighbors in B of a right node (called the average B-degree) is avg = |B|- D/M. We say
that a right node p is e-heavy for B if it has more (1/¢) - avg left neighbors in B. We say
that a left node u € {0,1}" is e-poor for B if a fraction larger than 2¢ of its right neighbors
are e-heavy for B. Intuitively, a heavy p is a fingerprint that causes many collisions, and u is
poor if many of its fingerprints produce many collisions.

The relevant property of extractors is presented in the next lemma. The point is that
an e-poor string is difficult to handle because a random fingerprint of it produces many
collisions. The lemma gives a criterion which guarantees that a string is not e-poor.

» Lemma 5. There exist constants A > 1 and ¢ with the following property:

Let E: {0,1}" x{0,1}¢ — {0,1}™ be a (k—c, €) extractor computable in space S(n) (in the
above sense). Let x be an n-bit string (which in the protocol is Alice’s input) and y be a string
(which is Bob's input), such that CS") (x| y,n, k) < k and CM") (x| y,n,k—1) >k —1,
and let B = {u € {0,1}" | C5" (u | y,n, k) < k}. Then x is not e-poor for B.

Proof. Let A be the set of strings that are e-heavy for B. By counting the edges between B
and A from left-to-right and from right-to-left, we obtain that |A|/M < e. Let POOR be
the set of nodes that are e-poor for B. Note that

Prob(E(Upoor,Ua) € A) > 2¢ > |A]/M + ¢,

M. Zimand

It follows that POOR has size less than 2¥—¢, because otherwise the set POOR would violate
the property that F is a (k — ¢, €)-extractor.

Given y,n, k, ¢, the set POOR can be enumerated using space S(n) + O(n) (we need the
second term to maintain several counters which require O(n) space). Taking into account
the additional space needed by the universal machine, it follows that for some constant A, if
u is an e-poor node then

MW (| y,n,k,e) <k —c+ O(1),

which implies C*3(™ (v, | y,n,k — 1) < k — 1, for sufficiently large ¢. It follows that x is not
e-poor, which proves the lemma. <

We need to use a prefiz extractor, which is a a function E : {0,1}" x {0,1}¢ — {0, 1}
with the property that for every & < n, the function Ej obtained by retaining only the prefix
of length k of E(x,w) is a (k, €) randomness extractor. Raz, Reingold and Vadhan [12] have
obtained an explicit extractor Eggy of this type with d = O(log®(n/e€)). FErry(x,w) can be
computed in time polynomial in n (recall that n = |z|). Let pg(n) be the polynomial that
bounds the space used in the computation of Erry(x,w).

In the protocol, we use the Raz-Reingold-Vadhan prefix extractor EFrry. We denote by
Ey, the k-prefix of Erry, and, abusing notation, also the bipartite graph corresponding to
the (k,€) extractor Ej.

In addition to Erry, we use a hash function h, based on congruences modulo prime
numbers. We view a string = as an integer (in some canonical way) and define hi(z) =

(z mod ¢, q), where ¢ is a prime number chosen at random among the first ¢ prime numbers.

The properties of h; follow from the following lemma.

» Lemma 6 ([2]). Let x1,2z2...,x5 be distinct n-bit strings, which we view in some canonical
way as integers < 2", Let t = (1/€) - s-n. Let q be a prime number chosen uniformly at
random among the first t prime numbers. Then, with probability (1 — ¢),

21 mod q & {x2 mod ¢, ..., zs mod ¢}.

We now present the protocol. Recall that at the beginning of the protocol, Alice holds an
n-bit string z, and Bob holds a string y. We fix the parameters as follows. Let A and ¢ be
the constants guaranteed by Lemma 5, let s = (1/¢) - 21 . D, where D = 27 = 20 (log?(n/€)
is the degree of the Ergry extractor, and let t = (1/¢) - s - n%. We use the space bound S(n)
and the constant A\ > 1, given by Lemma 5 applied to the Erry extractor. We assume that
the polynomial py and the constant ¢, promised by Lemma 5, are large enough so that for
every string z and every condition string u, C’_p‘)(“'c‘)(x | u) < |z| 4+ c. As we did earlier, we
use the abbreviated notation C'S®(...) for CA"S(M ().

Phase 1: Information reconciliation. In Round 0, Alice sends to Bob, n and h:(z), where
h; is the hash function introduced above.

Next, Alice computes p’ = Frgry(x,w) for a random w € {0,1}4.

Alice sends to Bob the string p’ (or rather a prefix of it), one bit per round, till Bob
announces that he does not need more bits.

Suppose we are at round k, after Alice has sent the k-th bit of p’. Thus, by now Bob
has received py, the k-th bit long prefix of p’. He calculates, as we explain next, a set of
candidate strings, which he thinks might be x. A string z’ is a candidate at round k if
1.2/ € B={uec{0,1}" | CS™" M (u|y,n,k+c) <k+c}, and
2. z’ is a neighbor of py, when viewing z’ as a left node and py as a right node in the graph

Ek, and

21:9

STACS 2020

21:10

Secret Key Agreement from Correlated Data, with No Prior Information

3. 2/ is among the first (in some canonical order) s strings with the above two properties.
If no candidate has the fingerprint h;(z), then Bob asks for the next bit of p’. Otherwise,
there is one candidate string 2’ so that hi(z’) = hi(z). Then Bob believes that 2’ is Alice’s
x, and he responds to Alice that he does not need further bits. The Phase 1 (information
reconciliation) of the protocol is over.

We now analyze Phase 1 (information reconciliation). We show that with high probability,
at the end of Phase 1, Bob obtains x.

Let k* = min{k | CS" F)(z | y,n,k + ¢) < k + c}. By the above largeness assumptions
for ¢ and po(n), it follows that k* < n. Let £ be the event that there exists 2’ other than
x that is a candidate at one of the rounds 1,2,...,k*
(i.e., he(2') = hy(z)). The total number of candidates from rounds 1,2, ..., k* is at most
k*-s <n-s. It follows from Lemma 6, that £ has probability at most e. Conditioned on £
not holding, either Bob finds correctly = before round k* (this happens if = is a candidate at
one of these earlier rounds), in which case we are done, or Phase 1 reaches round k*.

Suppose Phase 1 reaches round k*. Let B = {u € {0,1}" | CS™¥)(u | y,n, k* +¢) <
k* 4+ c}. Clearly, by the definition of k*,

CS)z |y, n, k" +¢) <k* +c¢

and has the same fingerprint as x

and
CSMF D (g |y k* +e—1) >k +e—1.

Now we use Lemma 5 for the pair (z,v), the (k*, €) extractor Eg- : {0,1}*x{0,1}% — {0, 1}*
and the set B. The size of B is less than 25" +<+1 and the average B-degree of a right node is
avg = |B| - D/Qk* < 2°t1. D. By Lemma 5 and the two inequalities above, z is not e-poor,
which means that with probability 1 — 2¢, pg« is a right neighbor of z that is not heavy, i.e.,
it has at most (1/e€) - avg < (1/¢) - 21 . D = s neighbors in B. Therefore, conditioned on
non &, with probability 1 — 2¢, = is a candidate at round k*, and Bob finds it. We conclude
that with probability larger than 1 — 3¢, Bob correctly obtains x.

Let p be the part of the protocol’s transcript that Alice has sent to Bob. For the analysis
of Phase 2, we need to evaluate the length of p. The string p consists of n, h:(z) and the
prefix of p’ that Alice has sent bit-by-bit before Bob told her that he does not need any
further bits. By the analysis above, with probability 1 — 3¢, the length of the prefix of p’ is
at most k*. Let k = C5(")(z | y) — ¢. Note that k < n. Since

CST I @ | ynk+0) < CSOa | y) = k+c,

it follows from the definition of k* that k* < k. Next, the length of n and h;(x) is O(log®(n/¢))
because the t-th largest prime number is less than tlogt. We conclude that

Ip| <* €SO (x| y). (10)

The communication complexity is 2|p|, because it consists of p and of Bob’s responses
00...01.

Phase 2: Secret key construction. Alice and Bob compute by exhaustive search from x
and p a program z of z given p in space S(n) of minimal length C'S© (z | p).

We now show that the protocol satisfies the requirements of Theorem 2, and we start
with part (i). We let >* hide a loss of precision of O(log®(n/e)). We have

CSO(z) <t |p|+ 2] (because z is computed from p and z in space S(n))

<t CSO(z | y) + 2] (by (10))

M. Zimand

Hence, |z| >+ CSO(z) — CSO(z | y).
Next we show part (ii) in Theorem 2. First notice that, by the chain rule,

2| = CSO (x| p) <t €S (2, p) — CSO(p). (11)
Next,

CSO(z|p) >t CSNV(z,p)—CSO(p)
(chain rule)
>+ 08U (z,p) — CSO(p)
(because x can be computed from z and p in space S(n))
=8V (z,p) = €SO (p) — (CSV(z,p) - CSW(z,p))

Z+ ‘Z| - Av

where A = CSY(z,p) — CSM(x, p). Since p can be computed from x and the seed of the
extractor and the random prime number ¢ used by h; in space pg(n) < S(n), we have

A <t SO (z) —CSD(x).

The transcript of the protocol consists of p and Bob’s sequence of responses 00...01, which
has complexity bounded by logn. Therefore

CSO(z | transcript) >+ CSO (2 | p) >T |2] — A,

which proves part (ii) of Theorem 2. |

5 Final comments

As we have mentioned in the Introduction, the main results are of theoretical, rather than
practical, relevance. The secret key agreement protocols in Theorem 1 and Theorem 2
produce a key that looks random to an adversary whose computation is space-bounded by
S(n), and, on the other hand, in both theorems, the two legal parties (i.e., Alice and Bob)
execute the protocol in space larger than S(n). For this reason, the protocols do not seem to
be suitable for real cryptographic applications.

Another observation regards the key length. In Theorem 2, the protocol, on inputs the
n-bit string x and the string y, runs in space bounded by A"S(n) (we take into account the
space used by the two parties combined) for some constant A > 1 and produces a secret key z
of length |z| =~ €3 (2) — C¥(™)(z | y) and having the randomness deficiency of z conditioned
by the trancript as stated in the theorem. Recall that the randomness deficiency A is defined
by A = |z| — C3™) (2 | transcript). Is the length of z optimal? It is known from [13], that no
computable protocol can produce a key longer than C(z) — C(x | y), the mutual information
of the inputs hold by the two parties. We have not been able to obtain a similarly clean result
for protocols that run in space S(n). By adapting the arguments in [13], it can be shown,
that if a protocol runs in space S(n) then, for every pair of inputs (z,y) with length bounded
by n, it produces a key z with C**S(m) (z | transcript) < CS)(x) — CASS(”)(:E | y), for
some constant A > 1. Thus we obtain the following upper bound: If a secret key agreement
protocol runs in space S(n) and on input (x,y), with |z|, |y| < n, it produces a secret key z
with randomness deficiency A, then

2] < OS50 (z) — OV S (@ | y) + A+ Ay,

where Ay = CS™) (2 | transcript) — C* 5™ (2 | transcript) and A > 1 is a constant.

21:11

STACS 2020

21:12

Secret Key Agreement from Correlated Data, with No Prior Information

—— References

1

10

11

12

13

14

15

Rudolf Ahlswede and Imre Csiszar. Common randomness in information theory and cryp-
tography - I: secret sharing. IEEE Trans. Information Theory, 39(4):1121-1132, 1993.
doi:10.1109/18.243431.

Bruno Bauwens and Marius Zimand. Linear list-approximation for short programs (or the
power of a few random bits). In IEEE 29th Conference on Computational Complezity,
CCC 2014, Vancouwver, BC, Canada, June 11-18, 2014, pages 241-247. IEEE, 2014. doi:
10.1109/CCC.2014.32.

Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. STAM Journal on Computing, 17(2):210-229, 1988.

Mark Braverman and Anup Rao. Information equals amortized communication. In Rafail
Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pages 748-757. IEEE Computer Society,
2011. doi:10.1109/F0CS.2011.86.

Harry Buhrman, Michal Koucky, and Nikolai K. Vereshchagin. Randomised individual com-
munication complexity. In Proceedings of the 23rd Annual IEEE Conference on Computational
Complexity, CCC 2008, 23-26 June 2008, College Park, Maryland, USA, pages 321-331. IEEE
Computer Society, 2008. doi:10.1109/CCC.2008.33.

Alexander Kozachinskiy. On Slepian-Wolf theorem with interaction. Theory Comput. Syst.,
62(3):583-599, 2018. doi:10.1007/s00224-016-9741-x.

Sik Kow Leung-Yan-Cheong. Multi-user and wiretap channels including feedback, July 1976.
Tech. Rep. No. 6603-2, Stanford Univ.

Ueli M. Maurer. Secret key agreement by public discussion from common information. IEEE
Trans. Information Theory, 39(3):733-742, 1993. doi:10.1109/18.256484.

Andrei A. Muchnik. Conditional complexity and codes. Theor. Comput. Sci., 271(1-2):97-109,
2002. doi:10.1016/S0304-3975(01)00033-0.

D. Musatov, A. E. Romashchenko, and A. Shen. Variations on Muchnik’s conditional complexity
theorem. Theory Comput. Syst., 49(2):227-245, 2011. doi:10.1007/s00224-011-9321~z.
Prakash Narayan and Himanshu Tyagi. Multiterminal secrecy by public discussion. Foundations
and Trends in Communications and Information Theory, 13(2-3):129-275, 2016. doi:10.1561/
0100000072.

Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and reducing
the error in Trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97-128, 2002. doi:10.1006/
jcss.2002.1824.

Andrei E. Romashchenko and Marius Zimand. An operational characterization of mutual
information in algorithmic information theory. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages
95:1-95:14, 2018.

Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1-336, 2012. doi:10.1561/0400000010.

Marius Zimand. Kolmogorov complexity version of Slepian-Wolf coding. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 22-32. ACM, 2017. doi:10.1145/3055399.3055421.

https://doi.org/10.1109/18.243431
https://doi.org/10.1109/CCC.2014.32
https://doi.org/10.1109/CCC.2014.32
https://doi.org/10.1109/FOCS.2011.86
https://doi.org/10.1109/CCC.2008.33
https://doi.org/10.1007/s00224-016-9741-x
https://doi.org/10.1109/18.256484
https://doi.org/10.1016/S0304-3975(01)00033-0
https://doi.org/10.1007/s00224-011-9321-z
https://doi.org/10.1561/0100000072
https://doi.org/10.1561/0100000072
https://doi.org/10.1006/jcss.2002.1824
https://doi.org/10.1006/jcss.2002.1824
https://doi.org/10.1561/0400000010
https://doi.org/10.1145/3055399.3055421

	Introduction
	Prerequisites

	Outline of the proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Final comments

